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SUMMARY

We propose matrix compression for the efficient numerical modeling of geometrically persistent parts
in large-scale electromagnetic simulations. Our approach relies on local low-rank representation in the
framework of the H-matrix data sparse matrix storage format. We discuss two ways to build approximate H-
matrix representations of dense Schur-complement matrices: Adaptive cross approximation (ACA) and H-
arithmetics. We perform profound numerical test and comparisons in an axi-symmetric setting, employing
the open source H-matrix library AHMED by M. Bebendorf. As application we have in mind the direct
simulation of SNOM imaging devices, where the tip geometry remains unchanged for many simulation
runs.
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1. INTRODUCTION

1.1. SNOM tips

Scanning Near-field Optical Microscopy, SNOM, first introduced by Pohl et al. [15], is an optical

technique for imaging samples of sub-wavelength size. Some common configurations of aperture

and apertureless SNOM tips are illustrated in Figure 1. In all of these configurations, the tip moves

over the sample and collects data from different locations in the vicinity of the sample with the aim

of achieving a comprehensive image.

In this report, we are interested in solving the forward problem of tip-sample analysis, that is

computation of the electromagnetic fields for a given tip-sample geometry with known material

and excitation. For this purpose, we rely on linear time-harmonic Maxwell equations and adopt the

Finite Element Method (FEM), as this numerical method can easily cope with the typical problems

arising from complex geometries and frequency-dependent materials.

For numerical tip-sample simulations, one should notice that the tip can be several wavelengths

long and orders of magnitudes larger than the sample being imaged. This intrinsic property of

the SNOM imaging simulations represents major challenges for numerical methods such as FEM.

Since capturing subwavelength phenomena entails high-resolution discretization, employing these

numerical methods involves many degrees of freedom (DoFs), and consequently demands for huge

memory resources. This leads to cumbersome computations which are hardly feasible on current

computers. Furthermore, to attain a comprehensive image, the tip has to collect data from many
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2 P. SOUZANGAR, ET AL.

Figure 1. The various principles of SNOM techniques; aperture SNOM (A, A’, B, C) with metal-coated light
sources, D and E with separate source; apertureless SNOM by light tunneling (F, G), [10, Figure. 2.1]

points all around the sample. For each new position of the tip with respect to the sample a new

simulation has to be carried out.

To tackle the aforementioned difficulties, we notice that the shape of the tip and its material

composition remain unchanged every time the tip is moved to a new point. Clearly, the difference

between different simulation runs is only in the relative location of the tip with respect to the

sample. Even though the tip occupies the main portion of the computational domain and needs

to be represented accurately, it remains an unchanged part for many simulations. In brief, the tip is

a big and constant part of imaging simulations.

In this report, we aim to compue a numerical tip model through offline computations only once

such that it can be reused as a plug-in for many imaging simulations. Assuming that the tip is

rotationally symmetric, as explained in Section 2, we exploit the symmetry to model the tip on a 2D

mesh. Afterwards, the volume of the tip and some surrounding space is replaced by a discretized

electric to magnetic field map which represents the influence of the tip in the simulation domain

through a non-local surface-impedance boundary condition. This discretized map is the Schur

complement of the finite element matrix as explained in Section 2.4.

1.2. Matrix compression based on hierarchical matrices

Since the tip should be computed with high resolution, the model matrix, i.e., the Schur complement

of the FE matrix is generally huge and naturally dense. Therefore, we need to compress the

matrix to avoid high memory consumption. For this reason, we aim to calculate a local low-rank

approximation of the matrix in H-matrix format [6–8]. The idea is supported by [4, Theorem 3.4]

which states that an approximation of the Schur complement of a sparse matrix by an H-matrix does

exist.

The H-matrix format is based on an admissible partitioning [3, Definition 1.15] of the matrix.

The construction of this partitioning relies on,

(I) a cluster tree [3, Definition 1.16] of row (or column) indices of the matrix, and

(II) a block cluster tree [3, Sec. 1.5] based on the cluster tree and an admissibility condition [3,

Sect. 1.3]. The block cluster tree eventually defines the partitioning of the matrix.

After matrix partitioning, the so-called admissible blocks are stored in low-rank format and the

inadmissible blocks are stored as dense matrices. The inadmissible blocks should be reasonably

small with the maximum size of bmin, which is set before clustering of DoFs.

1.3. Objective of the report

We have investigated the efficiency of two different methods for model matrix compression for an

axisymmetric tip:

(I) Computation of the Schur complement through sparse solvers and application of the Adaptive

Cross Approximation (ACA) algorithm to build an H-matrix approximation of the model

matrix (see Section 4).
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(a) (b)

Figure 2. a) Homogeneous domain decomposition for tip-sample configurations. Ω1 is the fixed part of
imaging simulations. b) Metallic tip model.

(II) Conversion of sparse FE matrices to H-matrices and use of arithmetic operations in H-matrix

format (H-arithmetics) to obtain the Schur complement directly in H-matrix format (see

Section 5).

The computations with H-matrices are performed using algorithms provided by the AHMED

C++ class library developed by M. Bebendorf [2].

For each approach, we monitor the cost of generating the compressed tip model versus the

predefined accuracy. For a high resolution FE model matrix, we investigate the efficiency of

compression in terms of memory needed to store the discrete tip model for different accuracies.

A comparison of the two approaches and some concluding remarks are presented in Section 6.

2. MODELING OF THE SNOM TIP

The idea of homogeneous domain decomposition is used to model the tip and its surroundings

separately. As shown in Figure 2a, we truncate the computational domain by means of PML, then

decompose it into two disjoint subdomains, Ω1 and Ω2, such that,

Γ = ∂Ω̄1 ∩ ∂Ω̄2 (1a)

Ω = Ω1 ∪ Ω2 ∪ Γ. (1b)

The inner subdomain, Ω1, is the domain that encompasses the tip and its surroundings. The

outer subdomain, Ω2, includes the sample and is the domain of interest in which the fields need

to be computed. This subdomain varies for different samples. The interface boundary, Γ, has only a

mathematical meaning and we choose it to have a regular shape which is a cone in the lower part.

As mentioned earlier, the subdomain Ω1 remains unchanged in many imaging simulations. In a

preprocessing step, we compute a discretized interface operator on Γ by calculating the fields in Ω1.

The interface operator takes the transmission boundary condition on Γ into account and substitutes

Ω1 in imaging simulations. Using this operator, the fields have to be computed only in Ω2.

2.1. Maxwell Equations

For the FE analysis of the tip-sample setup, we assume that the time-harmonic Maxwell’s equations

in a non-magnetic isotropic medium hold,

SAM Report (2015)



4 P. SOUZANGAR, ET AL.

∇×E = iωµH (2a)

∇×H = −iωεE, (2b)

where µ and ǫ are the spatialy varying permeability and permittivity functions and ω is the angular

frequency.

We write the equations (2) only in terms of the electric field E. After splitting the domain into Ω1

and Ω2, we solve the following problem: we seek E1 ∈ H(curl; Ω1), E2 ∈ H(curl; Ω2), such that

for all E′ ∈ H(curl; Ω),Fs ∈ L2(Ω) (see [13, Section 4.1]) ,

∫

Ω1

< ∇×E1,∇×E′ > −k2 < E1,E
′ > dΩ

+

∫

∂Ω1\Γ
< ν × (∇×E1),E

′
T > dA+

∫

Γ

< ν × (∇×E1),E
′
T > dA

=

∫

Ω1

< Fs,E
′ > dΩ

(3a)

∫

Ω2

< ∇×E2,∇×E′ > −k2 < E2,E
′ > dΩ

+

∫

∂Ω2\Γ
< ν × (∇×E2),E

′
T > dA−

∫

Γ

< ν × (∇×E2),E
′
T > dA

=

∫

Ω2

< Fs,E
′ > dΩ,

(3b)

in combination with the following transmission conditions on Γ (note that the the coupling boundary

is entirely located in air region),

E1 × ν = E2 × ν on Γ (4a)

∇×E1 × ν = ∇×E2 × ν on Γ, (4b)

where k = ω
√
µε, ν is the normal unit vector on ∂Ω and Γ that is pointing outward Ω1 on Γ,

E′
T = (ν ×E′)× ν and Fs is the source term.

In the following subsection, we review the axisymmetric formulation for the electric field in Ω1,

and consequently compute the descretized interface operator on Γ.

2.2. Axisymmetric Formulations

We assume that the tip is rotationally symmetric. Thus, we opt for the cylindrical coordinates system

in the tip domain, Ω1. We denote the cylindrical coordinates by (r, φ, z), and r̂, φ̂, ẑ are the respective

unit vectors. In the rest of the report, we assume that the axis of rotation is along ẑ.

We expand the electric field in Ω1 into a Fourier series with respect to the azimuthal angle φ,

E1(r, φ, z) =

∞
∑

m=0

Em
p (r, z) cos(mφ) + Em

φ (r, z) sin(mφ)φ̂ (5)

where Em
φ (r, z) is a scalar function and Em

p (r, z) = Em
r r̂+ Em

z ẑ is a vector field [11,12]. We refer

to the mth mode in the Fourier series by Em = Em
p cos(mφ) + Em

φ sin(mφ)φ̂.

Thanks to the axisymmetric feature of the tip, the modes in Ω1 are fully decoupled. Therefore,

we solve (3a) only for a few modes in the Fourier series, assuming that a good approximation of the

total field E1 is attained by truncating the Fourier series (5) to a short finite sum.
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For each mode in the Fourier series, the φ dependency of the field is analytically known, which

means that one can simulate the fields only in a cross section of the tip in 2D. To do this, we

reformulate (3a) for axisymmetric cases.

First, we define the following planar operators [12],

∇pV := ∂rV r̂+ ∂zV ẑ (6a)

∇p ·Vp := ∂rVr + ∂zVz (6b)

∇p ×Vp := (∂zVr − ∂rVz)φ̂, (6c)

where ∂τ denotes the partial derivative with respect to τ , V (r, z) is a scalar function and Vp(r, z) =
Vr r̂+ Vz ẑ is a vector field. One can decompose any vector V into the planar and azimuthal

components: V = Vp + Vφφ̂. The vector operators in cylindrical coordinates are written as follows,

∇V =
1

r
∂φV φ̂+∇pV (7a)

∇ ·V =
1

r
∂φVφ +

1

r
∇p(rVp) (7b)

∇×V = ∇p ×Vp +P
1

r
(∂φVp −∇p(rVφ)), (7c)

where P =

[

0 1
−1 0

]

.

We rewrite (3a) in terms of Em and the vector operators in (7). In addition, we define qmφ := rEm
φ

and solve the equations for this new unknown, see [12]. Assuming Fs = 0, solving (3a) for Em

boils down to the following problem:

We seek,

Em
p , qmφ ∈ L2(Ωp1)

such that

Em
p cos(mφ) +

qmφ
r

sin(mφ)φ̂ ∈ H(curl,Ω1)

and,
∫

Ωp1

1

r
< mEm

p +∇pq
m
φ ,mE′m

p +∇pq
′m
φ > dΩp

+

∫

Ωp1

r < ∇p ×Em
p ,∇p ×E′m

p > dΩp

− k2
∫

Ωp1

r < Em
p ,E′m

p > +
1

r
< qφ, q

′
φ > dΩp

+

∫

∂Ωp1

< ν × (∇p ×Em
p +

1

r
P(mEm

p −∇pq
m
φ )), (E′m

p +
q′mφ
r

φ̂)T > dl

= 0,

(8)

∀E′m
p , q′mφ : E′m

p cos(mφ) +
q′mφ
r

sin(mφ)φ̂ ∈ H(curl,Ω1),

where Ω1 = Ωp1 × [0, 2π].
By reducing the computational domain from Ω1 to Ωp1, the axis of rotation which is inside Ω1

coincides with a part of ∂Ωp1. Therefore, a new boundary condition is introduced on the axis of

rotation. To obtain the boundary condition on the axis, we notice that Em ∈ H(curl,Ω1). This

involves the following condition on the axis,

mEm
p (0, z) +∇pq

m
φ (0, z) = 0. (9)

SAM Report (2015)



6 P. SOUZANGAR, ET AL.

From the above condition, one can show that the boundary condition on the axis for the tangential

component of Ep, i.e., Ez , is the following:

{

m > 0 : homogeneous Dirichlet boundary condition,

m = 0 : homogeneous Neumann boundary condition.
(10)

qφ is zero on the axis by definition (homogeneous dirichlet boundary condition).

2.3. Finite Element Galerkin Discretization

In this report, we use the lowest order polynomial conforming FEM on a triangular mesh in

Ωp ∈ R2. We have chosen the FEM basis functions according to [12]. For qφ the local piecewise

linear nodal functions (also known as hat functions), are used. The nodal basis functions for 2D

edge elements (also known as RWG basis functions [16], are chosen for Ep.

The FE matrices are obtained based on the bilinear form in (8). The final FE system of equations

is,
[

Aee Aev

Ave Avv

] [

µe

µv

]

=

[

fe
fv

]

, (11)

where µe and µv are the column vectors of FE DoFs on the edges and vertices, respectively.

2.4. Schur complement of the FE matrix

As mentioned earlier, we aim to obtain a discretized analogue of the Dirichlet-to-Neumann map on

Γ in Figure 2a to substitute the computational domain Ω1. In the case of 3D electromagnetic fields

the following electric to magnetic field operator C is defined [13, Section 9.4] by ET 7→ ν ×H,

where H solves (2) in Ω1 with the boundary value given by ET, i.e., the tangential component of E

on Γ.

On the discrete level, C corresponds to the Schur complement of the FEM matrix, which is

obtained by decomposing the DoFs into those located in the interior domain, Ω1, exterior domain,

Ω2 and DoFs on the boundary (Γ in Figure 2a):





Ain,in Ain,Γ 0

AΓ,in Ain
Γ,Γ +Aout

Γ,Γ AΓ,out

0 Aout,Γ Aout,out









µin

µΓ

µout



 =





fin
fΓ
fout



 , (12)

where µin, µΓ, and µout are the FE DoFs in Ω1, on Γ and in Ω2, respectively. Since we are

interested in the outer domain, Ω2, the system of equations is written exclusively for this domain.

Assuming fΓ = 0,
[

Aout
Γ,Γ + S AΓ,out

Aout,Γ Aout,out

] [

µΓ

µout

]

=

[

ftip
fout

]

, (13)

where S is the Schur complement matrix and ftip represents the excitation in the tip domain, Ω1,

S = −AΓ,inAin,in
−1Ain,Γ +Ain

Γ,Γ (14a)

ftip = −AΓ,inAin,in
−1fin. (14b)

We rely on S to represent the tip model matrix. This matrix may be huge and dense and also we

need to compute it for several modes in (5). Therefore, we want to represent S in the data sparse

H-matrix-format, see Section 4 and Section 5.

3. A MODEL PROBLEM

For all numerical experiments in sections 4 and 5, we consider an axisymmetric metallic tip with

permitivity εr = −10.155 + 2.1281e− 08i placed in air and illuminated by a dipole located on the

SAM Report (2015)



DATA SPARSE NUMERICAL MODELS FOR SNOM TIPS 7

axis of symmetry. The cross section of the tip is shown in Figure 2b. The apex radius and shaft radius

of the tip are λ/10 and λ/2 respectively. The tip angle is π/6 but the angle of the coupling cone is

chosen a little wider (350) so that the tip apex can be closer to the sample. The PML thickness in

Figure 2b is 1.4λ.

3.1. Excitation

To examine the behavior of the compressed model matrix, the metallic tip in Figure 2b is illuminated

by a dipole in two cases: a dipole parallel to the axis of symmetry and a perpendicular one. These

two cases excite m = 0 and m = 1 modes in (5), respectively.

Case m = 0. In this case, the magnetic vector potential is in z direction. The magnetic

potential vector of this dipole in cylindrical coordinates is,

A =
µ0

4π
√
r2 + z2

eik
√
r2+z2

δlẑ (15)

where δl is the length of the dipole. In this case, the electrical field has no dependence on φ, which

means that the Fourier series of the field only contains the m = 0 mode.

Case m = 1. In this case, magnetic vector potential is in x direction of Cartesian coordinates. The

magnetic potential vector of this dipole is,

A =
µ0

4π
√
r2 + z2

eik
√
r2+z2

δlx̂

=
µ0

4π
√
r2 + z2

eik
√
r2+z2

δl(cos(φ))r̂− sin(φ)φ̂)
(16)

In this case, the electrical field dependence on φ has the form of cos(φ) and sin(φ), which means

that the Fourier series of the field only contains the m = 1 mode.

Since the electromagnetic field goes to infinity in the location of the dipole, we introduce a ball

around the dipole and impose the excitation on the boundary of this ball such that we have total

fields outside the ball and only scattered fields exist inside the ball. In our experiments this radius

set to be 1.4λ.

3.2. FE Meshes

To investigate the efficiency of the compression of the model matrix S, we perform our experiments

for two kinds of mesh refinement: adaptive and regular. In adaptive refinement, the elements inside

the coupling cone and below the curvature of the tip apex are refined in each step, while in regular

refinement all the elements in the domain are refined regularly.

The numbers of DoFs for adaptively and regularly refined meshes are given in Table I. In this

table, NΓ is the number of DoFs on the boundary and is the number of rows and columns of the

model matrix S. Likewise, NΩ1
is the number of DoFs in Ω1 and is the number of rows and columns

of the matrix Ain,in in (12).

The meshes in Table I are the same for both m = 0 and m = 1 modes, however the numbers of

DoFs are different for each mode. The reason is the following: in the case m = 0 there is a total

decoupling between edge and vertex DoFs, i.e., Aev and Ave in (11) are vanishing. Considering the

fact that Eφ = 0 in the case of m = 0, the experiments are carried out only for Aee and not for the

entire FE matrix in (11). In other words, only DoFs defined on the edges are considered.

The meshing of the structure of Figure 2b, is shown in Figure 3 for adaptive and regular refinement

for the 3rd mesh in Table I.

In the following sections we explain how to build an H-matrix approximation of S.

4. BUILDING AN H-MATRIX APPROXIMATION OF S USING ACA

In this section, we compress the model matrix S by means of ACA algorithm [1, 5]. First, S is

calculated through (14a) using arithmetics of sparse matrices and sparse Gaussian elimination.

SAM Report (2015)
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Mesh Adaptive Regular

m=0 m=1 m=0 m=1

NΓ NΩ1 NΓ NΩ1 NΓ NΩ1 NΓ NΩ1

1 43 1319 84 1607 43 1319 84 1607

2 56 1649 110 2019 86 5293 170 6752

3 85 4381 168 5574 172 21206 342 27662

4 190 26829 378 35275 344 84892 686 111962

5 404 208372 806 276656 688 339704 1374 450482

Table I. Number of of DoFs for adaptively and regularly refined meshes generated by MatLab for the
configuration of Figure 2b. In this table NΩ1

refers to the dimension of Ain,in and NΓ refers to the size
of the schur complement matrix S, see (14a).

(a) Adaptively refined mesh (b) Regularly refined mesh

Figure 3. Illustration of the mesh 3 in Table I. Dipole is located about 1.51λ below the apex of the tip.

Then, S is partitioned and the ACA algorithm is applied to admissible blocks to provide a low-rank

approximation with a guaranteed accuracy, for details see [3, Sect. 3.4]. We refer to this approach

as "ACA-based approach".

4.1. ACA-based Approach

In this approach, we assemble the FE matrix according to (11). Then, we use the sparse direct solver

of MatLab to compute all the entries of S through (14a).

Before approximating S by an H-matrix, we apply a diagonal scaling to S, to balance the effect

of all DoFs which are computed on non-regular meshes or are of different kind (defined on edges or

nodes).

First, we find an admissible partitioning of S as mentioned in Section 1.2. Taking advantage

of the availability of the position information for DoFs on Γ, we adopt a geometrical clustering

approach [3, Sect. 1.4.1.1]. In geometrical clustering, a coordinate is associated to each row index
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of S: the coordinates of the middle points of the edges are associated to the DoFs defined on the

edges, and the coordinates of vertices are associated to the DoFs defined on the vertices.

We use the genClusterTree2d_pca routine implemented in AHMED to build the

geometrical cluster tree based on the PCA algorithm [14]. The input parameters for the geometrical

clustering algorithm are the coordinates of DoFs and the smallest size of blocks in the partitioned

matrix, bmin.

A block cluster tree is built based on the aforementioned cluster tree and a geometric admissibility

condition [3, eq. 4.11]. We use the genBlockClusterTree routine implemented in AHMED

for this purpose.

The admissible blocks [3, Sect. 1.3] of the partitioned S are approximated by low-rank matrices

and inadmissible blocks are saved in dense format. We apply the ACA algorithm to compress the

admissible blocks by using the AcaRowApproximator routine in AHMED.

The ACA algorithm finds low rank approximations of admissible blocks based on the entries of S

for a predefined error. The predefined error is a control parameter of the relative error of the low rank

approximation and is used as a stopping criterion for the ACA algorithm. Another stopping criterion

might be the maximum rank of the approximated block, which is not used in our experiments. The

cost of the ACA algorithm is of order of k2(m+ n) where k is the rank of the admissible block and

m× n is the block dimension.

4.2. Numerical Results

All the numerical results of this section are obtained based on the model problem introduced in

Section 3.

We compress the Schur complement matrix S for all meshes in Table I. The number of DoFs on

the boundary NΓ agrees with the size of S.

The minimum size of the blocks in the partitioned S, i.e., the size of inadmissible blocks is set to

bmin = 5 for all clusterings in our experiments.

Figure 4 shows the compression rate of S. The compression rate is defined by:

compression ratio =
Mdense

Mcompressed

,

where Mdense is the memory needed to save a dense matrix and Mcompressed is the memory needed

to save its H-matrix approximation. This figure shows that for larger sizes of S, the compression rate

increases which means that the compression is more efficient. This is expected since H-matrices can

store an approximation of a dense Schur complement of a FE matrix with almost linear complexity.

Figure 5 shows the relative Euclidean norm (computed by the norm-function of MatLab) of

the approximation error versus the ACA error control parameter. This figure proves that the error

parameter of the ACA algorithm is a reliable control for the accuracy of the compressed model

matrix.

Finally, we examine the effect of the compression on the FE solution in the outer domain, Ω2 in

Figure 2a. The electrical field computed from (13) in Ω2 by FEM is considered to be the reference

solution when the exact entries of S are used on the coupling boundary. The FE solution obtained by

the compressed S is the approximate solution. The relative L2 norm of the difference of reference

and solution error is shown in Figure 6. Clearly, a more accurate solution in the outer domain is

achieved where the approximation of S is more accurate.

5. APPROXIMATING SCHUR COMPLEMENT THROUGH H-ARITHMETICS

In this section, we adopt another strategy to build an H-matrix approximation of S such that one

does not need to precompute all the entries of S. We begin with the direct conversion of the sparse

FE matrices in (14) into H-matrices and then exploit H-arithmetics to obtain S directly in an H-

matrix format. We refer to this approach as the "H-arithmetic approach".
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(a) m = 0, adaptively refined meshes.
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(b) m = 1, adaptively refined meshes
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(c) m = 0, regularly refined meshes
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(d) m = 1, regularly refined meshes

Figure 4. Compression rate for the model matrix S vs the error control parameter ε and for bmin = 5 for
different meshes (see Table I) by using ACA.

5.1. Partitioning Based on the Matrix Graph

Reconsidering (14a), all FE matrices contributing to the calculation of S are sparse. We compute

these FE matrices and save them in Compressed Row Storage (CRS) format. To convert these

matrices directly to H-matrices, we first partition them as described below.

We adopt the same systematic procedure of partitioning mentioned in Section 1.2. On the contrary

to the clustering in Section 4.1, the cluster and block cluster tree are built through matrix graph based

clustering.

In the H-arithmetic approach, we partition the undirected matrix graphs associated to each of the

symmetric sparse matrices in (14a). By using a nested dissection algorithm for graph partitioning,

the obtained ternary cluster tree is called a nested dissection cluster tree and is defined in [3,

Sect. 4.5.1]. A vertex separator algorithm implemented in the Metis library [9], is used by the

cluster_alg routine in AHMED to generate nested dissection cluster trees. Besides the sparsity

pattern, the other parameter involved in building the algebraic cluster tree is the minimum size of

the blocks in the partitioned matrix. Then, the block cluster tree is built by using the algebraic

admissibility condition [3, eq. 4.50].

Partitioning of the Rectangular Matrices. Obviously, the idea of clustering of the matrix

indices based on the undirected matrix graph is applicable only to symmetric matrices, whereas the

matrices AΓ,in and Ain,Γ in (14a) are not even square. Furthermore, in these rectangular matrices
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Figure 5. Relative Euclidean error norm of the compressed model matrix vs the error control parameter ε
and for bmin = 5 for different meshes (see Table I) by using ACA.

most of the row and column vertices are not connected. These facts render the algebraic admissibility

condition useless for the partitioning of the rectangular matrices.

One may treat the rectangular matrices in (14a) as normal dense matrices such that computations

related to rectangular matrices are performed column by column. This increases the complexity of

the computations by a factor of NΓ.

Another possibility is partitioning of the rectangular matrices by choosing a type of admissibility

condition different from the algebraic one.

In this work, we use the geometric admissibility condition, same as for ACA, to partition the

rectangular matrices. In light of the sparsity of the matrices, we expect that a reasonable number of

the blocks are empty or low rank and partitioning improves the complexity of H-arithmetics. The

two algorithms are compared in Section 6, Figure 10.

Remarks on the case m = 0. As mentioned above, in the experiments for the H-arithmetic

approach we build the algebraic cluster trees only for Ain,in and Ain
Γ,Γ in (14a). In the case of

m = 0, as discussed in Section 3.2, the compression is only applied to Aee in (11). Since the

supports of the DoFs on the edges of the coupling boundary do not share an element, the matrix

Ain
Γ,Γ is a diagonal matrix in this case and no connectivity between DoFs is presented in its matrix

graph. Hence, clustering of the row indices of Ain
Γ,Γ based on the matrix graph partitioning fails. In

this case, we add some very small entries (in the order of the machine precision) to Ain
Γ,Γ to indicate

which edges share a vertex on the coupling boundary.
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Figure 6. Convergence of the L2 norm of the solution error in Ω2 when bmin = 5. Here, ε is the ACA error
control parameter.

5.2. Computations in H-arithmetics

Before converting the sparse matrices to H-matrices, we have to find a way of dealing with the

different nature of DoFs involved. We use diagonal scaling to make the the diagonal entries of

Ain,in and Ain
Γ,Γ equal to unity.

After matrix partitioning, the sparse matrices are converted to H-matrices directly as follows:

inadmissible blocks are saved in dense format and admissible blocks are saved in low-rank format,

where low-rank approximations of admissible blocks are obtained through truncated SVD. As

soon as the sparse matrices in (14) are available in H-matrix format, we rely on arithmetics for

hierarchical matrices (H-arithmetics) to compute the H-matrix format of S.

Instead of computing A−1
in,in, which is the only huge and dense matrix in (14a), we compute

hierarchical LU factorization (H-LU),

Ain,in ≈ LHUH (17)

where LH and UH are triangular H-matrices. In [4, Theorem 3.1] it has been shown that LH and

UH do exist (in combination with [4, Theorem 3.4]) and can be approximated with logarithmic-

linear complexity [3, Sect. 4.5.2].

Remark 1

Since A−1
in,in is the only full matrix in (14a) and also the biggest one, one may come up with the

idea of storing only this matrix as its LU factors, namely LH and UH in (17), and use matrix-vector
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multiplication to acquire the entries of S. However, this approach is not promising, because, the size

of Ain,in can grow quadrically with respect to the size of S while the storage in H-matrix format is

of almost linear complexity.

After converting the sparse matrices to H-matrices, all arithmetics in (14a) (namely LU-

factorization, backward/forward substitution, matrix multiplication and addition) are performed by

H-arithmetics. The required H-arithmetics for the computation of S in (14) is the following,

(I) Compute LH and UH (by using the HLU routine of AHMED),

(II) Forward substitution: LHX = AH
in,Γ (by using the LtHGeH_solve routine of AHMED),

(III) Backward substitution: UHY = X (by using the UtHGeH_solve routine of AHMED),

(IV) H-multiplication: Z = −AH
Γ,inY (by using the mltaGeHGeH routine of AHMED),

(V) H-addition: S = AH
Γ,Γ + Z (by using the addGeHGeH routine of AHMED).

5.3. Numerical Results

All numerical results in this section are obtained based on the model problem introduced in Section

3.

In all the experiments, the parameter ε specifies the accuracy of the computations such as SVD

and H-arithmetics. This parameter is used as an error control parameter. Similar to the ACA-based

approach, we set the smallest size of the blocks, bmin=5 for all S compression experiments.

We have compressed the matrix model for meshes in Table I through the H-arithmetic approach

described in sections 5.1 and 5.2.

Figure 7 shows the compression rate which is defined similar to the ACA-based approach in

Section 4.2. This figure shows that the compression is more efficient when the size of S increases.

Figure 8 shows the relative Euclidean error norm for different accuracies of compressed S matrices.

This figure shows that controlling the accuracy of the compression by means of the error control of

H-arithmetic is reliable for both cases m = 0 and m = 1.

Figure 9 shows the L2 norm of the solution error computed in the same way as discussed in the

ACA-based approach in Section 4.2.

6. CONCLUSION

In this work, we obtained a data sparse H-matrix-format of a finite element tip model matrix, S,

with controlled accuracies through two approaches.

Table I shows that NΩ1 grows quadratically with respect to NΓ. Since the complexity of the

ACA algorithm is O(NΓ log(NΓ)) (see [3, Sect. 3.4.4]), the complexity of the computations in

the ACA-based approach is dominated by the complexity of the computation of the entries of S

from (14a). This computation involves LU-factorization of Ain,in. In most practical situations the

LU-factoriztion of sparse matrices airing from 2D FE discretizations can apparently be done with a

complexity close to O(NΩ1). Under this optimistic assumption, considering that we need to compute

S column-wise, the complexity of the computations of the ACA-based method is not better than

O(N
3/2
Ω1 ) (note that NΩ1

∽ N2
Γ).

The H-arithmetics used in Section 5 can be performed with almost linear complexity, for example,

addition of H-matrices [3, Theorem 2.17] and multiplication of H-matrices [3, Theorem 2.26]

and LU-factorization as discussed in Section 5.2. Without partitioning of the rectangular matrices,

AΓ,in and Ain,Γ a complexity similar to that of the ACA-based approach is expected. However, by

partitioning the rectangular matrices in (14a) we may optimally expect almost linear complexity for

the H-arithmetic approach.

To compare the two approaches in our experiments, we measure the time needed for H-

arithmetics in the H-arithmetic approach (for both partitioned and unpartitioned rectangular
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(d) m = 1, regularly refined meshes

Figure 7. Compression rate of S for matrices of different size (see Table I) using H-arithmetics.

matrices) and the time needed for computing the entries of S through sparse matrix arithmetic

in MatLab. The computations are performed on an Intel(R) Xeon(R) CPU E5-2697 v2 @ 2.70GHz

with Linux operating system.

The measured times are shown in Figure 10. This figure shows slightly better computational

complexity for the H-arithmetic approach when rectangular matrices are partitioned.

Finally, the efficiency of compression for the two methods are shown in Figure 11. This figure

shows the compression rates of H-matrices obtained through the two approaches, the ACA-based

approach and the H-arithmetic one versus the relative Euclidean error norm of the compressed

matrix, ε. One can conclude that the ACA-based method shows slightly better compression

efficiency specially in the case of adaptively refined meshes.
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Figure 8. Relative Euclidean error norm of the compressed model matrix vs the error control parameter ε
and bmin = 5 for different meshes (see Table I) using H-arithmetics.
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Figure 10. Time required to compute the H-matrix approximation of S. This figure illustrates the time
required to compute entries of S by MatLab sparse calculations (ACA), and the time required to calculate
H-matrix through H-arithmetic approach when the rectangular matrices are partitioned (H-Partitioned) and

not partitioned (H-Unpartitioned)

SAM Report (2015)



18 P. SOUZANGAR, ET AL.

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

1

2

3

4

5

6

7

8
9

10

12

ε

c
o

m
p

re
s
s
io

n
 r

a
te

 

 

ACA−mesh 3

ACA−mesh 4

ACA−mesh 5

Alg−mesh 3

Alg−mesh 4

Alg−mesh 5

(a) m = 0, adaptively refined meshes.

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

1

2

3

4

5

6

7
8
9

10

12

14
16
18

ε

c
o
m

p
re

s
s
io

n
 r

a
te

 

 

ACA−mesh 3

ACA−mesh 4

ACA−mesh 5

Alg−mesh 3

Alg−mesh 4

Alg−mesh 5

(b) m = 1, adaptively refined meshes

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

1

2

3

4

5

6

7
8
9

10

12

14
16
18

ε

c
o

m
p

re
s
s
io

n
 r

a
te

 

 

ACA−mesh 3

ACA−mesh 4

ACA−mesh 5

Alg−mesh 3

Alg−mesh 4

Alg−mesh 5

(c) m = 0, regularly refined meshes

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

1

2

3

4

5

6
7
8
9

10

12
14
16
18
20
22
24
26

ε

c
o
m

p
re

s
s
io

n
 r

a
te

 

 

ACA−mesh 3

ACA−mesh 4

ACA−mesh 5

Alg−mesh 3

Alg−mesh 4

Alg−mesh 5

(d) m = 1, regularly refined meshes

Figure 11. Compression rates of H-matrices obtained through the ACA-based approach (ACA) and the H-
arithmetic one (Alg) versus the relative Euclidean error norm of the compressed matrix, ε.
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