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Abstract

We present a finite difference-(Multi-level) Monte Carlo algorithm to efficiently compute
statistical solutions of the two dimensional Navier-Stokes equations, with periodic bound-
ary conditions and for arbitrarily high Reynolds number. We propose a reformulation of
statistical solutions in the vorticity-stream function form. The vorticity-stream function for-
mulation is discretized with a finite difference scheme. We obtain a convergence rate error
estimate for this approximation. We also prove convergence and complexity estimates, for
the (Multi-level) Monte Carlo finite-difference algorithm to compute statistical solutions.
Numerical experiments illustrating the validity of our estimates are presented. They show
that the Multi-level Monte Carlo algorithm significantly accelerates the computation of sta-
tistical solutions, even for very high Reynolds numbers.
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1 Introduction

The flow of a viscous, incompressible fluid is described by the (incompressible) Navier-Stokes
equations,

∂

∂t
u+ div(u⊗ u) +∇p = ν∆u+ f , ∇ · u = 0. (1)

Here, u denotes the velocity field and p is the (scalar) pressure that serves as a Lagrange multi-
plier to enforce the divergence free condition on the velocity. The source function f represents
the effects of a body force. The kinematic viscosity is denoted by ν. This system of PDEs needs
to be supplemented with suitable initial and boundary conditions.

Given the fundamental role played by the Navier-Stokes equations (1) in fluid dynamics,
these equations have been the subject of extensive analytical and numerical study over the past
century. The existence of global weak solutions (in both two and three dimensions) goes back
to the seminal work of Leray (and Hopf). Uniqueness results are only available in two space
dimensions. The questions of uniqueness (and particularly regularity) in three space dimensions
are open and constitute one of the Clay institute’s millennium prize problems.

Moreover, it is well known that fluid motion, particularly in three space dimensions, is highly
sensitive to initial conditions and consists of irregular and chaotic motions [10]. This is especially
true when the viscosity ν is small, equivalently the Reynolds number is high. Given considerable
experimental and numerical evidence, such high Reynolds number turbulent flows are difficult
to describe in terms of a deterministic framework, for instance weak solutions. Hence, it has
become customary in fluid dynamics to consider solutions of the Navier-Stokes equations within
a suitable statistical (probabilistic) framework.

One such probabilistic framework is the concept of statistical solutions, as proposed by
Foias and Prodi in [9], see also [21] and the text book [8] and references therein. Within
this framework of statistical solutions, the object of interest is a one parameter (time) family
of probability measures that are defined on the function space containing initial data (weak
solutions) for the Navier-Stokes equations. Once an initial probability measure is specified, it
is evolved in a manner that is consistent with the Navier-Stokes dynamics. Existence of such
statistical solutions has been established, see [8]. In two space dimensions, it has been shown that
these statistical solutions are defined as a push forward of the initial probability measure, under
the action of the Navier-Stokes flow (solution operator). Moreover, it has been demonstrated
(see [8] and references therein) that statistical solutions can be used to describe some of the
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well-known empirical (and analytical) laws of turbulence, particularly of statistically stationary
homogeneous isotropic turbulence.

Given the above discussion, the numerical approximation of such statistical solutions is an
important issue. However, the design of suitable numerical methods for computing statistical
solutions is challenging as the object to be computed is (the statistics of) a measure on a (infinite
dimensional) function space. Consequently, the sheer size (dimension) of any computation can
be prohibitively large.

The computation of statistical solutions falls within the much wider class of uncertainty
quantification (UQ) in computational fluid dynamics (CFD). A large number of methods have
been proposed to efficiently quantify uncertain solutions of the PDEs that arise in fluid flows. A
(highly incomplete) list includes the well known stochastic galerkin methods [22] and stochastic
collocation methods [14]. Another class of methods are of the Monte-Carlo type, particularly
multi-level Monte Carlo (MLMC) methods [19] and references therein. However, very few, if
any, of these methods have been adapted to the specific task of computing statistical solutions
of the Navier-Stokes equations.

The main objective of the current paper is to propose a class of statistical sampling meth-
ods, of the Monte-Carlo (MC) and Multi-level Monte Carlo (MLMC) type, based on a robust
finite difference (volume) discretization of the Navier-Stokes equations , and to prove that the
resulting finite difference (volume) - (ML)MC method can approximate statistical solutions of
the Navier-Stokes equations efficiently. The basis of our method is an observation in a recent
paper [3] that under the physically reasonable assumption of finite kinetic energy of the flow
ensemble, there exist ν-independent bounds on the second-moments of underlying statistical so-
lution. Consequently, these bounds suffice for computation (and convergence) of a Monte-Carlo
approximation of flow statistics at arbitrarily high Reynolds numbers.

In the current paper, we carry out a detailed convergence analysis of the MC as well as the
considerably faster MLMC algorithms to compute such statistical solutions. We restrict ourselves
to the two-dimensional case as uniqueness and a clear characterization of statistical solutions
is well established in this case. In two space dimensions, it is more natural [18] to consider an
equivalent vorticity-stream function formulation of the incompressible Navier-Stokes equations
as the vorticity is a scalar quantity. Hence, we provide a novel reformulation of the Foais-
Prodi statistical solutions of [8] in terms of the vorticity-stream function formulation. Our finite
difference discretization and the resulting (ML)MC method are defined for this vorticity-stream
function formulation.

Since the design of a MLMC method crucially relies on the availability of a rigorous error
estimate for the underlying spatio-temporal discretization, we propose a novel finite difference
discretization of the two-dimensional Navier-Stokes equations and show that it converges to a
weak solution as the mesh is refined. Moreover, we prove an error estimate for the approximation.
It turns out that the resulting method (error estimate) is robust with respect to the Reynolds
number. We can even approximate the incompressible Euler equations (ν = 0) with our proposed
finite difference approximation. Consequently, this method, combined with an MLMC algorithm,
enables the computation of flow statistics at arbitrarily high Reynolds numbers (in two-space
dimensions).

The remainder of this paper is organized as follows. In section 2, we recapitulate the notion
of statistical solutions, in the sense of Foais-Prodi and introduce the reformulation of statistical
solutions in terms of the vorticity. In section 3, we present a novel finite discretization of the
Navier-Stokes equations, written in terms of the vorticity-streamfunction formulation and prove
an error estimate. The finite difference scheme is presented in section 3 and the Monte Carlo and
Multi-level Monte Carlo methods are described in section 4 and numerical experiments reported
in section 5.
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2 Statistical Solutions of the Navier-Stokes equations.

In this section, we will review the theory of statistical solutions for the incompressible Navier-
Stokes equations and present a reformulation of statistical solutions in the vorticity-stream
function formulation in two space dimensions.

We use standard notation. The set T
2 will denote the torus in R

2, identified with [0, 1)2.
For two Hilbert spaces H and K, we denote by Liso(H,K) the linear space of all bounded

isomorphisms from H to K. By Hs
per(T

2) and W k,p
per(T2), for k, s ≥ 0 and for 1 ≤ p ≤ ∞, we

shall denote Sobolev spaces of real-valued, 1-periodic functions in T
2. Space of complex-valued

functions are denoted by Hs
per(T

2;C) and W k,p
per(T2;C), correspondingly.

We consider the incompressible Navier-Stokes equations (1) in the torus T2, and in the finite
time interval J̄ := [0, T ], for T <∞.

In order to describe statistical solutions of (1), we start with a concise (and self-contained)
review of the theory of Leray-Hopf weak solutions.

2.1 Individual Leray-Hopf Solutions

2.1.1 Sobolev Spaces

For the formulation of the equations, as well as for various regularity statements for solutions
and a-priori estimates, we require to define function spaces on T

2 with “periodic boundary
conditions”. By this we mean that T

2-periodic extensions of elements to all of R2 belong locally
to the same function space. We denote such spaces by a subscript per.

We identify T
2 = [0, 1)2, and consider the incompressible Navier–Stokes equations (1), with

periodic boundary conditions.
We adopt the usual (as presented, eg., in [20, 8]) functional analytic setting, and denote by

H a subspace of divergence-free, square integrable vector fields in L2(T2)2 and by V a subspace
of the closure of H in H1

per(T
2)d. Since we consider periodic boundary conditions, we choose

V = Vper := {v ∈ H1
per(T

2)2 : ∇ · v = 0 in L2(T2),

ˆ

T2

v dx = 0}, (2)

H = {v ∈ Hper(div;T
2) : ∇ · v = 0 in L2(T2),

ˆ

T2

v dx = 0} . (3)

Here, Hper(div;T
2) denotes the closure of the set C∞

per(T
2)2 with respect to the H(div) norm in

T
2, given by ‖ϕ‖2H(div;T2) = ‖ϕ‖2 + ‖divϕ‖2 with ‖ ◦ ‖ denoting the L2(T2) norm.

We observe that H ⊂ L2(T2) is a closed subspace, which “sees” the periodic BCs in a weak
sense: since H ⊂ H(div;T2), velocity fields v ∈ H(div;T2) admit a normal trace H ∋ (v 7→
n · v)|∂T2 which is extends to a continuous map from H(div;T2) to H−1/2(∂T2) (cp. eg. [13,
Thm. 2.5]).

In H as defined in (3), the difference of normal traces n·v across opposite sides of T2 vanishes
in H−1/2(∂T2), so that H ⊂ (L2(T2)/R)2 with strict inclusion.

Evidently, we have compact and dense embeddings V ⊂ H and, throughout the following,
we identify the Hilbert space H with its own dual, i.e., H ≃ H∗.

The spaces H and V of L-periodic functions on the unit torus T
2 = [0, 1)2 admit Fourier

characterizations : any velocity field u(x) ∈ L2(T2)2 can be represented as

u(x) =
∑

k∈Z2

ûk exp(2πik · x) , (4)
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with convergence in L2(T2). The characterization (4) will generally yield complex-valued func-
tions, which we indicate by writing L2(T2;C). The subspace of square-integrable functions in T

2

which are real-valued is denoted by L2(T2). By Parseval’s identity, the Hilbert spaces L2(T2;C)
and L2(T2) are isomorphic to sequence spaces of Fourier coefficients; specifically, with (4) hold
isometric isomorphisms

L2(T2;C) ≃ {(ûk)k∈Z2 ∈ ℓ2(Z2)} , L2(T2) ≃ {(ûk)k∈Z2 ∈ ℓ2(Z2) : ûk = −ûk} . (5)

By L2(T2)/R, we denote the space of functions with vanishing mean over T2, ie,
´

T2 ui(x)dx = 0.
There hold isometric isomorphisms

L2(T2;C)/R ≃ {(ûk)k∈Z2 ∈ ℓ20(Z
2)} , L2(T2)/R ≃ {(ûk)k∈Z2 ∈ ℓ20(Z

2) : ûk = −ûk} , (6)

with ℓ20(Z
2) := {(ûk)k∈Z2 ∈ ℓ2(Z2) : û0 = 0}.

The spaces H and V can be characterized in terms of the sequence {uk}k∈Z ⊂ C
2 of Fourier

coefficients of its elements: specifically, there holds

H =






u =

∑

0 6=k∈Z2

ûk exp(2πik · x) : (ûk)k∈Z2 ∈ V̂0






, (7)

and
V =

{

u ∈ H : (ûk)k∈Z2 ∈ V̂1

}

. (8)

Here, for any s ∈ R, the sets V̂s are defined by

V̂s :=
{

(ûk)k∈Z2 ∈ ℓ2,s0 (Z2;C)2 : û−k = ûk, k · ûk = 0
}

(9)

where, for any finite smoothness index s ∈ R, we introduced the weighted sequence spaces

ℓ2,s(Z2) :=






(ĉk)k ∈ C

Z2

:
∑

0 6=k∈Z2

|k|2s|ĉk|2 <∞






, ℓ2,s0 (Z2) = ℓ2,s(Z2) ∩ {ĉ0 = 0} . (10)

Via the (distributional) Fourier series (4) these sequence spaces are isometrically isomorphic to

Vs :=






u =

∑

0 6=k∈Z2

ûk exp(2πik · x) : (ûk)k∈Z2 ∈ V̂s






. (11)

These spaces coincide with the spaces Hs(div0;T2) of T2-periodic, real-valued and divergence-
free distributional velocity fields u whose components u1 and u2 belong to the set of generalized
functions Hs(T2). In particular, V0 = H as in (3) and V1 = V as in (2), and for any −∞ < s1 ≤
s2 <∞, Vs1 ⊇ Vs2 with continuous embedding which is compact for any s1 < s2.

On the spaces H and V we have the (canonical) inner products

(v, w)H =

ˆ

T2

v · w dx and (v, w)V =

ˆ

T2

2∑

i=1

∂v

∂xi
· ∂w
∂xi

dx,

where x = (x1, x2) ∈ T
2, with associated norms

‖v‖H = ((v, v)H)1/2, for v ∈ H, ‖v‖V = ((v, v)V )
1/2, for v ∈ V .
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2.1.2 De Rham Complex. Hodge Decompositions

The exact sequence for T
2, with periodic boundary conditions, is

H1
per(T

2)
∇−→ Hper(curl;T

2)
rot−→ L2(T2)/R . (12)

Here, rot = ∇× and the related operator curl are defined, for φ ∈ C∞
per(T

2) and for v ∈ C∞
per(T

2)2,
as

curlφ :=

(
∂φ

∂x2
, − ∂φ

∂x1

)

, rotv :=
∂v2
∂x1

− ∂v1
∂x2

. (13)

These operators extend, in the sense of distributions (and defined in terms of their Fourier
representations), to Hs

per(T
2;R) resp. to Hs

per(T
2;R)2 for any s ∈ R. In two space dimensions,

the space H(div) is obtained from H(curl) by “component flipping”, i.e.

Hper(div;T
2) =

{

vu =

(
0 1
−1 0

)(
u1
u2

)

: u ∈ Hper(curl;T
2)

}

and (12) implies the “flipped exact sequence”

H1
per(T

2)
curl−→ Hper(div;T

2)
div−→ L2(T2)/R . (14)

In order to reformulate the NSE (1) equivalently as a scalar vorticity equation, we shall require
Hodge decompositions of vector fields. There hold the identities

rot(curlφ) = −∆φ, curl(rotv) = −∆v +∇(divv) . (15)

Divergence-free velocity fields in Vs admit representations as curls of a scalar potential, the
so-called stream function (cp. eg. [13, Thms. I.3.1, I.3.2] with obvious modifications for the
present, periodic setting).

Proposition 2.1. For every s ∈ R, the (distributional) operator curl is an isomorphism

curl ∈ Liso(H
s+1
per (T2;R);Vs) . (16)

Likewise,
rot ∈ Liso(Vs;H

s−1
per (T2;R)) , (17)

and, with (16), (17) and (15),

−∆ = rot ◦ curl ∈ Liso(H
s+1
per (T2;R);Hs−1

per (T2;R)) (18)

Proof. We prove (16). For any s ∈ R, consider ψ ∈ Hs+1
per (T2;R). Then

ψ =
∑

0 6=k∈Z2

ψ̂k exp(2πik · x), ( convergence in Hs+1
per (T2;R) ) (19)

where the Fourier coefficients ψ̂k satisfy (ψ̂k)k∈Z2 ∈ ℓ2,s+1
0 (Z2) and ψ̂−k = ψ̂k. Define v :=

curl(ψ). Then, formally,

v =
∑

0 6=k∈Z2

v̂k exp(2πik · x) , v̂k =

(
−ik2ψ̂k

+ik1ψ̂k

)

, k ∈ Z
2 .
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We verify convergence of the Fourier series (19). Evidently,

v̂−k =

(
+ik2ψ̂−k

−ik1ψ̂−k

)

=

(
−ik2
ik1

)

ψ̂k = v̂k

and

‖(v̂k)k∈Z2‖2
ℓ2,s0 (Z2)

=
∑

0 6=k∈Z2

|k|2s|v̂k|2 =
∑

0 6=k∈Z2

|k|2s(k21 + k22)|ψ̂k|2 =
∥
∥
∥(ψ̂k)k∈Z2

∥
∥
∥

2

ℓ2,s+1

0 (Z2)
.

As this implies that (19) converges in the norm of Vs, and as the mapping between (sequences
of) Fourier coefficients is bijective from Vs to Hs+1

per (T2;R), this proves (16).
The proof of (17) is analogous. Finally, (18) follows from (15), (16) and (17).

Remark 2.2. For s = 0 there holds for H = V0 in (3)

H = curlH1
per(T

2) , rotH = H−1
per(T

2) , (20)

and, for the space V = V1 in (2) there holds

V = curlH2
per(T

2) , rotV = L2
per(T

2) . (21)

2.1.3 Leray-Hopf weak solutions of the NSE

With the function spaces just defined, the weak formulation of Equation (1) reads: given T > 0,
viscosity ν > 0 and initial data u0 ∈ H and forcing f ∈ L2(J ;H), find u ∈ L∞(J ;H)∩L2(J ;V ),
such that, for all v ∈ V

d

dt
(u, v)H + ν(u, v)V + b(u, u, v) = (f, v)H . (22)

Since our formulation is divergence-free there is no pressure term entering in the weak formula-
tion. In Equation (22), the trilinear form b is defined by

b(u, v, w) =
2∑

i,j=1

ˆ

D
ui
∂vj
∂xi

wj dx .

The trilinear form b is continuous on V × V × V and

∀u, v, w ∈ V : b(u, v, v) = 0 and b(u, v, w) = −b(u,w, v) .

An equivalent formulation involves the Stokes operator

Av = −P∆v, (23)

for all v ∈ V2. Here, P denotes the Leray projection onto H in L2(D)2. The Stokes operator
A in (23) is a positive, self-adjoint operator so that its fractional powers are well-defined. We
denote the fractional powers by Aa, for a ∈ R, and by D(Aa) the domain of Aa. We have
D(A1/2) = V and, more generally, D(As/2) = Vs. Further, the trilinear form b induces, for fixed
u ∈ V , a bilinear operator B : D(A1/2)×D(A1/2) → D(A−1/2) defined by

D(A−1/2)〈B(u, v), w〉D(A1/2) = b(u, v, w),

for all u, v, w ∈ D(A1/2). After these preliminaries, we introduce the operator formulation of
the NSE (1): given 0 < T < ∞, u0 ∈ H and f ∈ L2(J ;H), in the time-interval J = [0, T ] find
u ∈ L∞(J ;H) ∩ L2(J ;V ) with u′ ∈ L1(J ;D(A−1/2)) such that

u′ + νAu+B(u, u) = f . (24)
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Definition 2.3. On a time interval J ⊂ R, a function u : J 7→ H is called a Leray–Hopf weak
solution of Equation (1) if

1. u ∈ L∞
loc(J ;H) ∩ L2

loc(J ;V ),

2. (∂tu)(·) ∈ L
4/3
loc (J ;V

′),

3. t 7→ u(t) ∈ Cloc(J ;Hw) (i.e. for every v ∈ H, t 7→ (u(t), v)H is continuous from J to R),

4. u satisfies Equation (24) in the sense of distributions on J with values in V ′,

5. for almost all t, t′ ∈ J , u satisfies the energy inequality

1

2
‖u(t)‖2H + ν

ˆ t

t′
‖u(s)‖2V ds ≤

1

2
‖u(t′)‖2H +

ˆ t

t′
(f(s), u(s))H ds. (25)

If further J = [t0, t1] is closed and left-bounded then

(vi) u(t) is strongly right-continuous in H at t0, i.e. u(t0) = limt↓t0 u(t) in H.

As is well-known, in space dimension d = 2, for any ν > 0 and for any initial data u0 ∈ H,
individual Leray–Hopf solutions u of the NSE exist and are unique. For future reference we state
the results (see, e.g., [8, Thms. II.7.3, II.7.4] and [20, Thm. 3.1] and the references there)).

Proposition 2.4. Assume
u0 ∈ H , f ∈ L2(J ;H) . (26)

Then, for ν > 0 exists a unique Leray–Hopf solution u of the NSE such that

u ∈ L2(J ;V ) ∩H1(J ;V−1) ∩ C(J ;H) .

If, moreover,
u0 ∈ V , (27)

then the unique solution u of the NSE belongs to

L2(J ;V2) ∩H1(J ;V ) ∩ C(J ;V ) .

Under (26), if, in particular, the forcing f is independent of t, there exists a continuous solution
operator Sν : H 7→ H such that u(t) = Sν(t)u0.

2.2 Statistical solutions

Contrary to the deterministic viewpoint of the Navier–Stokes equations, which associates a
unique (in dimension d = 2) weak solution u(t) to a given initial velocity u0 ∈ H, statistical
velocity solutions aim at describing the evolution of ensembles of solutions through their prob-
ability distribution. Throughout, we assume that a complete probability space, (Ω,A,P), is
given.
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2.2.1 Statistical velocity solutions

In the definition of statistical velocity solutions we assume given a probability measure on H,
which is equipped with the Borel-σ-algebra B(H). A statistical velocity solution is a (parametric
family of) probability measure(s). Specifically, we consider statistical velocity solutions in the
sense of Foiaş–Prodi: there, statistical velocity solutions of the Navier–Stokes equations are one-
parameter families of probability measures which describe the evolution of velocity ensembles
and their statistics.

The initial-boundary value problem for individual solutions in Equation (22) could be inter-
preted as a special case of a statistical solution: in this case, the measure µ0 places unit mass
at one initial velocity u0 ∈ H. In general, the initial distribution is defined on an underlying
probability space (Ω,F ,P) and is assumed to be given as an image measure under an H-valued
random variable with distribution µ0. This means that

P({u0 ∈ E}) = µ0(E) , E ∈ B(H) . (28)

Rather than following an individual Leray-Hopf solution {u(t)}t≥0, statistical velocity solutions
aim to describe velocity ensembles via a one-parameter family µν = {µνt }t≥0 of probability
measures such that µν0 = µ0 (up to null sets) for a given probability measure on all initial flow
configurations and such that

∀t > 0 : P({u(t) ∈ E}) = µνt (E) , E ∈ B(H) . (29)

This random variable is defined as a mapping from the measurable space (Ω,F) into the mea-
surable space (H,B(H)) such that µ0 = X ◦ P. As a consequence of the global uniqueness of
Leray-Hopf solutions in space dimension d = 2, there exists a unique, one-parameter family of
probability measures µν = (µνt )t∈J on the measurable space (H,B(H)) of all flow configurations.
At time t ∈ [0, T ], µt describes the statistics of the ensemble {u(t)} of “velocity snapshots” at
time t. It is, in space dimension two, and in the absence of forcing, ie., for f(t) = 0, given by
the initial measure µ0 transported under the Leray-Hopf flow Sν(t), ie.,

µνt (E) = µ0((S
ν(t))−1(E)) for all E ∈ B(H) , (30)

where {Sν(t)}t≥0 denotes the Leray-Hopf solution flow of the NSE in space dimension d = 2
in Proposition 2.4. We shall refer to the above family in what follows as statistical velocity
solutions. We will use the following existence result (see [7, Thm. 1 and Prop.1]).

Theorem 2.5. Let µ0 be a Borel probability measure on H with finite mean kinetic energy, ie.,
ˆ

H
‖v‖2H dµ0(v) < +∞ .

Let, moreover, f ∈ L2(J ;H) be a forcing term on the time interval J = (0, T ) for some 0 <
T < ∞. Then, for every ν > 0 and for the periodic boundary conditions (with the spaces
as in Equation (3), Equation (2)), there exists a unique statistical solution (µνt , t ∈ J) of the
Navier–Stokes equations (1) on H in the sense of (30).

If, moreover, µ0 is supported in BH(R) for some 0 < R <∞, and if the forcing term f ∈ H
is time-independent, the statistical solution µν = (µνt )t∈J is unique and explicitly given by (30)
i.e. by µ0 transported under the LH flow (Sν(t), t ∈ J) of Equation (22).

The proof of the existence (and uniqueness in dimension d = 2) result Theorem 2.5 can be
found in [8, Thm. V.1.4] for the presently considered periodic boundary conditions in T

2, in the
spaces Vs of divergence-free velocity fields with vanishing average over T

2.
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2.2.2 Vorticity Reformulation of the NSE, Eqn. (1)

In two space dimensions, it is convenient to consider the vorticity formulation of the NSE (1);
to present the reformulation, we assume for convenience that

f ≡ 0 . (31)

The passage between (divergence-free) velocity fields u(t) in the (periodic) function spaces
V resp. in H defined in (2) and (3), respectively, and a (in the presently considered, two-
dimensional case) scalar vorticity function is facilitated by the following results.

By Proposition 2.1, for any s ∈ R we may associate with velocity fields u(t) ∈ Vs unique,
scalar in space dimension d = 2, vorticities η(t) ∈ Hs−1

per (T2) via

η(t) = rotu(t) = ∂2u1(t)− ∂1u2(t) , (32)

and a stream function ψ(t) ∈ Hs+1
per (T2) which is scalar, in space dimension d = 2, via

u(t) = curlψ(t) = (∂2ψ(t),−∂1ψ(t)) = curl ◦ (−∆)−1η(t) ∈ Vs . (33)

The relation u(t) = curl ◦ (−∆)−1η(t) constitutes the Biot-Savart Law.

Proposition 2.6. For any initial velocity u0 ∈ V ⊂ H in the space-periodic case the vorticity η
and the stream function ψ satisfy the a-priori estimates

‖η‖2L2(J ;H1
per(T

2;R)) ≤
1

ν
|u(0)|2H1 +

T

ν2
‖f‖2L∞(J ;H) =

1

ν
‖η0‖2L2(T2) +

T

ν2
‖f‖2L∞(J ;H)

and

sup
0≤t≤T

‖η(t)‖2L2(T2) ≤ |u0|2H1 +
1

ν
‖f(t)‖2H = ‖η0‖2L2(T2) +

1

ν
‖f(t)‖2H .

Proof. The proposition is a straightforward consequence of [8, Eqn. (II.A.65-67)]:

‖η‖2L2
tH

1
x
≤ ‖Au‖2L2

tL
2
x

A.67
≤ 1

ν
|u(0)|2H1 +

1

ν2
‖f‖2L∞

t H |J | = 1

ν
‖η(0)‖2L2

x
+

1

ν2
‖f‖2L∞

t H |J |

resp.

‖η‖2L∞

t L2
x
= |u|2L∞

t H1
x

A.66
≤ |u(0)|2H1 C(t, ν,T

2) +
1

ν2λ1
‖f‖2L∞

t H (1− C(t, ν,T2))

= ‖η(0)‖2L2
x
+

1

ν2λ1
‖f‖2L∞

t H (1− C(t, ν,T2))

The constant 0 < C(t, ν,T2) := e−νλ1|J | < 1. In absence of forcing (f ≡ 0), the second reduces
to an enstrophy stability statement.

Likewise, by referring again to Proposition 2.1, for f ≡ 0, the vorticity η(t) = rotu(t) satisfies
formally in J × T

2 the viscous vorticity equation:
For s ≥ 0, given ν > 0, find η ∈ Xs := L2(J ;Hs+1

per (T2)) ∩H1(J ;Hs−1
per (T2)) such that

∂tη + u · ∇η = ν∆η, in L2(J ;Hs−1
per (T2)) , (34a)

−∆ψ = η in L2(J ;Hs+1
per (T2)) , (34b)

η|t=0 = η0 in Hs
per(T

2) . (34c)

By (18), H−1
per(T

2) = ∆(H1
per(T

2)).
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2.2.3 Statistical Vorticity Solutions

In the context of statistical solutions, we assume in the following at least finite variance enstro-
phy, ie.

η0 ∈ L2(Ω;L2(T2)) . (35)

Based on the isomorphism (20), the initial condition (35) is equivalent to the NSE (1) with a
random initial velocity u0 ∈ L2(Ω;V ) with law µ0 = u0 ◦ P on H. Under stronger regularity
assumptions than (35) equivalence of equations (1) and (34) holds.

Proposition 2.7. For ν > 0, the NSE (1) with initial data u0 ∈ V1+s = H1+s
per (div0;T2) for

some s > 0 is equivalent to the problem (34a) - (34c) with initial vorticity η0 ∈ Hs
per(T

2) with
the same s.

Proof. We verify that (34) is meaningful in the ‘usual’, parabolic Bochner spaces. To this end,
observe that for any s ≥ 0, we have the continuous embeddings

Xs = L2(J ;Hs+1
per (T2)) ∩H1(J ;Hs−1

per (T2)) ⊂ C0(J ;Hs
per(T

2)) ⊂ L2(J ;Hs
per(T

2)) , (36)

Therefore, the initial condition (34c) is meaningful in Hs
per(T

2).
Consider the multiplication u · ∇η in (34a). By (33) and (34b), we have

u = curlψ = curl ◦ (−∆)−1η = rot−1η . (37)

From the mapping properties (33) and (34b) of the operators curl and −∆, we also obtain

u ∈
(
curl ◦ (−∆)−1

)
Xs = L2(J ;Vs+2) ∩H1(J ;Vs) ⊂ C0(J ;Vs+1) ⊂ L2(J ;Vs+1) , s ≥ 0 .

In T
2, we have for s > 0 from the Sobolev embedding

Vs+1 = Hs+1
per (div0;T2) ⊂ Hs+1

per (T2)2 ⊂ Cs′

per(T
2)2

for any 0 ≤ s′ < s. We may therefore estimate

‖u · ∇η‖L2(J ;L2
per(T

2)) ≤ C‖u‖C0(J ;Cs′
per(T

2)‖η‖L2(J ;H1
per(T

2))

= C‖curl ◦ (−∆)−1η‖C0(J ;Cs′
per(T

2))‖η‖L2(J ;H1
per(T

2))

≤ C‖(−∆)−1η‖
C0(J ;Cs′+1

per (T2))
‖η‖L2(J ;H1

per(T
2)) .

This shows that for s > 0, the product in (34a) is defined as pointwise product, for a.e. (t, x) ∈
J × T

2. The uniqueness of the Leray-Hopf solutions {u(t)}t∈J to (1) and the isomorphism
in Proposition 2.1, imply that the corresponding vorticities {η(t)}t∈J given by (32) are weak
solutions of the parabolic evolution equation (34a) in Xs.

The uniqueness of the Leray solution {u(t)}t∈J and the isomorphism properties of the map
rot in Proposition 2.1 imply that the solution family {η(t)}t∈J is unique in Xs.

For ν > 0, we use the isomorphism (20) and (34) to “transport” statistical velocity solutions
{µνt }t≥0 on ensembles Vs ⊂ H of initial velocity fields to statistical vorticity solutions {πνt }t≥0.
We start by considering initial data. For any initial velocity ensemble of finite kinetic energy, ie.,
for u0 ∈ L2(Ω;H) with respect to a probability measure µ0 = P#u0

on (H,B(H)), and for ν > 0,
the isomorphism property rot ∈ Liso(H,H

−1
per(T

2)) in (17) yields an initial vorticity ensemble

η0 = rotu0 ∈ L2(Ω;H−1
per(T

2))

with respect to the transported initial measure π0 = P#rotu0
. By Proposition 2.1, for any

s ≥ −1, also u0 ∈ L2(Ω;V1+s) ⊂ L2(Ω;H) with law µ0 on H is in 1-to-1 correspondence to
η0 ∈ L2(Ω;Hs

per(T
2;R)) with law π0 on H−1

per(T
2) via the isometry map rot.
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Proposition 2.8. For ν > 0 and for any s > 0, for any initial probability measure π0 with
finite second moments on Hs

per(T
2) ⊂ L2(T2), there exists a unique vorticity statistical solution

{πνt }t∈J such that

∀t ∈ J ∀F ∈ B(Hs
per(T

2)) : πνt (F ) = π0((T
ν)−1(F )) (38)

where T ν denotes the “vorticity flow” from Hs
per(T

2) to Xs in (36), given by η(t) = T ν(t)η0.

Proof. By Proposition 2.4, for s > 0 and for u0 ∈ V1+s ⊂ H and for ν > 0, there exists a
unique individual Leray solution {u(t)}t∈J of (1). By Proposition 2.7, for s > 0 the family
of corresponding individual vorticities given by η(t) = rotu(t) satisfies (η(t))t∈J ⊂ Xs and
the individual vorticities are the unique, weak solutions of the vorticity equation (34). By the
uniqueness of the Leray-Hopf velocity solutions in space dimension 2 and by the isomorphism
property Sν , the vorcity solutions are unique.

The Leray flow u(t) = Sν(t)u0 induces a corresponding vorticity flow (T ν(t))t∈J from
Hs

per(T
2) to Xs in (36) via

η(t) = rotu(t) = rot ◦ Sν(t)u0 = (rot ◦ Sν(t) ◦ rot−1)η0 =: T ν(t)η0 . (39)

We use the isomorphism properties of curl and of rot in Proposition 2.1 to “transport” the unique
statistical velocity solution (µνt )t∈J to the vorticity formulation (34) by the correspondence (37).
Since rot ∈ Liso(V1+s, H

s
per(T

2)), to each F ∈ B(Hs
per(T

2)) corresponds a unique E = rot−1(F ) ∈
B(V1+s). We define the one-parameter of probability measures (πνt )t∈J by

∀F ∈ B(Hs
per(T

2)) : πνt (F ) := µνt (rot
−1(F )) .

Then
∀F ∈ B(Hs

per(T
2)) : πνt (F ) = π0((T

ν(t))−1(F )) . (40)

To see this, we calculate with (39) for every F ∈ B(Hs
per(T

2)) such that F = rotE for E ∈
B(V1+s) that

πνt (F ) = µνt (rot
−1(F ))

= µ0((S
ν(t))−1 ◦ rot−1(F ))

= π0((rot ◦ Sν(t) ◦ rot−1)−1(F ))
= π0((T

ν(t))−1(F )) .

Therefore (πνt )t∈J is the family of images of the statistical velocity solution (µνt )t∈J under the
isometry rot in (33) and therefore the unique vorticity statistical solution.

3 A convergent finite difference scheme for the Navier-Stokes
equations

Our main aim in this paper is to design an efficient numerical scheme to approximate the
statistical vorticity solutions of the two-dimensional incompressible Navier-Stokes equations,
defined in the previous section. As mentioned in the introduction, we will employ statistical
sampling procedures such as Monte Carlo (MC) and Multi-level Monte Carlo (MLMC) in this
endeavor. These schemes utilize independent identically distributed samples on the underlying
space of initial data and weak solutions. Hence, we need an efficient discretization procedure for
the deterministic two-dimensional Navier-Stokes equations. Moreover, a rigorous error estimate
for such a scheme is also necessary in order to define the MLMC method.

A variety of efficient numerical methods have been designed to approximate the incompress-
ible Navier-Stokes equations. These include finite element methods ([13] and references therein).
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However, it is often problematic to approximate very high Reynolds number flows with finite
element methods. Spectral (viscosity) methods ([6] and references therein) are an attractive al-
ternative, particularly for periodic problems. Another class of methods are the so-called vortex
methods ([18] and references therein), which are better suited for the zero viscosity limit i.e, the
incompressible Euler equations.

A different class of numerical methods fall under the rubric of finite difference (finite volume)
methods and include the well-known finite difference-Leray projection methods [16, 5]. More
efficient variants are proposed in [4, 1]. These methods discretize the velocity-pressure form of
the Navier-Stokes equations (1).

In this paper, we consider the statistical vorticity solutions of the Navier-Stokes equations.
Therefore, we need a discretization of the vorticity-stream function form of these equations (34).
Although many different finite difference discretizations of these methods have been proposed
(see [17] and references therein), we were unable to find a finite difference discretization of the
two-dimensional Navier-Stokes equations in the vorticity-stream function formulation, for which
convergence with convergence rate bounds has been shown. Hence, we propose a novel finite
difference discretization of the two-dimensional Navier-Stokes equations and prove a rigorous
error estimate for it, in this section. Our scheme will be a variant of the finite difference
projection method from [17].

3.1 Discrete derivatives and Preliminaries

We discretize the torus T
2 := R

2/Z2 (which we identify with [0, 1)2) with a Cartesian mesh
Z/NxZ × Z/NyZ := Mx ×My

∼= M ∋ Ci,j , i = 0, . . . , Nx, j = 0, · · · , Ny (with Nx, Ny ∈ N ) of
mesh sizes, ∆x resp. ∆y. Define I := (Nx + 1) × (Ny + 1). We fix a finite time T > 0 and
consider the time interval [0, T ], discretized with t0, · · · , tN steps of difference ∆t. The time step
∆t is chosen such that O(∆t) = O(∆x) = O(∆y) =: O(h). Hence, the discrete set of points
are denoted as {xi, yj}. We denote Ci,j := [xi−1/2, xi+1/2) × [yj−1/2, yi+1/2) as a Cell with cell
center at (xi, yj)

As we are interested in designing a finite difference (volume) scheme, we define the fol-
lowing standard discrete derivatives (finite difference operators) for a generic (scalar or vector,
depending on context) grid function wi,j ≈ w(xi, yj),

Dx
+wi,j =

wi+1,j − wi,j

∆x
, Dx

−wi,j =
wi,j − wi−1,j

∆x
(41)

Dy
+wi,j =

wi,j+1 − wi,j

∆y
, Dy

−wi,j =
wi,j − wi,j−1

∆y
(42)

gradh± =
(
Dx

±, D
y
±

)
, curlh± =

(
Dy

±,−Dx
±

)
(43)

∆hwi,j =
(
Dx

+D
x
− +Dy

+D
y
−

)
wi,j . (44)

Similarly for a vector grid function w =
(
w1, w2

)
, we denote the following discrete derivatives,

roth±wi,j = Dx
±w

2
i,j −Dy

±w
1
i,j , divh±wi,j = Dx

±w
1
i,j +Dy

±w
2
i,j . (45)

We are interested in approximating the following discrete versions of the vorticity, stream func-
tion and velocity fields,

η
(n)
i,j ≈ η(xi, yj , t

n), ψ
(n)
i,j ≈ ψ(xi, yj , t

n), (46)

(u1)
(n)
i,j+1/2 ≈ (u1)(xi, yj+1/2, t

n), (u2)
(n)
i+1/2,j ≈ (u2)(xi+1/2, yj , t

n). (47)

Hence, we collocate the discrete vorticity and stream function at the cell centers of the cell
Ci,j . On the other hand, the velocities are collocated on the mid-points of the tangential edges.
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However, it is more reasonable to collocate the velocities on the midpoints of the normal edges.
We do so by the following velocity repositioning,

Proposition 3.1. Assume we have a velocity field, as defined in (46) that satisfies the discrete
divergence relation,

(u1)i+1,j+1/2 − (u1)i,j+1/2

∆x
+

(u2)i+1/2,j+1 − (u2)i+1/2,j

∆y
= 0.

We define velocity components repositioned on the orthogonal edge:

(ũ1)i+1/2,j :=
(u1)i,j+1/2 + (u1)i+1,j+1/2 + (u1)i,j−1/2 + (u1)i+1,j−1/2

4
(48)

˜(u2)i,j+1/2 :=
(u2)i+1/2,j+1 + (u2)i+1/2,j + (u2)i−1/2,j+1 + (u2)i−1/2,j

4
. (49)

Then one has

(ũ1)i+1/2,j − (ũ1)i−1/2,j

∆x
+

(ũ2)i,j+1/2 − (ũ2)i,j−1/2

∆y
= 0. (50)

Proof. The proof is a consequence of the following straightforward calculation,

(ũ1)i+1/2,j − (ũ1)i−1/2,j

∆x
+

(ũ2)i,j+1/2 − (ũ2)i,j−1/2

∆y

=
(u1)i,j+1/2 + (u1)i+1,j+1/2 + (u1)i,j−1/2 + (u1)i+1,j−1/2

4∆x

−
(u1)i−1,j+1/2 + (u1)i,j+1/2 + (u1)i−1,j−1/2 + (u1)i,j−1/2

4∆x

+
(u2)i+1/2,j+1 + (u2)i+1/2,j + (u2)i−1/2,j+1 + (u2)i−1/2,j

4∆y

−
(u2)i+1/2,j + (u2)i+1/2,j−1 + (u2)i−1/2,j + (u2)i−1/2,j−1

4∆y
= 0 .

3.2 Discrete Poincaré inequalities

We will present a scheme for approximating the Navier-Stokes equations and prove an error
estimate. Hence, we need suitable discrete norms. To this end, we define for the generic discrete
spatial grid vector w = {wi,j},

‖w‖p :=




∑

(i,j)∈M

|w(n)
i,j |p∆x∆y





1/p

(51)

(the usual discrete Lp norm in space) and for the generic discrete space-time grid vector w =

{w(n)
i,j }

‖w‖p,q :=






N∑

n=0




∑

(i,j)∈M

|x(n)i,j |p∆x∆y





q/p

∆t






1/q

(52)

the integration in space-time (with standard extensions to the ∞ norm).
Furthermore, we need suitable discrete version of the Poincaré inequality.
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Theorem 3.2 (Discrete Poincaré inequality for periodic settings). Let the discrete vorticity
and stream function be as defined in (46) and the finite difference operators defined in (41),
(45). Then, there exists constants CP1

, CP2
, CP3

> 0 depending only on the domain (here, the
domain is assumed to be [0, 1)2, so that the constants can be given explicitly in terms of smallest
eigenvalue of Sturm-Liouville eigenvalue problem) and independent of the mesh, such that:

CP1
‖curlh+ψ‖2 = CP1

‖gradh+ψ‖2 ≥ ‖ψ‖2, (53)

η = −∆hψ ⇒ ‖curlh+ψ‖2 = ‖gradh+ψ‖2 ≤ CP2
‖η‖2, (54)

η = −∆hψ ⇒ ‖ψ‖2 ≤ CP3
‖η‖2. (55)

and

‖ũ‖2 = ‖u‖2 = ‖curlh+ψ‖2 ≤ CP2
‖η‖2.

The proof is analogous to the one in [15, Lemma 2.19 (pp. 120)].

Proof. Let ψh be a piecewise constant function on a uniform partition of T
2 into congruent,

axiparallel squares with edgelength h, with vanishing average over T
2. Then ψh ∈ L2(T2)/R.

First notice the following:

‖gradh+ψh‖22 = |〈gradh+ψh, gradh+ψ
h〉| = |〈∆hψh, ψh〉| ≤ ‖∆hψh‖2‖ψh‖2 = ‖η‖2‖ψh‖2

On the torus T
2 there exists a mesh-independent constant CP1

> 0, such that

CP1
‖gradh+ψh‖2 ≥ ‖ψh‖2

The eigenvalues of the discrete negative Laplacian (−∆h) are:

λNh
n1,n2

= 5

(

N2
h sin

2

(
πn1
2Nh

)

+N2
h sin

2

(
πn2
2Nh

))

Hence the smallest, non-trivial, one is λNh
1,1 :

‖gradh+ψ‖22 = −〈∆hψh, ψh〉 ≥ +λn−1〈ψh, ψh〉 = +λNh
1,1‖ψ‖22 .

With

C2
P1

:= lim
h→0

((λNh
1,1)

−1 + o(1)) =
1

2π2
,

we obtain for any ψh as above,

C2
P1
‖ψh‖2‖η‖2 ≥ C2

P1
‖gradh+ψh‖22 ≥ ‖ψh‖22

and, simplifying, one gets the estimate:

C2
P1
‖η‖2 ≥ ‖ψh‖2 .

Moreover one has

C2
P1
‖η‖22 ≥ ‖ψh‖2‖η‖2 ≥ ‖gradh+ψh‖22 .

This concludes the proof of the first bound. The proof of the last inequality in the statement
follows from a straightforward adaptation of the above proof.

15



3.3 The finite difference scheme

Armed with the above preliminaries, we will now describe a finite difference scheme to approx-
imate the vorticity-stream function form of the two-dimensional Navier-Stokes equations, (34).
We start with the following discretization of the vorticity evolution equation,

η
(n+1)
i,j − η

(n)
i,j

∆t
+
F

n+1/2
i+1/2,j − F

n+1/2
i−1/2,j

∆x
+
G

n+1/2
i,j+1/2 −G

n+1/2
i,j−1/2

∆y
= (ν + ǫh)

(

∆hη(n+1/2)
)

i,j
. (56)

Here, the diffusion is a sum of the physical diffusion ν and some numerical diffusion ǫh which
acts on the vorticity at the time average,

η(n+1/2) :=
η(n+1) + η(n)

2
. (57)

The numerical fluxes F,G are defined as,

Fi+1/2,j(ũ
(n), η(n+1/2)) := (ũ1)

(n)
i+1/2,j(η

(n+1/2)
i+1,j + η

(n+1/2)
i,j ), (58)

Gi,j+1/2(ṽ
(n), η(n+1/2)) := (ũ2)

(n)
i,j+1/2(η

(n+1/2)
i,j+1 + η

(n+1/2)
i,j ), (59)

with the averaged velocities ũ, ṽ being defined as in (48).
Moreover, the averaged velocities defined in (48) require the specification of velocities un1 , v

n
1

at the normal edges. We define them as follows,

(u1
(n), u2

(n)) =: u(n) = curlh+ψ
(n) := (Dy

+ψ
(n),−Dx

+ψ
(n))⊤ . (60)

The discrete stream function satisfies the elliptic finite difference equation

−(∆hψ(n))i,j = η
(n)
i,j , periodic B.C.s . (61)

In the periodic setting, the matrix is rank deficient (due to the discrete solutions only being
unique up to constants). To ensure uniqueness of discrete solutions, the additional condition
∑

(i,j)∈M ψi,j = 0 has to be imposed (iterative solvers are able to efficiently take care of this).
From now on, we will factor the stream functions, solutions of the discrete Laplace operator, by
the equivalence relation ψ1 ≡ ψ2 :⇔ ∃c ∈ R

n ui,j+c = vi,j , and consider the quotient space with
the induced norm. Notice that ker∆h = span{1} and we are exclusively interested in derivatives
of ψ. Therefore, the velocity at tangential edges as in (60) is well defined.

We use cell averages of the initial data,

η0i,j =
1

∆x∆y

ˆ

Ci,j

η0(x)dx. (62)

This completes the specification of the scheme.

3.4 Consistency and stability of the scheme

We claim that the above scheme is a consistent discretization of the incompressible Navier-Stokes
equations in the velocity-stream function formulation (34). To show this, we will assert a few
properties of the scheme below.

First, we check that the approximated velocity field satisfies a discrete divergence condition.
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Proposition 3.3. Let the discrete velocity be defined as in (60). Then the following discrete
divergence relation holds:

(u1)i+1,j+1/2 − (u1)i,j+1/2

∆x
+

(u2)i+1/2,j+1 − (u2)i+1/2,j

∆y
= 0. (63)

Moreover, the discrete velocity and the discrete vorticity satisfy the relation (compare (13))

−
(u1)i,j+1/2 − (u1)i,j−1/2

∆y
+

(u2)i+1/2,j − (u2)i−1/2,j

∆x
= ηi,j . (64)

Note that we have suppressed time dependence in the above formulas for the sake of notational
brevity.

Proof. By definition, we have

(u1)i+1,j+1/2 − (u1)i,j+1/2

∆x
+

(u2)i+1/2,j+1 − (u2)i+1/2,j

∆y

=
ψi+1,j+1 − ψi+1,j − ψi,j+1 + ψi,j

∆x∆y
+

−(ψi+1,j+1 − ψi,j+1) + (ψi+1,j − ψi,j)

∆x∆y

= 0 .

Moreover (cp. (34b))

−
(u1)i,j+1/2 − (u1)i,j−1/2

∆y
+

(u2)i+1/2,j − (u2)i−1/2,j

∆x

= − ψi,j+1 − ψi,j − ψi,j + ψi,j−1

∆y2
− ψi+1,j − ψi,j − ψi,j + ψi−1,j

∆x2

= − ψi,j+1 − 2ψi,j + ψi,j−1

∆y2
− ψi+1,j − 2ψi,j + ψi−1,j

∆x2
= −(∆hψ)i,j = ηi,j .

We observe that the scheme (56) is in conservative form whereas the vorticity transport
equation (34a) is in the convective form. For the continuous problem, the divergence free condi-
tion automatically implies an equivalence between these two forms. A similar equivalence also
holds in the discrete case as asserted below,

Proposition 3.4. For any discrete ũ such that divh+ũ = σ, we have the following conserva-
tive/convective equivalence:

Fi+1/2,j − Fi−1/2,j

∆x
+
Gi,j+1/2 −Gi,j−1/2

∆y
(65)

= (ũ1)i+1/2,j
ηi+1,j − ηi,j

2∆x
+ (ũ1)i−1/2,j

ηi,j − ηi−1,j

2∆y

+ (ũ2)i,j+1/2
ηi,j+1 − ηi,j

2∆x
+ (ũ2)i,j−1/2

ηi,j − ηi,j−1

2∆y

+ ηi,jσ.

For σ = 0 we obtain complete equivalence.
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Proof. We just add and subtract the same quantity:

Fi+1/2,j − Fi−1/2,j

∆x
+
Gi,j+1/2 −Gi,j−1/2

∆y

=
(ũ1)i+1/2,j(ηi+1,j + ηi,j)− (ũ1)i−1/2,j(ηi,j + ηi−1,j)

2∆x

+
(ũ2)i,j+1/2(ηi,j+1 + ηi,j)− (ũ2)i,j−1/2(ηi,j + ηi,j−1)

2∆y

= (ũ1)i+1/2,j
ηi+1,j − ηi,j

2∆x
+ (ũ1)i−1/2,j

ηi,j − ηi−1,j

2∆y

+ (ũ2)i,j+1/2
ηi,j+1 − ηi,j

2∆x
+ (ũ2)i,j−1/2

ηi,j − ηi,j−1

2∆y

+ ηi,j

(
(ũ1)i+1/2,j − (ũ1)i−1/2,j

∆x
+

(ũ2)i,j+1/2 − (ũ2)i,j−1/2

∆y

)

= (ũ1)i+1/2,j
ηi+1,j − ηi,j

2∆x
+ (ũ1)i−1/2,j

ηi,j − ηi−1,j

2∆y

+ (ũ2)i,j+1/2
ηi,j+1 − ηi,j

2∆x
+ (ũ2)i,j−1/2

ηi,j − ηi,j−1

2∆y

+ ηi,jσ,

which is precisely (65).

Note that following proposition 3.1 and the definition of our averaged velocity field, (48),
the divergence error σ = 0 for our discrete averaged velocity field. Hence, the conservative form
of our scheme in (56) is equivalent to the convective form and is consistent with (34a).

The natural form of stability for the vorticity-stream function formulation of incompressible
Navier-Stokes is enstrophy (L2) stability. We show that our scheme possesses a discrete version
of this stability. The discrete analogue of enstrophy is defined by

En :=
1

2
∆x∆y

∑

i,j

(

η
(n)
i,j

)2
. (66)

We have the following estimate on the discrete enstrophy,

Lemma 3.5. For the scheme defined in (56), the discrete enstrophy decreases in time i.e,

En+1 ≤ En, ∀n . (67)

Proof. For simplicity of exposition, we set ∆x = ∆y = h. The proof of (67) lies in multiplying

η
(n+1/2)
i,j to both sides of (56) and is a straightforward consequence of the following observations,

i. For the time derivative in (56), we calculate that

∑

(i,j)∈M

(η(n+1) − η(n))η(n+1/2)∆x∆y = En+1 − En.

ii. We note that the fluxes are also evaluated at the time index n + 1/2. The calculation of
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the flux terms (suppressing the time dependence) is as follows,

2
∑

i,j

Fi+1/2,jηi,j =
∑

i,j

Fi+1/2,j(ηi+1,j + ηi,j)−
∑

i,j

Fi+1/2,j(ηi+1,j − ηi,j)

=
∑

i,j

(ũ1)i+1/2,j(ηi+1,j + ηi,j)
2 −

∑

i,j

(ũ1)i+1/2,j(η
2
i+1,j − η2i,j),

2
∑

i,j

Fi−1/2,jηi,j =
∑

i,j

Fi−1/2,j(ηi,j + ηi−1,j) +
∑

i,j

Fi−1/2,j(ηi,j − ηi−1,j)

=
∑

i,j

(ũ1)i−1/2,j(ηi,j + ηi−1,j)
2 +

∑

i,j

(ũ1)i−1/2,j(η
2
i,j − η2i−1,j).

Most of the above terms are telescopic sums that vanish on account of the periodic bound-
ary conditions. The remaining terms are of the form,

2
∑

i,j

(ũ1)i+1/2,j(η
2
i+1,j − η2i,j) =

∑

i,j

((ũ1)i+3/2,j + (ũ1)i+1/2,j)η
2
i+1,j

−
∑

i,j

((ũ1)i+3/2,j − (ũ1)i+1/2,j)η
2
i+1,j

=
∑

i,j

((ũ1)i+1/2,j + (ũ1)i−1/2,j)η
2
i,j

−
∑

i,j

((ũ1)i+1/2,j − (ũ1)i−1/2,j)η
2
i,j .

Again, some terms vanish due to the telescopic sum. The remaining terms equal

2
∑

i,j

((ũ1)i+1/2,j − (ũ1)i−1/2,j)η
2
i,j .

This, together with the term resulting from analogous manipulation of the flux G and from
the discrete divergence relation result in

∑

(i,j)∈M

Fi+1/2,j − Fi−1/2,j

∆x
ηi,j∆x∆y +

Gi,j+1/2 −Gi,j−1/2

∆y
ηi,j∆x∆y = 0. (68)

iii. For the diffusion term in (56), we denote ν ′ := ν + ǫh and observe that,

ν ′
(

∆hη(n+1/2)
)

η(n+1/2) = −(Dh
+η

(n+1/2), Dh
+η

(n+1/2))⊤ (69)

= −‖gradh+η(n+1/2)‖22 ≤ 0 . (70)

Hence, the viscous term has a negative contribution to the discrete enstrophy balance.

Combining the above observations yields the discrete enstrophy stability (67).

Remark 3.6. The fact that the discrete enstrophy is non-increasing in time implies that the
approximate solution ηh is bounded in l2, i.e, ‖ηh‖2,∞ is bounded, thus proving that the approx-
imation scheme is stable in this sense.
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3.5 Error estimate for the vorticity

The next step in the numerical analysis of the proposed finite difference scheme is to prove an
error estimate for it. To this end, we will combine energy stability with consistency of the scheme
by calculating the truncation error. To do so, we assume that a (smooth enough) solution η exists
for the incompressible Navier-Stokes equations in the vorticity-stream function formulation (34).
We denote the discrete point values as,

η
(n)
i,j := η(xi, yj , t

n).

These discrete values satisfy the following discrete relation,

η̄
(n+1)
i,j − η̄

(n)
i,j

∆t
+
F̄

n+1/2
i+1/2,j − F̄

n+1/2
i−1/2,j

∆x
+
Ḡ

n+1/2
i,j+1/2 − Ḡ

n+1/2
i,j−1/2

∆y
= (ν + ǫh)

(

∆hη̄n+1/2
)

i,j
+ τ1 (71)

and the incompressibility condition

divh+ ˜̄u = τ2, (72)

where ū denotes the exact velocity relative to the vorticity η̄. In the above expressions, the fluxes
are evaluated in terms of the discrete values of the velocity field and τ1, τ2 are the truncation
errors for the vorticity transport and the incompressibility conditions, respectively.

We list a few bounds on the discrete exact solution η̄ and the truncation errors τ1,2 that are
useful in our subsequent analysis.

Theorem 3.7. Let the initial vorticity η0 ∈ H3
per, then the discrete exact solution satisfies,

‖η̄‖∞,1 < C1(η0, T,T
2), ‖η̄‖∞,∞ < C1(η0, T,T

2). (73)

and,

‖∇η̄‖∞,1 < C2(T,T
2), ‖∇η̄‖∞,∞ < C2(T,T

2) . (74)

Furthermore, the truncation errors satisfy,

‖τ1‖2,2 = C3(T,T
2, ‖η‖Z)h, ‖τ2‖2,∞ = C4(T,T

2, ‖η‖Z)h .
Proof. Given the initial data in the above function space, the exact solution of the vorticity
transport equation (34) satisfies (cf. [18, pag. 118]),

‖η‖Hm ≤ exp(exp(Cmt)− 1) ‖η0‖exp(Cmt)
Hm , ∀m ≥ 0 , (75)

in particular η ∈ Z := L2([0, T ], H3
per(T

2)) ∩ L∞([0, T ], H2+ε
per (T2)). Hence, the bounds on the

discrete exact solution are a straightforward consequence of Sobolev embeddings.
To prove the bounds on the truncation error, we notice that

τ1 =
η
(n+1)
i,j − η

(n)
i,j

∆t
− ηt

︸ ︷︷ ︸

ϕ1:=

+
F

n+1/2
i+1/2,j − F

n+1/2
i−1/2,j

∆x
+
G

n+1/2
i,j+1/2 −G

n+1/2
i,j−1/2

∆y
− u · ∇η

︸ ︷︷ ︸

ϕ2:=

− (ν + ǫh)
(

∆hη(n+1/2)
)

i,j
− ν∆η

︸ ︷︷ ︸

ϕ3:=

+ ǫh
(

∆hη(n+1/2)
)

i,j
︸ ︷︷ ︸

ϕ4:=

=: ϕ1 + ϕ2 + ϕ3 + ϕ4
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As in [15], we average the truncation error over a cell and then take the discrete L2-norm.
Upon summation over indices n and integration over t, the term arising from ϕ1 becomes zero.

For ϕ3 one applies the same ideas of ∇η estimates, requiring only first order (instead of
second order, which with sufficient regularity of the data is possible). Here, we split ϕ3 in its
two time components (being a time average and everything being linear, upon integration the
terms can be absorbed together). The viscosity term is bounded:

‖ϕ3‖2 ≤ Ch ‖η‖L2([0,T ],H3(T2)) .

Notice that there is a small error term due to ǫh term, one has to also estimate:

‖ϕ4‖2 ≤ Cǫh
∥
∥
∥∆hη

∥
∥
∥
2
≤ Chǫ ‖η‖L2([0,T ],H2(T2)) .

For the nonlinear term ϕ2, let us split the term in the following way:

ϕ2 = ũn(gradh+ −∇)η̄n+1/2 + (ũn − un+1/2)∇η̄n+1/2 + τ2η̄
n+1/2 .

Hence, if we take the norm:

‖ϕ2‖2 ≤ ‖ũn‖∞
∥
∥
∥(gradh+ −∇)η̄

∥
∥
∥
2
+
∥
∥
∥ũn − un+1/2

∥
∥
∥
2
‖∇η̄‖∞ + ‖τ2η̄‖2

≤ Ch ‖˜̄u‖∞ ‖η̄‖L2([0,T ],H2(T2)) + Ch(‖u‖L2([0,T ],H2(T2))

+ ‖u‖H1([0,T ],L2(T2))) ‖∇η̄‖∞ + ‖τ2‖2 ‖η̄‖∞
≤ Ch ‖ū‖∞ ‖η̄‖L2([0,T ],H2(T2)) + Ch(‖η̄‖L2([0,T ],H1(T2))

+ ‖η̄‖H1([0,T ],L2(T2))) ‖∇η̄‖∞ + Ch ‖η̄‖L∞([0,T ],H1(T2)) ‖η̄‖∞ .

Here we bound the ‖ū‖∞ and ‖∇η̄‖∞ estimates in L∞([0, T ], H2+ε(T2)). We also have the
divergence constraint truncation error:

τ2 = divh+u− divu

for which, analogously, we have:

‖τ2‖2,∞ ≤ Ch ‖ū‖L∞([0,T ],H2(T2)) ≤ Ch ‖η̄‖L∞([0,T ],H1(T2)) .

Combining all estimates implies the asserted error bounds.

Next, we assert the main error estimate for our numerical approximation.

Theorem 3.8. We assume that the initial vorticity η0 ∈ H3
per and η

(n)
i,j be the point value at

(xi, yj , t
n) of the exact vorticity which solves the vorticity transport equation (34a). Let η

(n)
i,j be

the discrete vorticity, evolved by the numerical scheme (56). We denote the discrete error as

e
n := {eni,j}n,i,j , e

n
i,j := η

(n)
i,j − η

(n)
i,j .

Then, the discrete error is bounded as,

‖e(N)‖2 ≤ K3(η0, T,T
2)(1 +K4(T, ν,T

2)eK4(η0,T,ν,T2))h, (76)

with h = ∆x = ∆y ≃ ∆t and with constants K3 and K4 depending only on the exact solution,
the domain, the time interval and viscosity (for K4). Sufficiently large viscosity allows to bound
K4 by 1.
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Proof. We subtract the equations (71) and (56) and multiply this difference by the error e(n+1/2),
to obtain

e
(n+1) − e

(n)

∆t

e
(n+1) + e

(n)

2
+ F(u(n), η(n+1/2))e(n+1/2) − F(ū(n), η̄(n+1/2))e(n+1/2)

= (ν + εh)∆h
(

e
(n+1/2)

)(

e
(n+1/2)

)

− τ1e
(n+1/2) .

We use that the flux is bilinear, i.e.

F(u, η)− F(ū, η̄) = F(u, (η − η̄))− F(u− ū, η̄) .

The first term drops out (upon integration) by the discrete divergence-free property and the
discrete conservativeness of the fluxes (3.5). It remains estimate the second term, which is
rewritten in discrete convective form (3.4):

∑

(i,j)∈M

F(u− ū, η̄)(η − η̄)∆x∆y =
∑

(i,j)∈M

(ũ− ˜̄u)gradh+η̄(η − η̄)− η̄τ2(η − η̄)∆x∆y

Summing everything in space, one obtains:

∣
∣
∣
∣
∣
∣

∑

(i,j)∈M

F(u, η)e(n+1/2) − F(ū, η̄)e(n+1/2)∆x∆y

∣
∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣
∣

∑

(i,j)∈M

(

ũ− ˜̄u)gradh+η̄(η − η̄)− η̄τ2(η − η̄)
)

∆x∆y

∣
∣
∣
∣
∣
∣

≤ ‖∇η̄‖∞‖u− ū‖2‖η − η̄‖2 + ‖η̄‖∞‖τ2‖22 + ‖η̄‖∞‖η − η̄‖22
≤ (CP2

‖∇η̄‖∞ + ‖η̄‖∞)‖η − η̄‖22 + ‖η̄‖∞‖τ2‖22
≤ (CP2

‖∇η̄‖∞ + ‖η̄‖∞)‖e(n+1/2)‖22 + ‖η̄‖∞‖τ2‖22.

The truncation residual becomes (using Young’s inequality):

2‖τ1e(n+1/2)‖1 ≤ ‖e(n+1/2)‖22 + ‖τ1‖22 =: En+1/2 + ‖τ1‖22.

The complete estimate for the evolution of the errors is of the form,

∑

(i,j)∈M

(e(n+1))2 − (e(n))2

∆t
∆x∆y

=
∑

(i,j)∈M

(

(u− ū)gradh+η̄(η − η̄)− η̄τ2(η − η̄) + ν ′(∆h
e
(n+1/2))e(n+1/2) + τ1e

(n+1/2)
)

∆x∆y

≤ ‖(u− ū)∇η̄(η − η̄)‖1 + ‖η̄τ2(η − η̄)‖1 − ν ′C−1
P1

‖e(n+1/2)‖22 + En+1/2 + ‖τ1‖22. (77)
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Summing in time and using the previous estimates, gives:

‖e(N+1)‖22 ≤ ‖e(0)‖22 +
N∑

n=0

(

(CP2
‖∇η̄‖∞ + ‖η̄‖∞)‖e(n+1/2)‖22 + ‖η̄‖∞‖τ2‖22

− ν ′C−1
P1

‖e(n+1/2)‖22 +
1

2
‖e(n+1/2)‖22 +

1

2
‖τ1‖22

)

∆t

≤ ‖e0‖22 +
N+1∑

n=0

(

max{CP2
‖∇η̄‖∞ + ‖η̄‖∞ − ν ′C−1

P1
+ 1, 0}‖e(n)‖22

+ ‖η̄‖∞‖τ2‖22 +
1

2
‖τ1‖22

)

∆t

=: E0 +
N+1∑

n=0

(

Kn+1/2En +Dn+1/2
)

∆t,

with

min{CP2
‖∇η̄‖∞ + ‖η̄‖∞ − νC−1

P1
+ 1, 0} =: cn , ‖η̄‖∞‖τ2‖22 +

1

2
‖τ1‖22 =: dn

finite under previous assumptions. Before applying Gronwall, we bring the “temporal boundary
term” to the correct side. In the ensuing derivations, we denote by C−1 := (1 − cN+1∆t) and
assume ∆t sufficiently small, so that cN+1∆t < 1:

EN+1(1− cN+1∆t) ≤ E0 +
N∑

n=0

RnEn∆t+ ‖dn‖1

EN+1 ≤
E0 + ‖dn‖1
1− cN+1∆t

+

N∑

n=0

cn
1− cN+1∆t

En∆t .

Applying a discrete Gronwall Lemma yields

EN+1 ≤
E0 + ‖dn‖1
1−KN+1∆t

+
N∑

n=0

cn
1−KN+1∆t

E0 + ‖dn‖1
1−KN+1∆t

e
∑N

m=n
Km

1−KN+1∆t
∆t
∆t

≤ (E0 + ‖dn‖1C)
(

1 + C
N∑

n=0

cne
C

∑N
m=n Km∆t∆t

)

≤ (E0 + ‖dn‖1C)
(

1 + C
N∑

n=0

cne
C

∑N
n=0 cn∆t∆t

)

≤ (E0 + ‖dn‖1C)
(

1 + C‖cn‖1eC‖cn‖1
)

.

Applying the bounds in theorem 3.7, we obtain,

‖cn‖1 = max{CP2
‖∇η̄‖∞,1 + ‖η̄‖∞,1 − νC−1

P1
+ 1, 0}

≤ max{CP2
C2(T,T

2) + C1(T,T
2)− νC−1

P1
+ 1, 0} =: K1(T, ν,T

2)

‖dn‖1 = ‖η̄‖∞,1‖τ2‖22,∞ +
1

2
‖τ1‖22,2

≤ C1(T,T
2)C4(T,T

2)2h2 +
1

2
C3(T,T

2)2h2 ≤ K2(T,T
2)h2

C = (1−KN+1∆t)−1

≤ (1−max{CP2
‖∇η̄‖∞,∞ + ‖η̄‖∞,∞ − νC−1

P1
, 0}∆t)−1 ≤ 1 + δ(T, ν,T2)

E0 = C5(T,T
2)h2 .
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Then

‖e(N)‖2 ≤ K3(T,T
2)h(1 +K4(T, ν,T

2)eK4(T,ν,T2)), (78)

with

K3(T,T
2) := (E0 + ‖dn‖1C), K4(T, ν,T

2) := C‖cn‖1.

Notice that, as ν increases, the constant K4 can be chosen arbitrary small.

A straightforward corollary of the above estimate on the discrete error is its continuous
counterpart, defined in terms of the piecewise constant approximate solution,

ηh(x, y, t) := η
(n)
i,j , if (x, y, t) ∈ Ci,j × [tn × t(n+1)] ,

and estimated in the following,

Theorem 3.9. Given an initial vorticity η0 ∈ H3(Tn), let us denote the unique global solution
to the NSE equations (34) by η̄ ∈ L1([0, T ], H3(Tn)). Then the sequence of piecewise constant
approximations ηh obtained through the numerical scheme (56) satisfies the L2 error bound:

∥
∥
∥η(t, ·)− ηh(t, ·)

∥
∥
∥
L2(T2)

≤ C(η0, T,T
2)h, (79)

where the constant C depends on only on the initial data η0, the domain and the final time.

We end this section with a few remarks on the numerical scheme and the error estimate.

Remark 3.10. The constant in the error estimate (79) only depends on the final time and on
higher derivative H3 norm on the initial data. This constant can be rather large for some initial
data, see (75). However, it is finite for a finite final time and is independent of the Reynolds
number. To see the fact that the constant is Reynolds number independent, we readily observe
that in the proof of (78), we can easily drop the ν dependent terms as they all have negative
signs. However, we chose to retain the ν-dependence in order to observe the effect of viscosity on
the constant. As argued in the proof of (79), the constant in the error estimate is reduced when
the viscosity is large. We reemphasize that the constant in the error bound is uniformly bounded
with respect to ν → 0. Thus, our scheme (56) can be employed to approximate two-dimensional
incompressible flows with periodic boundary conditions at arbitrary large Reynolds numbers. In
particular, (56) is also a robust discretization (with error estimate (79) for the incompressible
Euler equations, by setting ν = 0.

Remark 3.11. We can also set numerical diffusion to zero in (56) by letting ν ′ = ν. We do not
require any numerical diffusion to stabilize our scheme, even in the inviscid limit, as we employ
an implicit time stepping.

Remark 3.12. The H3
per(T

2) regularity assumption on the initial data is necessary as this
smoothness is used to define and to bound the truncation error. It can be relaxed slightly. How-
ever, a convergence rate estimate (which is the basis for the design of the Multi-Level Monte-Carlo
sampling ) for our scheme that uses less regular data than H2 seems elusive, at this stage. It
might be possible to prove ν dependent bounds with H1 regularity. However, these bounds would
blow up when ν → 0. Energy inequalities (e.g. [8, Eqn. (V.1.9)]) imply that second moments
of statistical velocity solutions for initial data with finite variance enstrophy (35) are (in the
presently adopted setting of vanishing volume forcing, ie. (31)), are bounded independent of ν.
We are therefore interested in computing statistics of individual flows with very large Reynolds
numbers, and continue to work under strong regularity assumptions on the initial data.
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Remark 3.13. Our scheme is of the finite difference type as we approximate point values. As
our grid is Cartesian, we can readily interpret our scheme as a finite volume scheme by requir-
ing approximation of cell averages. Extension to (block)-structured meshes is straightforward.
However, extending the scheme to unstructured grids is more challenging.

3.6 Hper(div;T
2) convergence rate bounds for the velocity fields

We have shown in Theorem 3.9 that the approximate solution ηh(t, ·) of piecewise constant
vorticity approximations produced by the finite difference scheme in T

2 on a uniform mesh
of axiparallel quadrilaterals of width h converges, as h → 0, as O(h) in the norm L2(T2).
As we show in the next sections, this will allow for a convergence analysis of MLMCFVM
approximations of statistical vorticity solutions πνt in Section 2.2.3.

The finite difference scheme being a stable and consistent discretization of the vorticity
formulation of the NSE (34), consistent velocity approximations are produced as well by the
scheme. This allows for a convergence analysis of MLMC first order FVM statistical velocity
solutions in the sense of Foias and Prodi, as introduced in Section 2.2.1. We indicate the (short)
derivation of the relevant estimates. For every ηh, there exists a unique stream function

ψh ∈ H2
per(T

2) : −∆ψh = ηh in L2(T2) . (80)

The unique solution ψh satisfies, due to the L2-stability of the FV scheme,

‖ψh‖H2(T2) ≤ C‖∆ψh‖0 = C‖ηh(t)‖0 ≤ CCstab , 0 < h ≤ 1 . (81)

where the constants are independent of ν, and where Cstab denotes a L2(T2)-stability bound
obtained from the bounds in the mesh-dependent norms in Theorem 3.7. We note that the
exact stream function ψh corresponding to the FD stepfunction vorticity approximation ηh is
not a piecewise polynomial function. We now show that we can recover a continuous, piecewise
polynomial stream function at cost O(N) by a Galerkin projection. To this end, let S1

H(T2)
denote the space of continuous, piecewise bilinear functions on a uniform mesh of axiparallel
quadrilaterals of meshwidth H ≤ h, where h/H ∈ N, which belong to H1

per(T
2). We define the

Galerkin-projected stream function by

find ψh
H ∈ S1

H(T2) : (∇ψh
H , ϕH) = (ηh(t), ϕH) ∀ϕH ∈ S1

H(T2) . (82)

As (∇·,∇·) is coercive on H1
per(T

2), there exists a unique solution ψh
H ∈ S1

H(T2) and

‖∇(ψh − ψh
H)‖0 = inf

ϕH∈S1
H(T2)

‖∇(ψh − ϕH)‖0 ≤ CH‖ηh(t)‖0 (83)

where we used (81) and the standard approximation property of the space S1
H(T2), and where

the constants are independent of h and of H. We estimate

‖∇(ψ − ψh
H)‖0 ≤ ‖∇(ψ − ψh)‖0 + ‖∇(ψh − ψh

H)‖0
≤ ‖∇ ◦ (−∆)−1(η − ηh)(t)‖0 + CH‖ηh(t)‖0
≤ ‖(η − ηh)(t)‖0 + CH‖ηh(t)‖0
≤ C(h+H) .

(84)

We choose H = h and note that Galerkin equations (82) can be solved to first order accuracy
O(h) in H1(T2) in work and memory of O(h−2) = O(N) using, e.g. a multigrid iteration.

With ψh
h ∈ S1

h(T
2) available, we define an approximate velocity by

uh := curlψh
h = (∂2ψ

h
h,−∂1ψh

h)
⊤ . (85)
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Due to the low regularity of S1
h(T

2), uh 6∈ H1
per(T

2). However, due to the tensor product structure

S1
h(T

2) = S1
h(I

x)⊗S1
h(I

y) with Ix, Iy := (0, 1), we note that e.g. ∂2ψ
h
h ∈ S1

h(I
x)⊗S0

h(I
y), where

S0
h(I

y) denotes the space of piecewise constant functions on a uniform partition of the interval
Iy = (0, 1) into subintervals of length h. Analogous reasoning for ∂1 implies

uh = (∂2ψ
h
h,−∂1ψh

h) ∈ S1
h(I

x)⊗ S0
h(I

y)× S0
h(I

x)⊗ S1
h(I

y) ⊂ H(div;T2)

and there holds discrete conservation: divuh = divcurlψh
h = 0. This implies with (84)

‖u− uh‖2H(div;T2) = ‖u− uh‖2L2(T2) + ‖div(u− uh)‖2L2(T2)

= ‖curl(ψ − ψh
h)‖2 = ‖∇(ψ − ψh

h)‖2 ≤ Ch2 .
(86)

We remark that an O(h) error bound in L2(T2)2 for the discrete velocities also follows from
error bounds for the finite difference Laplacian on uniform grids in [15, Sec. 2.3.2].

4 (Multi-level) Monte Carlo methods

Our aim is to compute statistics properties of the two-dimensional Navier-Stokes flow (34), with
respect to the statistical vorticity solution πνt defined in (38). To this end, we will utilize the
equivalence between statistical solutions and random fields. We assume that the initial data for
the statistical solution π0 is given as the law of a random field η0 ∈ L2(Ω, Hs

per(T
2)), defined on

an underlying complete probability space (Ω,F ,P).
Computing a typical observable with respect to the statistical solution πνt amounts to calcu-

lating, for some admissible test function g ∈ Cb(H
s
per),

ˆ

Hs
per

g(η)dπνt (η) . (87)

We recast the problem of computing the statistics (87) in terms of random fields in the
following calculation,

ˆ

Hs
per

g(η)dπνt =

ˆ

Hs
per

g(T ν(t)η0)dπ0(η0) (by (40))

=

ˆ

Ω
g(T ν(t)η0(ω))dP(ω),

=

ˆ

Ω
g(η(t, ·;ω))dP(ω) .

Here, η = T ν(t)η0 denotes the solution for the two-dimensional incompressible Navier-Stokes
equation (34), corresponding to initial data η0. Computing statistics of the flow (with respect
to the statistical vorticity solution) amounts to approximating integrals of the form,

ˆ

Ω
g(η(t, ·;ω))dP(ω) , (88)

with η(ω) being the (deterministic) solution of the incompressible Navier-Stokes equations, cor-
responding to an initial vorticity realization η0(ω), ω ∈ Ω. The choice g(η) = η yields the mean
vorticity field (or ensemble average). We will approximate the above integral by sampling, using
Monte Carlo type methods.

To obtain a computational realization, the random field η(t, x;ω) also needs to be approx-
imated in physical space-time. As mentioned earlier, we will approximate individual vorticity
solutions of (34) with the finite difference approximation (56) introduced in the last section. We
assume that any numerical approximation of the (deterministic) Navier-Stokes equations (34)
satisfies,
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Assumption 4.1. The numerical scheme for approximating the evolution of individual vorticity
solutions η(·;ω) of (34) is of order s, i.e. there exists s > 0 and a constant C(T, ‖η0‖Hm

per(T
2)) >

0 depending continuously on ‖η0‖Hm
per(T

2), but possibly exponentially on T such that, for each

realization ω ∈ Ω the following error bound is satisfied:

∥
∥η(·, T ;ω)− η∆x,∆t(·, T ;ω)

∥
∥
L2(T2)

≤ C(T, ‖η0(·;ω)‖Hm
per(T

2))∆x
s (89)

Here, we have implicitly assumed that ∆t ≈ ∆x ≈ ∆y. As shown in the previous section,
the scheme (56) satisfies (89) with s = 1,m = 3. Moreover, the constants in (89) can depend
(non-linearly) on the initial data, as in the worst-case exponential dependence of the constants
on the higher-order derivatives of the solution in (79) for the scheme (56). Hence, one needs to
assume that the expectation and variance of these high-order norms be finite.

4.1 Singlelevel Monte Carlo

For g(η) = η, we approximate (88) with the “sample average” (singlelevel) Monte Carlo (SLMC)
estimator EM . For x ∈ T∆x ⊆ T

2 it is defined by

E [η(x, T ; ·)] ≈ 1

M

M∑

m=1

η∆x,∆t(x, T ;ωm) =: EM

[
η∆x∆t(x, T ; ·)

]
. (90)

Lemma 4.2. Let η = η(x;ω) ∈ L2(Ω, L2(T2)), then:

‖E [η(·;ω)]‖2L2(T2) ≤ E

[

‖η(·;ω)‖2L2(T2)

]

. (91)

Proof. The lemma follows as special case of Jensen’s inequality on the space (Ω,A,P):

‖E [η(·;ω)]‖2L2(T2) ≤
ˆ

ω∈Ω

ˆ

x∈T2

|η(·;ω)|2 dxdP(ω).

For simplicity, we drop the dependency on x, T and ω and write, by slight abuse of notation,
η(x, T ;ω) =: η and η∆x∆t(x, T ;ω) =: η∆x∆t. Next, we prove the error estimates for the Monte
Carlo-finite difference approximation,

Theorem 4.3 (Singlelevel Monte Carlo error estimate). Under assumption (89) , the following
holds:

E

[∥
∥E[η]− EM [η∆x,∆t]

∥
∥
2

L2(T2)

]1/2
≤ 1

M1/2
E

[∥
∥η − η∆x,∆t

∥
∥
2

L2(T2)

]1/2
(92)

≤(
1

M1/2
+∆xs)E

[

C(T, ‖η0‖2Hm
per(T

2))
]1/2

. (93)

The proof of the MLMC estimate in the next section with L = 0 amounts to proving the
above estimate.

4.2 Multilevel Monte Carlo

Even with a first order deterministic numerical scheme, the overall error is dominated by the
SLMC error. Multilevel Monte Carlo methods were developed for path simulation of stochastic
ODEs in [11] to “accelerate” the convergence of SLMC by performing many inexpensive com-
putations and a few expensive computations. In the context of PDE, MLMC was successfully
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applied to a wide range of equations (e.g. [19, 3]). In this context, a nested mesh hierarchy is
used in multilevel algorithms to reduced computational work, analogous to multigrid methods
used in the numerical solution of elliptic PDE.

In T
2 = [0, 1)2, we consider nested, uniform grids of congruent, axiparallel rectangles of

size (∆xl)
L
l=0, ∆xl = ∆yl = 2−l. For each mesh in the family we denote, for simplicity, by

ηl := η∆xl∆tl the discrete (piecewise constant) solution computed at the level N ∋ l < L.
Also, denote η := η(x, T ;ω). As convention we denote η−1 := 0. Then, we define the MLMC
estimator:

E [η(x, T ;ω)] ≈ E [ηL] = E

[
L∑

l=0

(ηl − ηl−1)

]

=

L∑

l=0

E [ηl − ηl−1] ≈
L∑

l=0

EMl
[ηl − ηl−1] . (94)

The following lemma will facilitate estimating the MLMC error:

Lemma 4.4. Under assumption (89), for some m ≥ 0, there exists a constant, depending only
on the initial data and the time, s.t.

E

[∥
∥(E− EM )[η − η∆x,∆t]

∥
∥
2

L2(T2)

]1/2
≤ 1

M1/2
E

[∥
∥η − η∆x,∆t

∥
∥
2

L2(T2)

]1/2
(95)

≤ 1

M1/2
∆xsE

[

C(T, ‖η0‖2Hm
per(T

2))
]1/2

. (96)

Proof. Let us consider the expectation of the Monte Carlo error and denote by em = η(x, T ;ωm)−
η∆x,∆t(x, T ;ωm) the error and by e := E

[
η(x, T ;ω)− η∆x,∆t(x, T ;ωm)

]
:

E

[∥
∥(E− EM )[η − η∆x,∆t]

∥
∥
2

L2(T2)

]

≤ E




1

M2

∥
∥
∥
∥
∥

M∑

m=0

(e− em)

∥
∥
∥
∥
∥

2

L2(T2)





≤ E




1

M2

(
M∑

m=0

‖e− em‖L2(T2)

)2




≤ E

[

1

M2

M∑

m=0

‖e− em‖2L2(T2)

]

.

Using the fact that the samples η∆x,∆t(x, T ;ωm) are i.i.d:

E

[

1

M2

M∑

m=0

‖e− em‖2L2(T2)

]

≤ 2

M2

M∑

m=0

(

E

[

‖e‖2L2(T2)

]

+ E

[

‖ei‖2L2(T2)

])

≤ 4

M
E

[∥
∥η − η∆x,∆t

∥
∥
2

L2(T2)

]

≤ 4

M
∆x2sE

[

C(T, ‖η0‖2Hm
per(T

2))
]

.

Taking the square root and absorbing the factor 4 in the constant concludes the proof.

The preceding lemma allows to provide an a-priori error bound for the combined FV - MLMC
approximation of statistical solutions.

Theorem 4.5. Under assumption (89), and the requirement that

E

[

C(T, ‖η0‖2Hm
per(T

2))
]

<∞ (97)

E

[

‖η(x, T ; ·)‖2L2(T2)

]

<∞ (98)
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the error of the MLMC approximation can be bounded in the following way:

∥
∥
∥
∥
∥
E [η(x, T ; ·)]−

L∑

l=0

EMl
[ηl − ηl−1]

∥
∥
∥
∥
∥
L2(Ω;L2(T2))

≤ E

[

C(T, ‖η0‖2Hm
per(T

2))
]

(

L∑

l=0

1√
Ml

∆xsl +
1√
M0

),

(99)
for a constant 0 < C depending on T and ‖η0‖Hm

per(T
2).

Proof. We write the error of the MC approximations combined with the space-time discretiza-
tions in the usual, telescopic sum as

E [η]−
L∑

l=0

EMl
[ηl − ηl−1] = E [η − ηL] + E [ηL]−

L∑

l=0

EMl
[ηl − ηl−1]

= E [η − ηL]
︸ ︷︷ ︸

I

+

L∑

l=0

E [ηl − ηl−1]−
L∑

l=0

EMl
[ηl − ηl−1]

︸ ︷︷ ︸

II

.

The second term can be rewritten as:

II =
L∑

l=0

(E− EMl
)[ηl − ηl−1] =

L∑

l=0

(E− EMl
)[ηl − η + η − ηl−1]

then, using triangle inequality and Lemma 4.2:

‖II‖L2(Ω;L2(T2)) ≤
L∑

l=0

2 ‖(E− EMl
)[ηl − η]‖L2(Ω;L2(T2))

+
L∑

l=0

‖(E− EMl
)[η − ηl−1]‖L2(Ω;L2(T2))

≤
L∑

l=0

2E
[

(E− EMl
)[‖ηl − η‖2L2(T2)]

]1/2

+

L∑

l=0

E

[

(E− EMl
)[‖η − ηl−1‖2L2(T2)]

]1/2

=:
L∑

l=0

2IIa,l + IIb,l .

Each individual term can be estimated using the SLMC error bounds from theorem 4.3:

II2a,l ≤
1

Ml
E

[

‖η − ηl‖2L2(T2)

]

≤ 1

Ml
∆x2sl E

[

C(T, ‖η0‖2Hm
per(T

2))
]

II2b,l ≤
1

Ml
E

[

‖η − ηl−1‖2L2(T2)

]

≤ 1

Ml
∆x2sl−1E

[

C(T, ‖η0‖2Hm
per(T

2))
]

.

Substituting in the previous expression, and defining ∆x−1 := 1, we obtain:

‖II‖L2(Ω;L2(T2)) ≤3E
[

C(T, ‖η0‖2Hm
per(T

2))
]1/2

L∑

l=0

1√
Ml

∆xsl−1
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and with the bound

‖I‖L2(Ω;L2(T2)) ≤E

[

C(T, ‖η0‖2Hm
per(T

2))
]1/2

∆xsL,

we obtain the bound in the proposition, including all the constants in C.

The best possible approximation, assuming a sharp order of convergence (89), is ∆xsL. The
MC sample numbers are to be selected as small as possible, subject to ensuring an overall error
which is consistent with this bound, i.e:

L∑

l=0

1√
Ml

∆xsl
!

. ∆xsL.

With the particular (nonadaptive) choice of sample numbers on levels 0 ≤ l ≤ L,

1√
Ml

∆xsl = ∆xsL ⇒Ml = 22s(L−l), (100)

we obtain the requirements
ML ∼ 1, M1 ∼ 22sL .

Then the combined statistical and discretization error is of the form,
∥
∥
∥
∥
∥
E [η(x, T ; ·)]−

L∑

l=0

EMl
[ηl − ηl−1]

∥
∥
∥
∥
∥
L2(Ω;L2(T2))

≤ C(L+ 1)∆xsL . (101)

Remark 4.6. The expectations (97), (98) are taken with respect to the probability measure π0
on the ensemble of initial vorticities.

A necessary condition for (97) to be finite is that the subspace Hm
per(T

2) for m ≥ 3 of
initial vorticities is charged by π0, i.e, π0(H

m
per(T

2)) = 1. Inspecting the error analysis for the
spatio-temporal discretization, we observe that the expression C(T, ·) is a smooth, but at least
exponentially growing function of the second argument. Therefore, finiteness of the expectations
(97), (98) stipulates that π0 is supported on bounded subsets of Hm

per(T
2), which we assume from

now on.

4.3 Complexity of MLMC

Given the above error estimates for both SLMC and MLMC algorithms (with the same space-
time discretization of (56)), we will compare the complexity of both algorithms in terms of the
error vs. computational work criterion. To this end, we consider the SLMC error estimate in
theorem 4.3 and choose the number of samples in order to balance the space-time and sampling
errors. As s = 1, the MC error behaves like

ESLMC = O(M−1/2 +∆x),

a sufficient choice of the number of samples, for a first order numerical scheme on individual
solutions M = ∆x−2. This choice is due to the (non improvable) convergence order 1/2 of the
MC sampling and is particularly problematic for the finer meshes (which are computationally
most costly), for which with the single-level Monte-Carlo Method also a prohibitively large
number of samples is required.

Furthermore, the computational cost of a single deterministic simulation behaves like

WDET ∼ ∆x−3
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(in two spatial dimensions1 and one temporal dimension). Consequently, we arrive at the fol-
lowing asymptotic work versus ∆x relation

WSLMC ∼ ∆x−5.

Hence, the complexity (error vs. work) scales as,

ESLMC ∼ W−1/5
SLMC .

On the other hand, for MLMC, we have shown in (101), with the choice Ml = 22s(L−l) we
obtain the asymptotic error bound (with L being the number of levels):

EMLMC = O(∆x(L+ 1)) .

Hence, the total work of MLMC can be calculated as follows,

WMLMC ∼
L∑

l=0

∆x−3
l ∆x2sl /∆x

2s
L = ∆x−2

L

L∑

l=0

∆x−1
l = ∆x−3

L (2− 2−L).

Hence, the MLMC complexity estimate (with the choices (100)) scales ∀δ > 0 and for L → ∞,
as

W−1/3+δ
MLMC ∼ EMLMC .

Comparing the SLMC and MLMC estimates, we observe that MLMC promises to be significantly
more efficient (at least asymptotically) as far as computational work is concerned. We will test
this assertion in the next section on a suite of numerical experiments.

Remark 4.7. The term L + 1 arising in the error estimate (101) (or, equivalently, on the
complexity vs. work) is difficult to eliminate. In fact, the space-time discretization algorithm
is of computational complexity O(∆x−3) (for smooth data and with ∆t = O(∆x), we obtain 2
orders of complexity in space and one in time) and of convergence order O(∆x), implying that
we are unable to apply the MLMC theorem in [12] (which assumes 1 = α ≥ 1/2γ = 1.5, α being
the order of convergence and γ being the complexity order).

5 Numerical experiments

In this section, we will present a set of numerical experiments to illustrate our SLMC and MLMC-
finite difference approximations of the statistical solutions of the incompressible Navier-Stokes
equations (34). We start with a brief overview of the implementation of our algorithms.

5.1 Implementation

Both the deterministic (finite difference) “evolver” and the statistical (SLMC / MLMC) in-
tegrators were implemented in C++ using the PETSc library. Both sets of algorithms were
parallelized, for implementation on HPC architectures.

The deterministic scheme was parallelized exploiting domain decomposition via MPI com-
munication. The linear algebra routines required by the Hodge decomposition and implicit
time stepping exploit the efficiency of multigrid (whenever possible) or other algorithms (LU-
decomposition and Krylov methods).

1Multigrid ensures that the treatment of the viscosity and of the velocity reconstruction behaves as O(∆x
−2).
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The parallel SLMC/MLMC component of the numerical scheme is (almost) trivially parallel
(i.e. communication free), except for pre- and post-processing stages. Load balancing is the
major issue in this case. Our software is able to perform MC estimates online (i.e. in a single,
uninterrupted run) and offline (with the use of postprocessing routines after the completion of ev-
ery simulation). The tradeoff online vs offline depends on discretization parameters (meshwidth,
processor availability, numerical schemes, storage/memory requirements). However, the online
MLMC implementation requires particular care in load balancing and in the communication of
subdomain data between processors for the estimation of statistical quantities.

Simulations where performed on the Cray XC40 “Piz Dora” at the Swiss National Supercom-
puting Centre (CSCS). Each node is composed of two 12-core Intel Haswell CPUs. Numerical
experiments demonstrate that the simulation runtime is limited by memory bandwidth.

5.2 Numerical experiment 1: Deterministic simulations

We start by presenting a numerical experiment that illustrates our deterministic finite difference
scheme (56). To this end, we consider (34) in the torus T

2 (identified with [0, 1)2 and periodic
boundary conditions) with initial data

η0(x1, x2) := x1(1− x1)x2(1− x2) .

There is no analytical formula for the exact solution in this case. Hence, we compute a
reference solution ηref at a very fine resolution of 40962 cells, by a Gauss-Legendre quadrature
with 10 points for the statistical integration. We calculate the relative error

‖η − ηref‖2 / ‖ηref‖2

of the vorticity on a sequence of grids, ranging from 322 to 10242, at time T = 1. We use a range
of values of the viscosity ν ranging from ν = 10−1 to ν = 10−7 and include the incompressible
Euler case, i.e ν = 0. The corresponding results are plotted in figure 1. These results show that,

• The finite difference scheme (56) converges to the (reference) solution at the rate of 1, as
predicted by the error estimate (79), as the mesh is refined.

• The convergence order is completely independent of the viscosity (Reynolds number). As
shown in figure 1, the same convergence order is obtained for a six orders of magnitude
variation in the Reynolds number. Furthemore, as discussed in the proof of (78), we also
obtain a rate of convergence of order 1, even for inviscid Euler case. Hence, our finite
difference scheme (56) is robust with respect to arbitrarily high Reynolds numbers.

• The role of the viscosity ν is also evidenced from figure 1. As shown in the error estimate
(78), higher values of ν lead to a smaller value of the constant in the error estimate. Thus,
reducing the physical viscosity only affects the constants (mildly) but does not affect the
rate of convergence of the scheme (56).
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Figure 1: Relative error of the NS solver for individual solutions with respect to the mesh size
∆x for various values of ν.

5.3 Numerical experiment 2: Single mode stochastic perturbation

Equipped with a robust finite difference scheme for the incompressible Navier-Stokes equations
(34), we now proceed to approximate statistical solutions. We start with an initial probability
measure π0 concentrated on vorticities of the form:

η0(x;ω) = η̄0(x) + Y1(ω)η1(x)

with Y1 ∼ U(−1, 1) where η̄0(x) ∈ Hs
per(T

2) with s < 3/2, denotes the mean initial vorticity
corresponding to the vortex blob

η̄0(x) := x1(1− x1)x2(1− x2) ∈ Hs
per(T

2) for s < 3/2 , (102)

and the single-mode stochastic fluctuation at point x = (x1, x2) ∈ T
2 is given by

η1(x) = η1(x1, x2) := sin(2πx1) sin(2πx2) ∈ C∞
per(T

2) .

Our aim is to test both the SLMC and MLMC methods in order to check the validity of
the error estimates, for both these algorithms, proved in the previous section. To this end, we
calculate a reference solution by Gauss-Legendre quadrature with respect to y1 with 10 nodes.
The mean and variance of the solution, for various values of the viscosity ν, are shown in figure
2.

We perform both SLMC and MLMC computations, using the same deterministic finite dif-
ference scheme (56), on a sequence of grids ranging from 322 to 10242. The number of samples
for the both the SLMC and MLMC calculations as well as the number of levels for the MLMC
method, are chosen based on the discussion of the previous section. For MLMC, we choose
M = 20 samples on the finest level and choose the coarsest level to be at 162. For SLMC, we
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choose M = 20 samples on the coarsest 162 mesh. We repeat the experiments S = 10 times in
order to estimate the relative error (which is a random variable itself). The relative error of the
expectation (at time T = 1) is approximated with

err =
1

S

S∑

s=0

(‖E[ηs]− E[ηref ]‖2 / ‖E[ηref ]‖2), (103)

where E represents the sample expectation, and is plotted in figure 3. From this figure, we
observe that

• Both the SLMC and MLMC algorithms approximate the mean of the underlying statistical
solution accurately. In fact, for a fixed mesh resolution (consequently sample numbers),
the SLMC method is slightly more accurate than the MLMC method.

• However, the big difference between the methods appears when one considers the compu-
tational complexity in terms of the error vs. computational work (right column of figure 3).
Here, as predicted by the discussion in the previous section, the MLMC method is consid-
erably faster (more efficient) than the SLMC method. In fact, in the range of engineering
accuracy (5% - 1% error) the MLMC is consistently faster by approximately two orders of
magnitude, when compared to the SLMC method, for a range of viscosity parameters ν.

• The approximation of statistical solutions is robust with respect to the increase in Reynolds
numbers. In fact, the MLMC method continues to be at least two orders of magnitude
faster even for the inviscid ν = 0 case. However, there is a slight improvement in speed
up when one considers a higher value of the viscosity parameter.
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(a) Mean, ν = 10−2/4 (b) Variance, ν = 10−2/4

(c) Mean, ν = 10−2/16 (d) Variance, ν = 10−2/16

(e) Mean, ν = 10−2/64 (f) Variance, ν = 10−2/64

(g) Mean, ν = 0 (h) Variance, ν = 0

Figure 2: Mean and variance of a 1-term KL expansion for different viscosities.
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Figure 3: relative L2 error of the mean for different viscosities with SLMC and MLMC, with
respect to the mesh width h (left) and w.r.t. wall clock time (right) of a 1-parametric statis-
tical initial data. The reference solution is computed using Gaussian quadrature. There is no
qualitative difference in error vs. meshwidth ∆x between SLMC and MLMC.
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5.4 Numerical experiment 3: Karhunen-Loève expansion

We consider the initial statistical solution as a probability measure, realized as the law of a
random field, given in terms of a Karhunen-Loéve expansion of the form,

η0(x;ω) = η̄0(x) +
K∑

k=1

Yk(ω)ηk(x)

with Yk ∈ U(−1, 1) random variables, η̄0(x) ∈ H1
per(T

2) the mean vorticity, and

ηk(x) = ηk(x1, x2) := λk sin(2πkx1) sin(2πkx2) ∈ H1
per(T

2),

where (λk)
K
k=0 is given by λk = k−2. The mean initial vorticity is the vortex blob (102). In

this case, we compute a reference solution using a MLMC simulation on a suitably refined mesh
(using the fine mesh of 20482 with 20 samples on the finest level and 162 as the coarsest level).
The mean and the variance of the resulting random field is plotted in figure 4. We show the
estimated relative error, with respect to the computed reference solution, in figure 5. The results
are very similar to those of the previous numerical experiment. In particular, although both the
SLMC and MLMC methods provide a robust approximation of the mean, the MLMC method is
considerably faster than the SLMC method. The speed up is at least two orders of magnitude
in terms of the run time. Furthermore, this speed up is consistent across a range of increasing
Reynolds numbers and also holds in the inviscid case.
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(a) Mean, ν = 10−2 (b) Variance, ν = 10−2

(c) Mean, ν = 10−3 (d) Variance, ν = 10−3

(e) Mean, ν = 10−7 (f) Variance, ν = 10−7

(g) Mean, ν = 0 (h) Variance, ν = 0

Figure 4: Mean and variance of a 20-term KL expansion for different viscosities.
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Figure 5: relative L2 error of the mean of a statistical simulation with 20 random parameters for
different viscosities with SLMC and MLMC, with respect to the mesh width h (left) and wall
time (right). The reference solution is computed using a spatially refined MLMC simulation.
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5.5 Numerical experiment 4: ν-stability of KL expansion

We perform the same experiment as number 3 investigating the behaviour as ν → 0. We compute
the relative error on a sufficiently fine mesh of 10242 of a simulation with ν > 0 with respect to
the “reference simulation” obtained with ν = 0:

err =
1

S

S∑

s=0

∥
∥
∥EMLMC [η

ν
s ]− EMLMC [η

eul
s ]
∥
∥
∥
L2
x

/
∥
∥
∥EMLMC [η

eul
s ]
∥
∥
∥
L2
x

In order to observe convergence we must to limit to sufficiently small Reynolds number, such
that it can be resolved by the mesh. If the viscosity is too small we observe a flat plot due to the
viscous cut-off. We observe in figure 6, a convergence order of O(

√
ν), which is consistent with

the convergence rate estimates towards the inviscid limit of the Cauchy problem in [2, Chap. 7].
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Figure 6: Relative error and standard deviation of the mean versus different values of viscosity.

5.6 Numerical experiment 5: Uncertain smooth shear layer.

We consider an uncertain version of the well known benchmark test case of smooth shear layer
by considering the initial data, given ρ > 0 we start from the initial datum in [0, 1)2

u0(x, y) :=

{

− tanh((y + 0.75)/ρ) y > 0

− tanh((−y + 0.25)/ρ) y < 0

v0(x, y) := δ sin(2πx)

and add a random, small amplitude perturbation using ω ∼ U([0, 1)K) to the interface, by

defining f(ω;x, y) := (x, y + γ
∑K/2

k=0 Y2k sin(2π(x+ Y2k+1)) and using as initial data

η0(ω;x, y) := rot(u ◦ f)(ω;x, y).

The initial measure, on the ensemble of vorticities, is supported on C∞
per(T

2) and satisfies all
the assumptions for the convergence rate (99), see remark 4.6. We compute a reference statistical
solution with the MLMC-finite difference algorithm and present the mean and the variance with
respect to the underlying statistical solution, for ν = 10−4 and at time T = 0.4, in figure 7.
The plot shows that both the mean and the variance are well resolved. The mean vorticity field
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(a) Mean (b) Variance

Figure 7: Mean and variance of a smooth Vortex-Sheet (ρ, δ, γ = 0.05) with uncertain vortex
location and magnitude.

consists of strong vortices (of both negative and positive signs) separated by a smooth field. The
variance seems to be concentrated near the edge of the vortices. In particular, it appears that
the vortex location is quite sensitive to the initial perturbation.

We compute relative errors with respect to this reference solution for different grid resolutions
and different values of ν and plot the results in figure 8. The results are completely consistent
with the previous numerical experiments as the MLMC method is consistently two orders of mag-
nitude faster than the corresponding SLMC method, across a large range of Reynolds number,
upto and including the Euler case, i.e, infinite Reynolds number.

Remark 5.1. The MLMC error estimate (99) required us to assume that the initial measure
π0, on the ensemble of initial vorticities, was supported on a subspace Hm

per(T
2) (with m ≥ 3).

However, we see from numerical experiments 2 and 3 where the initial measure was supported
on a less regular space, namely Hm

per(T
2) with m < 3

2 , that a convergence rate for the MLMC
method, similar to that predicted in (99), also holds in practice for less regular initial data.
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Figure 8: L2 error of the mean for different viscosities with SLMC and MLMC, with respect to
the mesh width h and wall clock time of a smooth Shear-Layer (ρ = 0.05) with uncertain vortex
location.
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6 Conclusion

The incompressible Navier-Stokes equations are the fundamental governing equations for flu-
ids. They are supposed to describe very complex phenomena, that includes highly irregular
and chaotic motions that constitute the core of very high Reynolds number unstable and tur-
bulent flows. Given this observed highly sensitive dependence on initial data, the deterministic
framework of weak solutions does not suffice in describing the complexity, that solutions of the
Navier-Stokes equations entail. Furthermore, the process of determining initial conditions, body
forces and other input data, via measurement or observation, is prone to errors on account of
uncertainty. Given these factors, it is natural to seek a probabilistic framework of (otherwise
deterministic) solutions for the Navier-Stokes equations. The concept of statistical solutions,
introduced by Foias and Prodi, is one such notion.

In two space dimensions, statistical solutions of the NSE in the sense of Foias and Prodi are
(time) parametrized probability measures on the function space H = H(div;T2) of divergence-
free, square integrable velocity fields (in which the deterministic solutions take values in). The
evolution of the statistical solutions is constrained in terms of the Liouville equation. Although
existence results for statistical solutions are available in both two and three dimensions, unique-
ness has been established in two space dimensions only. Furthermore, in two dimensions, sta-
tistical solutions are completely identified as the push forward of the initial probability measure
under the Navier-Stokes flow (solution operator).

Although statistical solutions have been widely studied and their numerous links to turbu-
lence are by now well established, very few (if any) papers have considered the efficient numerical
approximation of statistical solutions. The main aim of the present paper has been to provide an
efficient numerical method for approximating statistical solutions for the Navier-Stokes equations
in space dimension two.

In two dimensions, it is natural to work with a vorticity-stream function formulation of
the Navier-Stokes equations (34). Hence, we recast the standard concept of statistical velocity
solutions in terms of the vorticity-stream function formulation. To this end, we have introduced
a novel reformulation of the statistical vorticity solutions for (34).

We realize the statistical vorticity solutions in terms of laws of random fields. The random
fields are computed by discretizing individual solutions in space-time using a finite difference
(volume) scheme and in the probability space by Monte-Carlo sampling. In particular, we
propose a novel fully implicit finite difference scheme (56) and prove that it satisfies a rigorous
error estimate, with a convergence of order one, as the mesh is refined. For discretizing the
probability space, we use both the standard Monte Carlo method and the more recent Multi-
level Monte Carlo (MLMC) method. We prove error and complexity estimates for both methods.
In particular, we show that the MLMC method is (upto logarithmic term) optimally complex,
i.e, it has same complexity (asymptotically) as a single deterministic run.

We present several numerical experiments to illustrate our methods. From the numerical
experiments, we observe that

• Both the MC and MLMC methods converge to an underlying statistical solution, as pre-
dicted by our numerical analysis. At the same grid resolution, the MC method is slightly
more accurate than the MLMC method.

• However, the MLMC method is considerably more efficient. In particular, to achieve
relative accuracy of one percent, it requires at least two orders of magnitude less run time
than the corresponding MC method.

• The convergence rate, as well as the observed (and predicted) speed up, are totally robust
with respect to the Reynolds number. We also observe a two orders of magnitude speed
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up even for the inviscid (infinite Reynolds number) case i.e, for the incompressible Euler
equations.

Given the above considerations, it is fair to claim that the MLMC-finite difference scheme
provides a robust and efficient approximation of the statistical solutions of the two-dimensional
Navier-Stokes equations, for arbitrarily high Reynolds numbers.

The work presented in this paper, forms the basis of various extensions. Some of them are
outlined below,

• The current paper is restricted to the two dimensional case. The extension of the algo-
rithms to three space dimensions is straightforward. As there are no uniqueness results for
the three dimensional case, it will not be possible to extend the analysis, given the state of
the art. However, the MLMC-finite difference algorithm might still provide an attractive
numerical framework for the three dimensional case, particularly for the computation of
turbulent flows.

• The finite difference (volume) scheme (56) is defined on Cartesian grids. The extension to
unstructured grids needs to be performed, in order to compute statistical solutions in the
case of Dirichlet boundary conditions, for instance in exterior flows.

• We have defined the statistical solutions only for the Navier-Stokes case i.e, ν > 0. How-
ever, the numerical scheme (56) and the MC (MLMC) algorithms also cover the inviscid
ν = 0 case i.e, the incompressible Euler equations. The numerical results present in section
5 also indicated that the MLMC-finite difference algorithm is able to robustly compute
the statistical solutions even for the Euler equations.

These questions will be addressed in forthcoming papers.
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