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PARALLEL ALS ALGORITHM FOR THE
HIERARCHICAL TUCKER REPRESENTATION

SIMON ETTER

Abstract. Tensor network formats are an efficient tool for numerical computations in many
dimensions, yet even this tool often becomes too time- and memory-consuming for a single compute
node when applied to problems of scientific interest. Intending to overcome such limitations, we
present and analyse a parallelisation scheme for algorithms based on the Hierarchical Tucker Rep-
resentation which distributes the network vertices and their associated computations over a set of
distributed-memory processors. We then propose a modified version of the alternating least squares
(ALS) algorithm for solving linear systems amenable to parallelisation according to the aforemen-
tioned scheme and highlight technical considerations important for obtaining an efficient and stable
implementation. Our numerical experiments support the theoretical assertion that the parallel scal-
ing of this algorithm is only constrained by the dimensionality and the rank uniformity of the targeted
problem.

1. Introduction. Computations in high dimensions are notoriously difficult due
to the curse of dimensionality: if an algorithm requires n data points to solve a prob-
lem in one dimension, then solving the analogous problem in d dimensions typically
requires nd data points which becomes prohibitive very quickly. Tensor network
ansätze like the hierarchical Tucker representation (HTR) from [9, 5] or its simpler
special case, the tensor train (TT) format from [19, 18], avoid this curse by cleverly
exploiting the structure in the data for compression such that the costs of working
with nd data points scale only with n times d times some low-order polynomial in the
rank parameter r. Heuristically, this parameter measures the “structuredness” of the
data and can be shown to be independent of d for many important special cases, see
e.g. [6, 11, 15]. We further refer to [8] for a theoretical introduction and to [12, 7] for
literature surveys regarding tensor network formats.

In the present paper, we consider high-dimensional linear systems of equations
Ax = b where the unknowns x have nd entries such that they can only be feasibly
handled in compressed tensor network form. The alternating least squares (ALS,
also known as one-site DMRG) algorithm [10, 16] and its various extensions like the
density matrix renormalisation group (DMRG) algorithm from [10, 16] or the ALS
+ steepest descent (ALS(SD)) and alternating minimal energy (AMEn) algorithms
from [3] are amongst the most effective to solve problems of this type, yet even these
computational tools require parallelisation when applied to the large-scale problems
from science and engineering. This paper presents a novel parallelisation scheme for
such ALS-type algorithms which, to the author’s knowledge, is the first one to have a
serial fraction growing sublinearly in the problem size parameter d, meaning that its
parallel scalability grows with increasing problem dimensionality.

This favourable property is brought about by basing our algorithm on the HTR
which, as we motivate next on a fairly abstract level, is intrinsically better suited
for parallelisation than the TT format. Any non-trivial algorithm, in particular the
solution of linear systems, requires gathering some information from all vertices of
the network, and this step can only be carried out efficiently if the information is
passed on from one vertex to its neighbour like the baton in a relay race. Examples
of such information gathering steps are the orthogonalisation and, in case of the
HTR, computation of the Gramians for truncation [18, 5], and the computation of the
projected operators and right-hand sides for the ALS algorithm. In the TT case, the
longest distance between two vertices is O(d) and it is therefore not possible to reduce
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the runtime of the information gathering step below O(d) through parallelisation. In
contrast, the longest distance in the HTR based on a balanced dimension partition tree
is only O(log(d)) and all basic algorithms (addition, dot product, orthogonalisation
and truncation) achieve the resulting lower bound of O(log(d)) on the parallel runtime
out of the box.

Nevertheless, it is possible to parallelise ALS-type algorithms based on the TT
format to some extent, as has been shown for the DMRG case in [21]. In the mental
picture given above, the parallelisation scheme proposed there exploits that inform-
ation needs to be exchanged repeatedly in the DMRG algorithm, and by pipelining
up to O(d) such exchange rounds one obtains an algorithm scaling up to O(d) pro-
cessors after some initial phase. The fundamental problem of the TT format remains,
however, and expresses itself in that the first exchange round, requiring O(d) com-
putational effort, cannot be parallelised beyond two processors, namely one for each
end-point of the TT chain.

The remainder of this paper is organised as follows. Section 2 introduces the
terms and notation necessary for our presentation, and in Section 3 we discuss the
parallel implementation and analyse the parallel scaling for a fairly general class of
HTR algorithms. Section 4 presents the above-mentioned parallelisation scheme in
the particular setting of the ALS algorithm, but the (straightforward) extension to
the ALS(SD) algorithm will also be discussed and numerically investigated.

2. Terminology and Notation.

2.1. Tensors. The definition of tensors used in this paper is based on a gener-
alised concept of tuples obtained as follows. Let D be a finite but otherwise arbitrary
set, and (Ak)k∈D a family of sets parametrised by the elements of D. A tuple is a
function t : D →

⋃

k∈D Ak, k 7→ tk such that tk ∈ Ak for all k ∈ D. This is a proper
generalisation since the more common definition of tuples as ordered sets is retained
as the special case D := {1, . . . , n} for some n ∈ N. We denote the set of such tuples,
i.e. the Cartesian product of the Ak, by×k∈D

Ak and define AD :=×k∈D
Ak for the

case Ak = A for all k ∈ D. Two tuples t(1) ∈×k∈D(1) Ak, t
(1) ∈×k∈D(2) Ak with

two disjoint sets D(1), D(2) can be combined into a new tuple t ∈×k∈D(1)∪D(2) Ak by

writing t := t(1) × t(2). If D := {k} is a singleton, we set×ℓ∈D
Aℓ = Ak, i.e. we do

not distinguish between tuples of length one and their single elements.
A tensor x is an element from the Cartesian product K×k∈D [nk], i.e. it is a

tuple with elements from K ∈ {R,C} indexed by tuples with elements from [nk] :=
{0, . . . , nk − 1} for some nk ∈ N which are themselves indexed by k ∈ D. In contrast
to all other tuples, we subscript the index tuples iD ∈×k∈D

[nk] with their domain of
definition D because this in turn allows us to define that an index iD shall always be
taken from×k∈D

[nk] even if we do not explicitly introduce iD as such. For notational
convenience, we further write x(iD) instead of xiD to denote the evaluation of x at
iD. We define the addition and scalar multiplication of tensors to be element-wise,

(x+ y) (iD) := x (iD) + y (iD) , (αx) (iD) := αx (iD)

for all x, y ∈ K×k∈D [nk] and α ∈ K. The inner product and norm on K×k∈D [nk] are
the standard Euclidean inner product and norm

(x, y) :=
∑

iD

x(iD) y(iD), ‖x‖ :=
√

(x, x),

where z denotes complex conjugation if z ∈ C and is to be ignored for z ∈ R.

2



Tensors can be reshaped to matrices just like matrices can be reshaped to vectors.
We use the symbol MR,C(x) to refer to such a matricisation [5] (also called matrix
unfolding [19] or flattening) of a tensor x ∈ K×k∈R∪C [nk] where the modes in the set
R go into the rows and the modes in C into the columns of the resulting matrix . See
also [8, §5.2] for a more rigorous definition of this operation.

The mode product defined next is a generalisation of the matrix product for
tensors. Let x ∈ K×k∈M∪K [nk], y ∈ K×k∈K∪N [nk] be two tensors such that M , K

and N are pairwise disjoint. The expression xy defines a new tensor z ∈ K×k∈M∪N [nk]

whose entries are given by

z (iM × iN) :=
∑

iK

x (iM × iK) y (iK × iN) .

K may also be empty, in which case the mode product is equivalent to the tensor
product [8, §1.1.1]. The same operation has already been introduced in [1] under
the name “tensor-times-tensor” (ttt) product, but because there the tensor modes
are enumerated instead of labelled the notation is more complicated than what we
propose here.

If we interpret a square matrix as a linear operator on K
[nk], it has two modes

associated with the mode symbol k, namely one which is multiplied with the k-
mode of the input vector and one which yields the mode of the output vector. We
incorporate this into our notation as follows. Given some mode symbol k, we introduce
two new mode symbols R(k) and C(k) with nR(k) := nC(k) := nk called row and
column mode of k, respectively. Further, we define [nk]

2 := [nR(k)] × [nC(k)] and

M(x) := MR(D),C(D)(x) for a tensor x ∈ K×k∈D [nk]
2

containing only squared modes.
Multiplication with row/column modes follows special rules which generalise the rules
of the matrix product: a column mode C(k) is only multiplied with a k- or R(k)-
mode appearing to the right of the tensor carrying the C(k)-mode, and similarly, a
row mode R(k) is only multiplied with a k- or C(k)-mode appearing to the left. If
in the resulting tensor there is only either a row mode R(k) or a column mode C(k)

present, we rename it to k. The simple matrix-vector product Ax with A ∈ K[nk]
2

and x ∈ K
[nk] is thus to be read as follows. Because x stands to the right of A, the

k-mode of x is multiplied with the C(k)-mode of A, yielding an intermediate result
in K

[nR(k)] whose R(k)-mode is then renamed to simply k since it appears without an
accompanying C(k)-mode. We thus get a final result in K[nk] as expected.

Given a tensor x ∈ K×k∈D [nk] and some set M ⊆ D, we define the expression
x〈M to upgrade the M -modes of x to R(M)-modes, and similarly M〉x upgrades the
M -modes to C(M)-modes. If a 〈M appears next to a M〉, we merge the two symbols
into 〈M〉. The main application of this notation is to exclude certain modes from being
multiplied. For example, we must write x 〈{k}〉 y ∈ K

[nk]
2

to denote the outer product
of two vectors x, y ∈ K[nk], whereas dropping the 〈{k}〉 as in xy ∈ K yields their inner
product up to conjugation of x in the complex case.

We conclude this subsection with a number of technical definitions.
Definition 2.1 (Identity Tensor). Let D be some mode set. The identity tensor

ID is the tensor in K×k∈D [nk]
2

such that ID x = x for all x ∈ K×k∈D [nk].

Definition 2.2 (Transposed Tensor). Let A ∈ K(×k∈D [nk])×(×k∈S [nk]
2) be a

tensor with some squared modes S. The symbol AT denotes the tensor in the same

space K(×k∈D [nk])×(×k∈S [nk]
2) where the R(k)- and C(k)-modes are interchanged for

each k ∈ S. The non-squared modes D are not modified.
Definition 2.3 (Inverse Tensor). Let A ∈ K×k∈D [nk]

2

be a tensor operator. The
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{1, . . . , 7}

{1, . . . , 4}

{1} {2, 3}

{5} {6, 7}

{7}

Figure 2.1: Example dimension partition tree for D = {1, . . . , 7}.

inverse tensor A−1 is the unique tensor in K×k∈D [nk]
2

such that AA−1 = ID.

Definition 2.4 (Orthogonal Tensor). Let x ∈ K×k∈D [nk] be a tensor and M ⊂ D

a mode set. x is called M -orthogonal if x 〈M〉 x = IM .

Definition 2.5 (Tensor Orthogonalisation). Let x ∈ K×k∈D [nk] be a tensor and
k ∈ D some mode such that

∏

ℓ∈D\{k} nℓ ≥ nk. The symbol Qk(x) denotes a pair

(q ∈ K×ℓ∈D [nℓ], r ∈ K
[nk]

2

) of tensors such that x = qr and q is {k}-orthogonal.

Remark 2.6. Tensor orthogonalisation can be implemented by computing the QR
decomposition QR := MD\{k},{k}(x) and setting MD\{k},{k}(q) := Q and M(r) :=

R. This procedure costs O
(

n2
k

∏

ℓ∈D\{k} nℓ

)

floating-point operations [4, §5.2.1].

Definition 2.7 (Tensor SVD [2]). Let x ∈ K×k∈D [nk] be a tensor and k ∈ D

some mode such that
∏

ℓ∈D\{k} nℓ ≥ nk. The tensor SVD Sk(x) denotes a triplet

(

u ∈ K×ℓ∈D [nℓ], s ∈ K
[nk]

2

, v ∈ K
[nk]

2
)

such that x = usv, M(s) is diagonal and u and v are {k}- and {R(k)}-orthogonal,
respectively. The diagonal entries of s, denoted by sik , are real and non-negative.
They are called singular values.

Remark 2.8. The tensor SVD can be implemented by computing the matrix
SVD UΣV ∗ := MD\{k},{k}(x) and setting MD\{k},{k}(u) := U , M(s) := Σ and

M(v) := V ∗ (note the adjoint). This procedure costs O
(

n2
k

∏

ℓ∈D\{k} nℓ

)

floating-

point operations [4, §5.4.5].

2.2. Hierarchical Tucker Representation. Our presentation in later sections
is based on the following definitions of dimension partition trees and the hierarchical
Tucker representation (HTR) [5, 8].

Definition 2.9 (Dimension Partition Tree). Let D be some mode set and P(D)
its power set, i.e. the set of all subsets of D. A set TD ⊂ P(D) is called a dimension
partition tree if it satisfies D ∈ TD, {} 6∈ TD and α ∩ β 6= {} =⇒ α ⊆ β ∨ β ⊆ α

for all α, β ∈ TD. The last condition establishes the hierarchical structure of TD such
that TD can be visualised as a tree with the set D being its root, see Figure 2.1.

We use the terms child(α), parent(α′), neighbour(α) and sibling(α′) for α ∈ TD

and α′ ∈ TD \ {D} to refer to vertices α ∈ TD or sets of vertices S ⊆ TD according to
the usual definitions of these terms. In addition, we define

descendant(α) := {β ∈ TD | β ⊆ α},

ancestor(α) := {β ∈ TD | α ⊂ β},

level(α) := #ancestor(α),

colevel(α) := max{level(β) | β ∈ descendant(α)} − level(α). 1
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The dimension partition tree TD on which these terms depend is implicitly given as
the tree from which α or α′ were taken. Furthermore, we define the sets

leaf(TD) := {α ∈ TD | child(α) = {}},

interior(TD) := TD \ ({D} ∪ leaf(TD)).

Definition 2.10 (HTR Network). Let TD be a dimension partition tree and
r ∈ NTD\{D} a tuple of integers called ranks. For each vertex α ∈ TD, we define the
edge set Eα ⊆ TD \ {D} and the set of free modes Dα ⊆ D,

Eα :=

{

child(α) if α = D,

{α} ∪ child(α) otherwise
, Dα := α \





⋃

β∈child(α)

β



 .

A tuple of tensors x ∈ HTR(TD, r, n) :=×α∈TD
K(×ǫ∈Eα

[rǫ])×(×k∈Dα
[nk]) is called an

HTR network. We implicitly map such a network x to the tensor
∏

α∈TD
xα such

that we have HTR(TD, r, n) ⊆ K×k∈D [nk]. Furthermore, we introduce the set of HTR-
formatted linear operators

HTR2(TD, r, n) := ×
α∈TD

K(×ǫ∈Eα
[rǫ])×(×k∈Dα

[nk]
2) ⊆ K×k∈D [nk]

2

.

Edge modes of two networks x ∈ HTR(TD, r(x), n), y ∈ HTR(TD, r(y), n) are
considered distinct. In particular, in expressions of the form xα yα with α ∈ TD, the
modes ǫ ∈ Eα are not multiplied. If it is not clear that a mode ǫ belongs to the
network x, we clarify by tagging ǫ as in x(ǫ).

In the existing literature (e.g. [8, Definition 11.2]), dimension partition trees are
required to satisfy two additional conditions:

• TD has to be a proper binary tree, i.e. # child(α) ∈ {0, 2} for all α∈TD.
• Only the leaf vertices α ∈ leaf(TD) have free modes, and each such leaf vertex
has exactly one free mode.

We call a dimension partition tree satisfying these constraints standard. Furthermore,
a tree is called balanced if

max
α∈leaf(TD)

level(α) − min
α∈leaf(TD)

level(α) ≤ 1.

It will sometimes be useful to use tree terms like child or sibling relative to some
temporary root α ∈ TD not necessarily equal to D. We will write τ(β | α) to denote
such relative tree relationships, where τ is a template for any element of the set
{descendant, ancestor, child, parent, sibling}. For example, in the tree from Figure 2.1
we have child({1, . . . , 4} | {2, 3}) = {{1}, {1, . . . , 7}} and sibling({1, . . . , 7} | {2, 3}) =
{{1}}. Similarly, we write ↑(β | α) to refer to the edge which connects the vertex
β ∈ TD \ {α} to parent(β | α). In case α = D, we have ↑(β | D) = β, and in the tree
from Figure 2.1 we e.g. have ↑({1, . . . , 7} | {2, 3}) = {1, . . . , 4}.

3. Parallelisation of HTR Algorithms. Most HTR algorithms exhibit a com-
mon algorithmic structure to be pointed out in §3.1. It is this structure which will
allow us to make fairly general statements regarding the parallel scalability of HTR
algorithms as well as their parallel implementation later in this section.

1Put differently, colevel(α) is the longest distance from α to any leaf in descendant(α).
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3.1. Common Structure. Definition 3.1 (Tree Traversing Algorithm). An
HTR algorithm running on a dimension partition tree TD is called a tree traversing
algorithm if there exists a partially ordered set S of ordered pairs (α, β) involving
neighbouring vertices α, β ∈ TD such that the algorithm can be formulated as follows.

1: for each (α, β) ∈ S do
2: On α: Prepare a message m

3: Transfer m from α to β

4: On β: Consume m

5: end for

The for-loop on line 1 traverses through the pairs such that if a pair p ∈ S is
visited before another pair p′ ∈ S, then either p ≤ p′ or p and p′ are incomparable in
the partial order of S.

Definition 3.2 (Root-to-Leaves Algorithm). A tree traversing algorithm is
called root-to-leaves if the set S and the partial order defined thereon are given by

S := {(parent(α), α) | α ∈ TD \ {D}},

(parent(α), α) ≤ (parent(β), β) :⇐⇒ α ∈ ancestor(β) ∪ {β}.

Definition 3.3 (Leaves-to-Root Algorithm). A tree traversing algorithm is
called leaves-to-root if the set S and the partial order define thereon are given by

S := {(α, parent(α)) | α ∈ TD \ {D}},

(α, parent(α)) ≤ (β, parent(β)) :⇐⇒ α ∈ descendant(β).

Definition 3.4 (Parallel Tree Traversing Algorithm). A tree traversing al-
gorithm is called parallel if the preparation and consumption of messages not ordered
by the partial order on S can be executed concurrently.

Definition 3.5 (Tree Parallel Algorithm). An algorithm consisting of one or
more parallel root-to-leaves and/or leaves-to-root parts is called tree parallel.

The orthogonalisation and truncation procedures from [5] as well as the compu-
tation of the inner product are all tree parallel algorithms, and it will be the topic of
§4 to develop a tree parallel version of the ALS algorithm. This category therefore
includes all major HTR algorithms.

3.2. Theoretical Parallel Scaling. We next analyse the parallel scaling of tree
parallel algorithms based on the following assumptions.

Assumption 3.6. Let A be a tree parallel algorithm consisting of a single root-
to-leaves/leaves-to-root part running on a balanced standard dimension partition tree
TD. We assume:

• The operations on a vertex α ∈ TD can only be run once all incoming messages
have been received. These local operations cannot be further parallelised, and
the outgoing messages can only be sent once all operations on vertex α have
finished.

• It takes A one time unit to prepare/consume all messages at an interior vertex
α ∈ interior(TD), and no time at the root D or a leaf α ∈ leaf(TD).

• Transferring messages takes no time.
The first assumption simplifies the model in that it allows to associate all oper-

ations with vertices instead of endpoints of edges. In the following, we will therefore
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use the expression “to process vertex α” to denote the consumption of all incoming
and the preparation of all outgoing messages on vertex α ∈ TD. The second assump-
tion is derived from the fact that for a standard dimension partition tree, the interior
vertex tensors are three-dimensional and therefore typically have many more elements
than the root or leaf tensors which are only two-dimensional. Its main implication
is that we can split the time dimension into discrete time steps of length one time
unit which we will index by the zero-based integer t ∈ N. All of these assumptions
are only approximately satisfied in practice. The idea behind the theory developed
next is therefore not to explain the scaling behaviour of tree parallel algorithms in
all details, but rather to serve as a reasonable accurate reference against which the
empirically observed scaling can be compared.

Lemma 3.7 (Equivalence of Leaves-to-Root and Root-to-Leaves Algorithms). Let
RtL and LtR be parallel root-to-leaves/leaves-to-root algorithms satisfying Assumption
3.6, and let TA(p) denote the optimal runtime of algorithm A running on p processors.
Then, TRtL(p) = TLtR(p) for all processor counts p.

Proof. In order to run a tree parallel algorithm, we need to specify for each time
step t and each processor q the vertex α(t, q) which is to be processed, if any. We
call such a function α(t, q) a vertex schedule. Let αRtL(t, q) be an optimal vertex
schedule for RtL, i.e. αRtL(t, q) is compatible with the constraints from Definition 3.2
and leads to the optimal parallel execution time TRtL(p). One easily verifies that
αLtR(t, q) := αRtL(TRtL(p) − t, q) is a valid vertex schedule for LtR and has the same
execution time, which proves TRtL(p) ≥ TLtR(p). Applying the same argument in the
opposite direction proves TRtL(p) ≤ TLtR(p) which yields the claim.

Theorem 3.8 (Scaling of Tree Parallel Algorithms). Let A be an algorithm
satisfying Assumption 3.6 and set d := #D. The optimal runtime of A on p ≤ ⌊d

2⌋
processors is given by

T (p) := ⌈log2 p⌉ − 1 +

⌈

d− 2⌈log2 p⌉

p

⌉

= O

(

log2 p+
d

p

)

,

and the optimal parallel speedup is

S(p) :=
T (1)

T (p)
= O

(

d

log2 p+
d
p

)

. (3.1)

Providing p > ⌊d
2⌋ processors does not yield additional speedup.

Proof. Clearly, the largest number of vertices we can process during a single time
step is #{α ∈ TD | colevel(α) = 1} = ⌊d

2⌋ which proves the last statement. We

therefore assume p ≤ ⌊d
2⌋ in the remainder of this proof. By Lemma 3.7, it is further

sufficient to consider only a root-to-leaves algorithm. We propose the following vertex
schedule for this case (see also Figure 3.1): at time t < t(p) := ⌈log2 p⌉ − 1, pick any
2t+1 < p processors and let these process the vertices on level t + 1 (the +1 takes
into account that we do not need to allocate time for processing the root). We thus
process 2t(p)+1 − 2 interior vertices until time t(p). For times t ≥ t(p), enumerate the
remaining d − 2t(p)+1 interior vertices starting from level t(p) + 1 and proceeding in
breadth-first order, then let processor q ∈ {0, . . . , p−1} process vertex (t− t(p)) ·p+q

in that order. If no such vertex exists, i.e. if (t − t(p)) · p+ q ≥ d− 2t(p)+1, then the
processor will wait for at most one time step until all other processors have finished.

It is easily seen that this vertex schedule satisfies the constraints imposed by a
root-to-leaves algorithm. Since processing one vertex renders at most two further
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Figure 3.1: Example vertex schedule for d = 32, p = 5. The colors distinguish between
processors and the grey beams group the vertices according to the time step during
which they are processed.

vertices ready for processing and we start with two ready vertices at time t = 0, an
upper bound for the number of vertices we can process at any time t ∈ N is 2t+1.
Up to time t(p), we meet this limit in every time step. From time t(p) onwards, we
keep all processors busy until the list of remaining vertices is exhausted, which takes

t′(p) :=
⌈

d−2t(p)+1

p

⌉

time steps. The runtime of t(p) + t′(p) = T (p) is therefore both

achievable as well as optimal.

If a tree parallel algorithm consists of more than one root-to-leaves/leaves-to-root
part, we assume that the parts must be run one after the other and cannot overlap.
Again, this assumption is not necessarily satisfied in practice, but it simplifies the
argument and provides a reasonable approximation to reality. The optimal runtime
of the algorithm on p processors is then given by

∑n
i=1 ci T (p), where n denotes

the number of such parts and the ci take into account that each part may require a
different unit time per interior vertex. When computing the optimal parallel speedup,
the ci factor out and cancel, therefore (3.1) is still valid even in this more general
setting.

3.3. Parallel Implementation. The proof of Theorem 3.8 presented a paral-
lelisation scheme for HTR algorithms in the idealised setting of Assumption 3.6. In
practice, however, several complications arise such that this scheme may not apply or
the optimality guarantee given by Theorem 3.8 may no longer be valid:

• The dimension partition tree may be non-standard and/or not balanced.
• The HTR ranks may be non-uniform such that the uniform-cost-per-interior-
vertex assumption is not satisfied.

• Inter-process communication costs may be non-negligible.

This subsection discusses a set of strategies for handling such issues. Following the
structure exposed in Definition 3.1, we assume for this purpose that an HTR algorithm
is given as a list of jobs (namely the preparation or consumption of messages) each
of which is associated with a vertex of the dimension partition tree and may depend
on the completion of other jobs before being run. Parallelising such an algorithm
then amounts to specifying for each job a) on which processor and b) when it is to
be executed such that all dependency constraints are met and the overall runtime is
minimised.

To settle the “where” question, we let the user specify a vertex distribution, a
function q(α) mapping each vertex α ∈ TD to a processor q(α) ∈ {0, . . . , p − 1}
by whom the jobs associated with vertex α are to be run. The rationale for this
design choice is the observation that devising vertex distributions delivering decent
performance requires much insight into the problem at hand and is therefore best
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(a) Suboptimal schedule.
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(b) Optimal schedule.

Figure 3.2: Vertex distribution for which LPF scheduling may not deliver optimal
performance. Let the algorithm in question be leaves-to-root and Assumption 3.6
hold. The colors distinguish between processors and the numbers indicate the time
step at which the vertices are processed. Both of the shown schedules are valid LPF
schedules, yet the left one has a runtime of six time steps while the right one requires
only five.

done on a case-by-case basis. Assigning all jobs of vertex α to the same processor
q(α) allows to store all the data associated with α exclusively on processor q(α) and
therefore reduces the need for communication.

The “when” question, on the other hand, is answered by the longest path first
(LPF) scheduling algorithm introduced next. Assume we know for each vertex α ∈ TD

the time t(α) it takes to execute its associated jobs. We then define the weighted level

levelt(α) :=
∑

β∈ancestor(α)

t(α)

and the weighted colevel

colevelt(α) := max{levelt(β) + t(β) | β ∈ descendant(α)} − levelt(α) − t(α).

We further define the local connected component C(α) ⊆ TD of a vertex α ∈ TD to
be the largest connected component such that α ∈ C(α) and q(β) = q(α) for all
β ∈ C(α), and finally set local root(α) := argminβ∈C(α) level(β).

Let each processor manage a list of ready jobs, i.e. jobs which are not blocked by
dependencies on other jobs. Once a processor finishes a job, it waits until this list
becomes non-empty and then chooses the job to work on next according to either of
the following rules, depending on the type of the algorithm.
Leaves-to-root: Pick any ready job on one of the vertices α ∈ TD which maximise

levelt(local root(α)).
Root-to-leaves: Pick any ready job on one of the vertices α ∈ TD which maximise

max{colevelt(β) + t(β) | β 6∈ C(α) ∧ parent(β) ∈ C(α)}.

Let us motivate this scheduling at the example of a leaves-to-root algorithm. On
the one hand, we note that the order in which processor q executes the jobs within
one of its local connected components C ⊆ TD does not matter as the runtime will
in any case be

∑

α∈C t(α). What does matter, however, is the time t at which q

sends the message from the local root β of C to parent(β) since this provides a lower
bound t + levelt(β) on the overall runtime. The above algorithm greedily minimises
this bound. While LPF scheduling does not necessarily achieve the optimal runtime,
see Figure 3.2, we believe that the pathological cases are rare and the resulting loss
in performance outweighed by the simplicity of the algorithm.
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4. Parallel ALS Algorithm.

4.1. Review of the Serial Algorithm. The alternating least squares (ALS)
algorithm from [10, 16] tackles the linear system of equations (LSE) Ax = b where
the operator A ∈ HTR2(TD, r(A), n), the right-hand side b ∈ HTR(TD, r(b), n) and
an initial guess x ∈ HTR(TD, r, n) for the solution A−1b are all represented in HTR.
Given such an x and a vertex α ∈ TD, let us define the environment tensor

Uα(x) :=
∏

β∈TD\{α}

xβ ∈ K(×ǫ∈Eα
[rǫ])×(×k∈D\Dα

[nk]).

This quantity corresponds to the matrix Qk from [16] and to the retraction operator
Pi,1,x from [10]. In its simplest form, the ALS algorithm then reads as follows.

Algorithm 1 ALS Algorithm

1: repeat
2: for vertex α ∈ TD do
3: Update xα to the solution of the local LSE

Uα(x) 〈Eα A Eα〉 Uα(x)xα = Uα(x) b. (4.1)

4: end for
5: until convergence

The very simple structure of Algorithm 1 was brought about by ignoring two
important technical constraints:

• The local LSE (4.1) can only be solved numerically if the condition number

κ
(

M
(

Uα(x) 〈Eα A Eα〉 Uα(x)
))

of the local matrix is reasonably small.
• The ALS algorithm is only computationally feasible if the local matrix and
right-hand side can be assembled efficiently.

The remainder of this subsection will be devoted to demonstrating how to satisfy
these constraints in the HTR case. A similar endeavour has already been undertaken
in [13], but we need to give further details in order to prepare for the discussion in
§4.2.

The following concepts of HTR orthogonality allow us to address the concerns
regarding the condition number.

Definition 4.1 (α-Orthogonality). An HTR network x ∈ HTR(TD, r, n) is
called α-orthogonal with α ∈ TD if Uα(x) is Eα-orthogonal.

Definition 4.2 (Subtree Tensor). Let x ∈ HTR(TD, r, n) be an HTR network
and α, β ∈ TD two vertices. We define the subtree tensor Sβ|α(x) through

Sβ|α(x) ∈

{

K
[r↑(β|α)]×(×k∈D(β|α)[nk]) if β 6= α

K×k∈D [nk] if β = α
, Sβ|α(x) :=

∏

γ∈descendant(β|α)

xγ .

Here, D(β | α) denotes the free modes in the subtree of β relative to the root α, i.e.

D(β | α) =

{

D \ parent(β | α) if β ∈ ancestor(α)

β otherwise
.
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Definition 4.3 (Strong α-Orthogonality). An HTR network x ∈ HTR(TD, r, n)
is called strongly α-orthogonal if all subtree tensors Sβ|α(x) with β ∈ TD \ {α} are
{↑(β | α)}-orthogonal.

It is easily verified that a strongly α-orthogonal network is also α-orthogonal: the
environment tensor can be written in terms of the subtree tensors as

Uα(x) =
∏

β∈neighbour(α)

Sβ|α(x),

and by the {↑(β | α)}-orthogonality of the Sβ|α(x) we have

Uα(x) 〈Eα〉 Uα(x) =





∏

β∈neighbour(α)

Sβ|α(x)



 〈Eα〉





∏

β∈neighbour(α)

Sβ|α(x)





=
∏

β∈neighbour(α)

Sβ|α(x) 〈{↑(β|α)}〉 Sβ|α(x)

=
∏

β∈neighbour(α)

I{↑(β|α)} = IEα
.

If x is α-orthogonal and A Hermitian, Theorem 4.1b) in [10] allows us to bound
the condition number of the local LSEs by

κ
(

M
(

Uα(x) 〈Eα A Eα〉 Uα(x)
))

≤ κ (M (A)) .

Our aim is therefore to α-orthogonalise x before solving the local LSE at α, i.e. to
transform the vertex tensors (xβ)β∈TD

such that x becomes α-orthogonal but the
represented tensor

∏

β∈TD
xβ remains unchanged. We next reformulate and extend

the strongD-orthogonalisation algorithm from [5, Alg. 3] to obtain an efficient scheme
for iteratively orthogonalising an HTR network x ∈ HTR(TD, r, n) with respect to all
its vertices α ∈ TD as required by the ALS Algorithm 1. This scheme will make use
of the following vertex-wise operation.

Definition 4.4 (Vertex Orthogonalisation). Let x ∈ HTR(TD, r, n) be an HTR
network, ǫ ∈ E an edge and α, β ∈ TD the two vertices such that ǫ ∈ Eα ∧ ǫ ∈ Eβ .
Orthogonalisation of xα with respect to ǫ is defined as the following operation:

1: (q, r) := Qǫ(xα)
2: xα := q

3: xβ := rxβ

Note that vertex orthogonalisation does not modify the represented tensor since
we have x̃αx̃β = qrxβ = xαxβ where xα, xβ and x̃α, x̃β denote the vertex tensors
before and after the orthogonalisation step, respectively. The trick to strongly D-
orthogonalise an HTR network is to orthogonalise its vertices in the right order,
which is leaves-to-root:

Algorithm 2 Strong D-Orthogonalisation

1: Recurse(D)
2: function Recurse(α)
3: for β ∈ child(α) do Recurse(β) end for
4: Orthogonalise xα with respect to α // Definition 4.4
5: end function

11



Correctness of this algorithm is proven in [5]. Once an HTR network is strongly
orthogonal with respect to any vertex α ∈ TD, we can move this orthogonal centre
around using the following theorem.

Theorem 4.5. Let x ∈ HTR(TD, r, n) be an HTR network and α ∈ TD, β ∈
neighbour(α) two vertices such that x is strongly α-orthogonal. After orthogonalising
xα with respect to ↑(α | β), x is strongly β-orthogonal.

Proof. Because x was initially strongly α-orthogonal and the subtree tensors
Sγ|α(x) = Sγ|β(x) with γ ∈ TD \ {α, β} are not affected by the vertex orthogonal-
isation, we only need to prove that Sα|β(x) is {↑(α | β)}-orthogonal. We can write
Sα|β(x) = xα

∏

γ∈child(α|β) Sγ|α(x), therefore we have

Sα|β(x) 〈{↑(α|β)}〉 Sα|β(x) = . . .

= xα 〈{↑(α|β)}





∏

γ∈child(α|β)

Sγ|α(x) 〈{↑(γ|α)}〉 Sγ|α(x)



 {↑(α|β)}〉 xα

= xα 〈{↑(α|β)}〉 xα = I{↑(α|β)}.

In conclusion, stabilisation of the ALS Algorithm 1 requires us to make an initial
call to the strong D-orthogonalisation Algorithm 2 and then let the orthogonality
centre follow the vertex on which we solve the local LSE by using Theorem 4.5.
Because of this orthogonalisation scheme, a single ALS iteration runs faster if we
choose to visit the vertices in an order such that consecutive vertices are always
neighbours, and it has been shown in [13] that the vertex order has no significant
impact on the convergence as a function of the iteration count. In the following, we
will therefore assume the fixed order shown in Figure 4.2a, which we call mole-like
order because it runs through the network like a mole runs through its burrow. Note
that mole-like tree traversal visits a vertex several times, namely once per incoming
edge, in contrast to what is implied by the for-loop in Algorithm 1.

The key to the efficient assembly of the local LSEs are the contracted subtrees,
which are the HTR analogues of the tensors Ψk, Φk in [16] and Gi (without the last
vertex tensor Ai), Hi in [10].

Definition 4.6 (Contracted Subtrees). Let

x ∈ HTR(TD, r(x), n), A ∈ HTR2(TD, r(A), n), y ∈ HTR(TD, r(y), n)

be HTR networks and α, β ∈ TD, α 6= β two vertices. We define the contracted
subtrees

(x|y)β|α :=
∏

γ∈descendant(β|α)

xγ yγ ∈ K
[r

(x)

x(↑(β|α))
]×[r

(y)

y(↑(β|α))
]
,

(x|A|y)β|α :=
∏

γ∈descendant(β|α)

xγ Aγ yγ ∈ K
[r

(x)

x(↑(β|α))
]×[r

(A)

A(↑(β|α))
]×[r

(y)

y(↑(β|α))
]
.

Furthermore, we set (⋆)β := (⋆)β|D for ⋆ = x|y and ⋆ = x|A|y.
The local matrix and the local right-hand side at a vertex α ∈ TD can be expressed

in terms of the contracted subtrees as

Uα(x) 〈Eα A Eα〉 Uα(x) := Aα

∏

β∈neighbour(α)

(x|A|x)β|α,

Uα(x) b := bα
∏

β∈neighbour(α)

(x|b)β|α,
(4.2)
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α

(a) Contracted subtrees.

=

(b) Local LSE.

Figure 4.1: (a) Contracted subtrees (x|b)β|α for β ∈ neighbour(α). (b) Local LSE in
terms of the contracted subtrees (x|A|x)β|α, (x|b)β|α, β ∈ neighbour(α). Vertices and
edges of A are shown in red, of x in blue and of b in green.

. . .

(a) Serial ALS Algorithm 3: mole-like.

(b) Parallel ALS Algorithm 4: root-to-leaves followed by leaves-to-root.

Figure 4.2: Tree traversal orders of the serial and parallel HTR ALS algorithm. The
red vertices denote the ones on which we currently solve local LSEs.

see also Figure 4.1, thus assembling the local LSE incurs little extra cost once the
contracted subtrees are available. These in turn can be obtained efficiently through
the recursion formula

(x|A|y)β|α := xβ Aβ yβ





∏

γ∈child(β|α)

(x|A|y)γ|α



 (4.3)

and the analogous expression for (x|y)β|α. The resulting algorithm for assembling
the local LSEs has then exactly the same structure as the orthogonalisation scheme
presented above: in a first step, we compute the contracted subtrees (⋆)β|D for all
β ∈ neighbour(D) (⋆ stands for both x|A|x and x|b), which if evaluated according
to (4.3) requires to compute all contracted subtrees (⋆)β|D for β ∈ TD \ {D}. If we
then move from D to one of its neighbours α ∈ neighbour(D), we can reuse the (⋆)β|D
with β ∈ child(α) such that the only contracted subtrees to compute anew are the two
tensors (⋆)D|α. Because we already have the (⋆)β|α = (⋆)β|D for β ∈ sibling(α), this
step involves only computations on D and has therefore a constant cost with respect
to the network size. Proceeding further according to the mole-like tree traversal order
from Figure 4.2a, we can continue in this manner for all vertices in the network.

4.2. Parallelisation. An important feature of the local LSE (4.1) is that its
matrix and right-hand side depend on all vertex tensors of x. We therefore must not
modify x while one local solve is running, and in particular we cannot solve multiple
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Algorithm 3 HTR ALS Algorithm

1: Strongly D-orthogonalise x // Algorithm 2
2: Compute (x|A|x)α and (x|b)α for all α ∈ TD \ {D} // Equation (4.3)
3: repeat Recurse(D) until convergence
4: function Recurse(α)
5: for β ∈ child(α) do
6: Solve the local LSE // Equations (4.1), (4.2)
7: Orthogonalise xα with respect to β // Definition 4.4
8: Compute (x|A|x)α|β and (x|b)α|β // Equation (4.3)
9: Recurse(β)

10: end for
11: Solve the local LSE // Equations (4.1), (4.2)
12: if α 6= D then
13: Orthogonalise xα with respect to α // Definition 4.4
14: Compute (x|A|x)α and (x|b)α // Equation (4.3)
15: end if
16: end function

local LSEs concurrently. In Algorithm 3, this is expressed by the fact that we must
run the loop over the children (line 5) sequentially, because the computations for the
local LSE and the contracted subtrees on lines 6, 8 depend on the contracted sub-
trees computed on line 14 in the subordinate calls to Recurse. The ALS algorithm
as presented in §4.1 is therefore not parallelisable without algorithmic modifications
eliminating the dependency between local LSE solves. Since already the serial ALS
Algorithm 3 does not explicitly access all vertex tensors but rather uses cached con-
tracted subtrees to assemble the local LSEs, eliminating this dependency is very easy:
we simply drop the aspiration that the cached contracted subtrees must equal the ones
computed from only the most recent vertex tensors. More precisely, we rearrange the
loop on lines 5 to 10 in Algorithm 3 as follows.

1: Solve the local LSE // Equations (4.1), (4.2)
2: for β ∈ child(α) do
3: Compute (x|A|x)α|β and (x|b)α|β // Equation (4.3)
4: end for
5: parallel for β ∈ child(α)
6: Recurse(β)
7: end parallel for

The intended meaning is that we eliminate the dependencies in the second loop
by precomputing the contracted subtrees on line 3 and using only these precomputed
values on line 6, ignoring the fact that they become outdated with the first local LSE
solve on this line. The resulting parallel tree traversal order is shown in Figure 4.2b.

To justify why we put the local LSE solve before both loops, we note that the first
loop in the above pseudocode-snippet reads xα but does not generate new information
which would influence the local LSE at α, while the second loop does generate such
information but does not read xα. Therefore, putting line 1 into the first loop would
amount to solving the same problem multiple times, while putting it into the second
loop would mean to solve intermediate problems whose solutions we do not need.

The above pseudocode-snippet does not yet include orthogonalisation because the
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parallel setting introduces the additional difficulty that we have to orthogonalise with
respect to multiple vertices at the same time. We propose the following algorithm to
achieve this.

Definition 4.7 (Simultaneous Vertex Orthogonalisation). Let x∈HTR(TD, r, I)
be an HTR network and α ∈ TD a vertex. Orthogonalisation of xα with respect to its
children is defined as the following operation:

1: for β ∈ child(α) do
2: (uβ, sβ , vβ) := Sβ(xα)
3: xα := uβ sβ
4: xβ := vβ xβ

5: end for
6: for β ∈ child(α) do
7: xα := xα s−1

β

8: xβ := sβ xβ

9: end for

Theorem 4.8. Simultaneous vertex orthogonalisation leaves the represented
tensor x =

∏

β∈TD
xβ invariant.

Proof. Lines 3, 4 do not modify x since uβsβvβ xβ = xαxβ , and the same holds
for lines 7, 8 since xαs

−1
β sβxβ = xαxβ .

Theorem 4.9. Assume Sβ|α(x) is {↑(β|α)}-orthogonal for all β∈neighbour(α).2

After orthogonalising xα with respect to its children, Sα|β(x) is {β}-orthogonal for all
β ∈ child(α).

Proof. We denote by x the original network, by x′ the network that is obtained
after the first loop (lines 1 to 5) has been executed and by x′′ the final network. We
define β1, . . . , βc ∈ child(α), c := #child(α), to be the children of α in the order in
which they appear in the first loop, and denote by x(i), i = 1, . . . , c the state of the
network after the iteration β = βi of the first loop has been executed.

The proof splits into two parts.

1. We have

Sβi|α(x
(j)) =

{

Sβi|α(x) if j < i

vβi
Sβi|α(x) otherwise

for i, j = 1, . . . , c. Since vβi
and Sβi|α(x) are R(βi)- and {βi}-orthogonal,

respectively, Sβi|α(x
(j)) is {βi}-orthogonal for any i, j = 1, . . . , c.

2. Let γ ∈ neighbour(α). From the proof of Theorem 4.8 it follows that Sα|γ(x)
is not modified by lines 3, 4 unless γ is equal to the loop variable β. This
proves

Sα|βi
(x′) = uβi

sβi

∏

γ∈child(α|βi)

Sγ|βi
(x(i)), ∀i = 1, . . . , c. (4.4)

Arguing similarly for the second loop, we obtain

Sα|βi
(x′′) = uβi

∏

γ∈child(α|βi)

Sγ|βi
(x(i)), ∀i = 1, . . . , c. (4.5)

2This is equivalent to x being α-orthogonal up to scaling of the Sβ|α(x), β ∈ neighbour(α).

15



uβi
is {βi}-orthogonal and the Sγ|βi

(x(i)) are {↑(α | βi}-orthogonal by as-
sumption for γ = parent(α) and by part 1 for γ ∈ sibling(βi). Therefore,
Sα|βi

(x′′) is {βi}-orthogonal.
Definition 4.7 silently assumed that sβ is invertible, i.e. that no singular value is

exactly 0. In our code, we ensure this condition by transforming the singular values
(sβ)iβ , iβ ∈ [rβ ], with

(sβ)iβ := max{(sβ)iβ , eps (sβ)0} (4.6)

where eps denotes the machine precision and (sβ)0 the largest singular value. Note
that finite-machine precision may lead to a similar deviation between the exact sin-
gular values and their numerically computed counterparts such that the above trans-
formation does not change the accuracy of the latter. We now analyse how such
rounding influences the above results.

Theorem 4.8 relies on the identities uβsβvβ = xα and sβ s
−1
β = I{β}, both of

which are satisfied up to machine precision when using the singular values from (4.6).
Thus, the statement in Theorem 4.8 is valid up to machine precision as well.

In Theorem 4.9, the rounding in the singular values implies that (4.4) is satisfied
up to a relative error of O(eps). Multiplication with s−1

β may then blow this error
up such that the relative error in (4.5) is O(1), i.e. the Sα|β(x) may not be {β}-
orthogonal at all. Luckily, we can limit the impact of rounding errors by interleaving
orthogonalisation and subtree computation as follows.

Definition 4.10 (Combined Orthogonalisation and Contracted Subtree Compu-
tation). Let x ∈ HTR(TD, r, I) be an HTR network and α ∈ TD a vertex. Combined
orthogonalisation and contracted subtree computation at xα is defined as the following
operation:

1: for β ∈ child(α) do
2: // Orthogonalise xα with respect to β

3: (uβ, sβ , vβ) := Sβ(xα)
4: xα := uβ

5: xβ := sβ vβ xβ

6: // Compute subtrees
7: Compute (x|A|x)α|β and (x|b)α|β // Equation (4.3)
8: // Temporarily move the non-orthogonal factor to xα

9: xα := xα sβ
10: xβ := s−1

β xβ // (*)
11: // Update (x|A|x)β and (x|b)β
12: (x|A|x)β := vβ (x|A|x)β vTβ
13: (x|b)β := vβ (x|b)β
14: end for
15: for β ∈ child(α) do
16: // Move the non-orthogonal factor to xβ again
17: xα := xα s−1

β

18: xβ := sβ xβ // (*)
19: // Update (x|A|x)β and (x|b)β
20: (x|A|x)β := sβ (x|A|x)β sβ // (+)
21: (x|b)β := sβ (x|b)β // (+)
22: end for

The two lines marked with (*) may be omitted since the second undoes the effect
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of the first. The two lines marked with (+) may be dropped if (x|A|x)β and (x|b)β are
updated anyway before being used again, as is the case in Algorithm 4.

It is easily verified that the modifications applied to x in Definition 4.10 are
equivalent to the ones in Definition 4.7, therefore Theorems 4.8 and 4.9 are also valid
for combined orthogonalisation and subtree computation. The main idea of Definition
4.10 is to compute the contracted subtrees at a point (line 7) where Sα|β(x) is {β}-
orthogonal up to errors of order O(ε). Since the local LSE are assembled based on
these cached (x|A|x)α|β , (x|b)α|β capturing accurately {β}-orthogonal Sα|β(x), it no
longer matters that the final Sα|β(x) are not accurately {β}-orthogonal. We further
remark that the updates to the contracted subtrees on lines 12, 13 and 20, 21 in
Definition 4.10 are a consequence of the modifications done to xβ on lines 5, 10 and
18. In the serial Algorithm 3, such updates are not necessary because (x|A|x)β , (x|b)β
are updated anyway on line 14 before being used again.

The final parallel HTR ALS algorithm is summarised in Algorithm 4. It can
be considered an adaption of the parallel TT DMRG from [21] to the HTR setting,
which yields the advantage that our algorithm has a tree parallel scaling right from
the beginning, in contrast to the TT DMRG algorithm which requires an almost serial
initial phase.

Algorithm 4 Parallel HTR ALS Algorithm

We assume an implicit cache of contracted subtrees. This cache is initialised on
line 2 and only updated when we explicitly say so, namely on lines 7 and 15. Each
time contracted subtrees are needed (i.e. when computing new contracted subtrees
and when solving the local LSE), their values are read from the cache even if the
cache is outdated.

1: Strongly D-orthogonalise x // Algorithm 2
2: Compute (x|A|x)α and (x|b)α for all α ∈ TD \ {D} // Equation (4.3)
3: repeat Recurse(D) until convergence
4: function Recurse(α)
5: if child(α) 6= {} then
6: Solve the local LSE // Equations (4.1), (4.2)
7: Orthogonalise and compute contracted subtrees // Definition 4.10
8: parallel for β ∈ child(α)
9: Recurse(β)

10: end parallel for
11: end if
12: Solve the local LSE // Equations (4.1), (4.2)
13: if α 6= D then
14: Orthogonalise xα with respect to α // Definition 4.4
15: Compute (x|A|x)α and (x|b)α // Equation (4.3)
16: end if
17: end function

4.3. Computational Costs. We complement the above discussions by analys-
ing the cost of the HTR ALS algorithm and pointing out the tricks to reduce this
cost, as has been done for the TT ALS algorithm in [10, 16]. For this purpose,
we assume TD to be a standard dimension partition tree and x ∈ HTR(TD, r(x), n),
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A ∈ HTR2(TD, r(A), n), b ∈ HTR(TD, r(b), n). We define

d := #D, n := max
k∈D

nk,

r := max
α∈TD\{D}

r(x)α , R := max
α∈TD\{D}

r(A)
α , Rb := max

α∈TD\{D}
r(b)α .

The ranks of x are usually larger than the ranks of A or b, thus we will assume
Rarb ≤ Ra′

rb
′

if a+b = a′+b′ and b ≤ b′, and the analogous inequality for Rb. In the
below terms involving both n as well as r, the rank symbol r refers to the ranks at
the leaves and therefore satisfies r ≤ n. This allows us to order such terms according
to narb ≤ na′

rb
′

if a+ b = a′ + b′ ∧ a ≤ a′.
In the following, we count for each part of the ALS algorithm— orthogonalisation,

contracted subtree computations and local LSE solves — the number of floating-point
operations (FLOP) arising during a single iteration, i.e. a single call to Recurse(D).
We state already here that the costs at the root are always negligible such that we do
not have to discuss this special case repeatedly.

Orthogonalisation requires some constant number of QR decompositions, SVDs
and mode multiplications per vertex, each of which costs O(nr2) for leaves and O(r4)
for interior vertices, leading to a total cost of O(dr4+dnr2) FLOP. See also [5, Lemma
4.8] for a more detailed result regarding the cost of the strong D-orthogonalisation
Algorithm 2.

The recursive computation of the contracted subtrees (x|A|x)β|α with β ∈
interior(TD), α ∈ TD and child(β | α) = {βL, βR} requires evaluating

xβ

Aβ

xβ

(x|A|x)βL|α (x|A|x)βR|α
.

We propose to contract this network according to the sequence3

Rr4+R3r2 R2r4 Rr4

,

which costs O(R2r4) FLOP.
At the leaf vertices β ∈ leaf(TD), the network to contract is given by

xβ

Aβ

xβ
.

and can be evaluated in O(n2Rr) FLOP. In total, computing the contracted sub-
trees (x|A|x)β|α thus costs O

(

dR2r4 + dn2Rr
)

. The costs for computing (x|b)β|α are

obtained similarly. We only state the final result, which is O
(

dRbr
3 + dnRbr

)

.
The local LSEs are best solved using an iterative method like conjugate gradient

or GMRES because on the one hand, the old, to-be-replaced vertex tensor often
provides a good initial guess for the new, replacing one, and on the other hand, the
special structure of the local matrix allows for an efficient matrix-vector product. To

3The Matlab script from [20] was of great use to determine such contraction sequences.
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make the second point more concrete, we consider the matrix-vector product at an
interior vertex α ∈ interior(TD) with neighbour(α) = {βP , βL, βR} which amounts to
contracting

(x|A|x)βP |α

Aα xα

(x|A|x)βL|α (x|A|x)βR|α

.

see also Figure 4.1b. This can be done in O(R2r4) FLOP through

R3r2+Rr4 R2r4 Rr4

.

Similarly, we find the cost of the matrix-vector product at the leaves to be O(n2Rr).
The right hand side can be computed in O(Rbr

3) (interior vertex) and O(nRbr) (leaf),
respectively, which yields a total cost for solving the local LSE of

O
(

d ρ
(

R2r4 + n2Rr
)

+ d
(

Rbr
3 + nRbr

))

,

where ρ denotes the number of steps per local LSE required by the iterative solver.

4.4. The ALS(SD) Algorithm. The ALS algorithms presented above do not
adapt the ranks of the iterand and therefore fail to produce a reasonably accurate
solution if the initial iterand ranks are chosen too small, but become unnecessarily
costly if these ranks are overestimated. The ALS(SD) algorithm from [3] allows to
easily endow the ALS scheme with rank-adaptivity by extending it with a steepest
descent (SD) and a truncation step as follows.

Algorithm 5 ALS(SD) Algorithm

1: repeat
2: Compute residual approximation z ≈ b−Ax

3: Update x := x+ z

4: Run a single ALS iteration (Algorithm 3 or 4)
5: Truncate x

6: until convergence

In the numerical experiments presented below, the residual approximation is com-
puted using a single iteration of the parallel ALS Algorithm 4 with fixed uniform rank
rz = 3 applied to the system ID z = b−Ax, see [3] for details. For the truncation step,
we use the algorithm from [5] choosing the ranks adaptively such that the original

and truncated tensors x ∈ HTR(TD, r, n), x̃ ∈ HTR(TD, r̃, n) satisfy ‖x−x̃‖
‖x‖ ≤ ε with

ε ∈ R>0 a user-specified tolerance parameter. We call the ALS(SD) algorithm serial
if the ALS algorithm on line 4 is the serial Algorithm 3, and parallel if the algorithm
in question is the parallel Algorithm 4.
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Figure 4.3: Convergence of the serial and parallel ALS and ALS(SD) algorithms
applied to the 128-dimensional Poisson equation. r denotes the rank of the iterand,
eps the relative truncation tolerance.

4.5. Numerical Experiments. We investigate the numerical properties of the
above algorithms by means of the d-dimensional Poisson equation −∆u = 1 on [0, 1]d

with homogeneous Dirichlet boundary conditions, discretised according to the stand-
ard finite difference scheme on a uniform mesh with n = 26 interior grid points in
each dimension. This linear system of equations is then quantised [22, 14, 17, 11]
into 6 virtual modes of length 2 each, and the resulting 6d modes are organised into
a dimension partition tree by first constructing a balanced standard tree for the d

physical modes and then replacing each leaf in this tree with a balanced standard
tree for the 6 virtual modes of the respective dimension. Further details about the
numerical experiments are given at the end of this subsection.

In a first test, we employ both the serial and parallel ALS and ALS(SD) algorithms
on a single core to check whether the modifications required for parallelisation have
any impact on the convergence of the algorithms. As shown in Figure 4.3, this is not
the case.

Next, we investigate the strong scaling of the parallel ALS(SD) algorithm. From
Figure 4.4 we conclude:

• Theorem 3.8 allows to predict the parallel scaling with reasonable accuracy
if the number of leaves d is replaced with an effective d taking into account
that the vertex tensors near the leaves are smaller than the ones near the root
and the dimension partition tree is not perfectly balanced.

• The scalability decreases with increasing iteration count of the ALS(SD) al-
gorithm. This is because in the first iteration, the ranks are almost uniform
(between 2 and 4) while in later iterations the ranks become increasing to-
wards the root.

Technical Details. All benchmarks were run on two twelve-core AMD Opteron
6174 processors (2.2 GHz). The local LSEs are solved using the conjugate gradient
algorithm, terminating the iterations once the relative local residual drops below 10−10

or the iteration count reaches the dimension of the LSE.We use an HTR network of the
indicated ranks and with random vertex tensors as initial guess for the ALS methods,
and the right-hand side, i.e. the all-ones tensor, for the ALS(SD) algorithms. “Relative

residual“ refers to ‖b−Ax‖
‖b‖ where A, b denote the (global) coefficient matrix and right

hand side and x the current iterand. The crosses in Figure 4.3 refer to the value
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Figure 4.4: Strong scaling of the ALS(SD) solver applied to the Poisson equation
with dp = 32 (left) and dp = 128 (right) physical dimensions and relative truncation
tolerance ε = 10−7. The dashed lines denote perfect speedup, the dash-dotted lines
the optimal speedup from Theorem 3.8 for d = 4dp and the dotted lines the optimal
speedup for d = dp.

of this quantity after an ALS/ALS(SD) iteration has been completed. “Cumulative

parallel speedup” is computed as T (1)
T (p) where T (p) is the wall clock time up to the

indicated ALS(SD) iteration on p processors. The vertices were distributed using a
heuristic algorithm mapping the vertices such that as many neighbours as possible
are assigned to the same process under the constraint that the optimal speedup from
Theorem 3.8 must still be achievable. The runtimes per vertex were assumed uniform
such that levelt(α) ∝ level(α) and colevelt(α) ∝ colevel(α).

5. Conclusion. We pioneered the parallel implementation of tensor-network
structured algorithms. In particular, we motivated why any truly parallel imple-
mentation must be based on the HTR rather than the simpler and more well-known
TT format, presented a generic parallelisation scheme and derived explicit bounds on
the parallel potential of HTR algorithms. Based on ideas from [21], we then proposed
a modified, parallelisable ALS algorithm and highlighted the implementation details
required to make the modified algorithm efficient as well as stable with respect to
finite-precision arithmetic. Our numerical experiments demonstrate that it is pos-
sible to get an order of magnitude speedup already on moderately sized networks, yet
they also hint at possible obstacles preventing effective parallelisation, namely low
dimensionality and non-uniform ranks.
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