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Abstract

This work surveys mathematical foundations of Model Order Reduction (MOR for short)
techniques in accelerating computational forward and inverse UQ. Operator equations (compris-
ing elliptic and parabolic Partial Differential Equations (PDEs for short) and Boundary Integral
Equations (BIEs for short)) with distributed uncertain input, being an element of an infinite-
dimensional, separable Banach space X, are admitted. Using an unconditional basis of X, compu-
tational UQ for these equations is reduced to numerical solution of countably parametric operator
equations with smooth parameter dependence.

In computational forward UQ, efficiency of MOR is based on recent sparsity results for
countably-parametric solutions which imply upper bounds on Kolmogorov N-widths of the mani-
fold of (countably-)parametric solutions and Quantities of Interest (QoI for short) with dimension-
independent convergence rates. Subspace sequences which realize the N-width convergence rates
are obtained by greedy search algorithms in the solution manifold. Heuristic search strategies in
parameter space based on finite searches over anisotropic sparse grids in parameter space ren-
der greedy searches in reduced basis construction feasible. Instances of the parametric forward
problems which arise in the greedy searches are assumed to be discretized by abstract classes of
Petrov-Galerkin (PG for short) discretizations of the parametric operator equation, covering most
conforming primal, dual and mixed Finite Element Methods (FEM), as well as certain space-time
Galerkin schemes for the application problem of interest. Based on the PG discretization, MOR
for both linear and nonlinear, affine and nonaffine parametric problems are presented.

Computational inverse UQ for the mentioned operator equations is considered in the Bayesian
setting of [M. Dashti and A.M. Stuart: Inverse problems a Bayesian perspective, arXiv:1302.6989v3,
this Handbook]. The (countably-)parametric Bayesian posterior density inherits, in the absence
of concentration effects for small observation noise covariance, the sparsity and N-width bounds
of the (countably-)parametric manifolds of solution and QoI. This allows, in turn, for the deploy-
ment of MOR techniques for the parsimonious approximation of the parametric Bayesian posterior
density, with convergence rates which are only limited by the sparsity of the uncertain inputs in
the forward model.

Key words:
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1 Introduction

A core task in computational forward and inverse UQ in computational science is the numerical
solution of parametric numerical models for the system of interest. Uncertainty in numerical solutions
obtained from the computational model can be crudely classified as follows:

i) modeling error : the mathematical model under consideration does not correctly describe the
physical phenomena of interest: its exact solution does not predict the QoI properly. ii) discretization
error : the discretization of the mathematical model (the substitution of the continous mathematical
model by a discrete, finite-dimensional approximation which, in principle, is solvable to any prescribed
numerical accuracy on computers in float point arithmetic) whose computational realization is used
in forward UQ, introduces a mismatch between the “true response” (understood as exact solution
of the mathematical model) and the “computed response” obtained from the computational model,
for a given (set of) input data, and for a prescribed quantity of interest (QoI). Discretization errors
comprise replacing mathematical continuum models by Finite Difference, Finite Volume or Finite
Element models, and inexact solution of the finite-dimensional problems which result from discretiza-
tion, continuous time models by discrete timestepping, random variables by Monte-Carlo samples and
their realization by random number generators. The classical paradigm of numerical analysis requires
discretizations to be stable and consistent. Particular issues for discretizations in the context of UQ
are uniform stability and consistency, with respect to all instances of the uncertain input u. iii) com-
putational error : the discretized model for the numerical computation of the QoI which is obtained
from a mathematical model and its subsequent discretization is not numerically solvable for the given
input data with the compute ressources at hand. This could be, for example, due to CPU limitations,
imprecise float point arithmetic (rounding), but also due to runtime failures of hardware components,
partial loss of data at runtime, etc.

Under the (strong) assumptions that modeling error i) and computational error iii) be negligible,
which is to say that epistemic uncertainty is absent, i.e., the mathematical model under consideration is
well-posed and accounts in principle for all phenomena of interest, and the assumption that float point
computations are reliable, a first key task in computational forward UQ is the efficient computational
prediction of the QoI of a mathematical model for any given instance of uncertain input u from a
space of admissible input data X . Computational challenges arise when the space X of uncertain
inputs is infinite-dimensional. E.g. for distributed uncertain input (such as material properties in
inhomogeneous solids or fluids, shapes obtained from noisy imaging, random forcing etc.), X is a
(subset of a) function space. Computational UQ then involves Uncertainty Parametrization via a
basis of X (such as, for example, a Fourier basis in X = L2), resulting in a parametric forward
problem depending on sequences y = (yj)j≥1 of uncertain input parameters. Probability measures
on X which encode information on aleatoric uncertainty can be introduced via countably products
of probability measures on sequence space. Computational UQ procedures access the parametric
response or forward solutions nonintrusively, i.e. by numerical solution of the forward model for
instances of the parameter sequence y. Due to the possibly infinite dimension of space of uncertain
inputs y, and due to the possibly high cost of each forward solve, two key issues in computational UQ
are a) efficient computational sampling of uncertain inputs from high (possibly infinite) dimensional
parameter spaces, and b) efficient numerical solution of parametric forward models.

Two key methodologies are reviewed, which address issue a) and issue b): sparsity of the para-
metric response map and Model Order Reduction (MOR for short). Sparsity refers to the possibility
to represent responses of the parametric forward model with user-specified accuracy 0 < ε << 1 with
responses at O(ε−1/s) parameter instances where the sparsity parameter s > 0 and O() are indepen-
dent of the dimension of the parameter space. MOR refers to replacing the parametric response from
the mathematical model for all admissible parameters by one parsimonious, so-called reduced order
model respectively surrogate model which allows fast response evaluation with certified accuracy ε for
any parameter instance y. The accuracy which can be achieved by MOR with M parameters, for a
given set of solutions, is determined by the so-called n-width of the solution set in the space of all
possible solutions.

Recent results on sparsity of parametric forward models are reviewed, covering in particular un-
certain coefficients, loadings and domains of definition in partial differential equation models which
arise in engineering and in the sciences. Sparsity adapted interpolation schemes in parameter space
allow to build polynomial chaos surrogates of the parametric forward response maps. The correspond-
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ing point sets in parameter space are (generalized) sparse grids ; they are based on dimension- and
order-adaptive interpolation processes described here. As Monte-Carlo sampling, the performance of
collocation in these deterministic point sets is independent of the dimension of the parameter space,
and their convergence rates can exceed 1/2, provided the parametric response exhibits sufficient spar-
sity.

Sampling of high-dimensional parameter spaces on generalized sparse grids can be used in so-
called stochastic collocation for building polynomial surrogates of the parametric forward maps, in
the “training” phase of MOR, and for deterministic Smolyak quadrature over all uncertainties to
evaluate response statistics in forward UQ and Bayesian estimates in inverse UQ, for example.

The chapter’s focus is therefore on model order reduction and sparse, adaptive collocation methods
in high-dimensional parameter spaces in computational forward and inverse UQ. All concepts are
developed on abstract classes of forward problems with parametric distributed uncertain input data,
which is to say that the uncertain data may take values in an infinite-dimensional function space.
Mathematical forward models which are considered here are specified in terms of (linear or nonlinear)
PDEs, of elliptic or parabolic type, with smooth nonlinearities. Key steps in the approach are:

• Uncertainty parametrization: upon choosing a basis Ψ of the space X of uncertain input data,
the forward problem turns into a parametric problem. The choice of basis Ψ is, in general,
highly nonunique. To ensure stability in float point realizations of the parametric forward
problem care must be taken to choose well-conditioned bases Ψ of X . For example, in Hilbert
spaces X , ideally orthonormal bases Ψ should be chosen, or at least so-called Riesz-bases with
good Riesz constants.

• Upon choosing a (well-conditioned) basis of X , a (countably-)parametric family of parametric,
deterministic problems are obtained; these are referred to in the literature typically as “y-PDE”.
For distributed uncertain inputs u, these are, usually, infinite-dimensional parameter sequences
y.

• The (minimal, for computational UQ) requirements of well-posedness of the forward problem for
all admissible instances of the uncertain input u and for continuous dependence of the solution
on the input imply that the set of all parametric solutions M := {q(y) : y ∈ U} ⊂ X form
a submanifold of the solution space X . For smooth (linear or nonlinear) elliptic and parabolic
problems, the manifold M is in fact an analytic manifold; see [25] and the references therein.

• “Smooth” (analytic) dependence of PDE on uncertain inputs, resp. parameters implies expo-
nential smallness of the n-width M ⊂ X . This enables, in principle, accelerated forward solves
with work which scales logarithmic in accuracy ε.

• Determining (near-)optimal subspaces which realize Kolmogorov n-width approximation bounds
is feasible using so-called reduced basis methods. Section provides 3 key elements of the cor-
responding algorithms and the related theoretical results, with particular attention to the
countably-parametric problems resulting from forward problems with distributed, uncertain in-
put data. Detailed references to the literature on these techniques are provided.

• The availability of suitably compressed approximations of forward models with uncertain in-
puts implies, in particular, dramatic accelerations of any algorithm which involves numerous,
repeated approximate evaluations of these forward models; for instance, optimization problems
under uncertainty [11, 16], PDE constrained optimization algorithms, and the corresponding
inverse problems. An application to Inverse Uncertainty Quantification by Bayesian Inversion
is presented in Section 4. Bayes’ theorem provides an expression for the “most likely”, expected
output in a Quantity of Interest (QoI), conditional on a set of given, noisy observations of
(functionals of) the forward response. The numerical realization becomes, with the mentioned
uncertainty parametrization, an infinite-dimensional integration problem against a probability
measure which is only known up to a normalization constant. Current computational approaches
to deal with this problem are various variants of Monte-Carlo Methods, such as Markov Chain
Monte Carlo (MCMC), sequential Monte-Carlo, etc. Due to their generally slow convergence,
numerous evaluations of the forward models are necessary, for a large number of proposals (gen-
erated by the corresponding samplers) of the uncertain input data. In this setting, running the
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Markov chains on a reduced basis surrogate of the forward model can afford dramatic reduc-
tions in CPU time; as shown in Section 4, the resulting computational Bayesian estimates of the
expected QoI will inherit an error which is of the order of the error incurred in the MOR.

The propagation of MOR error bounds translates one-to-one to other recently developed com-
putational methods for Bayesian inversion which circumvent the use of MC sampling. These
methods rather tackle the infinite-dimensional, parametric integrals obtained by inserting the
uncertainty parametrization into Bayes’ formula, for example by adaptive Smolyak or higher
order Quasi Monte-Carlo integration.

2 Forward UQ

By forward uncertainty quantification (“forward UQ” for short) we denotes the efficient computational
realization of the uncertainty-to-solution map. The present section specifies an abstract class of
smooth, possibly nonlinear, operator equations with distributed, uncertain input data which allow
for efficient computational forward UQ. The common feature of this class of problems is based on
holomorphic extension of the parametric uncertainty-to-solution maps, as described in [25] and the
references there.

2.1 A class of forward problems with uncertain input data

By X and Y, we denote separable Hilbert spaces with duals X ′ and Y ′, respectively.
They are used for the formulation of the mathematical model of the forward problem: system

responses q (such as temperature, concentration, displacements, electric fields etc.) take values in X ,
whereas loads and source terms are understood as objects in Y ′, i.e. they are assumed to act on “test
functions” v ∈ Y.

Admissible mathematical models take form of a residual map R which associates, for a given
uncertain input u ∈ X , to each state q ∈ X a response R : q 7→ R(u; q) ∈ Y ′. With the space
X of uncertain parameters u ∈ X being infinite-dimensional, we speak about u ∈ X as distributed,
uncertain parameters. Three prototypical examples are presented: diffusion with uncertain diffusion
coefficient, smooth nonlinear elliptic problem in a parametric domain and a parabolic problem.

Example 2.1 (Linear diffusion problem with uncertain diffusion coefficient) The mathematical model
is set in a bounded domain D ⊂ Rd (assumed certain), with diffusion coefficient u(x) ∈ L∞(D) (as-
sumed uncertain) and a source term f(x) ∈ L2(D) (assumed certain), find a concentration q(x) ∈
H1

0 (D) such that
R(q;u) := div(u(x)gradq(x)) + f(x) = 0 in H−1(D) . (2.1)

Here the spaces for the system response q are X = Y = H1
0 (D), the space for the uncertain input is

X = L∞(D), and Y ′ = (H1
0 (D))∗ = H−1(D). Note that (2.1) is to hold in the weak or variational

sense of Y ′ = H−1(D); this gives rise to the variational form of the residual equation: find q ∈ X
such that

0 =Y 〈v,R(q;u)〉Y′ =

∫

D

gradv · u(x)gradq(x)dx −
∫

D

v(x)f(x) for all v ∈ Y = H1
0 (D) . (2.2)

Here, and in what follows, Y〈·, ·〉Y′ denotes the Y × Y ′-duality.
Analogous formulations arise for any second order, linear elliptic PDE in divergence form, such

as Helmholtz-equations for time-harmonic wave propagation in random media, or in (displacement
formulations) of boundary value problems in computational mechanics in solids with uncertain material
properties.

Example 2.2 In a bounded domain D ⊂ Rn, and in the time interval I = (0, T ) for a time-horizon
0 < T <∞, and for the affine-parametric, elliptic operator A(y)q = div(u(x)gradq(x)) as in (2.1), for
given f(x, t) and for given u0 ∈ L2(D), the parametric, linear parabolic evolution problem is considered

B(y)q := ∂tq −A(y)q = f , q(·, t)|∂D = 0 in (0, T )×D , q(·, 0) = q0 . (2.3)
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The parabolic, parametric evolution operator B(y) in (2.3) allows for a weak residual formulation
analogous to (2.1) with the Bochner spaces X = L2(I;V )∩H1(I;V ′), Y = L2(I;V )×H, V = H1

0 (D)
and H = L2(D). Here, the parametric bilinear form B(y;w, v) is defined, for v = (v1, v2) ∈ L2(I;V )×
H, by

B(y;w, v) :=

∫

I

〈dwdt (t), v1(t)〉H +

∫

D

u(x,y)∇w · ∇v1dxdt+ 〈w(0), v2〉H ,

where u(x,y) denotes the linear-parametric, isotropic diffusion coefficient as in (2.13).

An abstract setting is considered which accommodates both examples (and more general models) in
a unified fashion. For a distributed, uncertain parameter u ∈ X , one considers a “forward” operator
R(q;u) depending on u and acting on q ∈ X . Assuming at our disposal a “nominal parameter
instance” 〈u〉 ∈ X (such as, for example, the expectation of an X-valued random field u), and for
u ∈ BX(〈u〉;R), an open ball of sufficiently small radius R > 0 in X centered at a nominal input
instance 〈u〉 ∈ X , the nonlinear operator equation is considered

given u ∈ BX(〈u〉;R) , find q ∈ X s.t. Y′〈R(q;u), v〉Y = 0 ∀v ∈ Y . (2.4)

Given u ∈ BX(〈u〉;R), a solution q0 of (2.4) is called regular at u if and only if R(·;u) is differentiable
with respect to q and if the differential DqR(q0;u) ∈ L(X ;Y ′) is an isomorphism. For the well-
posedness of operator equations involving R(q;u), one assumes the map R(·;u) : X 7→ Y ′ admits a
family of regular solutions locally, in an open neighborhood of the nominal parameter instance 〈u〉 ∈ X .

Assumption 1 The structural conditions

R(q;u) = A(q;u)− F (u) in Y ′ , (2.5)

hold, and for all u in a sufficiently small, closed neighborhood X̃ ⊆ X of 〈u〉 ∈ X the parametric
forward problem: for every u ∈ X̃ ⊆ X, given F (u) ∈ Y ′, find q(u) ∈ X such that the residual
equation (2.4) is well-posed. Ie., for every fixed u ∈ X̃ ⊂ X, and for every F (u) ∈ Y ′, there exists a
unique solution q(u) of (2.4) which depends continuously on u.

The set {(q(u), u) : u ∈ X̃} ⊂ X ×X is called a regular branch of solutions of (2.5) if

X̃ ∋ u 7→ q(u) is continuous as mapping from X 7→ X ,
R(q(u);u) = 0 in Y ′ .

(2.6)

The solutions is called in the regular branch (2.6) nonsingular if, in addition, the differential

(DqR)(q(u);u) ∈ L(X ,Y ′) is an isomorphism from X onto Y ′, for all u ∈ X̃ . (2.7)

The following proposition collects well-known sufficient conditions for well-posedness of (2.5). For
regular branches of nonsingular solutions given by (2.5) - (2.7), the mathematical model is well-posed
if the differential DqR satisfies the so-called inf-sup conditions. In UQ, these classical (eg. [4, 56])

conditions are to hold uniformly with respect to the uncertain input data u ∈ X̃ ⊆ X .

Proposition 2.1 Assume that Y is reflexive and that, for some nominal value 〈u〉 ∈ X of the un-
certain input data, the operator equation (2.5) admits a regular branch of solutions (2.6). Then the
differential DqR at (〈u〉, q0) given by the bilinear map

X × Y ∋ (ϕ, ψ) 7→ Y′〈DqR(q0; 〈u〉)ϕ, ψ〉Y

is boundedly invertible, uniformly with respect to u ∈ X̃ where X̃ ⊂ X is an open neighborhood of
the nominal instance 〈u〉 ∈ X of the uncertain parameter. In particular, there exists a constant β > 0
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such that there holds

∀u ∈ X̃ :

inf
06=ϕ∈X

sup
06=ψ∈Y

Y′〈(DqR)(q0;u)ϕ, ψ〉Y
‖ϕ‖X ‖ψ‖Y

≥ β > 0 ,

inf
06=ψ∈Y

sup
06=ϕ∈X

Y′〈(DqR)(q0;u)ϕ, ψ〉Y
‖ϕ‖X ‖ψ‖Y

≥ β > 0
(2.8)

and

∀u ∈ X̃ : ‖(DqR)(q0, u)‖L(X ,Y′) = sup
06=ϕ∈X

sup
06=ψ∈Y

Y′〈(DqR)(q0;u)ϕ, ψ〉Y
‖ϕ‖X ‖ψ‖Y

≤ β−1 . (2.9)

The inf-sup conditions (2.8) and (2.9) are implied, for linear, self-adjoint PDEs such as the diffusion
equation in Example 2.1, by the more familiar concept of coercivity.

Example 2.3 In the context of Example 2.1, one verifies with Y = X = H1
0 (D) that

Y′〈(DqR)(q0;u)ϕ, ψ〉Y =

∫

D

∇ψ · u(x)∇ϕ(x)dx .

In particular, for linear operator equations the residual R(q;u) is linear with respect to q and the
differential (DqR)(q0;u) in (2.8) does not depend on q0. Note that uniform validity of (2.8) for all

realizations of the uncertain input u implies a constraint on the set X̃ ⊆ X of admissible data: one
may choose, for example, X = L∞(D) and require u to take values on

X̃ = {u ∈ X : essinf(u) ≥ c0 > 0} .

Then (2.8) (and thus also (2.7)) are implied by the coercivity of (DqR)(q0;u) in X = H1
0 (D)

Y′〈(DqR)(q0;u)ϕ, ϕ〉Y
∫

D

∇ϕ · u(x)∇ϕ(x)dx ≥ c0

∫

D

|∇ϕ(x)|2dx ≥ c0
1

2
(1 + CP )‖ϕ‖2X ,

where CP (D) > 0 denotes the constant in the Poincaré-inequality ‖∇ϕ‖2L2(D) ≥ CP ‖ϕ‖2L2(D), valid

in X uniformly for all inputs u ∈ X̃. The saddle point stability conditions (2.8) and the possibility of
different trial and testfunction spaces are not necessary here.

Remark 2.1 The saddle point stability conditions (2.8) are, however, indispensable for indefinite
variational problems such as the space-time formulation of the parabolic evolution problem (2.3). For
(2.3), the inf-sup conditions (2.8) have been verified in [64, Appendix]. Consider, for further illustra-
tion, the Helmholtz Equations for the propagation of time-harmonic pressure amplitude π(x, t) in an
uncertain, linearly elastic medium, in a bounded, certain domain D ⊂ Rd, with homogeneous Dirichlet
boundary conditions on ∂D.

Separation of variables π(x, t) = exp(ıωt)q(x) implies [Notation: ω also element. event] the
Helmholtz equation,

− div(u(x)∇q(x)) − ω2q(x) = f(x) in D , q|∂D = 0 . (2.10)

One chooses again X = Y = H1
0 (D) and u ∈ X̃ as in Example 2.3. Then, for large frequency

ω > 0, the saddle point stability conditions (2.8) hold only if ω 6∈ ⋃

u∈X̃ Σ(A(·;u)), where Σ(A(·;u)) ⊂
R>0 denotes the (discrete and countable) spectrum of the second order elliptic operator A(q;u) :=
−div(u(x)∇q(x)) ∈ L(X ;X ′) as is revealed by an straightforward eigenfunction argument. The stabil-
ity constant β in (2.8) is β = infλ∈Σ(A(·;u)),u∈X̃{|λ− ω2|}.

Under conditions (2.8) and (2.9), for every u ∈ X̃ ⊆ X , there exists a unique, regular solution q(u)
of (2.5) which is uniformly bounded with respect to u ∈ X̃ in the sense that there exists a constant
C(F, X̃) > 0 such that

sup
u∈X̃

‖q(u)‖X ≤ C(F, X̃) . (2.11)

For (2.8) - (2.11) being valid, we shall say that the set {(q(u), u) : u ∈ X̃} ⊂ X × X̃ forms a regular
branch of nonsingular solutions.
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If the data-to-solution map X̃ ∋ u 7→ q(u) is also Fréchet differentiable with respect to u at every
point of the regular branch {(q(u);u) : u ∈ X̃} ⊂ X × X̃, the dependence of the “forward map”, i.e.
the mapping relating u to q(u) with the branch of nonsingular solutions, is locally Lipschitz on X̃:
there exists a Lipschitz constant L(F, X̃) such that

∀u, v ∈ X̃ : ‖q(u)− q(v)‖X ≤ L(F, X̃)‖u− v‖X . (2.12)

This follows from the identity (Duq)(u) = −(DqR)−1(DuR), and from the isomorphism property
(DuRq)(q0; 〈u〉) ∈ Liso(X ,Y ′) which is implied by (2.8) and (2.9), and from the continuity of the
differential DqR on the regular branch.

In what follows, the abstract setting (2.4) is considered with uniformly continuously differentiable
mapping R(q;u) in a product of neighborhoods BX(〈u〉;R) × BX (q(〈u〉);R) ⊂ X × X of sufficiently
small radius R > 0, satisfying the structural assumption (2.5). In Proposition 2.1 and throughout
what follows, q(〈u〉) ∈ X denotes the unique regular solution of (2.5) at the nominal input 〈u〉 ∈ X .

2.2 Uncertainty parametrization

As mentioned in the introduction, a key step in computational UQ is the parametrization of the
uncertain input data u ∈ X in terms of an (possibly infinite) sequence y = (yj)j≥1 of parameters,
taking values in a parameter domain U .

In the particular case where u ∈ X is a random variable taking values in (a subset X̃ of) the
Banach space X , probabilistic UQ involves probability measures on the space X of uncertain input
data.

In uncertainty parametrization, X is assumed to be separable. This is guaranteed in particu-
lar when X is finite-dimensional, i.e., when the uncertain input data consists of a finite number of
parameters.

In the case of distributed uncertain input u ∈ X , the data space X is infinite-dimensional; to
facilitate uncertainty parametrization, X is assumed to admit an unconditional Schauder basis Ψ:
X = span{ψj : j ≥ 1}. This is in particular the case for separable Hilbert spaces X . Then, every

u ∈ X̃ ⊂ X can be parametrized linearly in this basis, i.e. it admits a parametric representation with
linear dependence on the parameters yj :

u = u(y) := 〈u〉+
∑

j≥1

yjψj for some y = (yj)j≥1 ∈ U . (2.13)

Some examples of linear uncertainty parametrizations (2.13) are (i) Karhunen–Loève expansions which
arise, in particular, from a numerical PCA of a random field model of uncertain input u (see, e.g., [66,
63, 67, 29]) (ii) unconditional Schauder bases (see, e.g., [24]), (iii) wavelet or trigonometric bases, (iv)
iso-geometric geometry parametrizations from computer aided design (see, e.g., [2] and the references
there).

The representation (2.13) is not unique: rescaling yj and ψj will not change u. One assumes,
therefore, throughout what follows that the basis sequence {ψj}j≥1 is normalized such that the param-
eter domain is U = [−1, 1]N. However, for gaussian random field inputs, the assumption of bounded
parameter ranges is not satisfied: see [43, 63] for parametric formulations in this case.

Note that often, in applications, the dependence of u on the parameters yj is not granted: one
distinguishes

a) linear parametrization (2.13),

b) affine or separable parametrization: the uncertain/parametric heat conductivity is given by [55]

u(x,y) =
∑

j≥1

θj(y)ψj(x) , y ∈ U . (2.14)

where we emphasize that for every j ≥ 1, each coordinate function θj(y) may depend on all
coordinates yj ∈ y. A typical example of a separable uncertainty parametrization is the so-called
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thermal fin problem (cp. [55])

u(x,y) =

J
∑

j=1

χDj
(x)10yj , (2.15)

where D :=
⋃J
j=1Dj is decomposed into J non-overlapping subdomains Dj , j = 1, . . . , J ; χDj

is a characteristic function such that χDj
(x) = 1 if x ∈ Dj and 0 otherwise; yj ∈ [−1, 1],

j = 1, . . . , J .

c) nonlinear transformation of an affine parametrization. This case occurs for example in log-
gaussian models with a positivity constraint, such as a linear diffusion equation with a log-
gaussian permeability: for illustration, consider the Dirichlet problem

−∇ · (a(x, ω)∇u(x, ω) = f(x) in D , u|∂D = 0 . (2.16)

Here,

a(x, ω) = exp(g(x, ω)), where g(x, ω) =
∑

j≥1

Yj(ω)ψj(x) , Yj ∼ N(0, 1) . (2.17)

Due to Yj taking values in all of R with positive probability, in (2.17) the normalization of the
terms is effected by requiring that the standard deviation of Yj be one.

d) nonseparable, nonlinear parametric operator equations. Examples of this class typically arise in
problems of domain uncertainty: upon diffeomorphic transformation of the problem to a fixed
nominal domain, we obtain a parametric problem with uncertain operator whose coefficients are
rational functions of the parameters. We refer the reader to Example 2.4 ahead for illustration.

Bases in the uncertain input space X are, in general, not unique, even when fixing the scaling of
the coordinates yj in (2.13). Being bases of X , they are mathematically equivalent. In the context of
computational UQ, the concrete choice of basis can have a significant impact on the numerical stability
of UQ algorithms. For illustration we mention the (textbook) example X = L2(−1, 1), for which
two bases are given by Ψ1 = {1, x, x2, ...} and Ψ2 = {Pj(x) : j = 0, 1, 2, ...} denoting Pj the classical
Legendre polynomial of degree j ≥ 0, with normalization Pj(1) = 1. Both bases, Ψ1 andΨ2, as well as
the trigonometric functions constituting a Karhunen–Loève basis ofX = L2(−1, 1), are global, meaning
that their elements are supported in the entire domain [−1, 1]. Alternative bases of X = L2(−1, 1)
with local supports are spline wavelet bases, such as the Haar wavelet basis. Most localized bases have
an intrinsic limit on the approximation order which can be reached for sufficiently smooth uncertain
input data. Uncertainty parametrization with localized bases can, however, substantially increase
sparsity in the parametric forward map.

Norm-convergence of the series (2.13) in X is implied by the summability condition

∑

j≥1

‖ψj‖X <∞ , (2.18)

“Uncertain input data” can also signify domain uncertainty, ie. the shape of the physical domain D in
which the boundary value problem is considered is uncertain. Upon suitable domain parametrization,
such problems also are covered by the ensuing parametric, variational formulation; domain uncertainty
in the physical domain can be reduced by domain mapping to a parametric problem in a fixed, nominal
domain D0. This was considered for (2.2) with parametric coefficient u depending on the shape of
the [25] for a particular example, and the following, smooth and nonlinear elliptic problem from [20];
see also [48] for applications to artery variability in Hemodynamics, to [42] for application of reduced
basis techniques in electromagnetic scattering.

Example 2.4 (Domain uncertainty) A nonlinear operator equation in a random domain [25] is con-
sidered. The basic approach to dealing with domain uncertainty consists in domain mapping to a fixed
reference domain, and in transforming the mathematical model from the physical domain to a fixed
reference domain which is assumed known. Note that in certain classes of mathematical models, such
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as for example, elastic deformation of a continuous medium, such reference domains arise naturally;
in mathematical elasticity, the reference domain would be referred to as reference configuration. Note
also that the reference domain may not necessarily be attained by concrete realizations of the uncertain
input. Also, in stochastic domain modelling, the reference domain need not coincide with the nominal
domain.

In transforming to a fixed reference domain, parametric domain uncertainty is transferred to the
differential operator on the reference domain. Due to the smooth, but highly nonlinear nature of
the domain transformations, the resulting parametric differential operators on the reference domain
exhibit, as a rule, highly nonlinear, rational dependence w.r. to the parameter sequence y, even if the
mathematical model is linear.

Here we consider in addition a mathematical model which is nonlinear, also w.r. to the state
variable q taking values in the function space X .

The mathematical model in the physical domain reads: given y ∈ U , find q(y) : Du(y) → R such
that

−△q(y) + q3(y) = f in Du(y), q(y) = 0 on ∂Du(y), (2.19)

where the random domain Du(y) is homeomorphic to the unit disc, and explicitly given by

Du(y) := {x = (r cos(θ), r sin(θ)) : 0 ≤ r < u(y; θ), 0 ≤ θ < 2π}, y ∈ U . (2.20)

Here, the random radius u(y), as defined in (2.13), is given explicitly by

u(0) = 〈u〉 = 1 and ψj =
0.5

jα
sin(jθ) j ≥ 1, where α > 2 . (2.21)

By Tu we denotes a transformation map from the nominal domain D〈u〉, the unit disk of R2 centered
at the origin, to the parametric domain Du, Tu(r cos(θ), r sin(θ)) := (u(y)r cos(θ), u(y)r sin(θ)). The
nonlinear operator equation (2.19) in the parametric, uncertain physical domain becomes a parametric,
nonlinear equation in the fixed nominal domain, which reads as: given a parameter sequence y ∈ U ,
find a parametric response q(y) : D〈u〉 → R such that

{

−div(M(y)∇q(y)) + q3(y)d(y) = fd(y) in D〈u〉,

q(y) = 0 on ∂D〈u〉,
(2.22)

where d(y) denotes the determinant of the Jacobian dT u of the map Tu, given as d(y) = (u(y))2;

M(y) := d(y)dT−1
u dT−⊤

u =

(

1 + (b(y))2 −b(y)
−b(y) 1

)

where b(y) :=
∂θu(y)

u(y)
. (2.23)

This example fits into the abstract setting of Section 2.1 as follows: the uncertain datum u = u(y; ·) ∈
Xt = Ctper([0, 2π)) where the degree of smoothness t = t(α) depends on the exponent α > 2 in (2.21).
The spaces X and Y then are function spaces on the nominal domain, and chosen as X = Y =
H1

0 (D〈u〉).

We note that uncertain inputs u with “higher regularity” (when measured in a smoothness scale
{Xt}t≥0 with X = X0 ⊃ X1 ⊃ X2 ⊃ ... on the admissible input data) correspond to stronger decay
of ψj : for u ∈ Xt ⊂ X , in (2.13) the {ψj}j≥1 are assumed scaled such that

b := {‖ψj‖X}j≥1 ∈ ℓp(N) for some 0 < p = p(t) < 1 , (2.24)

where the sequence b = (bj)j≥1 is given by bj := ‖ψj‖X . We also introduce the subset

U = {y ∈ [−1, 1]N : u(y) := 〈u〉+
∑

j≥1

yjψj ∈ X̃} . (2.25)

See (2.21) in Example 2.4, where the exponent α > 2 determines the (Hölder) smoothness of the
domain transformation, and where the spacesXt correspond to Hölder spaces of 2π-periodic functions.

Once an unconditional basis {ψj}j≥1 of X has been chosen, every realization u ∈ X can be
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identified in a one-to-one fashion with the pair (〈u〉,y) where 〈u〉 denotes the nominal instance of the
uncertain datum u and y is the coordinate vector in representation (2.13). Inserting (2.13) into (2.4),
we obtain under Assumption 1 the equivalent, countably-parametric form: given F : U → Y ′,

find q(y;F ) ∈ X : ∀y ∈ U : R(q;y) := A(q;y)− F (y) = 0 in Y ′ . (2.26)

Remark 2.2 In what follows, by a slight abuse of notation, one identifies the subset U in (2.25) with
the countable set of parameters from the infinite-dimensional parameter domain U ⊆ RN without
explicitly writing so. The operator A(q;u) in (2.5) then becomes, via the parametric dependence
u = u(y), a parametric operator family A(q;u(y)) which one denotes (with slight abuse of notation) by
{A(q;y) : y ∈ U}, with the parameter set U = [−1, 1]N (again, one uses in what follows this definition
in place of the set U as defined in (2.25)). If A(q;y) in (2.5) is linear, one has A(q;y) = A(y)q
with A(y) ∈ L(X ,Y ′). One does not assume, however, that the maps q 7→ A(q;y) are linear in what
follows, unless explicitly stated.

With this understanding, and under the assumptions (2.11) and (2.12), the operator equation (2.5)
will admit, for every y ∈ U , a unique solution q(y;F ) which is, due to (2.11) and (2.12), uniformly
bounded and depends Lipschitz continuously on the parameter sequence y ∈ U : there holds

sup
y∈U

‖q(y;F )‖X ≤ C(F,U), (2.27)

and, if the local Lipschitz condition (2.12) holds, there exists a Lipschitz constant L > 0 such that

‖q(y;F )− q(y′;F )‖X ≤ L(F,U)‖u(y)− u(y′)‖X . (2.28)

The Lipschitz constant in (2.28) is not, in general, equal to L(F, X̃) in (2.12): it depends on the
nominal instance 〈u〉 ∈ X and on the choice of basis {ψj}j≥1.

Unless explicitly stated otherwise, throughout what follows, we identify q0 = q(0;F ) ∈ X in
Proposition 2.1 with the solution of (2.4) at the nominal input 〈u〉 ∈ X .

2.3 Parameter sparsity in Forward UQ

In forward UQ for problems with distributed, uncertain input data, upon uncertainty parametriza-
tions such as (2.13), the solution of the forward problem become, as functions of the parameters yj in
the sequence y, countably parametric maps from the parameter space U to the solutions’ state space
X . Efficient computational UQ for such problems is crucially related to the approximation of such
countably-parametric maps with convergence rates which are independent of the dimension, ie., inde-
pendent of the number of coordinates which are active in the approximation. Mathematical results
are reviewed which allow to establish such approximation results, with a key insight being that the
attainable convergence rate is independent of the dimension of the space of active parameters, and
depends only on the “sparsity” of the parametric map which is to be approximated. One technique
to verify parametric sparsity for a broad class of parametric problems is to verify the existence of
suitable holomorphic extensions of the parameter to solution map into the complex domain. The
existence of such extensions is closely related to polynomial approximations of the parametric maps.
The version presented here applies the holomorphic extension of countably-parametric maps for which
polynomial approximations take the form of so-called generalized polynomial chaos expansions which
will be described in detail below. The results presented in this section are recent; the reader is referred
to [26, 25] and the references there.

2.3.1 (b, p)-holomorphy

For s > 1, introduce the Bernstein ellipse in the complex plane

Es :=
{

w + w−1

2
: 1 ≤ |w| ≤ s

}

⊂ C, (2.29)
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which has semi axes of length s+s−1

2 > 1 and s−s−1

2 > 0 and denote

Eρ :=
⊗

j≥1

Eρj ⊂ CN , (2.30)

the tensorized poly-ellipse when ρ := (ρj)j≥1 is a sequence of semi-axis sums ρj > 1. With the
convention E1 = [−1, 1], one also admits ρj = 1 in (2.30), so that U ⊆ Eρ.

Sparsity analysis of parametric maps q : U 7→ X : y → q(y) as in [25] and the references there
relies on holomorphic extensions of parametric solutions q from U to Eρ.
Definition 2.1 For a positive sequence b = (bj)j≥1 ∈ ℓp(N) for some 0 < p < 1, a parametric
mapping U ∋ y 7→ q(y) ∈ X satisfies the (b, p)-holomorphy assumption in the Hilbert space X if and
only if

1. For each y ∈ U , there exists a unique q(y) ∈ X and the map y 7→ q(y) from U to X is uniformly
bounded, i.e.

sup
y∈U

‖q(y)‖X ≤ C0 , (2.31)

for some finite constant C0 > 0.

2. For some 0 < ε < 1 exists a constant Cε ≥ C0 > 0 such that for any sequence ρ := (ρj)j≥1 of
semiaxis sums ρj strictly larger than 1 that is (b, ε)-admissible, ie.

∞
∑

j=1

(ρj − 1)bj ≤ ε, (2.32)

the parametric map y 7→ q(y) ∈ X admits a complex extension z 7→ q(z) (taking values in the
complexification of the space X ) that is a holomorphic mapping with respect to each variable zj
on a set of the form Oρ :=

⊗

j≥1 Oρj , Oρj ⊂ C is an open set containing Eρj , and the modulus
‖q(z)‖X of this extension is bounded on Eρ in (2.30) according to

sup
z∈Eρ

‖q(z)‖X ≤ Cε . (2.33)

The significance of (b, p) holomorphy lies in the following facts: a) solution of well-posed, count-
ably possibly nonlinear parametric operator equations with (b, p) holomorphic, parametric operator
families are (b, p) holomorphic, b) (b, p) holomorphic parametric solution maps {q(y) : y ∈ U} ⊂ X
allow for tensorized so-called “polynomial chaos” approximations with dimension-independent N -term
approximation rates which depend only on the summability exponent p of the sequence b, c) (b, p)
holomorphic parametric solution maps {q(y) : y ∈ U} ⊂ X can also be constructively approximated
by sparse, Smolyak type interpolation methods, see [23, 22], d) (b, p) holomorphy is preserved under
composition with holomorphic maps, in particular for example in the context of Bayesian inverse prob-
lems ; see [62, 61] for details. e) (b, p) holomorphic parametric solution maps {q(y) : y ∈ U} ⊂ X allow
for low-parametric, reduced basis surrogates. Points b) and c) are explained next, detailing in particu-
lar computational approximation strategies for the efficient computation of sparse approximations of
countably-parametric solution families.

2.3.2 Sparse Polynomial Approximation

(b, p)-holomorphy ensures ℓp summability of gpc Legendre coefficients of (b, p) holomorphic parametric
solution maps {q(y) : y ∈ U} ⊂ X . To state the result, from [23], for any coefficient bound sequence
c := (cν)ν∈F ⊂ R, one associates its downward closed envelope c := (cν)ν∈F defined by

cν := sup
µ≥ν

|cν |, ν ∈ F , (2.34)

where µ ≥ ν means that µj ≥ νj for all j. An index set Λ ⊂ F is downward closed if and only if

ν ∈ Λ and µ ≤ ν ⇒ µ ∈ Λ. (2.35)
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For a summability exponent p > 0, one introduces the space ℓpm(F) of sequences that have their
downward closed envelope in ℓp(F). One approximates the parametric responses by truncating the
tensorized Legendre (“generalized polynomial chaos”) series

q(y) =
∑

ν∈F

qνPν(y), (2.36)

where the convergence is understood to be unconditional (in particular, the limit exists and is inde-
pendent of the particular enumeration of F) and where the tensorized Legendre polynomials Pν(y)
are given by Pν(y) :=

∏

j≥1 Pνj (yj), with Pn denoting the univariate Legendre polynomial of degree
n for the interval [−1, 1] with the classical normalization ‖Pn‖L∞([−1,1]) = |Pn(1)| = 1. The series
(2.36) may be rewritten as

q(y) =
∑

ν∈F

vνLν(y) , (2.37)

where Lν(y) :=
∏

j≥1 Lνj (yj), with Ln denoting the version of Pn normalized in L2([−1, 1], dt2 ), ie.

qν =





∏

j≥1

(1 + 2νj)





1/2

vν . (2.38)

Theorem 2.2 ([22]) For a (b, p)-holomorphic, parametric map U ∋ y → q(y) ∈ X in a Hilbert space
X , the sequences (‖qν‖X )ν∈F and (‖vν‖X )ν∈F of (norms of) the tensorized Legendre coefficients belong
to ℓpm(F), and

q(y) =
∑

ν∈F

qνPν =
∑

ν∈F

vνLν , (2.39)

holds in the sense of unconditional convergence in L∞(U,X ).
There exists a sequence (ΛN )N≥1, with #(ΛN ) = N of nested downward closed sets such that

inf
w∈XΛn

‖q − w‖L∞(U,X ) ≤ C(N + 1)−s, s =
1

p
− 1, (2.40)

where for any finite set Λ ⊂ F one defines

XΛ := span

{

∑

ν∈Λ

wνy
ν : wν ∈ X

}

. (2.41)

2.3.3 Sparse Grid Interpolation

Polynomial interpolation processes on the spaces XΛ for general downward closed sets Λ of multiindices
have been introduced and studied in [23]. Given z := (zj)j≥1, a sequence of pairwise distinct points
of [−1, 1], one associates with any finite subset Λ ⊂ F the following sparse interpolation grid in U :

ΓΛ := {zν : ν ∈ Λ} where zν := (zνj )j≥1 . (2.42)

If Λ ⊂ F is downward closed , then the sparse grid ΓΛ is unisolvent for PΛ: for any function g defined
in ΓΛ and taking values in X , there exists a unique sparse grid interpolation polynomial IΛg in PΛ

that coincides with g on ΓΛ. The interpolation polynomial IΛg ∈ PΛ⊗X can be computed recursively:
if Λ := {ν1, · · · , νN} such that for any k = 1 · · · , N , Λk := {ν1, · · · , νk} is downward closed , then

IΛg =

N
∑

i=1

gνiHνi , (2.43)
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where the polynomials (Hν)ν∈Λ are a hierarchical basis of PΛ given by

Hν(y) :=
∏

j≥1

hνj (yj) where h0(t) = 1 and hk(t) =

k−1
∏

j=0

t− zj
zk − zj

, k ≥ 1, (2.44)

and where the coefficients gνk are recursively defined by

gν1 := g(z0), gνk+1 := g(zνk+1)− IΛk
g(zνk+1) = g(zνk+1)−

k
∑

i=1

gνiHνi(zνk+1) . (2.45)

The sparse grid ΓΛ ⊂ U is unisolvent for the space XΛ of multivariate polynomials with coefficients
in X . The interpolation operator that maps functions defined on U with values in X into XΛ can be
computed by the recursion (2.43) if one admits gν ∈ X . Naturally, in this case the coefficients gν being
elements of a function space can not be exactly represented, and must be additionally approximated,
e.g. by a Finite Element or a collocation approximation in a finite-dimensional subspace Xh ⊂ X .

The following result recovers the best N -term approximation rate O(N−s) in (2.40) for the inter-
polation in PΛ different choice of downward closed sets Λ. See [22] for a proof.

Theorem 2.3 For any (b, p)-holomorphic, X -valued parametric map y 7→ q(y) there exists a constant
C > 0 and a nested sequence of downward closed sets (Λn)N≥1 with #(ΛN ) = N for which

‖q − IΛN
q‖L∞(U,X ) ≤ C(N + 1)−s, s =

1

p
− 1 . (2.46)

3 Model Order Reduction

Given any sample y ∈ U , an accurate solution of the forward PDE model (2.26) relies on a stable and
consistent numerical solver with high precision, which typically requires a high-fidelity discretization of
the PDE model and a computationally expensive solving of the corresponding algebraic system. Such
a large-scale computation for a large number of samples is the most critical challenge in UQ problems.
This section outlines model order reduction (MOR for short) methods in order to effectively alleviate
the computational burden while facilitating certified accuracy of the parametric solution as well as its
related quantities of interest. The material in this section is related to developments during the past
decade. Our presentation is therefore synoptic, and the reader is referred to the surveys [41, 47, 49]
and the references there for more detailed elaboration, and further references.

3.1 High-Fidelity Approximation

At first, a stable and consistent high fidelity approximation of the solution of the parametric problem
(2.26) following [20] is presented. To guarantee the stability of the HiFi approximation at any given
y ∈ U , one considers the Petrov-Galerkin (PG) discretization in the one-parameter family of pairs
of subspaces Xh ⊂ X and Yh ⊂ Y with equal dimensions, i.e. Nh = dim(Xh) = dim(Yh) < ∞,
where h represents a discretization parameter, for instance the meshwidth of a PG Finite Element
discretization. To ensure the convergence of the HiFi PG solution qh ∈ Xh to the exact solution q ∈ X
as h→ 0, one assumes the subspace families Xh and Yh to be dense in X and Y as the discretization
parameter (being, for example, a meshwidth or an inverse spectral order) h→ 0, i.e.

∀w ∈ X : lim
h→0

inf
wh∈Xh

||w − wh||X = 0, and ∀v ∈ Y : lim
h→0

inf
vh∈Yh

||v − vh||Y = 0 . (3.1)

Moreover, to quantify the convergence rate of the discrete approximation, one introduces a scale of
smoothness spaces X s ⊂ X = X 0 and Ys ⊂ Y = Y0 indexed by the smoothness parameter s > 0.
Here, one has in mind for example spaces of functions with s extra derivatives in Sobolev or Besov
spaces. Then, for appropriate choices of the subspaces Xh and Yh hold the approximation properties:
there exist constants Cs > 0 such that for all 0 < h ≤ 1 holds

∀w ∈ X s : inf
wh∈Xh

||w − wh||X ≤ Csh
s||w||X s and ∀v ∈ Ys : inf

vh∈Yh

||v − vh||Y ≤ Csh
s||v||Ys . (3.2)
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Here, the constant Cs is assumed independent of the discretization parameter h but may depend on
the smoothness parameter s. For small values of h and/or if s is large, the PG discretization produces
high-fidelity (HiFi) approximations qh ∈ Xh of the true solution q ∈ X by solving

given y ∈ U, find qh(y) ∈ Xh : Y′〈R(qh(y);y), vh〉Y = 0 ∀vh ∈ Yh . (3.3)

A globally convergent Newton iteration method can be applied to solve the nonlinear, parametric
HiFi-PG approximation problem (3.3) numerically, see [30, 20] for details.

To establish the well-posedness of the HiFi-PG approximation problem (3.3) as well as the a-
priori and a-posteriori error estimates for the approximate solution qh, the following assumptions are
imposed.

Assumption 2 Let a(·, ·;y) : X × Y → R denote the parametric bilinear form for each y ∈ U
associated with the Fréchet derivative of R at q, i.e.

a(w, v;y) :=Y′ 〈DqR(q(y);y)(w), v〉Y ∀w ∈ X , ∀v ∈ Y . (3.4)

The following conditions are assumed to hold

A1 stability: the parametric bilinear form a satisfies the discrete HiFi-PG inf-sup condition

∀y ∈ U : inf
06=wh∈Xh

sup
06=vh∈Yh

a(wh, vh;y)

||wh||X ||vh||Y
=: βh(y) ≥ βh > 0 , (3.5)

where the inf-sup constant βh(y) depends on h and on y and may vanish βh(y) → 0 as h→ 0.

A2 consistency: the best approximation satisfies the consistent approximation property

∀y ∈ U : lim
h→0

1

β2
h(y)

inf
wh∈Xh

‖q(y)− wh‖X = 0 . (3.6)

In view of the convergence rate in (3.2), (3.6) amounts to require hs/β2
h(y) → 0 as h→ 0.

A3 local Lipschitz continuity: there exists ǫ0 and L > 0 such that for all w ∈ X with ||q(y) −
w||X ≤ ǫ0, there holds

∀y ∈ U : ‖DqR(q(y);y)−DqR(w;y)‖L(X ,Y′) ≤ L||q(y)− w||X . (3.7)

Assumption 2 is sufficient to guarantee the existence of a solution qh(y) ∈ Xh of the HiFi-PG approx-
imation problem (3.3) for any y ∈ U , which is locally unique and satisfies a-priori error estimate. The
results are presented in the following theorem, whose proof follows that in [56].

Theorem 3.1 Under Assumption 2, there exists h0 > 0 and η0 > 0 such that for 0 < h ≤ h0,
there exists a solution qh(y) ∈ Xh of the HiFi-PG approximation problem (3.3), which is unique in
BX (q(y); η0βh(y)). Moreover, for 0 < h ≤ h0, there holds the a-priori error estimate

||q(y)− qh(y)||X ≤ 2
||a(y)||
β(y)

(

1 +
||a(y)||
βh(y)

)

inf
wh∈Xh

||q(y)− wh||X , (3.8)

where ||a(y)|| := ||DqR(q(y);y)||L(X ,Y′). Depending on the smoothness parameter s > 0 (see (3.2))
and the polynomial degree r ≥ 1 of the Finite Element space, one has

inf
wh∈Xh

||q(y)− wh||X ≤ Chk||q(y)||X s , k = min{s, r} , (3.9)

where C is independent of the mesh size h and uniformly bounded w.r.t. y. Moreover, one has the
a-posteriori error estimate

||q(y)− qh(y)||X ≤ 4

β(y)
||R(qh(y);y)||Y′ . (3.10)
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In many (but not all) practical applications in UQ, the stability constants β(y) and βh(y) in
Assumption 2 are independent of y and of h: consider specifically the parametric elliptic diffusion
problem in Example 2.3. In this example, one has that for X = Y = H1

0 (D) holds, for every y ∈ U ,
that βh(y) ≥ β(y) ≥ c0(1 + CP )/2.

3.2 Reduced Basis Compression

In order to avoid too many computationally expensive numerical solutions of the HiFi-PG problem
(3.3) at a large number of required samples y ∈ U , one computes surrogate solutions with certified
accuracy and inexpensive cost by applying reduced basis (RB) compression techniques [57, 59, 3]. The
rationality lies in the fact that the intrinsic dimension of the solution manifold Mh := {qh(y),y ∈ U}
could be low, even if the dimension of parameter space is high or infinite, so that the parametric
solution can be compressed into a low-dimensional subspace of the HiFi space.

One assumes available a pair of N -dimensional subspaces XN ⊂ Xh and YN ⊂ Yh with N ≪ Nh,
which are known as RB (trail and test) spaces, whose construction are detailed in the next section.
Then the RB-PG compression problem of the HiFi-PG approximation (2.26) is formulated as

given y ∈ U, find qN (y) ∈ XN : Y′〈R(qN (y);y), vN 〉Y = 0 ∀vN ∈ YN , (3.11)

which can be solved by Newton iteration algorithm [20]. Note that the RB-PG problem (3.11) is
nothing different from the HiFi-PG problem (3.3) except for the trial and test spaces, which indicate
that the RB solution qN (y) is a PG compression/projection of the HiFi solution qh(y) from the
HiFi space into the RB space. For the well-posedness of the RB solution, one makes the following
assumptions.

Assumption 3 Holding Assumption 2, with the same notation of the bilinear form a(·, ·;y) : X×Y →
R defined as in (3.4), one makes the further assumptions that

A1 stability: the parametric bilinear form a satisfies the discrete RB-PG inf-sup condition: there
holds

∀y ∈ U : inf
06=wN∈XN

sup
06=vN∈YN

a(wN , vN ;y)

||wN ||X ||vN ||Y
=: βN (y) ≥ βN > 0 , (3.12)

where βN is a lower bound of the inf-sup constant βN (y), which depends on N and on y and
may converge to the HiFi inf-sup constant βN (y) → βh(y) as N → Nh.

A2 consistency: the best approximation satisfies the consistent approximation property

∀y ∈ U : lim
N→Nh

1

β2
N (y)

inf
wN∈XN

‖qh(y)− wN‖X = 0 . (3.13)

Proceeding as in [56], one can establish the following error estimates for the RB solution (see [20])

Theorem 3.2 Under Assumption 3, there exist N0 > 0 and η′0 > 0 such that for N ≥ N0, there exists
a solution qN (y) ∈ XN of the RB-PG compression problem (3.11), which is unique in BX (qh(y); η

′
0βN (y)).

Moreover, for any N ≥ N0, there holds the a priori error estimate

||qh(y)− qN (y)||X ≤ 2
||a(y)||
βh(y)

(

1 +
||a(y)||
βN (y)

)

inf
wN∈XN

||qh(y)− wN ||X . (3.14)

Moreover, one has the a-posteriori error estimate

||qh(y)− qN (y)||X ≤ 4

βh(y)
||R(qN (y);y)||Y′ . (3.15)

Remark 3.1 Note that both the a-priori and the a-posteriori error estimates of the RB solution
turn out to be the same as those of the HiFi solution with different stability constants and different
approximation spaces. These results are obtained as a consequence of the fact that the RB-PG problem
(3.11) is nothing different from the HiFi-PG problem (3.3) except in different approximation spaces.
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3.3 Reduced Basis Construction

As the computational cost for the solution of the RB-PG problem (3.11) critically depends on the
RB degrees of freedom (dof) N , one needs to construct the optimal RB space XN that is most
“representative” for all the parametric solutions with required approximation accuracy, such that N
is as small as possible. However, it is computationally unfeasible to obtain such a optimal subspace
XN as it is an infinite dimensional optimization problem involving expensive HiFi solutions. In the
following, two practical algorithms are presented that allow in practice quasi-optimal construction of
RB trial spaces XN . Construction of the RB test space YN is deferred to the next sections.

3.3.1 Proper Orthogonal Decomposition

Proper orthogonal decomposition (POD) [9], also known as principle component analysis (PCA for
short) in statistics or Karhunen–Loève (KL for short) decomposition in stochastic analysis, aims to
extract the maximum information/energy/variance from a finite number of available solution “snap-
shots”. Such solution snapshots could be, e.g., solutions at a finite set of parameter values in our
context. In practice, the POD is determined from a finite training set Ξt = {yn ∈ U, n = 1, . . . , Nt}
with Nt random samples, and the corresponding HiFi solutions qh(y), y ∈ Ξt. The POD basis func-
tions are defined as follows [58]: let C denote the correlation matrix with rank Nr ≤ Nt, which is
given by

Cmn = (qh(y
m), qh(y

n))X , m, n = 1, . . . , Nt ; (3.16)

let (λn,ψn)
Nr

n=1 denote the eigenpairs of the correlation matrix C, i.e.

Cψn = λnψn, n = 1, . . . , Nr . (3.17)

Then the POD basis functions are given by

ζnh =

Nt
∑

m=1

1√
λn
ψ(m)
n qh(y

m), n = 1, . . . , Nr . (3.18)

In common practice, instead of assembling the large correlation matrix C and compute its eigenpairs,
one may apply singular value decomposition (SVD) method or its reduced version such as thin SVD
[8, 58] in order to speed up the computation of the POD basis functions.

The POD basis functions are optimal in the “average” sense [58].

Proposition 3.3 Let W = {w1
h, . . . , w

N
h } denote any N -dimensional (N ≤ Nr) orthonormal func-

tions in Xh, i.e. (wmh , w
n
h)X = δmn, m,n = 1, . . . , N ; let PWN denote the X -projection operator on W ,

i.e.

PWN wh =

N
∑

n=1

(wh, w
n
h)Xw

n
h ∀wh ∈ Xh . (3.19)

Then POD basis functions Wpod = {ζ1h, . . . , ζNh } given by (3.18) are orthonormal and satisfy

Wpod = argmin
W⊂Xh

Nt
∑

n=1

||qh(yn)− PWN qh(y
n)||2X . (3.20)

Moreover,
Nt
∑

n=1

||qh(yn)− P
Wpod

N qh(y
n)||2X =

Nr
∑

n=N+1

λn . (3.21)

Remark 3.2 Proposition 3.3 implies that the POD basis functions achieve the optimal compression
measured in the ensemble of square X -norm of the orthogonal projection error. Moreover, the ensemble
of the projection errors can be bounded explicitly according to (3.21), which can serve as an error
indicator to choose the suitable number of POD basis functions given certain requirement of accuracy.
Due to its optimality, POD has been widely used for reduced basis construction in Hilbert spaces
[68, 6, 8].
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Remark 3.3 However, to compute the POD basis functions, one needs to compute the HiFi solution
at a sufficiently large number of properly chosen random samples. The possibly large training set could
be prohibitive for the given computational budget, especially for high-dimensional problems that require
numerous samples.

3.3.2 Greedy Algorithm

In order to avoid solving too many HiFi-PG problems for the construction of the RB spaces with a
relatively much smaller number of basis functions, one turns to a greedy algorithm [57, 54, 59, 3, 5],
which only requires the same number of HiFi solutions as that of the RB basis functions. An abstract
formulation of the greedy search algorithm reads: choose the first sample y1 such that

y1 := argsup
y∈U

||qh(y)||X , (3.22)

at which one constructs the first RB space X1 = span{qh(y1)}. Then, for N = 1, 2, . . . , one seeks the
next sample yN+1 such that

yN+1 := argsup
y∈U

||qh(y)− qN (y)||X , (3.23)

where qN (y) is the RB solution, and construct the new RB space XN+1 = XN ⊕ span{qh(yN+1)}.
However, both (3.22) and (3.23) are infinite dimensional optimization problems and necessitate many
HiFi solutions for the evaluation of the RB errors. In order to tackle this challenge, the true error
(3.23) is replaced ideally by a tight error bound △N (y) [57, 59], i.e.

c△N (y) ≤ ||qh(y)− qN (y)||X ≤ C△N (y) ∀y ∈ U , (3.24)

with constants 0 < c ≤ C < ∞ possibly depending on y, and preferably γ := c/C ≈ 1. Meanwhile,
one can relax the first sample such that ||qh(y1)||X ≥ γ sup

y∈U ||qh(y)||X . It is crucial that the cost
for the evaluation of the error bound △N(y) should be so small that its evaluation at a large number
of training samples remains feasible, i.e. the cost at each sample is effectively independent of the
HiFi dof. The relaxation of the true error to an effective error bound leads to the development of
the so-called weak greedy algorithm for which an a-priori error estimate of the error incurred by RB
compression is established in the following theorem.

Theorem 3.4 Let dN (Mh,Xh) denote the Kolmogorov N -width, ie., the worst-case scenario error of
the X -projection of the HiFi solution qh(y) ∈ Mh in the optimal among all possible N -dimensional
subspaces ZN ⊂ Xh. Specifically,

dN (Mh,Xh) := inf
ZN⊂Xh

sup
y∈U

inf
wN∈ZN

||qh(y)− wN ||X . (3.25)

Let σN denote the worst-case scenario RB compression error, i.e.

σN := sup
y∈U

||qh(y)− qN (y)||X . (3.26)

Then the following results hold for the convergence rates of the RB compression error [3, 31]:

• If dN ≤ C0N
−α for some C0 > 0 and α > 0, and any N = 1, 2, . . . ,

then σN ≤ C1N
−α for all N = 1, 2, . . . , where C1 := 25α+1γ−2C0;

• If dN ≤ C0e
−c0N

α

for some C0 > 0, c0 > 0, α > 0, and any N = 1, 2, . . . ,

then σN ≤ C1e
−c1N

α

for all N = 1, 2, . . . , where C1 :=
√
2C0γ

−1 and c1 := 2−1−2αc0.

Proof The proof of the results in the finite dimensional approximation spaces Xh and Mh follows
those in [31] where X is a Hilbert space and the solution manifold M is a compact set in X . �

17



Remark 3.4 The above results indicate that the RB compression by the (weak) greedy algorithm
achieves optimal convergence rates in comparison with the Kolmogorov width, in the case of both
algebraic rate and exponential rate. However, the Kolmogorov width is typically not available for
general parametric problems. In our setting, ie. for smooth parameter dependence, it can be bounded
from above by the sparse interpolation error estimate in (2.46), i.e. with algebraic convergence rate
N−s. Exponential convergence rates are shown in [13] for a one-dimensional parametric problem
whose solution is analytic w.r.t. the parameter; and in [21] for elliptic, infinite dimensional parametric
problems.

Remark 3.5 Construction of a N -dimensional RB space only requires N HiFi solutions by the greedy
algorithm, which dramatically reduces the computational cost for the RB construction as long as eval-
uation of the error bound is inexpensive with operation independent of the HiFi dof Nh.

3.4 Linear and Affine-parametric Problems

To illustrate the reduction in complexity which can be achieved by RB compression, linear and affine
problems (e.g. Examples 2.1 and 2.3) with the uncertain parametrization given in Sec. 2.2 are first
considered, for which one assumes the terms in (2.26) can be written more explicitly as

A(q;y) = A(y)q =
∑

j≥0

yjAjq and F (y) =
∑

j≥0

yjFj , (3.27)

where one sets y0 = 1 for notational simplicity and where Aj ∈ L(X ,Y ′), and Fj ∈ Y ′, j ≥ 0. The
parametrization (3.27) is sometime also called linear parametrization uncertainty, whereas the term
affine parametrization refers to separable expansions of the form (3.27) with yj replaced by functions
θj(y) where θ0 = 1 and where the θj , j ≥ 1 depend on several or all parameters yj ∈ y, but are
independent of the physical coordinates.

In computational practice, one truncates the affine expansion up to J + 1 terms with J ∈ N,
depending on the required accuracy of the truncation. For notational convenience, one defines J =
{0, 1, . . . , J}. The ensuing development applies verbatim in the affine-parametric case, when the
parameters yj are replaced by θj(y) for j ∈ J, with functions that are independent of the physical
variable and where each θj(y) possibly depends on all coordinates yj ∈ y.

3.4.1 High Fidelity Approximation

Under the linear and affine assumptions, the parametric HiFi-PG approximation problem (3.3) be-
comes

given y ∈ U, find qh(y) ∈ Xh :
∑

j∈J

yj Y′〈Ajqh(y), vh〉Y =
∑

j∈J

yj Y′〈Fj , vh〉Y ∀vh ∈ Yh . (3.28)

By (wnh)
Nh

n=1 and (vnh )
Nh

n=1 one denotes the basis functions of the HiFi trial and test spaces Xh and Yh.
Then, the parametric solution qh(y) can be written as

qh(y) =

Nh
∑

n=1

qnh (y)w
n
h , (3.29)

where qh(y) = (q1h(y), . . . , q
Nh

h (y))⊤ denotes the (parametric) coefficient vector of the HiFi PG solu-
tion qh(y). The algebraic formulation of (3.28) reads:

given y ∈ U, find qh(y) ∈ RNh :
∑

j∈J

yjA
h
j qh(y) =

∑

j∈J

yjf
h
j . (3.30)

The HiFi matrix Ahj ∈ RNh×Nh and the HiFi vector fhj ∈ RNh can be assembled as

(Ahj )mn =Y′ 〈Ajwnh , vmh 〉Y and (fhj )m =Y′ 〈Fj , vmh 〉Y m,n = 1, . . . , Nh, j ∈ J . (3.31)
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3.4.2 Reduced Basis Compression

Analogously, by (wnN )Nn=1 and (vnN )Nn=1 one denotes the basis functions of the RB trial and test spaces
XN and YN , so that the RB solution qN (y) can be written as

qN (y) =
N
∑

n=1

qnN (y)wnN , (3.32)

with the coefficient vector qN (y) = (q1N (y), . . . , qNN (y))⊤. Then, the parametric RB-PG compression
problem can be written in the algebraic formulation as

given y ∈ U, find qN (y) ∈ RN :
∑

j∈J

yjA
N
j qN (y) =

∑

j∈J

yjf
N
j . (3.33)

where the RB matrix ANj ∈ RN×N and the RB vector fNj ∈ RN are obtained as

ANj = V⊤AhjW and fNj = V⊤fhj , j ∈ J , (3.34)

where W and V are the transformation matrices between the HiFi and RB basis functions, i.e.

wnN =

Nh
∑

m=1

Wmnw
m
h and vnN =

Nh
∑

m=1

Vmnv
m
h , n = 1, . . . , N . (3.35)

Thanks to the linear and affine structure of the parametric terms in (3.27), one can assemble the
RB matrices ANj and the RB vectors fNj , j ∈ J, once and for all. For each given y, one only needs
to assemble and solve the RB algebraic system (3.33) with computational cost depends only on N
as O(N2) for assembling and O(N3) for solving (3.33), which leads to considerable computational
reduction as long as N ≪ Nh.

3.4.3 Tight A-posteriori Error Bound

A tight and inexpensive error bound that facilitates the weak greedy algorithm for RB construction
is designed based on Assumption 2, in particular A1 stability, where the bilinear form is defined as

given any y ∈ U : a(w, v;y) :=Y′ 〈A(y)w, v〉Y , ∀w ∈ X , ∀v ∈ Y , (3.36)

which satisfies the stability condition in the HiFi spaces Xh and Yh as in (3.5). Let the linear form
be defined as

f(v;y) =Y′ 〈F (y), v〉Y , ∀v ∈ Y , (3.37)

then the RB residual in the HiFi space is defined as

r(vh;y) = f(vh;y)− a(qN (y), vh;y), ∀vh ∈ Yh . (3.38)

Let eN(y) = qh(y)− qN (y) denote the RB error, then by the stability condition (3.5) one has

||eN (y)||X ≤ |a(eN(y), vh;y)|
βh||vh||Y

=
|r(vh;y)|
βh||vh||Y

≤ ||r(·;y)||Y′

βh
=: △N (y) , (3.39)

which indicates that △N (y) is a rigorous upper error bound for the RB error eN (y). On the other
hand, to see the lower bound one defines the Riesz representation of the residual as êN(y) ∈ Yh, i.e.

(êN (y), vh)Y = r(vh;y), ∀vh ∈ Yh , (3.40)

so that ||êN (y)||Y = ||r(·;y)||Y′ . By setting vh = êN(y) in (3.40), one has

||êN (y)||2Y = r(êN (y);y) = a(eN (y), êN (y);y) ≤ αh||eN(y)||X ||êN (y)||Y , (3.41)
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where αh is the continuity constant of the bilinear form a in Xh × Yh, which implies that

βh
αh

△N (y) ≤ ||eN (y)||X . (3.42)

Therefore, the error bound △N(y) is tight with the constants in (3.23) as c = βh/αh and C = 1, and
γ = c/C = βh/αh.

For the evaluation of △N (y), one makes use of the affine structure (3.27) by computing the Riesz
representation An

j of the linear functional aj(w
n
N ; ·) =Y′ 〈AjwnN , ·〉Y : Yh → R as the solution of

(An
j , vh)Y = aj(w

n
N ; vh), ∀vh ∈ Yh, j ∈ J, n = 1, . . . , N , (3.43)

where wnN is the nth RB basis function. Analogously, one computes the Riesz representation Fj of
the linear functional fj(·) =Y′ 〈Fj , ·〉Y : Yh → R as the solution of

(Fj , vh) = fj(vh), ∀vh ∈ Yh, j ∈ J . (3.44)

Finally, one can compute the dual norm of the residual in the error bound △N (y) by

||êN (y)||2Y =
∑

j,j′∈J

yjyj′



(Fj ,Fj′)Y − 2
N
∑

n=1

qnN (y)(Fj ,An
j′ )Y +

N
∑

n,n′=1

qnN (y)qn
′

N (y)(Anj , A
n′

j′ )Y



 ,

(3.45)
where (Fj ,Fj′)Y , (Fj ,An

j′ )Y , and (Anj , A
n′

j′ )Y , j, j
′ ∈ J, n, n′ = 1, . . . , N , can be computed once and

for all. Given any y, one only need to assemble (3.45) whose cost depends on N as O(N2), not on
Nh, which results in effective computational reduction as long as N ≪ Nh.

The lower bound of the stability constant βh in △N(y) can be computed for once based on the
specific structure of the parametrization (e.g. at extreme points y = {yj = ±1 : j = 1, 2, ...}, or
by a successive constraint method (SCM for short) [46, 45] for each y, whose computational cost is
independent of Nh.

3.4.4 Stable RB-PG Compression

Construction of the RB trial space XN by both POD and greedy algorithm ensures the consistency
of the RB-PG compression. For its stability, a suitable RB test space YN needs to be constructed
depending on XN . In the case that X = Y, Xh = Yh, and the linear problem with (3.27) is coercive,
the choice YN := XN guarantees the coercivity (or stability) of the RB Galerkin compression.

In the case of saddle point variational formulations of the forward problem, such as time-harmonic
acoustic or electromagnetic wave propagation, or when Xh 6= Yh, MOR requires in addition to a
reduction of the trial spaces also the numerical computation of a suitable inf-sup stable testfunction
space. To this end, the so-called “supremizer” approach was proposed in [60], which is described as:
denote by Ty : Xh → Yh a parameter dependent supremizer operator, which is defined by

(Tywh, vh)Y = a(wh, vh;y) ∀vh ∈ Yh . (3.46)

This definition implies supvh∈Yh
|a(wh, vh;y)| = |a(wh, Tywh;y)|, i.e. Tywh is the supremizer of wh

in Yh w.r.t. the bilinear form a. Then the y-dependent RB test space Yy

N is constructed as

Yy

N = span{TywN , wN ∈ XN} . (3.47)

For this construction, it holds that (see [17])

βN (y) := inf
wN∈XN

sup
vN∈Yy

N

a(wN , vN ;y)

||wN ||X ||vN ||Y
≥ βh(y) . (3.48)

This implies that infsup-stability of the HiFi-PG discretization is inherited by the corresponding PG-
RB trial- and test-spaces: all RB-PG compression problems are infsup-stable under the stability
assumption of the HiFi-PG approximation: A1 stability in Assumption 2. In particular, if the

20



HiFi-PG discretizations are infsup-stable uniformly with respect to the uncertain input parameter u
(resp. its parametrization in terms of y), so is any PG-RB method obtained with PG trial space XN
obtained by a greedy search, and the corresponding PG test space (3.47).

Due to the affine structure (3.27), one can compute TywN for each y ∈ U as

TywN =
∑

j∈J

yjTjwN , where (TjwN , vh)Y = aj(wN , vh) ∀vh ∈ Yh , (3.49)

where TjwN , wN ∈ XN , j ∈ J needs to be computed only once; given any y, TywN can be assembled
in O(N) operations, which is independent of the Nh HiFi dof. The RB-PG compression problem
(3.33) can be written more explicitly as

giveny ∈ U, find qN (y) ∈ RN :
∑

j,j′∈J

yjyj′A
N
j,j′qN (y) =

∑

j,j′∈J

yjyj′f
N
j,j′ , (3.50)

where the RB matrix ANj,j′ ∈ RN×N and the RB vector fNj,j′ ∈ RN are given by

ANj,j′ = W⊤(Ahj′ )
⊤M−1

h AhjW and fNj,j′ = W⊤(Ahj′)
⊤M−1

h f
h
j , j, j′ ∈ J , (3.51)

where Mh is the mass matrix with (M−1
h )n,n′ = (vn

′

h , v
n
h )Y , n, n

′ = 1, . . . , Nh. Since all these quantities
are independent of y, one can evaluate them once and for all.

Remark 3.6 The stable RB-PG compression is equivalent to a least-squares RB-PG compression
presented in [8], see also [58]. Alternatively, a minimum residual approach known as double greedy
algorithm [28] can be applied for the construction of YN to ensure infsup stability.

3.5 Nonlinear and Nonaffine-parametric Problems

The linearity and the affinity in the linear and affine problems play a crucial role in effective decom-
position of the parameter dependent and independent quantities, which leads to the computational
reduction of the RB-PG compression. For more general problems that involve nonlinear terms w.r.t.
the state variable q and/or nonaffine terms w.r.t. the parameter y, for instance Example 2.4, it is
necessary to obtain an affine approximation of these terms in order to retain the effective decomposi-
tion and RB reduction. In this section, such an affine approximation based on empirical interpolation
[1, 53, 10, 37, 15] is presented.

3.5.1 High Fidelity Approximation

To solve the nonlinear parametric HiFi-PG approximation problem (3.3), one applies a Newton itera-
tion method based on the parametric tangent operator of the nonlinear residual [20]: given any y ∈ U

and an initial guess of the solution q
(1)
h (y) ∈ Xh, for k = 1, 2, . . . , one finds δq

(k)
h (y) ∈ Xh such that

Y′〈DqR(q
(k)
h (y);y)(δq

(k)
h (y)), vh〉Y = −Y′〈R(q

(k)
h (y);y), vh〉Y ∀vh ∈ Yh ; (3.52)

then the solution is updated according to

q
(k+1)
h (y) = q

(k)
h (y) + η(k)δq

(k)
h (y) , (3.53)

where η(k) is a constant determined by a line search method [30]. The Newton iteration is stopped
once

||δq(k)h (y)||X ≤ εtol or ||R(q
(k)
h (y);y)||Y′ ≤ εtol , (3.54)

being εtol a tolerance; then one sets qh(y) = q
(k+1)
h (y), bearing in mind of the tolerance error.

With the notation of the basis {wnh}Nh

n=1 and {vnh}Nh

n=1 of Xh and Yh, respectively, one can write

q
(k)
h (y) =

Nh
∑

n=1

q
(k)
h,n(y)w

n
h and δq

(k)
h (y) =

Nh
∑

n=1

δq
(k)
h,n(y)w

n
h , (3.55)
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with the coefficient vectors q
(k)
h (y) = (q

(k)
h,1(y), . . . , q

(k)
h,Nh

(y))⊤ and δq
(k)
h (y) = (δq

(k)
h,1(y), . . . , δq

(k)
h,Nh

(y))⊤

so that the algebraic formulation of the parametric HiFi-PG approximation problem (3.52) reads: find

the coefficient vector δq
(k)
h (y) := (δq

(k)
h,1(y), . . . , δq

(k)
h,Nh

(y))⊤ ∈ RNh such that

Jh(q
(k)
h (y);y)δq

(k)
h (y) = −rh(q(k)h (y);y) , (3.56)

where the Jacobian matrix Jh(q
(k)
h (y);y) ∈ RNh×Nh is given by

(

Jh(q
(k)
h (y);y)

)

nn′

=Y′

〈

DqR(q
(k)
h (y);y)(wn

′

h ), vnh

〉

Y
, n, n′ = 1, . . . , Nh , (3.57)

and the residual vector rh(q
(k)
h (y);y) ∈ RNh takes the form

(

rh(q
(k)
h (y);y)

)

n
=Y′

〈

R
(

q
(k)
h (y);y

)

, vnh

〉

Y
, n = 1, . . . , Nh . (3.58)

3.5.2 Reduced Basis Compression

To solve the nonlinear parametric RB-PG compression problem, one applies the same Newton iteration
method as for solving the HiFi-PG approximation problem. More specifically, one sets an initial guess

of the solution q
(1)
N (y) ∈ XN for any given y ∈ U , for k = 1, 2, . . . , one finds δq

(k)
N ∈ XN such that

Y′〈DqR(q
(k)
N (y);y)(δq

(k)
N (y)), vN 〉Y = −Y′〈R(q

(k)
N (y);y), vN 〉Y ∀vN ∈ YN ; (3.59)

then the RB solution is updated by

q
(k+1)
N (y) = q

(k)
N (y) + η(k)δq

(k)
N (y) , (3.60)

where again η(k) is a constant determined by a line search method [30]. The stopping criterion is

||δq(k)N (y)||X ≤ εtol or ||R(q
(k)
N (y);y)||Y′ ≤ εtol , (3.61)

With the notation of the basis (wnN )Nn=1 and (vnN )Nn=1 for the RB trial and test spaces XN and YN ,

one can expand the RB solution q
(k)
N (y) and its update δq

(k)
N as

q
(k)
N (y) =

N
∑

n=1

q
(n,k)
N (y)wnN and δq

(k)
N (y) =

N
∑

n=1

δq
(n,k)
N (y)wnN (3.62)

with the coefficient vectors q
(k)
N = (q

(1,k)
N (y), . . . , q

(N,k)
N (y))⊤ and δq

(k)
N = (δq

(1,k)
N (y), . . . , δq

(N,k)
N (y))⊤.

Then the algebraic formulation of the RB-PG compression (3.59) reads: find δq
(k)
N ∈ RN such that

JN(q
(k)
N (y);y)δq

(k)
N (y) = −rN (q

(k)
N (y);y) , (3.63)

where the parametric RB Jacobian matrix JN (q
(k)
N (y);y) ∈ RN×N and the parametric RB residual

vector rN (q
(k)
N (y);y) ∈ RN are given (through the transformation matrix W and V) by

JN(q
(k)
N (y);y) = V⊤Jh(Wq

(k)
N (y);y)W and rN (q

(k)
N (y);y) = V⊤rh(Wq

(k)
N (y);y) (3.64)

One can observe that, due to the nonlinearity (and/or nonaffinity) of the residual operator, neither
the residual vector nor the Jacobian matrix allows affine decomposition of parameter dependent and
independent terms which prevents effective RB-PG compression with computational reduction.

3.5.3 Empirical Interpolation

The Empirical Interpolation Method (EIM) was originally developed for affine decomposition of non-
affine parametric functions [1]. It was later applied to decompose nonaffine parametric discrete func-
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tion [10] (known as discrete EIM) and nonaffine-parametric operator [37, 51]. In this presentation, it

is applied to decompose the residual vector r
(k)
h and its tangent derivative in (3.58) and (3.57).

For notational simplicity, suppose one has Mt training (residual) vectors

rtm ∈ RNh , m = 1, . . . ,Mt, (3.65)

for instance collected from the residual vectors rh(q
(k)
h ;y) at different iteration steps k and different

samples y. A greedy algorithm is applied to construct the empirical interpolation for the approximation
of any given r ∈ RNh : one picks the first EI basis r1 ∈ RNh as

r1 = rtm∗ , where m∗ = argmax
1≤m≤Mt

||rtm||∞ , (3.66)

where || · ||∞ can also be replaced by || · ||2; then one chooses the first index n1 ∈ {1, . . . , Nh}, such
that

n1 = argmax
1≤n≤Nh

|(r1)n| , (3.67)

where (r1)n is the n-th entry of the vector r1. The number of EI basis is set as M , and M = 1 for
the time being. For any r ∈ RNh , it is approximated by the (empirical) interpolation

IMr =

M
∑

m=1

cmrm , (3.68)

where the coefficient vector c = (c1, . . . , cM )⊤ is obtained by solving the interpolation problem

(r)m′ =

M
∑

m=1

cm(rm)m′ , m′ = n1, . . . , nM . (3.69)

More explicitly, let PM ∈ {0, 1}M×Nh denote an index indicator matrix with nonzero entries (PM )m,nm
=

1, m = 1, . . . ,M ; let RM ∈ RNh×M denote the EI basis matrix whose m-th column is rm, m =
1, . . . ,M . Then, the coefficient vector c can be written as

c = (PMRM )−1(PMr) , (3.70)

and the empirical interpolation becomes

IMr = RM (PMRM )−1PMr . (3.71)

For M = 1, 2, . . . , the next EI basis rM+1 ∈ RNh is constructed as

rM+1 =
rtm∗ − IMrtm∗

||rtm∗ − IMrtm∗ ||∞
, where m∗ = argmax

1≤m≤Mt

||rtm − IMrtm||∞ , (3.72)

and find the next index nM+1 as

nM+1 = argmax
1≤n≤Nh

|(rM+1)n| . (3.73)

The greedy algorithm is terminated when |(rM+1)nM+1
| ≤ εtol. The empirical interpolation is con-

sistent in that when M → Nh, one has rM → 0 due to the interpolation property. Moreover, an
priori error analysis shows that the greedy algorithm for EI construction leads to the same result for
the convergence of the EI compression error in comparison with the Kolmogorov width as the bound
stated in Theorem 3.4, except for a Lebesgue constant depending on M , see [52, 20] for more details.

For any y ∈ U , let qN,M (y) ∈ RN denote the coefficient of the solution qN,M(y) ∈ XN of the
RB-PG compression problem with the empirical interpolation. By the empirical interpolation of the
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HiFi residual vector in (3.64), one can approximate the RB residual vector as

rN (q
(k)
N ;y) ≈ rN,M (q

(k)
N,M ;y) := V⊤RM (PMRM )−1PMrh(Wq

(k)
N,M(y);y) , (3.74)

where the y-independent quantity V⊤RM (PMRM )−1 ∈ RM×M can be computed once and for all,

and the y-dependent quantity PMrh(Wq
(k)
N,M (y);y) can be evaluated in O(MN) operations as long

as locally supported HiFi basis functions are used, e.g. Finite Element basis functions.
Similarly, one can approximate the HiFi Jacobian matrix in (3.64) as

Jh(Wq
(k)
N (y);y) ≈ RM (PMRM )−1PMJh(Wq

(k)
N,M (y);y) , (3.75)

so that the RB Jacobian matrix in (3.64) can be approximated by

JN (q
(k)
N (y);y) ≈ JN,M(q

(k)
N,M (y);y) := V⊤RM (PMRM )−1PMJh(Wq

(k)
N,M (y);y)W , (3.76)

where the y-dependent quantity PMJh(Wq
(k)
N,M(y);y)W can be computed efficiently with operations

O(M2N), as long as the Jacobian matrix Jh(Wq
(k)
N,M (y);y) is sparse, which is the typical case for

PDE approximation with locally supported basis functions. Direct approximation of the HiFi Jacobian
matrix Jh by empirical interpolation has also been studied in [8].

By the above EI compression, qN,M (y) is the solution of the problem

V⊤IMrh(WqN,M (y);y) = 0 . (3.77)

One observes that the RB solution (with EI) qN(y) 6= qN,M (y) due to the empirical interpolation
error. Moreover, the RB-EI solution qN,M(y) converges to the RB solution qN (y) as M → Nh.

3.5.4 A-posteriori Error Bound

For the derivation of a-posteriori error bound of the RB-EI solution qN,M (y) at any y, recall the
HiFi-PG problem in the algebraic formulation with slight abuse of notation: given any y ∈ U , find
qh(y) ∈ Xh, such that

rh(qh(y);y) = 0 . (3.78)

Analogously, recall the RB-EI-PG problem with slight abuse of notation: given any y ∈ U , find
qN,M (y) ∈ XN , such that

V⊤IMrh(qN,M (y);y) = 0 . (3.79)

Subtracting (3.78) from (3.79), inserting two zero terms, one has by rearranging some terms that

rh(qh(y);y)− rh(qN,M (y);y) =− (rh(qN,M (y);y)− IMrh(qN,M (y);y))

− (IMrh(qN,M (y);y)− V⊤IMrh(qN,M (y);y)) .
(3.80)

Taking || · ||2 norm of both sides, one has for the left hand side that there exists a constant β̃h (due
to the stability assumption in Assumption 2) and there exist N0 ∈ N and M0 ∈ N such that when
N > N0 and M > M0 (due to the consistency of RB compression and EI compression), one has

||rh(qh(y);y)− rh(qN,M (y);y)||2 =||Dqrh((qh(y);y))(qh(y)− qN,M (y))||2
+ o(||qh(y)− qN,M(y)||X )

≥ β̃h||qh(y)− qN,M (y)||X .

(3.81)

Note that the constant β̃h can be computed empirically, e.g. at some extreme realization y = −1 or
1, or by SCM [46, 45]. On the other hand, the right hand side (RHS) of (3.81) can be bounded by

RHS ≤ ||rh(qN,M (y);y)− IMrh(qN,M (y);y)||2
+ ||IMrh(qN,M (y);y)− V⊤IMrh(qN,M (y);y)||2 ,

(3.82)
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where the first term accounts for the empirical interpolation error, which can be approximated by

||rh(qN,M (y);y)− IMrh(qN,M (y);y)||2 ≈ ||IM+M ′rh(qN,M (y);y)− IMrh(qN,M (y);y)||2

(by (3.68)) =





M+M ′

∑

m,m′=M+1

cmcm′r⊤mrm′





1/2

,
(3.83)

where one assumes that IM+M ′ for some constant M ′ ∈ N, e.g. M ′ = 2, is a more accurate EI
compression operator for the residual, so that (I−IM )rh ≈ (IM+M ′ −IM )rh. The quantities r

⊤
mrm′ ,

m,m′ =M +1, . . . ,M +M ′, can be computed for only once, while for any y ∈ U , the coefficients cm,
m =M + 1, . . . ,M +M ′, can be evaluated by (3.70) with O(M +M ′) operations.

The second term of (3.82) represents the RB compression error, which can be evaluated as (by
noting that (3.79) holds)

||IMrh(qN,M (y);y)− V⊤IMrh(qN,M (y);y)||2 = ||IMrh(qN,M (y);y)||2
=

(

(PMrh(qN,M (y);y))⊤
(

(RM (PMRM )−1)⊤RM (PMRM )−1
)

PMrh(qN,M (y);y)
)1/2

,
(3.84)

where (RM (PMRM )−1)⊤RM (PMRM )−1 can be evaluated for only once; given any y ∈ U , evaluation
of PMrh(qN,M (y);y) takes O(MN) operations. Therefore, once the y-independent quantities are
(pre)computed, evaluation of the a-posteriori error bounds for both the EI compression error and the
RB compression error can be achieved efficiently, with cost depending only on N andM for each given
y ∈ U .

Finally, one can define the a-posteriori error bound of the RB-EI compression error as

△N (y) :=
1

β̃h
(||rh(qN,M (y);y)− IMrh(qN,M (y);y)||2 + ||IMrh(qN,M (y);y)||2) , (3.85)

which can be efficiently evaluated for each y ∈ U with cost independent of the HiFi dof Nh.

3.5.5 Stable RB-EI-PG Compression

By following the same procedure as in the linear and affine case in section 3.4.4, a stable RB-EI-PG
compression problem can be obtained by least-squares formulation as: given y ∈ U , with some initial

solution q
(1)
N,M ∈ RN , for k = 1, 2, find δq

(k)
N,M (y) ∈ RN , such that

JsN,M(q
(k)
N,M (y);y)δqN,M = −rsh(q(k)N,M (y);y) , (3.86)

where the Jacobian matrix JsN,M(q
(k)
N,M(y);y) with stabilization is given by

(PMJh(Wq
(k)
N,M (y);y)W)⊤(RM (PMRM )−1)⊤M−1

h RM (PMRM )−1PMJh(Wq
(k)
N,M(y);y)W , (3.87)

with (RM (PMRM )−1)⊤M−1
h RM (PMRM )−1 evaluated once and for all and with PMJh(Wq

(k)
N,M (y);y)W

evaluated in O(M2N) operations. The stabilized RB-EI residual vector rsh(q
(k)
N,M (y);y) is given by

(PMJh(Wq
(k)
N,M (y);y)W)⊤(RM (PMRM )−1)⊤M−1

h RM (PMRM )−1PMrh(Wq
(k)
N,M(y);y) , (3.88)

which can also be efficiently evaluated for each given y with an additional O(MN) operations. Then

until certain criterion is met, e.g. ||δq(k)N,M ||2 ≤ εtol, the solution is updated as q
(k+1)
N,M = q

(k)
N,M +

η(k)δq
(k)
N,M with suitable constant η(k) obtained by a line search method.
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3.6 Sparse Grid RB Construction

For the construction of the RB space XN , one can directly solve the optimization problem (3.23) with
the true error replaced by suitable a-posteriori error estimate, for instance

yN+1 := argsup
y∈U

△N(y) . (3.89)

This approach has been adopted in [7] by solving model-constrained optimization problems with
Lagrangian formulation, which requires both full and reduced solution of adjoint problems, leading to
possibly many more expensive solution of HiFi problems than the number of reduced basis functions.
In very high or infinite dimensional parameter space, the optimization problem is typically very difficult
to solve as there might be many local maximal points.

A more common approach is to replace the parameter space U by a training set Ξt, which consists
of a finite number of samples that are rich enough to construct the most representative RB space,
yet should be limited due to the constraint of computational cost. Hence, it remains to seek the next
sample according to

yN+1 := argmax
y∈Ξt

△N (y) . (3.90)

To choose the training samples, random sampling methods have been mostly used in practice [59];
adaptive sampling with certain saturation criteria [40] has also been developed recently to remove and
add samples from the training set. In the present setting of uncertainty parametrization as introduced
in section 2.2, one takes advantage of the sparsity of the parametric data-to-solution map which is
implied by (b, p)-holomorphy. This sparsity allows for dimension-independent convergence rates of
adaptive sparse grid sampling based on an adaptive construction of a generalized/anisotropic sparse
grid in the high-dimensional parameter space. The basic idea is to build the RB space XN (and EI basis
for nonlinear and nonaffine problems) in tandem with the adaptive construction of the sparse grid, see
[14, 12] for more details. The advantages of this approach are threefold: the first is that the training
samples as well as the sparse grid nodes for RB construction are “the most representative ones”; the
second is that the computational cost for the sparse grid construction is reduced by replacing the HiFi
solution at each sparse grid node by its RB surrogate solution. This provides a new algorithm for fast
sparse grid construction with certificated accuracy; third, one can obtain an explicitly computable a
priori error estimate for the RB compression error based on a computable bound of the sparse grid
interpolation error, as stated in Theorem 2.3. However, these advantages are less pronounced if the
parameter dependence of the parametric solution family of the forward UQ problem is less sparse;
specifically, if the sparsity parameter p being 0 < p < 1 in the (b, p)-holomorphic property becomes
large and close to 1.

4 Inverse UQ

The abstract, parametric problems which arise in forward UQ in Section 2 consisted in computing,
for given, admissible uncertain input datum u ∈ X (respective for any parameter sequence y in the
parametrization (2.13) of u, an approximate response q(u) ∈ X , respectively a Quantity of Interest
(QoI for short) φ(q) ∈ Z where φ(·) : X → Z is a continuous mapping, and Z denotes a suitable space
containing realizations of the QoI. If, for example, solution values q(u) are of interest, one chooses
Z = X , if φ(·) ∈ X ′, one has Z = R. The sparsity results in Section 2, in particular the constructive
interpolation approximation result Theorem 2.3 and the MOR results in

4.1 Bayesian Inverse Problems for Parametric Operator equations

Following [67, 29, 65, 61, 62], one equips the space of uncertain inputs X and the space of solutions X
of the forward maps with norms ‖ · ‖X and with ‖ · ‖X , respectively. Consider the abstract (possibly
nonlinear) operator equation (2.5) where the uncertain operator A(·;u) ∈ C1(X ,Y ′) is assumed to be
boundedly invertible, at least locally for the uncertain input u sufficiently close to a nominal input
〈u〉 ∈ X , i.e. for ‖u−〈u〉‖X sufficiently small so that, for such u, the response of the forward problem
(2.5) is uniquely defined. Define the forward response map, which relates a given uncertain input u
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and a given forcing F to the response q in (2.5) by

X ∋ u 7→ q(u) := G(u;F (u)) , where G(u, F ) : X × Y ′ 7→ X . (4.1)

To ease notation, one does not list the dependence of the response on F and simply denote the depen-
dence of the forward solution on the uncertain input as q(u) = G(u). Assume given an observation
functional O(·) : X → Y , which denotes a bounded linear observation operator on the space X of
observed system responses in Y . Throughout the remainder of this paper, one assumes that there is a
finite number K of sensors, so that Y = RK with K < ∞. Then O ∈ L(X ;Y ) ≃ (X ′)K . One equips
Y = RK with the Euclidean norm, denoted by | · |. For example, if O(·) is a K-vector of observation
functionals O(·) = (ok(·))Kk=1.

In this setting, one wishes to predict computationally an expected (under the Bayesian posterior)
system response of the QoI, conditional on given, noisy measurement data δ. Specifically, the data δ
is assumed to consist of observations of system responses in the data space Y , corrupted by additive
observation noise, e.g. by a realization of a random variable η taking values in Y with law Q0. One
assumes additive, centered gaussian noise on the observed data δ ∈ Y . Ie., the data δ is composed
of the observed system response and the additive noise η according to δ = O(G(u)) + η ∈ Y . One
assumes that Y = RK and η is Gaussian, i.e. a random vector η ∼ Q0 ∼ N (0,Γ) with a positive
definite covariance Γ on Y = RK (i.e., a symmetric, positive definite covariance matrix Γ ∈ RK×K

sym

which is assumed to be known. The uncertainty-to-observation map of the system G : X → Y = RK

is G = O ◦G, so that
δ = G(u) + η = (O ◦G)(u) + η ∈ Y , (4.2)

where Y = L2
Γ(R

K) denotes random vectors taking values in Y = RK which are square integrable
with respect to the Gaussian measure on Y = RK . Bayes’ formula [67, 29] yields a density of the
Bayesian posterior with respect to the prior whose negative log-likelihood equals the observation
noise covariance-weighted, least squares functional (also referred to as “potential” in what follows)
ΦΓ : X × Y → R by ΦΓ(u; δ) =

1
2 |δ − G(u)|2Γ, ie.

ΦΓ(u; δ) =
1

2
|δ − G(u)|2Γ :=

1

2

(

(δ − G(u))⊤Γ−1(δ − G(u))
)

. (4.3)

In [67, 29], an infinite-dimensional version of Bayes’ rule was shown to hold in the present setting. In
particular, the local Lipschitz assumption (2.12) on the solutions’ dependence on the data implies a
corresponding Lipschitz dependence of the Bayesian Potential (4.3) on u ∈ X . Specifically, there holds
the following version of Bayes’ theorem. Bayes’ Theorem states that, under appropriate continuity
conditions on the uncertainty-to-observation map G = (O ◦ G)(·) and on the prior measure π0 on
u ∈ X , for positive observation noise covariance Γ in (4.3), the posterior πδ of u ∈ X given data
δ ∈ Y is absolutely continuous with respect to the prior π0.

Theorem 4.1 ([29, Thm. 3.3]) Assume that the potential ΦΓ : X × Y 7→ R is, for given data δ ∈ Y ,
π0 measurable on (X,B(X)) and that, for Q0-a.e. data δ ∈ Y there holds

Z :=

∫

X

exp (−Φ(u; δ))π0(du) > 0 .

Then the conditional distribution of u|δ exists and is denoted by πδ. It is absolutely continuous with
respect to π0 and there holds

dπδ

dπ0
(u) =

1

Z
exp (−Φ(u; δ)) . (4.4)

In particular, then, the Radon-Nikodym derivative of the Bayesian posterior w.r.t. the prior measure
admits a bounded density w.r.t. the prior π0 which is denoted by Θ, and which is given by (4.4).

4.2 Parametric Bayesian posterior

The uncertain datum u in the forward equation (2.5) is parametrized as in (2.13). Motivated by [61,
62], the basis for the presently proposed deterministic quadrature approaches for Bayesian estimation
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via the computational realization of Bayes’ formula is a parametric, deterministic representation of
the derivative of the posterior measure πδ with respect to the uniform prior measure π0 on the set
U of coordinates in the uncertainty parametrization (2.25). The prior measure π0 being uniform, one
admits in (2.13) sequences y which take values in the parameter domain U = [−1, 1]J, with an index
set J ⊂ N. Consider the countably-parametric, deterministic forward problem in the probability space

(U,B,π0) . (4.5)

To ease notation, one assumes throughout what follows that the prior measure π0 on the uncertain
input u ∈ X, parametrized in the form (2.13), is the uniform measure (the ensuing derivations are
still applicable if π0 is absolutely continuous with respect to the uniform measure, with a smooth and
bounded density). Being π0 a countable product probability measure, this assumption implies the
statistical independence of the coordinates yj in the parametrization (2.13). With the parameter
domain U as in (4.5) the parametric uncertainty-to-observation map Ξ : U → Y = RK is given by

Ξ(y) = G(u)
∣

∣

∣

u=〈u〉+
∑

j∈J
yjψj

. (4.6)

Our reduced basis approach is based on a parametric version of Bayes’ Theorem 4.1, in terms of the
uncertainty parametrization (2.13). To present it, one views U as the unit ball in ℓ∞(J), the Banach
space of bounded sequences taking values in U .

Theorem 4.2 Assume that Ξ : Ū → Y = RK is bounded and continuous. Then πδ(dy), the distri-
bution of y ∈ U given data δ ∈ Y , is absolutely continuous with respect to π0(dy), i.e. there exists a
parametric density Θ(y) such that

dπδ

dπ0
(y) =

1

Z
Θ(y) (4.7)

with Θ(y) given by

Θ(y) = exp
(

−ΦΓ(u; δ)
)

∣

∣

∣

u=〈u〉+
∑

j∈J
yjψj

, (4.8)

with Bayesian potential ΦΓ as in (4.3) and with normalization constant Z given by

Z = Eπ0 [Θ] =

∫

U

Θ(y) dπ0(y)> 0 . (4.9)

Bayesian inversion is concerned with the approximation of a “most likely” system response φ : X → Z
(sometimes also referred to as Quantity of Interest (QoI) which may take values in a Banach space Z)
of the QoI φ, conditional on given (noisy) observation data δ ∈ Y . In particular the choice φ(u) = G(u)
(with Z = X ) facilitates computation of the “most likely” (as expectation under the posterior, given
data δ) system response. With the QoI φ one associates the countably-parametric map

Ψ(y) = Θ(y)φ(u) |u=〈u〉+
∑

j∈J
yjψj

= exp
(

−ΦΓ(u; δ)
)

φ(u)
∣

∣

∣

u=〈u〉+
∑

j∈J
yjψj

: U → Z . (4.10)

Then the Bayesian estimate of the QoI φ, given noisy observation data δ, reads

Eπ
δ

[φ] = Z ′/Z, Z ′ :=

∫

y∈U

Ψ(y)π0(dy), Z :=

∫

y∈U

Θ(y)π0(dy) . (4.11)

The task in computational Bayesian estimation is therefore to approximate the ratio Z ′/Z ∈ Z in
(4.11). In the parametrization with respect to y ∈ U , Z and Z ′ take the form of infinite-dimensional,
iterated integrals with respect to the prior π0(dy).

4.3 Well-posedness and approximation

For the computational viability of Bayesian inversion the quantity Eπ
δ

[φ] should be stable under
perturbations of the data δ and under changes in the forward problem stemming, for example, from
discretizations as considered in Sections 3.1, 3.2.
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Unlike deterministic inverse problems where the data-to-solution maps can be severely ill-posed,
for Γ > 0 the expectations (4.11) are Lipschitz continuous with respect to the data δ, provided that
the potential ΦΓ in (4.3) is locally Lipschitz with respect to the data δ in the following sense.

Assumption 4 Let X̃ ⊆ X and assume ΦΓ ∈ C(X̃ × Y ;R) is Lipschitz on bounded sets. Assume
also that there exist functions Mi : R+ × R+ → R+ (depending on Γ > 0) which are monotone,
non-decreasing separately in each argument, such that for all u ∈ X̃, and for all δ, δ1, δ2 ∈ BY (0, r)

Φ(u; δ) ≥ −M1(r, ‖u‖X), (4.12)

and
|ΦΓ(u; δ1)− ΦΓ(u; δ2)| ≤M2(r, ‖u‖X)‖δ1 − δ2‖Y . (4.13)

Under Assumption 4, the expectation (4.11) depends Lipschitz on δ (see [29, Sec. 4.1] for a proof):

∀φ ∈ L2(πδ1 , X ;R) ∩ L2(πδ2 , X ;R) ‖Eπ
δ1
[φ]− Eπ

δ2
[φ]‖Z ≤ C(Γ, r)‖δ1 − δ2‖Y . (4.14)

Below, one shall be interested in the impact of approximation errors in the forward response of the
system (e.g. due to discretization and approximate numerical solution of system responses) on the
Bayesian predictions (4.11). For continuity of the expectations (4.11) w.r.t. changes in the potential,
the following assumption is imposed.

Assumption 5 Let X̃ ⊆ X and assume Φ ∈ C(X̃ × Y ;R) is Lipschitz on bounded sets. Assume also
that there exist functions Mi : R+ × R+ → R+ which are monotonically non-decreasing separately in
each argument, such that for all u ∈ X̃, and all δ ∈ BY (0, r), Equation (4.12) is satisfied and

|ΦΓ(u; δ)− ΦNΓ (u; δ)| ≤M2(r, ‖u‖X)‖δ‖Y ψ(N) (4.15)

where ψ(N) → 0 as N → ∞.

By πδN one denotes the Bayesian posterior, given data δ ∈ Y , with respect to ΦNΓ .

Proposition 4.3 Under Assumption 5, and the assumption that for X̃ ⊆ X and for some bounded
B ⊂ X one has π0(X̃ ∩B) > 0 and

X ∋ u 7→ exp(M1(‖u‖X))(M2(‖u‖X))2 ∈ L1
π0

(X ;R) ,

there holds, for every QoI φ : X → Z such that, although the convergence rate s can be substantially
higher than the rate 1/2 afforded by MCMC methods (cp. Section 4.4 and [29, Sections 5.1,5.2] ) that
φ ∈ L2

πδ (X ;Z) ∩ L2
π

δ
N

(X ;Z) uniformly w.r.t. N , that Z > 0 in (4.9) and

‖Eπ
δ

[φ]− Eπ
δ
N [φ]‖Z ≤ C(Γ, r)‖δ‖Y ψ(N) . (4.16)

For a proof of Proposition 4.3, see [29, Thm. 4.7, Rem. 4.8].
Below, concrete choices are presented for the convergence rate function ψ(N) in estimates (4.15),

(4.16) in terms of i) “dimension truncation” of the uncertainty parametrization (2.13), i.e. to a finite
number of s ≥ 1 terms in (2.13), and ii) Petrov-Galerkin Discretization of the dimensionally truncated
problem, iii) generalized polynomial chaos (gpc) approximation of the dimensionally truncated problem
for particular classes of forward problems. The verification of the consistency condition (4.15) in either
of these cases will be based on (cf. [32])

Proposition 4.4 Assume given a sequence {qN}N≥1 of approximations to the parametric forward
response X ∋ u 7→ q(u) ∈ X such that, with the parametrization (2.13),

sup
y∈U

‖(q − qN )(y)‖X ≤ ψ(N) (4.17)

with a consistency error bound ψ ↓ 0 as N → ∞ monotonically and uniformly w.r.t. u ∈ X̃ (resp.
w.r.t. y ∈ U). By GN one denotes the corresponding (Galerkin) approximations of the parametric
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forward maps. Then the approximate Bayesian potential

ΦN (u; δ) =
1

2
(δ − GN (u))⊤Γ−1(δ − GN (u)) : X × Y 7→ R , (4.18)

where GN := O ◦GN , satisfies (4.15).

The preceding result shows that the consistency condition (4.17) for the approximate forward map

qN ensures corresponding consistency of the Bayesian estimate Eπ
δ
N [φ], due to (4.16). Note that so

far, no specific assumption on the nature of approximation of the forward map has been made. Using
a MOR surrogate of the parametric forward model, Theorem 3.4 allows to bound ψ(N) in (4.17) by
the corresponding worst case RB compression error σN in (3.26) which, is bound by the convergence
rate of the corresponding N -width:

ψ(N) ≤ σN . dN (Mh;Xh) (4.19)

in the various cases indicated in Theorem 3.4. Under Assumption 4, Proposition 4.4 ensures that
Assumption 5 holds, with (4.19). One concludes in particular that replacing the forward model by a
reduced basis surrogate will result in an error in the Bayesian estimate of the same asymptotic order
of magnitdue, as N → ∞. This justifies, for example, running Markov chains on the surrogate forward
model obtained from MOR. In doing this, however, care must be taken to account for the constants
implied by . in (4.19): the constants do not depend on N , but large values of these constants can
imply prohibitive errors for the (small) values N of the number of RB degrees of freedom employed
in PG projections of MOR forward surrogates. In addition, it is pointed out that the estimate (4.16)
depends on the observation noise covariance Γ, as well as on the size r of the observation data δ
(measured in Y ).

4.4 Reduced basis acceleration of MCMC

Markov Chain Monte Carlo (MCMC) methods compute the expectation Eπ
δ

[φ] in (4.11) under the
posterior by sampling from the posterior density. They proceed in approximation of the constant Z ′

in (4.11) by sample averages where, however, the posterior distribution from which samples are to be
drawn is itself to be determined during the course of the sampling process. MCMC methods start by
sampling from the (known) prior π0, and by updating, in the course of sampling, both numerator Z ′

as well as the normalizing constant Z in (4.11). Several variants exist; see [29, Sections 5.1,5.2] for
a derivation of the Metropolis-Hastings MCMC, and to [29, Section 5.3] for sequential Monte-Carlo
(sMC) methods. A convergence theory in term of certain spectral gaps is provided in [29, Thm. 5.13],
resulting in the convergence rate N−1/2 with N denoting the number of increments of the chain. In
the context of the present paper, N denotes the number of (approximate) solves of the parametric
forward problem (2.4), resp. of a discretization of it. Due to the low rate 1/2 of the MCMC methods
(and due to the high rejection rate of the samplers during burn-in), generally a very large number of
samples is required. Moreover, successive updates of the MCMC samplers has an intrisically serial
structure which, in turn, foils massive parallelism to compensate for the slow convergence rate. It
is therefore of high interest to examine the possibility of accelerating MCMC methods. In [44], the
impact of various discretization and acceleration techniques for MCMC methods were analyzed for the

computation of the expectation Eπ
δ

[φ] in (4.11); among them a generalized polynomial chaos (gpc)
surrogate of the parametric forward may U ∋ y → q(y) ∈ X . The theory in [44] can be extended
using the consistency error bound Assumption 5 in the Bayesian potential, and Proposition 4.4 for
the RB error in the forward map. Practical application and implementation of RB with MCMC for
(Bayesian) inverse problems can be found, for instance, in [27, 49].

4.5 Dimension and order adaptive, deterministic quadrature

The parametric, deterministic infinite-dimensional integrals Z ′ and Z in (4.11) are, in principle, ac-
cessible to any quadrature strategy which is able to deal efficiently with the high dimension of the
integration domain, and which is able to exploit (b, p)-sparsity of the parametric integrand functions.
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Following [39, 22], a greedy strategy based on reduced sets of indices which are neighboring the
currently active set Λ, defined by

N (Λ) := {ν /∈ Λ : ν − ej ∈ Λ, ∀j ∈ Iν and νj = 0 , ∀j > j(Λ) + 1}

for any downward closed index set Λ ⊂ F of currently active gpc modes, where j(Λ) := max{j : νj >
0 for some ν ∈ Λ}. This heuristic approach aims at controlling the global approximation error by
locally collecting indices of the current set of neighbors with the largest estimates error contributions.
In the following, the resulting algorithm to recursively build the downward closed index set Λ in the
Smolyak quadrature which is adapted to the posterior density (and, due to the explicit expression
(4.8) from Bayes’ formula, also to the observation data δ) is summarized. The reader is referred to
[39, 62, 61] for details and numerical results. Development and analysis of the combination of RB,
MOR and ASG for Bayesian inversion are described in depth in [18, 19, 20], for both linear and
nonlinear, both affine and nonaffine parametric problems.

1: function ASG

2: Set Λ1 = {0} , k = 1 and compute ∆0(Ξ).
3: Determine the reduced set (4.20) of neighbors N (Λ1).
4: Compute ∆ν(Ξ) , ∀ν ∈ N (Λ1).
5: while

∑

ν∈N (Λk)
‖∆ν(Ξ)‖S > tol do

6: Select ν from N (Λk) with largest ‖∆ν‖S and set Λk+1 = Λk ∪ {ν}.
7: Determine the reduced set (4.20) of neighbors N (Λk+1).
8: Compute ∆ν(Ξ) , ∀ν ∈ N (Λk+1).
9: Set k = k + 1.

10: end while

11: end function

4.6 Quasi Monte-Carlo Quadrature

The adaptive, deterministic quadrature Algorithm 4.5 realizes, theoretically and in practical experi-
ments ([62, 61]), convergence rates s = 1/p−1 which are determined only by the summability exponent
p of the sequence b of (X-norms of) the basis Ψ adopted for the space X , in order to parametrize the
uncertain input data u as in (2.13). The downside/ drawback of Algorithm 4.5 is that, although the
(dimension-independent) convergence rate s can be substantially higher than the rate 1/2 afforded by
MCMC methods (cp. Section 4.4), provided the summability exponent p is sufficiently small, that
it is intrinsically sequential in nature, due to the recursive construction of the active index sets; in
this respect, it is analogous to MCMC methods which access the forward model (or a surrogate of
it) through uncertainty instances produced by the sampler along the Markov chains. An alterative
to these approaches which allows for dimension-independent convergence rate s = 1/p in terms of
the number of samples and which allows simultaneous, parallel access to the forward model in all
instances of the uncertainty is the recently developed, higher order Quasi Monte-Carlo integration.

A remedy which affords dimension-independent, higher-order convergence rates limited only by
uncertain input sparsity and which allows, at the same time, fully parallel evaluation of the integrals
Z ′ and Z in the Bayesian estimate (4.11) is afforded by Quasi Monte-Carlo Integration. The
reader is referred to [35] for a general survey, and numerous references. It has recently been shown
that (b, p) sparsity implies, indeed, the dimension-independent convergence rate s = 1/p for certain
types of higher order QMC integration; see [34] for the theory for linear, affine parametric operator
equations q 7→ A(y)q and to [33] for multilevel extensions, to [36] for the verification of the convergence
conditions in [34] implied by (b, p) holomorphy. Computational construction of higher order QMC
integration rules on the bounded parameter domain U is described in [38]. There exist also QMC
integration methods for unbounded parameter regions. Such arise typically for Gaussian random field
(GRF for short) inputs u taking values in X . Upon uncertainty parametrization with, for example,
a Karhunen–Loève expansion into eigenfunctions of the covariance operator of the GRF (2.17), there
result parametric deterministic problems with unbounded parameter ranges (consisting, for GRF’s,
of countable cartesian products of real lines, ie. U = RN). In this case, the present theory still is
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applicable, however, all stability and equivalence constants will depend, generally, on the parameter
y with the parametric dependence degenerating for “extremal events”, i.e. realizations of u whose
parameters in the tail of the prior π0. This is particularly relevant for uncertain input data which
involve a gaussian random field (2.17) in some form.

5 Software

• rbMIT: The general algorithms of RB based on Finite Element are implemented in the software
package rbMIT c©MIT in MATLAB. It is implemented mainly for demonstration and education.
However, it is also friendly to use for development and test of new algorithms. The code and an
accompanying textbook [55] are available through the link:
http://augustine.mit.edu/methodology/methodology_rbMIT_System.htm

• RBniCS: An RB extension of the Finite Element software package FEniCS ([50]) is under
development and public domain through the link:http://mathlab.sissa.it/rbnics. Imple-
mentation includes POD and greedy algorithm for coercive problems, which is suited for an
introductory course of RB together with the book [41].

• Dune-RB: It is a module for the Dune (Distributed and Unified Numerics Environment) library
in C++. Template classes are available for RB construction based on several HiFi discretizations,
including Finite Element and Finite Volume. Parallelization is available for RB construction too.
Tutorials and code are available at http://www.dune-project.org/.

• pyMOR: pyMOR is implemented in Python for MOR for parameterized PDE. It has friendly in-
terfaces and proper integration with external high-dimensional PDE solvers. Finite element and
finite volume discretizations implemented based on the library of NumPy/SciPy are available.
For more information, see http://pymor.org.

• AKSELOS: MOR remains the core technology for the startup company AKSELOS in several
engineering fields, such as port infrastructure and industrial machinery. Different components
are included such as FEA and CAD. The HiFi solution in AKSELOS is implemented with a HPC
and cloud-based simulation platform and is available for commercial use. For more information
see http://www.akselos.com/.

• For further libraries/software packages, we refer to http://www.ians.uni-stuttgart.de/MoRePaS/software/.

6 Conclusion

In this work, both mathematical and computational foundations of model order reduction techniques
for UQ problems with distributed uncertainties are surveyed. Based on the recent development of
sparse polynomial approximation in infinite dimensions, the convergence property of MOR constructed
by greedy algorithm is established. In particular, under the sparsity of the uncertainties and the holo-
morphy of the forward solution maps w.r.t. the parameters, the dimension-independent convergence
rate of the RB compression error can be achieved. Details of the construction and the compression
of MOR are provided for both affine and nonaffine, linear and nonlinear problems modelled by para-
metric operator equations. Stability of the HiFi approximation and the RB compression is fulfilled by
Petrov–Galerkin formulation with suitably constructed test spaces. Efficient MOR construction is re-
alized by a greedy search algorithm with sparse sampling scheme, which further leads to a fast method
for sparse grid construction. The MOR techniques are applied for both forward and inverse UQ prob-
lems, leading to considerable computational reduction in the many-query context for evaluation of
statistics, and in the real-time context for fast Bayesian inversion.

7 Glossary

List of used abbreviations and definition of technical terms:
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• UQ: Uncertainty Quantification

• MOR: Model Order Reduction

• PDE: Partial Differential Equations

• POD: Proper Orthogonal Decomposition

• RB: Reduced Basis

• EI: Empirical Interpolation

• SG: Sparse Grid

• FEM: Finite Element Method

• PG: Petrov–Galerkin

• QoI : Quantity of interest

• Fidelity (of a mathematical model): notion of quality of responses of a computational surrogate
model for a given mathematical model.

• HiFi: High Fidelity

• SCM: Successive Constraint Method

• Surrogate Model: numerical model obtained by various numerical approximation of a mathe-
matical model.
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