
Parallel ALS Algorithm for the Hierarchical

Tucker Representation

S. Etter

Research Report No. 2015-25

August 2015
Latest revision: February 2016

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland

__

PARALLEL ALS ALGORITHM FOR SOLVING LINEAR SYSTEMS
IN THE HIERARCHICAL TUCKER REPRESENTATION

SIMON ETTER

Abstract. Tensor network formats are an efficient tool for numerical computations in many
dimensions, yet even this tool often becomes too time- and memory-consuming for a single compute
node when applied to problems of scientific interest. Intending to overcome such limitations, we
present and analyse a parallelisation scheme for algorithms based on the Hierarchical Tucker Rep-

resentation which distributes the network vertices and their associated computations over a set of
distributed-memory processors. We then propose a modified version of the alternating least squares

(ALS) algorithm for solving linear systems amenable to parallelisation according to the aforemen-
tioned scheme and highlight technical considerations important for obtaining an efficient and stable
implementation. Our numerical experiments support the theoretical assertion that the parallel scal-
ing of this algorithm is only constrained by the dimensionality and the rank uniformity of the targeted
problem.

1. Introduction. Computations in high dimensions are notoriously difficult due
to the curse of dimensionality : if an algorithm requires n data points to solve a prob-
lem in one dimension, then solving the analogous problem in d dimensions typically
requires nd data points which becomes prohibitive very quickly. Tensor network
ansätze like the hierarchical Tucker representation (HTR) from [10, 6] or its simpler
special case, the tensor train (TT) format from [23, 21], avoid this curse by cleverly
exploiting the structure in the data for compression such that the costs of working
with nd data points scale only with n times d times some low-order polynomial in
the rank parameter r. Heuristically, this parameter measures the “structuredness” of
the data and can be shown to be independent of d for many important special cases,
see e.g. [7, 14, 22]. We further refer to [9] for a textbook and to [15, 8] for literature
surveys regarding tensor network formats.

In the present paper, we consider high-dimensional linear systems of equations
Ax = b where the unknowns x have nd entries such that they can only be feasibly
handled in compressed tensor network form. The alternating least squares (ALS, also
known as one-site DMRG) algorithm from [12, 18] and its various extensions like the
density matrix renormalisation group (DMRG) algorithm from [12, 18] or the ALS
+ steepest descent (ALS(SD)) and alternating minimal energy (AMEn) algorithms
from [4] are among the most effective to solve problems of this type, yet even these
computational tools require parallelisation when applied to the large-scale problems
from science and engineering. This paper presents a novel parallelisation scheme for
such ALS-type algorithms which, to the author’s knowledge, is the first one to have a
serial fraction growing sublinearly in the problem size parameter d, meaning that its
parallel scalability grows with increasing problem dimensionality.

This favourable property is brought about by basing our algorithm on the HTR
which, as we motivate next on a fairly abstract level, is intrinsically better suited
for parallelisation than the TT format. Any non-trivial algorithm, in particular the
solution of linear systems, requires gathering some information from all vertices of
the network, and this step can only be carried out efficiently if the information is
passed on from one vertex to its neighbour like the baton in a relay race. Examples of
such information gathering steps are the orthogonalisation and, in case of the HTR,
computation of the Gramians for truncation (see [21, 6]), and the computation of
the projected operators and right-hand sides for the ALS algorithm. In the TT case,
the longest distance between two vertices is O(d) and it is therefore not possible to

1

2 SIMON ETTER

reduce the runtime of the information gathering step below O(d) through parallelisa-
tion. In contrast, the longest distance in the HTR based on a balanced mode tree is
only O(log(d)) and all basic algorithms (addition, dot product, orthogonalisation and
truncation) achieve the resulting lower bound of O(log(d)) on the parallel runtime
out of the box.

Nevertheless, it is possible to parallelise ALS-type algorithms based on the TT
format to some extent, as has been shown in [25]. In the mental picture given above,
the parallelisation scheme proposed there exploits that information needs to be ex-
changed repeatedly in ALS-type algorithms, and by pipelining up to O(d) such ex-
change rounds one obtains an algorithm scaling up to O(d) processors after some
initial phase. The fundamental problem of the TT format remains, however, and
expresses itself in that the first exchange round, requiring O(d) computational effort,
cannot be parallelised beyond two processors, namely one for each end of the TT
chain.

The remainder of this paper is organised as follows. Section 2 introduces the
notation necessary for our presentation, and in section 3 we discuss the parallel imple-
mentation and analyse the parallel scaling of a fairly general class of HTR algorithms.
Section 4 reviews the serial HTR ALS algorithm, highlights the changes required
to make this algorithm amenable to the above-mentioned parallelisation scheme and
presents numerical experiments verifying the scaling behaviour predicted in section 3.

2. Notation. To the author’s knowledge, this is the first manuscript to give a
detailed account of the HTR-based ALS algorithm. It should therefore come as no
surprise that this endeavour requires a novel notation which will be developed in the
following two subsections. Since the result will be fairly remote from the notation
found elsewhere, we discuss the advantages of our approach in subsection 2.3.

2.1. Tensors. The definition of tensors used in this paper is based on a gener-
alised concept of tuples obtained as follows.

Definition 1 (Tuple). Let D be an arbitrary set, and (Ak)k∈D a family of sets
parametrised by the elements of D. A tuple is a function t : D →

⋃

k∈D Ak, k 7→ tk
such that tk ∈ Ak for all k ∈ D.

This is a proper generalisation since the more common definition of tuples as
ordered sets is retained as the special case D := {1, . . . , n} for some n ∈ N. We denote
the set of such tuples, i.e. the Cartesian product of the Ak, by×k∈D

Ak and define

AD :=×k∈D
Ak for the case Ak = A for all k ∈ D. Two tuples t(1) ∈×k∈D(1) Ak,

t(1) ∈×k∈D(2) Ak with two disjoint sets D(1), D(2) can be combined into a new tuple

t ∈×k∈D(1)∪D(2) Ak by writing t := t(1) × t(2).
For our purposes, a tensor is a composition of tuples in the above sense.

Definition 2 (Tensor). Let D be an arbitrary set of modes (also known as
dimensions or directions) with corresponding mode sizes nk ∈ N and index sets
[nk] := {0, . . . , nk − 1} for all k ∈ D. A tensor is an element from the Cartesian
product K×k∈D[nk], i.e. it is a tuple with elements from K ∈ {R,C} indexed by tuples
from×k∈D

[nk] which are themselves indexed by k ∈ D.

We introduce the following conventions.
• We assume every mode k to have an implicitly defined mode size nk such

that mentioning it in the definition of a tensor space becomes redundant. We
therefore abbreviate K×k∈D[nk] to K(D).

• In contrast to all other tuples, we subscript the index tuples iD ∈×k∈D
[nk]

PARALLEL ALS ALGORITHM 3

with their domain of definition D because this in turn allows us to define that
an index iD shall always be taken from×k∈D

[nk] even if we do not explicitly
introduce iD as such.

• We write x(iD) instead of xiD to denote the evaluation of a tensor x ∈ K(D)
at iD for better readability.

The addition and scalar multiplication of tensors is defined element-wise,

(x+ y) (iD) := x (iD) + y (iD) , (αx) (iD) := αx (iD)

for all x, y ∈ K(D) and α ∈ K. The inner product and norm on K(D) are the standard
Euclidean inner product and norm

(x, y) :=
∑

iD

x(iD) y(iD), ‖x‖ :=
√

(x, x),

where z denotes complex conjugation if z ∈ C and is to be ignored for z ∈ R.
The mode product defined next is the straightforward generalisation of the matrix

product for tensors.

Definition 3 (Mode Product). Let x ∈ K(M ∪K), y ∈ K(K∪N) be two tensors
such that M , K and N are pairwise disjoint. The expression xy defines a new tensor
z ∈ K(M ∪N) whose entries are given by

z (iM × iN) :=
∑

iK

x (iM × iK) y (iK × iN) .

K may also be empty in which case the mode product becomes the tensor product
[9, §1.1.1]. The same operation has already been introduced in [1] under the name
“tensor-times-tensor” (ttt) product. We sometimes call the mode product a tensor
contraction to emphasise its property of merging several tensors into a single one.

If we interpret a square matrix as a linear operator on K({k}), it has two modes
associated with the mode symbol k, namely one which is multiplied with the k-
mode of the input vector and one which yields the mode of the output vector. We
incorporate this into our notation as follows. Given some mode symbol k, we introduce
two new mode symbols R(k) and C(k) with nR(k) := nC(k) := nk called row and
column mode of k, respectively, and further define D2 := R(D)∪C(D). Multiplication
with row/column modes follows special rules which generalise the rules of the matrix
product: a column mode C(k) is only multiplied with a k- or R(k)-mode appearing
to the right of the tensor carrying the C(k)-mode, and similarly, a row mode R(k) is
only multiplied with a k- or C(k)-mode appearing to the left. If in the resulting tensor
there is only either a row mode R(k) or a column mode C(k) left, we rename it to k.
The simple matrix-vector product Ax with A ∈ K({k}2) and x ∈ K({k}) is thus to be
read as follows. Because x stands to the right of A, the k-mode of x is multiplied with
the C(k)-mode of A, yielding an intermediate result in K({R(k)}) whose R(k)-mode is
then renamed to simply k since it appears without an accompanying C(k)-mode. We
thus get a final result in K({k}) as expected. Note that the stripping of row/column
modes only takes place if the corresponding column/row mode has been multiplied
over. For example, the mode product of x ∈ K({R(k)}) and y ∈ K({C(ℓ)}) with two
distinct modes k, ℓ lies in K({R(k),C(ℓ)}), not in K({k, ℓ}).

Given a tensor x ∈ K(D) and two modes k ∈ D, k′ 6∈ D, we let x(k→k′) de-
note the tensor in K((D \ {k}) ∪ {k′}) obtained after relabelling the k-mode to k′.
Most commonly, we want to tag a mode k with a function-like symbol f (e.g. the

4 SIMON ETTER

row/column mode tags R and C), a case for which we introduce the abbreviation
x(f(k)) := x(k→f(k)). The main application of this notation is to change which modes
are multiplied. For example, we must write x(R(k)) y(C(k)) ∈ K({k}2) to denote the
outer product of two vectors x, y ∈ K({k}), whereas xy ∈ K yields their inner product
up to conjugation of x in the complex case.

We conclude this subsection with a number of technical remarks and definitions.

Remark 4 (Mode Product Properties.). The mode product is
• distributive over tensor addition.
• commutative unless one of the multiplied modes is a row or column mode.
• associative as long as the sets of multiplied modes are disjoint.

An example where the mode product is not associative is given by the product of
three tensors x, y, z ∈ K(D). Depending on how we put the parentheses, we get three
different results (yz)x ∈ span{x}, (xz)y ∈ span{y} or (xy)z ∈ span{z}.

Definition 5 (Identity Tensor). Let D be some mode set. The identity tensor
ID is the tensor in K(D2) such that ID x = x for all x ∈ K(D).

Definition 6 ((Conjugate) Transposed Tensor). Let A ∈ K(D ∪ R(E) ∪ C(F))
be a tensor with some (potentially empty) row and column mode sets R(E), C(F).
We define

AT := A(R(E)→C(E),C(F)→R(F)), A∗ := AT .

Definition 7 (Inverse Tensor). Let A ∈ K(D2) be an invertible tensor operator.
The inverse tensor A−1 is the unique tensor in K(D2) such that AA−1 = ID.

Definition 8 (Orthogonal Tensor). Let x ∈ K(D) be a tensor and M ⊂ D a
mode set. x is called M -orthogonal if x(R(M))x(C(M)) = IM .

Definition 9 (Tensor Orthogonalisation). Let x ∈ K(D) be a tensor and k ∈ D

some mode such that
∏

ℓ∈D\{k} nℓ ≥ nk. The symbol QRk(x) denotes a pair (b ∈

K(D), c ∈ K({k}2)) of tensors such that x = bc and b is {k}-orthogonal.

Definition 10 (Tensor SVD [3]). Let x ∈ K(D) be a tensor and k ∈ D some
mode such that

∏

ℓ∈D\{k} nℓ ≥ nk. The symbol SVDk(x) denotes a triplet

(

b ∈ K(D), s ∈ K({k}2), d ∈ K({k}2)
)

such that x = bsd, b and d are {k}- and {R(k)}-orthogonal, respectively, and s has
the diagonal structure

s(i{R(k)} × i{C(k)}) =

{

s(i{k}) if i{R(k)} = i{C(k)} =: i{k},

0 otherwise,

for some s(i{k}) ≥ 0 called singular values.

Remark 11. We use the letters b, c and b, s, d rather than the more common q, r

and u, s, v to denote the factors in the tensor QR decomposition and SVD because
many of the latter will be used to refer to vertices in trees.

Remark 12. Tensor orthogonalisation and SVD can be conveniently implemented

via the matrix QR decomposition and SVD. Both procedures cost O
(

n2
k

∏

ℓ∈D\{k} nℓ

)

floating-point operations [5, §5.4.5].

PARALLEL ALS ALGORITHM 5

Remark 13 (Tensor Network Diagrams). Complicated mode products are some-
times more conveniently expressed in a graphical notation obtained as follows. Draw
each tensor as a vertex with an outgoing edge for each of its modes. Connecting
two edges implies contracting the corresponding modes. Instructive examples of this
notation can be found in [12, Figure 2.1].

2.2. Hierarchical Tucker Representation. The gist of the tensor network
approach is to split a single, high-dimensional tensor x ∈ K(D) into a product x =
∏

v∈V xv of many low-dimensional tensors xv. The template according to which the
tensor is split is provided by the mode tree.

Definition 14 (Mode Tree). A triplet (V,E,D) consisting of an undirected tree
(V,E ⊆ {u − v | u, v ∈ V }) and a function D mapping each vertex v ∈ V to some
(possibly empty) mode set D(v) is called a mode tree if the D(v) are disjoint after
stripping the row and column modes.

We use the notation u − v rather than the more common {u, v} to denote un-
ordered pairs u−v = v−u because the expression f({u, v}) for tagging an edge {u, v}
with a function-like symbol f could be misinterpreted as f({u, v}) = {f(u), f(v)}. The
condition on D(v) is required to make the formula

∏

v∈V xv to be introduced Defini-
tion 15 well defined. An example of two mode sets which are disjoint but not disjoint
after stripping the row/column modes is given by {R(k)}, {C(k)}.

The elements of D(v) are called free modes at v ∈ V . Depending on the context,
the symbol D may also refer to the set of all free modes D :=

⋃

v∈V D(v). The set of
edges incident to v ∈ V is denoted by E(v).

We will employ the usual graph-related terminology. In particular:
• Given a vertex v ∈ V , we define neighbour(v) := {u ∈ V | u− v ∈ E}.
• Given a pair of vertices u, v ∈ V , we write path(u, v) to refer to the unique set

of vertices connecting u and v (recall (V,E) is a tree). That is, path(u, v) =
{v} if u = v, otherwise it is the unique set satisfying u, v ∈ path(u, v) and

#neighbour(w) ∩ path(u, v) =

{

1 for w = u, v,

2 for w ∈ path(u, v) \ {u, v}.

Throughout this document, #S denotes the number of elements in a finite
set S.

• Given a root r ∈ V and a vertex v ∈ V , we define

parent(v | r) := path(v, r) ∩ neighbour(v),

child(v | r) := neighbour(v) \ parent(v | r),

sibling(v | r) := child(parent(v | r) | r) \ {v},

descendant(v | r) := {u ∈ V | v ∈ path(u, r)},

depth(v | r) := #path(v, r)− 1,

height(v | r) := max{depth(u | r) | u ∈ descendant(v | r)} − depth(v | r), 1

leaf := {v ∈ V | #neighbour(v) = 1},

interior(r) := V \ ({r} ∪ leaf).

Note that parent(v | r) is a singleton unless v = r. We will therefore
often treat it as a vertex parent(v | r) ∈ V rather than a set of vertices

1Put differently, height(v) is the longest distance from v to any leaf in descendant(v).

6 SIMON ETTER

parent(v | r) ⊆ V , as we already did in the definition of sibling. In this
convention, both parent as well as sibling become undefined if v = r.

The analogous concept to mode trees in the literature is the dimension partition
tree from [6, 9]. These have three additional properties.

• There is an a-priori chosen root r⋆ ∈ V .
• The tree is a proper binary tree, i.e. # child(v | r⋆) ∈ {0, 2} for all v ∈ V .
• Only the leaf vertices v ∈ leaf have free modes, and each leaf vertex has
exactly one free mode. Symbolically,

#D(v) =

{

1 if v ∈ leaf,

0 otherwise.

We call a mode tree satisfying these constraints standard. Furthermore, a standard
tree is called balanced if

max
v∈leaf

depth(v | r⋆)− min
v∈leaf

depth(v | r⋆) ≤ 1.

Definition 15 (HTR Network). Let (V,E,D) be a mode tree. A tuple of tensors
x ∈ HTR(V,E,D) :=×v∈V

K(E(v)∪D(v)) is called an HTR network. It represents
a tensor x :=

∏

v∈V xv ∈ K(D) which we denote by the same symbol x. The mode
sizes ne of the edge modes e ∈ E are called ranks and may differ for two different
networks x, y ∈ HTR(V,E,D). We therefore clarify which ranks are meant by writing
ne(x), ne(y).

In a straightforward continuation of the above notation, we write

HTR(V,E,D2) :=×
v∈V

K(E(v) ∪D(v)2)

to denote the space of HTR-formatted linear operators.

2.3. Discussion. Two key advantages of our notation are related to the role of
the root in HTR algorithms, which is to define the vertex with respect to which we
orthogonalise or compute reduced quantities like Gramians or contracted subtrees (to
be introduced in Definition 29). While this root remains fixed in the HTR orthogo-
nalisation and truncation algorithms from [6, 9], the ALS algorithms described below
move it through the network. Describing such rerootings in terms of the dimension
partition tree construction from [6, 9] is difficult since there the representation of
the tree structure is very much dependent on the particular choice of the root, and
relating representations of the same tree with different roots is fairly complicated.
In the mode tree construction given above, on the other hand, the root is simply
an additional parameter such that rerooting a tree is as simple as redefining this
parameter.

It is a common pattern in [6, 9] that expressions take different forms depending
on the type of vertex we are considering. An illustrative example is provided by the
orthogonalisation Algorithm 3 from [6] where four different cases are distinguished
depending on whether the vertex is a leaf or an interior one and whether it is the first
or second child of its parent. Because of the aforementioned rerooting in the ALS
algorithm, we also have to orthogonalise with respect to vertices which are not the a
priori chosen root of the dimension partition tree. Consequently, we have to orthogo-
nalise over each edge not only in leaves-to-root but also in root-to-leaves direction and
introduce further rules regarding the treatment of the root. In the notation from [6],

PARALLEL ALS ALGORITHM 7

the number of cases to distinguish would therefore rise to ten, a number we consider
large enough to best be avoided. In contrast, our notation leverages the symmetries
of the problem and thereby allows to treat all these cases at once, see the discussion
of orthogonalisation algorithms in subsection 4.1 and in particular Definition 27. The
same problem also occurs when discussing the assembly of contracted subtrees, where
once again our notation greatly reduces the number of cases to distinguish.

Another important feature of our notation is the conciseness of tensor contrac-
tions. To illustrate this point, let us compare our formula x =

∏

v∈V xv relating a
tensor x ∈ K(D) to its HTR representation (xv)v∈V ∈ HTR(V,E,D) with its coun-
terpart (11.26) from [9]. Both notations introduce families of summation indices (iu−v

in our case, ℓ[α] in [9]), but we then shorten the formula by treating the basis and
coefficient tensors b(j), c(α,·) in a uniform manner and hiding the indices as well as
the corresponding summations in the definition of the mode product. We believe the
latter point to be justified because we expect readers with prior knowledge of tensor
network techniques to interpret formulae like

∏

v∈V xv correctly even without know-
ing the details of our mode product construction such that its precise definition only
serves to confirm their guess. On the other hand, removing the boilerplate symbols
emphasises the nontrivial statements, namely that the product runs over all vertices
and not subsets thereof as in (2) (Environment Tensor) or Definition 25 (Subtree
Tensor). Achieving this conciseness is particularly important when discussing local
LSEs and contracted subtrees where even in the much simpler TT case the formulae
become fairly lengthy, cf. [18, §3.4] and [12, §5.1].

3. Parallelisation of HTR Algorithms. Most HTR algorithms exhibit a com-
mon algorithmic structure to be pointed out in subsection 3.1. It is this structure
which will allow us to make fairly general statements regarding the parallel scalability
of HTR algorithms as well as their parallel implementation later in this section.

3.1. Common Structure.

Definition 16 (Tree Traversing Algorithm). Given a tree (V,E), an algorithm
is called tree traversing if there exists a partially ordered set S of ordered pairs (u, v)
involving neighbouring vertices u, v ∈ V such that the algorithm can be formulated as
follows.

1: for each (u, v) ∈ S do
2: On u: Prepare a message m

3: Transfer m from u to v

4: On v: Consume m

5: end for

The for-loop on line 1 traverses through the pairs such that if a pair p ∈ S is
visited before another pair p′ ∈ S, then either p ≤ p′ or p and p′ are incomparable in
the partial order of S.

Definition 17 (Root-to-Leaves Algorithm). A tree traversing algorithm is called
root-to-leaves if there exists a vertex r ∈ V such that the set S and the partial order
defined thereon are given by

S := {(parent(v | r), v) | v ∈ V \ {r}},

(parent(v | r), v) ≤ (parent(u | r), u) :⇐⇒ v ∈ path(u, r).

Definition 18 (Leaves-to-Root Algorithm). A tree traversing algorithm is called
leaves-to-root if there exists a vertex r ∈ V such that the set S and the partial order

8 SIMON ETTER

defined thereon are given by

S := {(v, parent(v | r)) | v ∈ V \ {r}},

(v, parent(v | r)) ≤ (u, parent(u | r)) :⇐⇒ u ∈ path(v, r).

Definition 19 (Parallel Tree Traversing Algorithm). A tree traversing algorithm
is called parallel if the preparation/consumption of messages not ordered by the partial
order on S and occurring on different vertices can be executed concurrently.

Definition 20 (Tree Parallel Algorithm).An algorithm consisting of one or more
parallel root-to-leaves and/or leaves-to-root parts is called tree parallel.

The orthogonalisation and truncation procedures from [6] as well as the compu-
tation of the inner product are all tree parallel algorithms, and it will be the topic
of section 4 to develop a tree parallel version of the ALS algorithm. This category
therefore includes all major HTR algorithms.

3.2. Theoretical Parallel Scaling. We next analyse the parallel scaling of tree
parallel algorithms based on the following assumptions.

Assumption 21. Let A be a tree parallel algorithm consisting of a single root-
to-leaves/leaves-to-root part running on a standard balanced mode tree (V,E,D) with
root r⋆ equal to the root r from Definition 17/18. We assume:

• The operations on a vertex v ∈ V can only be run once all incoming messages
have been received. These local operations cannot be further parallelised, and
the outgoing messages can only be sent once all operations on vertex v have
finished.

• It takes A one time unit to prepare/consume all messages at an interior vertex
v ∈ interior(r⋆), and no time at the root r⋆ or a leaf v ∈ leaf.

• Transferring messages takes no time.

The first assumption simplifies the model in that it allows to associate all opera-
tions with vertices instead of endpoints of edges. In the following, we will therefore use
the expression “to process vertex v” to denote the consumption of all incoming and
the preparation of all outgoing messages on a vertex v ∈ V . The second assumption
is derived from the fact that for a standard mode tree, the interior vertex tensors are
three-dimensional and therefore typically have many more elements than the root or
leaf tensors which are only two-dimensional. Its main implication is that we can split
the time dimension into discrete, equally sized time steps which we will index by the
zero-based integer t ∈ N. All of these assumptions are only approximately satisfied
in practice. The idea behind the theory developed next is therefore not to explain
the scaling behaviour of tree parallel algorithms in all details, but rather to serve as
a reasonably accurate reference against which the empirically observed scaling can be
compared.

Lemma 22 (Equivalence of Leaves-to-Root and Root-to-Leaves Algorithms). Let
RtL and LtR be parallel root-to-leaves/leaves-to-root algorithms satisfying Assump-
tion 21, and let TA(p) denote the optimal runtime of algorithm A running on p pro-
cessors. Then, TRtL(p) = TLtR(p) for all processor counts p.

Proof. In order to run a tree parallel algorithm, we need to specify for each time
step t and each processor q the vertex v(t, q) which is to be processed, if any. We
call such a function v(t, q) a vertex schedule. Let vRtL(t, q) be an optimal vertex
schedule for RtL, i.e. vRtL(t, q) is compatible with the constraints from Definition 17

PARALLEL ALS ALGORITHM 9

0

1

2

4 5

3

6

Fig. 1: Example vertex schedule for d = 32, p = 5. The colors distinguish between
processors and the grey beams group the vertices according to the time step during
which they are processed.

and leads to the optimal parallel execution time TRtL(p). One easily verifies that
vLtR(t, q) := vRtL(TRtL(p)− 1− t, q) is a valid vertex schedule for LtR and has the same
execution time, which proves TRtL(p) ≥ TLtR(p). Applying the same argument in the
opposite direction proves TRtL(p) ≤ TLtR(p) which yields the claim.

Theorem 23 (Scaling of Tree Parallel Algorithms). Let A be an algorithm satis-
fying Assumption 21 and set d := #D. The optimal runtime of A on p ≤ ⌊d

2⌋
processors is given by

T (p) := ⌈log2 p⌉ − 1 +

⌈

d− 2⌈log2 p⌉

p

⌉

= O

(

log2 p+
d

p

)

,

and the optimal parallel speedup is

(1) S(p) :=
T (1)

T (p)
= O

(

d

log2 p+
d
p

)

.

Providing p > ⌊d
2⌋ processors does not yield additional speedup.

Proof. Clearly, the largest number of vertices we can process during a single time
step is #{v ∈ V | height(v | r⋆) = 1} = ⌊d

2⌋ which proves the last statement. We

therefore assume p ≤ ⌊d
2⌋ in the remainder of this proof. By Lemma 22, it is further

sufficient to consider only a root-to-leaves algorithm. We propose the following vertex
schedule for this case (see also Figure 1): at time t < t(p) := ⌈log2 p⌉ − 1, pick any
2t+1 < p processors and let these process the vertices at depth t + 1 (the +1 takes
into account that we do not need to allocate time for processing the root). We thus
process 2t(p)+1 − 2 interior vertices until time t(p). For times t ≥ t(p), enumerate the
remaining d− 2t(p)+1 interior vertices starting from depth t(p) + 1 and proceeding in
breadth-first order, then let processor q ∈ {0, . . . , p−1} process vertex (t− t(p)) ·p+q

in that order. If no such vertex exists, i.e. if (t− t(p)) · p+ q ≥ d− 2t(p)+1, then the
processor will wait for at most one time step until all other processors have finished.

It is easily seen that this vertex schedule satisfies the constraints imposed by a
root-to-leaves algorithm. Since processing one vertex renders at most two further
vertices ready for processing and we start with two ready vertices at time t = 0, an
upper bound for the number of vertices we can process at any time t ∈ N is 2t+1.
Up to time t(p), we meet this limit in every time step. From time t(p) onwards, we
keep all processors busy until the list of remaining vertices is exhausted, which takes

t′(p) :=
⌈

d−2t(p)+1

p

⌉

time steps. The runtime of t(p) + t′(p) = T (p) is therefore both

achievable as well as optimal.

10 SIMON ETTER

If a tree parallel algorithm consists of more than one root-to-leaves/leaves-to-root
part, we assume that the parts must be run one after the other and cannot overlap.
Again, this assumption is not necessarily satisfied in practice, but it simplifies the
argument and provides a reasonable approximation to reality. The optimal runtime
of the algorithm on p processors is then given by

∑n

i=1 ci T (p), where n denotes
the number of such parts and the ci take into account that each part may require a
different unit time per interior vertex. When computing the optimal parallel speedup,
the ci factor out and cancel, therefore (1) is still valid even in this more general setting.

3.3. Parallel Implementation. The proof of Theorem 23 presented a paral-
lelisation scheme for HTR algorithms in the idealised setting of Assumption 21. In
practice, however, several complications arise such that this scheme may not apply or
the optimality guarantee given by Theorem 23 may no longer be valid:

• The mode tree may be non-standard and/or not balanced.
• The HTR ranks may be non-uniform such that the uniform-cost-per-interior-
vertex assumption is not satisfied.

• Inter-process communication costs may be non-negligible.
This subsection discusses a set of strategies for handling such issues. Following the
structure exposed in Definition 16, we assume for this purpose that an HTR algorithm
is given as a list of jobs (namely the preparation or consumption of messages) each of
which is associated with a vertex of the mode tree and may depend on the completion
of other jobs before being run. Parallelising such an algorithm then amounts to
specifying for each job a) on which processor and b) when it is to be executed such
that all dependency constraints are met and the overall runtime is minimised.

To settle the “where” question, we let the user specify a vertex distribution, a
function q(v) mapping each vertex v ∈ V to a processor q(v) ∈ {0, . . . , p−1} by whom
the jobs associated with vertex v are to be run. The rationale for this design choice
is the observation that devising vertex distributions delivering decent performance
requires much insight into the problem at hand and is therefore best done on a case-
by-case basis. Assigning all jobs of vertex v to the same processor q(v) allows to store
all the data associated with v exclusively on processor q(v) and therefore reduces the
need for communication.

The “when” question, on the other hand, is answered by the longest path first
(LPF) scheduling algorithm [13] introduced next. Assume we know for each vertex
v ∈ V the time t(v) it takes to execute its associated jobs. We then define the weighted
depth

deptht(v | r) :=
∑

u∈path(v,r)\{v}

t(u)

and the weighted height

heightt(v|r) := max{deptht(u|r) + t(u) | u ∈ descendant(v|r)} − deptht(v|r)− t(v).

We further define the local connected component C(v) ⊆ V of a vertex v ∈ V to be
the largest connected component such that v ∈ C(v) and q(u) = q(v) for all u ∈ C(v),
and finally set local root(v | r) := argminu∈C(v) depth(u | r).

Let each processor manage a list of ready jobs, i.e. jobs which are not blocked by
dependencies on other jobs. Once a processor finishes a job, it waits until this list
becomes non-empty and then chooses the job to work on next according to either of
the following rules, depending on the type of the algorithm.
Leaves-to-root: Pick any ready job on one of the vertices v ∈ V which maximise

deptht(local root(v | r) | r).

PARALLEL ALS ALGORITHM 11

4

3

0 2

3

0 1

5

3

0 1

4

2 1

(a) Suboptimal schedule.

4

2

0 0

3

0 1

4

3

1 1

3

2 2

(b) Optimal schedule.

Fig. 2: Vertex distribution for which LPF scheduling may not deliver optimal perfor-
mance. Let the algorithm in question be leaves-to-root and Assumption 21 hold. The
colors distinguish between processors and the numbers indicate the time step at which
the vertices are processed. Both of the shown schedules are valid LPF schedules, yet
the left one has a runtime of six time steps while the right one requires only five.

Root-to-leaves: Pick any ready job on one of the vertices v ∈ V which maximise

max{heightt(u | r) + t(u) | u 6∈ C(v) ∧ parent(u | r) ∈ C(v)}.

Let us motivate this scheduling at the example of a leaves-to-root algorithm. On
the one hand, we note that the order in which processor q executes the jobs within
one of its local connected components C ⊆ V does not matter as the runtime will in
any case be

∑

v∈C t(v). What does matter, however, is the time t at which q sends the
message from the local root u of C to parent(u | r) since this provides a lower bound
t + deptht(u | r) on the overall runtime. The above algorithm greedily minimises
this bound. While LPF scheduling does not necessarily achieve the optimal runtime,
see Figure 2, we believe that the pathological cases are rare and the resulting loss in
performance outweighed by the simplicity of the algorithm.

4. Parallel ALS Algorithm.

4.1. Review of the Serial Algorithm. The alternating least squares (ALS)
algorithm from [12, 18] tackles the linear system of equations (LSE) Ax = b where the
operator A ∈ HTR(V,E,D2), the right-hand side b ∈ HTR(V,E,D) and an initial
guess x ∈ HTR(V,E,D) for the solution A−1b are all represented in HTR. Given such
an x and a vertex r ∈ V , let us define the environment tensor

(2) Ur(x) :=

∏

u∈V \{r}

xu

 (C(E(r))) .

This quantity corresponds to the matrix Qk from [18] and the retraction operator
Pi,1,x from [12]. Relabelling the edge modes E(r) of Ur(x) to column modes C(E(r))
is a purely notational trick enabling us to use the more familiar and shorter conjugate
transpose notation rather than having to relabel the modes in later formulae, e.g.
(3). This notation makes the fairly natural assumption that D does not contain any
row or column modes such that transposing the environment tensor only relabels
C(E(r)) → R(E(r)).

In its simplest form, the ALS algorithm reads as follows.

12 SIMON ETTER

Algorithm 1 ALS Algorithm

1: repeat
2: for vertex r ∈ V do
3: Update xr to the solution of the local LSE

(3) Ur(x)
∗AUr(x)xr = Ur(x)

∗ b.

4: end for
5: until convergence

The very simple structure of Algorithm 1 was brought about by ignoring two
important technical constraints:

• The local LSE (3) can only be solved numerically if the condition number
κ (Ur(x)

∗AUr(x)) of the local matrix is reasonably small.
• The ALS algorithm is only computationally feasible if the local matrix and
right-hand side can be assembled efficiently.

The remainder of this subsection will be devoted to demonstrating how to satisfy
these constraints in the HTR case. A similar endeavour has already been undertaken
in [16], but we need to give further details in order to prepare for the discussion in
subsection 4.2.

The following concepts of HTR orthogonality allow us to address the concerns
regarding the condition number.

Definition 24 (r-Orthogonality). An HTR network x ∈ HTR(V,E,D) is called
r-orthogonal with r ∈ V if Ur(x) is C(Er)-orthogonal.

Definition 25 (Subtree Tensor). Let x ∈ HTR(V,E,D) be an HTR network and
v, r ∈ V , v 6= r, two vertices. We define the subtree tensor Sv|r(x) through

Sv|r(x) :=

∏

u∈descendant(v|r)

xu

 (C(v−parent(v|r))).

The reason for relabelling the parent edge mode v − parent(v | r) of Sv|r(x) to a
column mode C(v − parent(v | r)) is again to simplify later formulae, cf. the remark
after (2).

Definition 26 (Strong r-Orthogonality). An HTR network x ∈ HTR(V,E,D)
is called strongly r-orthogonal if all subtree tensors Sv|r(x) with v ∈ V \ {r} are
{C(v − parent(v | r))}-orthogonal.

It is easily verified that a strongly r-orthogonal network is also r-orthogonal: the
environment tensor can be written in terms of the subtree tensors as

Ur(x) =
∏

v∈neighbour(r)

Sv|r(x),

and by the {C(v − parent(v | r) = v − r)}-orthogonality of the Sv|r(x) we have

Ur(x)
∗ Ur(x) =

∏

v∈neighbour(r)

Sv|r(x)
∗ Sv|r(x)

=
∏

v∈neighbour(r)

I{v−r} = IEr
.

PARALLEL ALS ALGORITHM 13

The above definition of strong r-orthogonality is simply a rewrite of the orthog-
onality concept from [6, Definition 3.5] in our root-invariant notation. The reason
why we need to distinguish between r-orthogonality and strong r-orthogonality will
become apparent when discussing parallelisation in subsection 4.2.

If x is r-orthogonal and A Hermitian, Theorem 4.1b) in [12] allows us to bound
the condition number of the local LSEs by κ (Ur(x)

∗AUr(x)) ≤ κ (A). Our aim is
therefore to r-orthogonalise x before solving the local LSE at r, i.e. to transform the
vertex tensors (xv)v∈V such that x becomes r-orthogonal but the represented tensor
∏

v∈V xv remains unchanged. We next reformulate and extend the orthogonalisation
algorithm from [6, Alg. 3] to obtain an efficient scheme for iteratively orthogonalising
an HTR network x ∈ HTR(V,E,D) with respect to all its vertices r ∈ V as required
by the ALS Algorithm 1. This scheme will make use of the following vertex-wise
operation.

Definition 27 (Vertex Orthogonalisation). Let x ∈ HTR(V,E,D) be an HTR
network and u − v ∈ E an edge. Orthogonalisation of xv with respect to u − v is
defined as the following operation:

1: (b, c) := QRu−v(xv)
2: xv := b

3: xu := cxu

Note that vertex orthogonalisation does not modify the represented tensor since
we have x̃vx̃u = bcxu = xvxu where xu, xv and x̃u, x̃v denote the vertex tensors
before and after the orthogonalisation step, respectively. The trick to strongly r-
orthogonalise an HTR network is to orthogonalise its vertices in the right order,
which is leaves-to-root:

Algorithm 2 Strong r-Orthogonalisation

1: for v ∈ neighbour(r) do Recurse(u) end for
2: function Recurse(v)
3: for u ∈ child(v | r) do Recurse(u) end for
4: Orthogonalise xv with respect to v − parent(v | r) // Definition 27
5: end function

Correctness of this algorithm follows easily by induction in leaves-to-root direc-
tion. Once an HTR network is strongly orthogonal with respect to any vertex r ∈ V ,
we can move this orthogonal centre around using the following theorem.

Theorem 28. Let x ∈ HTR(V,E,D) be an HTR network and r ∈ V , r′ ∈
neighbour(r) two vertices such that x is strongly r-orthogonal. After orthogonalis-
ing xr with respect to r − r′, x is strongly r′-orthogonal.

Proof. Because x was initially strongly r-orthogonal and the subtree tensors
Sv|r(x) = Sv|r′(x) with v ∈ V \ {r, r′} are not affected by the vertex orthogonali-
sation, we only need to prove Sr|r′(x) is {C(r − parent(r | r′) = r − r′)}-orthogonal.

We can write Sr|r′(x) =
(

∏

v∈child(r|r′) Sv|r(x)
)

xr(C(r−r′)), therefore we have

Sr|r′(x)
∗ Sr|r′(x) = xr(R(r−r′))

∏

v∈child(r|r′)

Sv|r(x)
∗ Sv|r(x)

xr(C(r−r′))

= xr

(

R(r−r′)
)

xr

(

C(r−r′)
)

= I{r−r′}.

14 SIMON ETTER

r

(a) Contracted subtrees.

=

(b) Local LSE.

Fig. 3: (a) Contracted subtrees (x|b)v|r for v ∈ neighbour(r). (b) Local LSE in terms
of the contracted subtrees (x|A|x)v|r, (x|b)v|r, v ∈ neighbour(r). In both figures,
vertices and edges of A are shown in red, of x in blue and of b in green. See Remark 13
for an introduction to tensor network diagrams.

In conclusion, stabilisation of the ALS Algorithm 1 requires us to make an initial
call to the strong r-orthogonalisation Algorithm 2 and then let the orthogonality
centre follow the vertex on which we solve the local LSE by using Theorem 28. Because
of this orthogonalisation scheme, a single ALS iteration runs faster if we choose to
visit the vertices in an order such that consecutive vertices are always neighbours,
and it has been verified in [16] that the vertex order has no significant impact on the
convergence as a function of the iteration count. In the following, we will therefore
assume the fixed backtracking depth first search (bDFS) order shown in Figure 4a.
Note that bDFS tree traversal visits a vertex several times, namely once per incoming
edge, in contrast to what is implied by the for-loop in Algorithm 1, and simplifies to
the sweeping scheme from [12, 18] in the TT case.

The key to the efficient assembly of the local LSEs are the contracted subtrees,
which are the HTR analogues of the tensors Ψk, Φk in [18] and Gi (without the last
vertex tensor Ai), Hi in [12].

Definition 29 (Contracted Subtrees). Let

x ∈ HTR(V,E,D), A ∈ HTR(V,E,D2), y ∈ HTR(V,E,D)

be HTR networks and v, r ∈ V , v 6= r, two vertices. We define the contracted subtrees

(4)

(x|y)v|r :=
∏

u∈descendant(v|r)

xu(l(E(v))) yu(r(E(v))),

(x|A|y)v|r :=
∏

u∈descendant(v|r)

xu(l(E(v)))Au(m(E(v))) yu(r(E(v))).

The l, m and r tags in (4) stand for left, middle and right and serve to prevent
the edge modes of different HTR networks from being multiplied.

The local matrix and the local right-hand side at a vertex r ∈ V can be expressed
in terms of the contracted subtrees as

(5)

Ur(x)
∗AUr(x) :=

Ar(m(E(r)))
∏

v∈neighbour(r)

(x|A|x)v|r

(

l(E(r))→R(E(r)),
r(E(r))→C(E(r))

)

,

Uα(x)
∗ b :=

br(r(E(r))
∏

v∈neighbour(r)

(x|b)v|r

 (l(E(r))→E(r)) ,

PARALLEL ALS ALGORITHM 15

see also Figure 3, thus assembling the local LSE incurs little extra cost once the
contracted subtrees are available. These in turn can be obtained efficiently through
the recursion formulae

(6)

(x|y)v|r := xv(l(E(v))) yv(r(E(v)))
∏

u∈child(v|r)

(x|y)u|r,

(x|A|y)v|r := xv(l(E(v)))Av(m(E(v))) yv(r(E(v)))
∏

u∈child(v|r)

(x|A|y)u|r.

The resulting algorithm for assembling the local LSEs has then exactly the same
structure as the orthogonalisation scheme presented above: in a first step, we pick
a starting vertex r ∈ V and compute the contracted subtrees (⋆)v|r for all v ∈
neighbour(r) (⋆ stands for both x|A|x and x|b), which if evaluated according to (6)
requires to compute all contracted subtrees (⋆)v|r for v ∈ V \ {r}. If we then move
from r to one of its neighbours r′ ∈ neighbour(r), we can reuse the (⋆)v|r = (⋆)v|r′
with v ∈ child(r′ | r) such that the only contracted subtrees to compute anew are
the two tensors (⋆)r|r′ . Because we already have the (⋆)v|r for v ∈ sibling(r′ | r), this
step involves only computations on r and has therefore a constant cost with respect
to the network size. Proceeding further according to the bDFS tree traversal order
from Figure 4a, we can continue in this manner for all vertices in the network.

Algorithm 3 HTR ALS Algorithm

1: Pick an arbitrary starting vertex r ∈ V

2: Strongly r-orthogonalise x // Algorithm 2
3: Compute (x|A|x)v|r and (x|b)v|r for all v ∈ V \ {r} // Equation (6)
4: repeat Recurse(r, r) until convergence
5: function Recurse(r, p)
6: for v ∈ child(r | p) do
7: Solve the local LSE at r // Equations (3), (5)
8: Orthogonalise xr with respect to r − v // Definition 27
9: Compute (x|A|x)r|v and (x|b)r|v // Equation (6)

10: Recurse(v, r)
11: end for
12: Solve the local LSE at r // Equations (3), (5)
13: if r 6= p then
14: Orthogonalise xr with respect to r − p // Definition 27
15: Compute (x|A|x)r|p and (x|b)r|p // Equation (6)
16: end if
17: end function

4.2. Parallelisation. An important feature of the local LSE (3) is that its ma-
trix and right-hand side depend on all vertex tensors of x. We therefore must not
modify x while one local solve is running, and in particular we cannot solve multiple
local LSEs concurrently. In Algorithm 3, this is expressed by the fact that we must
run the loop over the children (line 6) sequentially, because the computations for the
local LSE and the contracted subtrees on lines 7, 9 depend on the contracted subtrees
computed on line 15 in the subordinate calls to Recurse. The ALS algorithm as
presented in subsection 4.1 is therefore not parallelisable without algorithmic mod-
ifications eliminating the dependency between local LSE solves. Since already the

16 SIMON ETTER

. . .

(a) Serial ALS Algorithm 3: backtracking depth first search (bDFS).

(b) Parallel ALS Algorithm 4: root-to-leaves followed by leaves-to-root.

Fig. 4: Tree traversal orders of the serial and parallel HTR ALS algorithm. The red
vertices denote the ones on which we currently solve local LSEs.

serial ALS Algorithm 3 does not explicitly access all vertex tensors but rather uses
cached contracted subtrees to assemble the local LSEs, eliminating this dependency
is very easy: we simply drop the aspiration that the cached contracted subtrees must
equal the ones computed from only the most recent vertex tensors. More precisely,
we rearrange the loop on lines 6 to 11 in Algorithm 3 as follows.

1: Solve the local LSE at r // Equations (3), (5)
2: for v ∈ child(r | p) do
3: Compute (x|A|x)r|v and (x|b)r|v // Equation (6)
4: end for
5: parallel for v ∈ child(r | p)
6: Recurse(v, r)
7: end parallel for

The intended meaning is that we eliminate the dependencies in the second loop
by precomputing the contracted subtrees on line 3 and using only these precomputed
values on line 6, ignoring the fact that they become outdated with the first local LSE
solve on this line. The resulting parallel tree traversal order is shown in Figure 4b.

To justify why we put the local LSE solve before both loops, we note that the first
loop in the above pseudocode-snippet reads xr but does not generate new information
which would influence the local LSE at r, while the second loop does generate such
information but does not read xr. Therefore, putting line 1 into the first loop would
amount to solving the same problem multiple times, while putting it into the second
loop would mean to solve intermediate problems whose solutions we do not need.

The above pseudocode-snippet does not yet include orthogonalisation because the
parallel setting introduces the additional difficulty that we have to orthogonalise with
respect to multiple vertices at the same time. We propose the following algorithm to
achieve this.

Definition 30 (Child-Orthogonalisation). Let x ∈ HTR(V,E,D) be an HTR
network and r, p ∈ V two vertices. Orthogonalisation of xr with respect to its children
relative to p is defined as the following operation:

1: for v ∈ child(r | p) do
2: (bv, sv, dv) := SVDr−v(xr)
3: xr := bv sv
4: xv := dv xv

PARALLEL ALS ALGORITHM 17

x x(1) x(2) x′

Fig. 5: Child orthogonalisation. The vertex tensors xr, xv, v ∈ child(r | p), of x are
shown in blue, the tensors sv in white. See Remark 13 for an introduction to tensor
network diagrams.

5: end for
6: for v ∈ child(r | p) do
7: xr := xr s

−1
v

8: xv := sv xv

9: end for

Theorem 31. Child-orthogonalisation does not modify the represented tensor x =
∏

v∈V xv.

Proof. Lines 3, 4 do not modify x since bvsvdv xv = xrxv, and the same holds for
lines 7, 8 since xrs

−1
v svxv = xrxv.

Theorem 32. Assume Sv|r(x) is {C(v − r)}-orthogonal for all v∈neighbour(r)
and some r ∈ V .2 After orthogonalising xr with respect to its children relative to
some vertex p ∈ V , Sr|v(x) is {C(r − v)}-orthogonal for all v ∈ child(r | p).

Proof. Let us denote by x the original network and by x′ the final network. We
define v1, . . . , vc ∈ child(r | p), c := #child(r | p), to be the children of r in the order
in which they appear in the first loop, and denote by x(i), i = 1, . . . , c, the state of
the network after the iteration v = vi of the first loop has been executed (see also
Figure 5).

The proof splits into two parts.
1. We have

Svi|r(x
(j)) =

{

Svi|r(x) if j < i,
(

Svi|r(x) d
T
vi

)

(C(v−r)) otherwise,

for i, j = 1, . . . , c. Since dvi
and Svi|r(x) are {R(vi − r)}- and {C(vi − r)}-

orthogonal, respectively, Svi|r(x
(j)) is {C(vi − r)}-orthogonal for any i, j =

1, . . . , c.
2. Let u ∈ neighbour(r). From the proof of Theorem 31 it follows that Sr|u(x)

is not modified by lines 3, 4 unless u is equal to the loop variable v. This
proves

Sr|vi
(x(c)) =

∏

u∈child(r|vi)

Su|r(x
(i))

 (bvisvi) (C(r−vi)), ∀i = 1, . . . , c.(7)

2This is equivalent to x being r-orthogonal up to scaling of the Sv|r(x), v ∈ neighbour(r).

18 SIMON ETTER

Arguing similarly for the second loop, we obtain

Sr|vi
(x′) =

∏

u∈child(r|vi)

Su|r(x
(i))

 bvi(C(r−vi)), ∀i = 1, . . . , c.(8)

bvi is {r − vi}-orthogonal and the Su|r(x
(i)) are {C(r − u)}-orthogonal by

assumption for u = parent(r | p) and by part 1 for u ∈ sibling(vi | p).
Therefore, Sr|vi

(x′) is {C(r − vi)}-orthogonal for all vi ∈ child(r | p).

Definition 30 silently assumed that sv is invertible, i.e. that no singular value is
exactly 0. In our code, we ensure this condition by transforming the singular values
sv(iv−r) with

(9) sv(i{v−r}) := max{sv(i{v−r}), eps sv(i{v−r} = 0)}

where eps denotes the machine precision and sv(i{v−r} = 0) the largest singular
value. Note that finite-machine precision may lead to a similar deviation between
the exact singular values and their numerically computed counterparts such that the
above transformation does not change the accuracy of the latter. We now analyse
how such rounding influences the above results.

Theorem 31 relies on the identities bvsvdv = xr and sv s
−1
v = I{v−r}, both of

which are satisfied up to machine precision when using the singular values from (9).
Thus, the statement in Theorem 31 is valid up to machine precision as well.

In Theorem 32, the rounding in the singular values implies that (7) is satisfied
up to a relative error of O(eps). Multiplication with s−1

v may then blow this error
up such that the relative error in (8) is O(1), i.e. the Sr|v(x) may not be {C(r− v)}-
orthogonal at all. Luckily, we can limit the impact of rounding errors by interleaving
orthogonalisation and subtree computation as follows.

Definition 33 (Child-Orthogonalisation & Contracted Subtree Computation).
Let x ∈ HTR(V,E,D) be an HTR network and r, p ∈ V two vertices. Combined child-
orthogonalisation and contracted subtree computation at xr relative to p is defined
as the following operation:

1: for v ∈ child(r | p) do
2: // Orthogonalise xr with respect to v

3: (bv, sv, dv) := SVDr−v(xr)
4: xr := bv
5: xv := sv dv xv

6: // Compute contracted subtrees
7: Compute (x|A|x)r|v and (x|b)r|v // Equation (6)
8: // Temporarily move the non-orthogonal factor to xr

9: xr := xr sv
10: xv := s−1

v xv // (*)
11: // Update (x|A|x)v|r and (x|b)v|r
12: (x|A|x)v|r := dv

(

(l)
)

(x|A|x)v|r dv
(

(r)
)

13: (x|b)v|r := dv
(

(l)
)

(x|b)v|r
14: end for
15: for v ∈ child(r | p) do
16: // Move the non-orthogonal factor to xv again
17: xr := xr s

−1
v

PARALLEL ALS ALGORITHM 19

18: xv := sv xv // (*)
19: // Update (x|A|x)v|r and (x|b)v|r
20: (x|A|x)v|r := sβ

(

(l)
)

(x|A|x)v|r sβ
(

(r)
)

// (+)

21: (x|b)v|r := sβ
(

(l)
)

(x|b)v|r // (+)
22: end for

Here, (l) stands for R(v−r)→R(l(v−r)),C(v−r)→C(l(v−r)), and (r) stands for R(v−r)→

C(r(v−r)),C(v−r)→R(r(v−r)).
The two lines marked with (*) may be omitted since the second undoes the effect

of the first. The two lines marked with (+) may be dropped if (x|A|x)v|r and (x|b)v|r
are updated anyway before being used again, as is the case in Algorithm 4.

It is easily verified that the modifications applied to x in Definition 33 are equiv-
alent to the ones in Definition 30, therefore Theorems 31 and 32 are also valid for
combined child orthogonalisation and contracted subtree computation. The key idea
of Definition 33 is to compute the contracted subtrees at a point (line 7) where Sr|v(x)
is {C(r−v)}-orthogonal up to errors of order O(ε). Since the local LSE are assembled
based on these cached (x|A|x)r|v, (x|b)r|v capturing accurately C({r−v)}-orthogonal
Sr|v(x), it no longer matters that the final Sr|v(x) are not accurately {C(r − v)}-
orthogonal. We further remark that the updates to the contracted subtrees on lines
12, 13 and 20, 21 in Definition 33 are a consequence of the modifications done to xv on
lines 5, 10 and 18. In the serial Algorithm 3, such updates are not necessary because
(x|A|x)v|r, (x|b)v|r are updated anyway on line 15 before being used again.

The final parallel HTR ALS algorithm is summarised in Algorithm 4. It can
be considered an adaption of the parallel TT DMRG from [25] to the HTR setting,
which yields the advantage that our algorithm has a tree parallel scaling right from
the beginning, in contrast to the TT DMRG algorithm which requires an almost serial
initial phase. We would furthermore like to point out the similarity between the above
orthogonalisation strategy and the HOSVD algorithm from [9, §11.3.3]. In fact, the
singular values it computes are exactly the ones from [9] and could in principle be used
for truncation, resulting in a scheme similar to the AMEn algorithm from [4]. We do
not pursue this idea further, however, because interleaving the ALS and truncation
steps complicates the algorithm and results in at most a factor two speedup. In
practice, we have found the speedup to be much lower because most of the time is
spent on solving the local LSEs rather than orthogonalisation and truncation.

4.3. Computational Costs. We conclude the above discussions by analysing
the cost of the HTR ALS algorithm and pointing out the tricks to reduce this cost,
as has been done for the TT ALS algorithm in [12, 18]. For this purpose, we assume
(V,E,D) to be a standard mode tree and x ∈ HTR(V,E,D), A ∈ HTR(V,E,D2),
b ∈ HTR(V,E,D). We define

d := #D, n := max
k∈D

nk, r := max
e∈E

ne(x), R := max
e∈E

ne(A), Rb := max
e∈E

ne(b).

The ranks of x are usually larger than the ranks of A or b, thus we will assume
Rarb ≤ Ra′

rb
′

if a+b = a′+b′ and b ≤ b′, and the analogous inequality for Rb. In the
below terms involving both n as well as r, the rank symbol r refers to the ranks at
the leaves and therefore satisfies r ≤ n. This allows us to order such terms according
to narb ≤ na′

rb
′

if a+ b = a′ + b′ and a ≤ a′.
In the following, we count for each part of the ALS algorithm— orthogonalisation,

contracted subtree computations and local LSE solves — the number of floating-point
operations (FLOP) arising during a single iteration, i.e. a single call to Recurse(r, r).

20 SIMON ETTER

Algorithm 4 Parallel HTR ALS Algorithm

We assume an implicit cache of contracted subtrees. This cache is initialised on
line 3 and only updated when we explicitly say so, namely on lines 8 and 16. Each
time contracted subtrees are needed (i.e. when computing new contracted subtrees
and when solving the local LSE), their values are read from the cache even if the
cache is outdated.

1: Pick an arbitrary starting vertex r ∈ V

2: Strongly r-orthogonalise x // Algorithm 2
3: Compute (x|A|x)v|r and (x|b)v|r for all v ∈ V \ {r} // Equation (6)
4: repeat Recurse(r, r) until convergence
5: function Recurse(r, p)
6: if child(r | p) 6= {} then
7: Solve the local LSE at r // Equations (3), (5)
8: Child-orthogonalise and compute contracted

subtrees at xr relative to p // Definition 33
9: parallel for v ∈ child(r | p)

10: Recurse(v, r)
11: end parallel for
12: end if
13: Solve the local LSE at r // Equations (3), (5)
14: if r 6= p then
15: Orthogonalise xr with respect to r − p // Definition 27
16: Compute (x|A|x)r|p and (x|b)r|p // Equation (6)
17: end if
18: end function

We state already here that the costs at the root are always negligible such that we do
not have to discuss this special case repeatedly.

Orthogonalisation requires some constant number of QR decompositions, SVDs
and mode multiplications per vertex, each of which costs O(nr2) for leaves and O(r4)
for interior vertices, leading to a total cost of O(dr4+dnr2) FLOP. See also [6, Lemma
4.8] for a more detailed result regarding the cost of the strong r-orthogonalisation
Algorithm 2.

The recursive computation of the contracted subtrees (x|A|x)v|r with v ∈
interior(r), r ∈ V and child(v | r) = {vL, vR} requires evaluating

xv

Av

xv

(x|A|x)vL|r (x|A|x)vR|r

(see Remark 13 for an introduction to tensor network diagrams). As in Figure 3,
vertices and edges of x are shown in blue and those of A in red. We propose to
contract this network according to the sequence3

Rr4+R3r2 R2r4 Rr4

,

3The Matlab script from [24] was of great use to determine such contraction sequences.

PARALLEL ALS ALGORITHM 21

which costs O(R2r4) FLOP. At the leaf vertices v ∈ leaf, the network to contract is
given by

xv

Av

xv
.

and can be evaluated in O(n2Rr) FLOP. Both of these operations are invoked a con-
stant number of times per vertex, thus computing the contracted subtrees (x|A|x)v|r
costs O

(

dR2r4 + dn2Rr
)

in total. The costs for computing (x|b)v|r are obtained

similarly. We only state the final result, which is O
(

dRbr
3 + dnRbr

)

.
The local LSEs are best solved using an iterative method like conjugate gradient

or GMRES because on the one hand, the old, to-be-replaced vertex tensor often
provides a good initial guess for the new, replacing one, and on the other hand, the
special structure of the local matrix allows for an efficient matrix-vector product. To
make the second point more concrete, we consider the matrix-vector product at an
interior vertex r ∈ interior(r⋆) with neighbour(r) = {vP , vL, vR}, which amounts to
contracting

(x|A|x)vP |r

Ar xr

(x|A|x)vL|r (x|A|x)vR|r

.

see also Figure 3b. This can be done in O(R2r4) FLOP through

R3r2+Rr4 R2r4 Rr4

.

Similarly, we find the cost of the matrix-vector product at the leaves to be O(n2Rr).
The right hand side can be computed in O(Rbr

3) (interior vertex) and O(nRbr) (leaf),
respectively, which yields a total cost for solving the local LSE of

O
(

d ρ
(

R2r4 + n2Rr
)

+ d
(

Rbr
3 + nRbr

))

,

where ρ denotes the number of steps per local LSE required by the iterative solver.

4.4. The ALS(SD) Algorithm. The ALS algorithms presented above do not
adapt the ranks of the iterate and therefore fail to produce a reasonably accurate
solution if the initial ranks are chosen too small, but become unnecessarily costly
if these ranks are overestimated. The ALS(SD) algorithm from [4] allows to easily
endow the ALS scheme with rank-adaptivity by extending it with a steepest descent
(SD) and a truncation step as follows.

Algorithm 5 ALS(SD) Algorithm

1: repeat
2: Compute residual approximation z ≈ b−Ax

3: Update x := x+ z

4: Run a single ALS iteration (Algorithm 3 or 4)
5: Truncate x

6: until convergence

22 SIMON ETTER

In the numerical experiments presented below, the residual approximation is com-
puted using a single iteration of the parallel ALS Algorithm 4 with fixed uniform rank
ne(z) = 3 for all e ∈ E applied to the system ID z = b−Ax, see [4] for details. For the
truncation step, we use the algorithm from [9, §11.4.2.1] choosing the ranks adaptively

such that the original and truncated tensors x, x̃ ∈ HTR(V,E,D) satisfy ‖x−x̃‖
‖x‖ ≤ ε

with ε ∈ R>0 a user-specified tolerance parameter. We call the ALS(SD) algorithm
serial if the ALS algorithm on line 4 is the serial Algorithm 3, and parallel if the
algorithm in question is the parallel Algorithm 4.

4.5. Numerical Experiments. We investigate the numerical properties of the
above algorithms by means of the d-dimensional Poisson equation −∆u = 1 on [0, 1]d

with homogeneous Dirichlet boundary conditions, discretised according to the stan-
dard finite difference scheme on a uniform mesh with n = 26 interior grid points in
each dimension. This linear system of equations is quantised [26, 19, 20, 14] into 6
virtual modes of length 2 each, and the resulting 6d modes are organised into a mode
tree by first constructing a balanced standard tree for the d physical modes and then
replacing each leaf in this tree with a balanced standard tree for the 6 virtual modes of
the respective dimension. Further details about the numerical experiments are given
at the end of this subsection.

In a first test, we employ both the serial and parallel ALS and ALS(SD) algorithms
on a single core to check whether the modifications required for parallelisation have
any impact on the convergence of the algorithms. As shown in Figure 6, this is not
the case.

Next, we investigate the strong scaling of the parallel ALS(SD) algorithm. From
Figure 7 we conclude:

• Theorem 23 allows to predict the parallel scaling with reasonable accuracy if
the number of leaves d is replaced with an effective d taking into account that
the vertex tensors near the leaves are smaller than the ones near the root and
the mode tree is not perfectly balanced because d is not a power of 2.

• The scalability decreases with increasing iteration count of the ALS(SD) al-
gorithm. This is because in the first iteration, the ranks are almost uniform
(2 ≤ r ≤ 4) while in later iterations the ranks become increasing towards the
root (r ≤ 13).

Technical Details. All benchmarks were run on two twelve-core AMD Opteron
6174 processors (2.2 GHz). The implementation is based on MPI and uses asyn-
chronous point-to-point communication for all messages except the exchange of some
norms which is implemented in terms of a broadcast. The algorithm generating the
vertex distributions is described in section S1. The runtimes per vertex were assumed
uniform such that deptht(v | r⋆) ∝ depth(v | r⋆) and heightt(v | r⋆) ∝ height(v | r⋆).
The local LSEs are solved using the conjugate gradient algorithm, terminating the
iterations once the relative local residual drops below 10−10 or the iteration count
reaches the dimension of the LSE. We use an HTR network of the indicated ranks
and with random vertex tensors as initial guess for the ALS methods, and the right-
hand side, i.e. the all-ones tensor, for the ALS(SD) algorithms. “Relative residual”

refers to ‖b−Ax‖
‖b‖ where A, b denote the (global) coefficient matrix and right hand side

and x the current iterate. The markers in Figure 6 refer to the value of this quantity
after an ALS/ALS(SD) iteration has been completed.

5. Conclusion. We have seen that the TT ALS algorithm for solving linear sys-
tems of equations from [12, 18] is not suitable for parallelisation because algorithms

PARALLEL ALS ALGORITHM 23

Fig. 6: Convergence of the serial and parallel ALS and ALS(SD) algorithms applied
to the 128-dimensional Poisson equation. r denotes the rank of the iterate, eps the
relative truncation tolerance. Both algorithms were run on a single core.

(a) dp = 32 (b) dp = 128

Fig. 7: Strong scaling of the ALS(SD) solver applied to the Poisson equation with
dp = 32 (left) and dp = 128 (right) physical dimensions and relative truncation

tolerance ε = 10−7. “Cumulative parallel speedup” is computed as T (1)
T (p) where T (p)

is the wall clock time up to and including the indicated ALS(SD) iteration on p

processors. The dashed lines denote perfect speedup, the upper end of the grey area
the optimal speedup from Theorem 23 for d = 4dp and the lower end the optimal
speedup for d = dp. The method converges in four steps for both dp = 32 as well as
dp = 128.

based on the TT format are generally only poorly parallelisable, and the ALS algo-
rithm in particular is not parallelisable even when based on different formats. We
therefore presented a novel ALS algorithm overcoming both of these constraints and
found it to allow for O

(

d
log(d)

)

parallel speedup (d denoting the number of dimen-

sions). This on the one hand means the parallel algorithm enjoys asymptotically
almost optimal (up to the logarithmic factor) weak scaling in the limit d → ∞. On
the other hand, it implies we need very high-dimensional problems in order to scale

24 SIMON ETTER

the algorithm to large processor counts: we have seen it already takes 6× 128 = 768
dimensions or 2768 ≈ 10231 unknowns to get decent scaling up to only 24 cores.

Another approach to parallelisation is to distribute the workload associated to a
single vertex, as has been done in [2, 11, 17]. In the generic setting considered here, this
boils down to parallelising the dense linear algebra operations at the vertex level, most
importantly the gemm underlying the mode product. Such a parallelisation scheme
avoids the dimensionality problem discussed above but often amounts to parallelising
a small inner loop nested in a large outer one in which case it will also not scale well.

The two approaches are complementary, and we expect most applications will
require combining their respective merits. In such a setup, the algorithm developed
here allows for important speedup in addition to the parallel potential found at other
levels in the software stack, in particular in the ideal case of low ranks and high
dimensions where the algorithms are hardly parallelisable otherwise.

Acknowledgements. I would like to thank Vladimir Kazeev for his advice on
tensor network formats and the related linear solvers, and Robert Gantner for his
support regarding the implementation.

REFERENCES

[1] B. W. Bader and T. G. Kolda, Algorithm 862: Matlab tensor classes for fast algorithm pro-

totyping, ACM Trans. Math. Softw., 32 (2006), pp. 635–653, doi:10.1145/1186785.1186794.
[2] G. K.-L. Chan, An algorithm for large scale density matrix renormalization group calculations,

J. Chemical Physics, 120 (2004), pp. 3172–3178, doi:10.1063/1.1638734.
[3] L. De Lathauwer, B. De Moor, and J. Vandewalle, A multilinear singular value de-

composition, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1253–1278, doi:10.1137/
S0895479896305696.

[4] S. Dolgov and D. Savostyanov, Alternating minimal energy methods for linear systems

in higher dimensions, SIAM J. Sci. Comput., 36 (2014), pp. A2248–A2271, doi:10.1137/
140953289.

[5] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University Press,
Baltimore, MD, USA, third ed., 1996.

[6] L. Grasedyck, Hierarchical singular value decomposition of tensors, SIAM J. Matrix Anal.
Appl., 31 (2009/10), pp. 2029–2054, doi:10.1137/090764189.

[7] L. Grasedyck, Polynomial approximation in hierarchical Tucker format by vector-

tensorization, Tech. Report 308, IGMP, RWTH Aachen, April 2010, http://www.igpm.
rwth-aachen.de/forschung/preprints/308.

[8] L. Grasedyck, D. Kressner, and C. Tobler, A literature survey of low-rank tensor approx-

imation techniques, GAMM-Mitt., 36 (2013), pp. 53–78, doi:10.1002/gamm.201310004.
[9] W. Hackbusch, Tensor spaces and numerical tensor calculus, Springer Verlag, Heidelberg,

2012, doi:10.1007/978-3-642-28027-6.
[10] W. Hackbusch and S. Kühn, A new scheme for the tensor representation, J. Fourier Anal.

and Appl., 15 (2009), pp. 706–722, doi:10.1007/s00041-009-9094-9.
[11] G. Hager, E. Jeckelmann, H. Fehske, and G. Wellein, Parallelization strategies for density

matrix renormalization group algorithms on shared-memory systems, J. Computational
Physics, 194 (2004), pp. 795 – 808, doi:10.1016/j.jcp.2003.09.018.

[12] S. Holtz, T. Rohwedder, and R. Schneider, The alternating linear scheme for tensor op-

timization in the tensor train format, SIAM J. Sci. Comput., 34 (2012), pp. A683–A713,
doi:10.1137/100818893.

[13] T. C. Hu, Parallel sequencing and assembly line problems, Operations Research, 9 (1961),
pp. 841–848.

[14] B. N. Khoromskij, O(d logN)-quantics approximation of N-d tensors in high-dimensional nu-

merical modeling, Constr. Approx., 34 (2011), pp. 257–280, doi:10.1007/s00365-011-9131-1.
[15] B. N. Khoromskij, Tensors-structured numerical methods in scientific computing: survey on

recent advances, Chemometr. Intell. Lab. Syst., 110 (2012), pp. 1 – 19, doi:10.1016/j.
chemolab.2011.09.001.

[16] D. Kressner and C. Tobler, Preconditioned low-rank methods for high-dimensional elliptic

PDE eigenvalue problems, Comput. Methods Appl. Math., 11 (2011), pp. 363–381, doi:10.

http://dx.doi.org/10.1145/1186785.1186794
http://dx.doi.org/10.1063/1.1638734
http://dx.doi.org/10.1137/S0895479896305696
http://dx.doi.org/10.1137/S0895479896305696
http://dx.doi.org/10.1137/140953289
http://dx.doi.org/10.1137/140953289
http://dx.doi.org/10.1137/090764189
http://www.igpm.rwth-aachen.de/forschung/preprints/308
http://www.igpm.rwth-aachen.de/forschung/preprints/308
http://dx.doi.org/10.1002/gamm.201310004
http://dx.doi.org/10.1007/978-3-642-28027-6
http://dx.doi.org/10.1007/s00041-009-9094-9
http://dx.doi.org/10.1016/j.jcp.2003.09.018
http://dx.doi.org/10.1137/100818893
http://dx.doi.org/10.1007/s00365-011-9131-1
http://dx.doi.org/10.1016/j.chemolab.2011.09.001
http://dx.doi.org/10.1016/j.chemolab.2011.09.001
http://dx.doi.org/10.2478/cmam-2011-0020
http://dx.doi.org/10.2478/cmam-2011-0020

PARALLEL ALS ALGORITHM 25

2478/cmam-2011-0020.
[17] Y. Kurashige and T. Yanai, High-performance ab initio density matrix renormalization

group method: Applicability to large-scale multireference problems for metal compounds,
J. Chemical Physics, 130 (2009), 234114, doi:10.1063/1.3152576.

[18] I. Oseledets and S. Dolgov, Solution of linear systems and matrix inversion in the TT-

format, SIAM J. Sci. Comput., 34 (2012), pp. A2718–A2739, doi:10.1137/110833142.
[19] I. V. Oseledets, Approximation of matrices with logarithmic number of parameters, Doklady

Mathematics, 80 (2009), pp. 653–654, doi:10.1134/S1064562409050056.
[20] I. V. Oseledets, Approximation of 2d × 2d matrices using tensor decomposition, SIAM J.

Matrix Anal. Appl., 31 (2010), pp. 2130–2145, doi:10.1137/090757861.
[21] I. V. Oseledets, Tensor-train decomposition, SIAM J. Sci. Comput., 33 (2011), p. 2295–2317,

doi:10.1137/090752286.
[22] I. V. Oseledets, Constructive representation of functions in low-rank tensor formats, Con-

structive Approximation, 37 (2013), pp. 1–18, doi:10.1007/s00365-012-9175-x.
[23] I. V. Oseledets and E. E. Tyrtyshnikov, Breaking the curse of dimensionality, or how to

use SVD in many dimensions, SIAM J. Sci. Comput., 31 (2009), pp. 3744–3759, doi:10.
1137/090748330.

[24] R. N. C. Pfeifer, J. Haegeman, and F. Verstraete, Faster identification of optimal con-

traction sequences for tensor networks, Phys. Rev. E, 90 (2014), p. 033315, doi:10.1103/
PhysRevE.90.033315.

[25] E. M. Stoudenmire and S. R. White, Real-space parallel density matrix renormalization

group, Phys. Rev. B, 87 (2013), p. 155137, doi:10.1103/PhysRevB.87.155137.
[26] E. E. Tyrtyshnikov, Tensor approximations of matrices generated by asymptotically

smooth functions, Sbornik: Mathematics, 194 (2003), pp. 941–954, doi:10.1070/
SM2003v194n06ABEH000747.

http://dx.doi.org/10.2478/cmam-2011-0020
http://dx.doi.org/10.2478/cmam-2011-0020
http://dx.doi.org/10.1063/1.3152576
http://dx.doi.org/10.1137/110833142
http://dx.doi.org/10.1134/S1064562409050056
http://dx.doi.org/10.1137/090757861
http://dx.doi.org/10.1137/090752286
http://dx.doi.org/10.1007/s00365-012-9175-x
http://dx.doi.org/10.1137/090748330
http://dx.doi.org/10.1137/090748330
http://dx.doi.org/10.1103/PhysRevE.90.033315
http://dx.doi.org/10.1103/PhysRevE.90.033315
http://dx.doi.org/10.1103/PhysRevB.87.155137
http://dx.doi.org/10.1070/SM2003v194n06ABEH000747
http://dx.doi.org/10.1070/SM2003v194n06ABEH000747

	Introduction
	Notation
	Tensors
	Hierarchical Tucker Representation
	Discussion

	Parallelisation of HTR Algorithms
	Common Structure
	Theoretical Parallel Scaling
	Parallel Implementation

	Parallel ALS Algorithm
	Review of the Serial Algorithm
	Parallelisation
	Computational Costs
	The ALS(SD) Algorithm
	Numerical Experiments

	Conclusion
	References

