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Abstract. For time-harmonic scattering of electromagnetic waves from obstacles with uncer-

tain geometry, we perform a domain perturbation analysis. Assuming as known both the scat-
terers’ nominal geometry and its small-amplitude random perturbations statistics, we derive a

tensorized boundary integral equation which describes, to leading order, the second order sta-
tistics, i.e. the two-point correlation of the randomly scattered electromagnetic fields. Perfectly
conducting as well as homogeneous dielectric scatterers with random boundary and interface,
respectively, are considered. Deterministic tensor equations for second-order statistics of both,
Cauchy data on the nominal domain of the scatterer as well as of the far-field pattern are de-
rived, generalizing the work by Harbrecht, Schneider and Schwab (Numer. Math., 109(3):385–
414, 2008) to electromagnetics and to interface problems, and being an instance of the general
programme outlined by Chernov and Schwab (Math. Comp., 82(284):1859–1888, 2013). The
tensorized boundary integral equations are formulated on the surface of the known nominal
scatterer. Sparse tensor Galerkin discretizations of these BIEs are proposed and analyzed based
on the stability results by Hiptmair, Jerez-Hanckes and Schwab (BIT, 53(4):925-939); we show

that they allow, to leading order, consistent Galerkin approximations of the complete second
order statistics of the random scattered electric field, with computational work equivalent to
that for the Galerkin solution of the nominal problem up to logarithmic terms.
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1. Introduction

The scattering of electromagnetic waves is an important problem in numerous areas of elec-
trical engineering; an incomplete list comprises radar imaging, nondestructive testing, remote
sensing, wireless communication networks. The governing equations for these problems are, to
measurement accuracy, Maxwell equations. Often, in applications and numerical simulations, one
is faced with the issue of uncertainty in the problem data, specifically, uncertainty in the geometry
of the scatterer. Concretely, slight changes during manufacturing processes or at operation due
to aging and/or parameter variations such as humidity, temperature, to name a few, generate
small perturbations in the shape of the devices studied with significant variations in their perfor-
mance. Hence the need for more robust prototyping simulation schemes capable of quantifying
these uncertainties. Previous efforts from the engineering community have been focused on apply-
ing techniques such as polynomial chaos, reduced order modeling or the stochastic finite-element
method [38, 4, 21].

In the present paper we perform, for time-harmonic scattering of electromagnetic waves, a first-
order perturbation analysis of the scattered waves subject to random amplitude perturbations of
the scatterers’ geometry. The lack of precise information on the domain perturbation is modeled
within a stochastic framework, i.e. by assuming that the domain perturbations are random, but of
small amplitude almost surely. This naturally leads to the use of shape gradients for the first order
analysis of the scattered fields. Shape gradients, or “domain derivatives” have been developed
in the past decade, mainly in the context of shape optimization and for shape identification in
acoustic and electromagnetic scattering; we refer to [28, 32, 33, 16, 18, 29] and references therein.
Our First Order Second statistical Moments (FOSM) stochastic perturbation analysis is hence
based on shape gradients of time harmonic solutions of Maxwell’s equations from these references.

As already shown for acoustic and even more general equations in [17, 23], the shape gradients
are governed to leading order, i.e. up to second order perturbations, by a set of homogeneous
Maxwell equations in the nominal scatterer. The absence of volume sources in these equations
motivates their boundary reduction via potentials of electric and magnetic surface currents which,
in turn, satisfy Boundary Integral Equations (BIEs). In the context of electromagnetic scatter-
ing, one customarily finds the so-called Electric or Magnetic Field Integral Equation–EFIE and
MFIE, respectively, for short– as well as their linear Combined Field Integral Equation (CFIE).
The discretization of these boundary integral equations is effected by the Boundary Element
Method (BEM) –a.k.a. Method of Moments– which relies on a Galerkin approximation of surface
unknowns.

In what follows, we derive tensorized boundary integral equations for deterministic, first order
approximations of the second moments of the random scattered electromagnetic field, due to
small amplitude perturbations in the scatterers’ geometry. We consider both perfectly conducting
as well as homogeneous dielectric scatterers with uncertain interface location. As mentioned
before, the approximations are of first order in the perturbation amplitude. We derive and show
the well-posedness of tensorized BIEs which relate the second order statistics of the random
scattered electromagnetic field to the second order statistics of the shape uncertainty, assumed to
be known. We then address the efficient numerical solution of these tensorized BIEs by Galerkin
discretization. We show, in particular, that sparse tensor product Galerkin discretizations provide
numerical approximations with the same accuracy versus work –up to logarithmic terms– as the
Galerkin discretization of one instance of the BIE in the deterministic case. We then address
the implementation of the corresponding sparse tensor Galerkin algorithms. Based on sparse
grid techniques, we present an algorithmic realization of the sparse tensor Galerkin discretization
which does not require hierarchic bases and is able to access any available accelerated solver for
the deterministic problem, in particular matrix vector multiplications based on the Fast Multipole
Methods (FMM) (cf. [14] and references therein) and multilevel and Calderón-type preconditioning
methods. We show that the computational complexity of the resulting algorithms to approximate
the second order statistics of random scattered electromagnetic field is log-linear with respect to
the corresponding number of degrees of freedom necessary for the deterministic problem.

The outline of this paper is as follows:
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In Section 2, we present the time-harmonic, electromagnetic exterior scattering problem for
two situations commonly encountered, specifically: (i) a perfectly conducting scatterer; and (ii)
a dielectric scatterer. We present the mathematical formulation of each boundary value problem
and briefly recapitulate existence and uniqueness results for them.

Section 3 reviews some of the elements of shape calculus from [37, 20], and present shape
gradients for the scattered electric fields with respect to the geometry of the perfect conductor and
dielectric scatterers, taken from [25] and, in particular, from [19, Sec. 6]. The connection to random
shape variations is presented in Section 4, where we briefly show the general approach to first-order,
k-th statistical moment analysis of parametric, nonlinear operator equations with random inputs
from [17], and fix notation for the probabilistic formulation of the boundary uncertainty. With this,
we can define the randomly perturbed surfaces versions of the perfect conductor and transmission
problems in Sections 4.3 and 4.4, respectively. As in the case of time-harmonic wave propagation
of acoustric waves, considered e.g. in [28, 23, 24] and consistent with Hadamard’s theorem, the
shape gradient of the scattered electric field is found to be a solution of the homogeneous, time-
harmonic Maxwell equations in the nominal domain, denoted D0 herein, subject to Cauchy data1

being a linear functional of the solution of the nominal scattering problem.
In Section 5, electromagnetic scattering problems without source terms –typically appearing

in first order, second moment analysis– are equivalently reduced to a (system of) BIE(s) on the
boundary (resp. interface) of the nominal shape of the conductor (resp. dielectric interface). The
direct method of boundary reduction of Maxwell’s equation from [13] implies strong ellipticity in
the natural trace spaces of the Cauchy data on the scattering surfaces.

Section 6 combines all the previous elements to derive sparse tensor Galerkin boundary element
discretizations for the computation of FOSM. In other words, we are interested in obtaining two-
point correlations of electric and magnetic surface currents and of far-field patterns of the scattered
electric field. We then propose a sparse tensor Galerkin discretization of these tensorized BIEs
and prove, by extending [26], their quasi-optimal convergence.

Section 7 develops computational aspects of the derived FOSM BIEs. A key issue is to avoid
explicit formation of the matrix corresponding to the tensorized operator. We offer one way to
do this, based on an abstraction of the so-called sparse-grid combination technique, and present
results on error convergence and log-linear complexity based on the use of FMM for log-linear
EFIE matrix-vector computations. Final remarks and conclusions are presented in Section 8.

2. Electromagnetic Scattering

We introduce the basic problem classes to be considered throughout; at this stage, we formulate
models for a generic scatterer geometry denoted by D. More precisely, let D ⊂ R3 be an open,
bounded Lipschitz domain with simply connected boundary Γ := ∂D and set Dc := R3\D.

For a constant angular frequency ω > 0, we consider the time-harmonic propagation of elec-
tromagnetic waves; with ε and µ denoting the dielectric permittivity and magnetic permeability,
respectively, assumed to be positive constants in Dc. Denoting as usual by E and H the electric
and magnetic fields, respectively, the Maxwell equations without sources read2

curlE− ıωµH = 0 , curlH+ ıωεE = 0 in D ∪Dc . (2.1)

Setting κ := ω
√
µε, the system (2.1) can be reduced to

curl curlU− κ2U = 0 in D ∪Dc . (2.2)

Here, the unknown U = E, and the magnetic flux density is H = 1
ıωµ curlU, which is computed

a posteriori. In Dc, we impose the Silver-Müller radiation condition:
∣∣∣∣curlU(R)× R

R
− ıκU(R)

∣∣∣∣ = O
(

1

R2

)
, R ∈ R3, R→∞ , (2.3)

1For Cauchy data we refer to the tangential components of the electric fields and of magnetic fluxes on the
scatterers surface which are solution of the homogeneous Maxwell scattering problems considered.

2In the following, we denote scalars in simple typeface, vector fields with boldface. Quantities defined over
volumes are written in capital letters and surface ones in lower case.
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where R := ‖R‖2 and ‖·‖2 denotes the standard Euclidean norm.
Rather than developing the theory in the most general setting, we will consider simultaneously

two particular time-harmonic electromagnetic wave scattering problems:

I. A perfect conductor which occupies D and leads to an exterior Dirichlet problem in Dc

for (2.2) on the scattering surface Γ; and,
II. A transmission problem in D ∪Dc where Γ is now a dielectric interface, with different

material parameters in D and in Dc.

For the mathematical formulation of problems I and II as well as for the boundary reduction of
the second moment equations, we need to precise our functional spaces setting as well as introduce
Boundary Integral Operators (BIOs) on Γ set forth in Section 5.1.3.

2.1. Functional spaces. Let d = 1, 2, 3. For a domain K ⊆ Rd, Cm(K), with m ∈ N, denotes
the space of m-times differentiable scalar functions on K, and similarly for the space infinitely
differentiable scalar continuous functions C∞(K). Let L2(K) denote the class of square-integrable
functions over K. Throughout, slanted boldface symbols for functional spaces represent vector-
valued counterparts, e.g. L2(K) is the space of vector valued functions with d components in
L2(K).

Spaces on the closed surface Γ ⊂ R3 shall be defined in terms of the traces of the following
vector functional spaces in the bounded Lipschitz domain D ⊂ R3:

H(curl, D) := {U ∈ L2(D) : curlU ∈ L2(D)},
Hloc(curl, D

c) := {U ∈ L2
loc(D

c) : curlU ∈ L2
loc(D

c)},
H(curl curl, D) := {U ∈H(curl, D) | curl curlU ∈ L2(D) },

Hloc(curl curl, D
c) := {U ∈Hloc(curl, D

c) | curl curlU ∈ L2
loc(D) } .

Observe that if U ∈ H(curl, D) (resp. U ∈ Hloc(curl, D
c)) solves the homogeneous Maxwell

equations, U ∈H(curl curl, D) (resp. U ∈Hloc(curl curl, D
c)). We also introduce the following

Hilbert spaces over the exterior domain [31, Section 5.3]:

Hκ(curl, D
c) :=

{
U : U satisfies (2.3),U/R ∈ L2(Dc), curlU/R ∈ L2(Dc),
U ·R
R

∈ L2(Dc),
curlU ·R

R
∈ L2(Dc)

}
,

Hκ(curl curl, D
c) :=

{
U : curlU ∈Hκ(D

c)
}
.

(2.4)

On the closed surface Γ, we use standard Sobolev spaces, Hs(Γ), of complex-valued scalar functions
on Γ endowed with standard norms ‖ · ‖s for s ∈ [−1, 1] and with the standard notation H0(Γ) =
L2(Γ) [30, Chap. 3]. By γ, we denote the standard trace operator mapping γ : Hs+1/2(D) →
Hs(Γ), u 7→ u|Γ, s ∈ (0, 1), continuously. Similar considerations hold component-wise for vector
spaces Hs(Γ). We define spaces of complex valued tangential vector fields as:

V s
π (Γ) := (n×Hs(Γ))× n, s ∈ [0, 1], (2.5)

endowed with the induced operator norms ‖·‖V s
π

and normal vector n on the boundary pointing

from D to Dc.
We will be mainly concerned with the space V

1/2
π (Γ) for which we drop the superscript, Vπ(Γ) ≡

V
1/2
π (Γ) – compare with the notation adopted in [10]. We denote by V ′

π(Γ) its dual space with
V 0
π (Γ) as pivot space and by 〈·, ·〉V ′

π
,Vπ

the corresponding duality pairing. Finally, we shall make
use of first-order surface differential operators defined on Γ, divΓ and curlΓ [31, Chap. 2.5].

Definition 2.1. For U ∈ C∞(D), the Dirichlet and Neumann traces on Γ = ∂D are defined by

γDU := (n×U)|Γ and γNU := κ−1 (n× curlU)|Γ ,

respectively. We introduce the space:

X(Γ) := {λ ∈ V ′
π(Γ) : divΓ λ ∈ H−1/2(Γ) }

with norm ‖λ‖X = ‖λ‖V ′

π

+ ‖divΓ λ‖−1/2.
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Theorem 2.2. ([10, 12]) The operators γD and γN are linear and continuous from C∞(D)
to V 0

π (Γ) and they can be extended to linear and continuous operators from H(curl, D) and
H(curl curl, D), respectively, to X(Γ). Moreover, they admit linear and continuous right in-
verses.

For U ∈ Hloc(curl, D
c), V ∈ Hloc(curl curl, D

c), or alternatively, U ∈ Hκ(curl, D
c), V ∈

Hκ(curl, D
c), we define γcDU and γcNV in the same way and similar mapping properties hold. We

set then

H0(curl, D) := {U ∈H(curl, D) : γDU = 0} .
By continuity of γD, H0(curl, D) is a closed subspace of H(curl, D). The operator ×n :

V 0
π (Γ) → V 0

π (Γ) associated with the mapping U 7→ U × n can be extended to a linear and
continuous isomorphism between X(Γ) and its dual [13, Thm. 3.3], where X(Γ) is shown to be
self-dual under the b (·, ·) pairing defined next [8].

Set X2(Γ) :=X(Γ)×X(Γ). A crucial role in deriving BIEs is taken by the bilinear form:

b (v,w) :=

∫

Γ

v · (w × n) = − b (w,v) :X2(Γ)→ C . (2.6)

In the coercivity proofs of BIOs, as well as in the analysis of Galerkin boundary element methods,
the following Hodge decomposition of X(Γ) is fundamental. It has been proved in [10] in the case
of a simply connected manifold Γ and in [12] for multiply connected domains.

Theorem 2.3. Define W (Γ) := {λ ∈X(Γ) : divΓ λ = 0} and

V (Γ) := {λ ∈X(Γ) :

∫

Γ

λ ·w = 0, ∀w ∈W (Γ) ∩ V 0
π (Γ)} .

There holds X(Γ) =W (Γ)⊕ V (Γ), and W (Γ) can be decomposed as

W (Γ) =W0(Γ)⊕H(Γ) , W0(Γ) := curlΓH
1
2 (Γ) ; dim{H(Γ)} = 2Ne , (2.7)

where the space H(Γ) is composed of the direct sum of the tangential traces of the Neumann fields
associated to D and Dc; Ne is the first Betti number associated with the domain D. Moreover, if
u = v +w, v ∈ V (Γ), w ∈W (Γ), we have the following norm equivalences:

c1(‖v‖X + ‖w‖X) ≤ ‖u‖X ≤ ‖v‖X + ‖w‖X , (2.8)

‖divΓ u‖−1/2 ≤ ‖v‖X ≤ c2 ‖divΓ u‖−1/2 ,

where c1, c2 are positive constants dependent on Γ, and V (Γ) →֒ V 0
π (Γ) with compact injection.

2.2. Scattering by a perfect conductor. Assume D to be filled by a perfect conductor and
Dc a purely dielectric exterior domain with real material constants µ, ε > 0, κ := ω

√
µε again

with ω > 0. Let us consider an incident field Uinc ∈ Hloc(curl, D
c) such that curl curlUinc

−κ2Uinc = 0. If Upc denotes the scattered field by the perfect conductor, the total electric field
in the exterior domain Utot = Uinc +Upc should satisfy γcDUtot = 0, which implies

γcDU
pc = −γcDUinc :=mpc on Γ, (2.9)

and mpc ∈X(Γ). Hence, the scattering by a perfect conductor problem can be stated as follows:
for a given mpc ∈X(Γ), we seek a scattered field Upc in Dc satisfying (2.2), (2.3) and (2.9) with

Upc ∈Hκ(curl, D
c) . (2.10)

Remark 2.4. For lossless materials, the corresponding homogeneous interior problem in general
admits non-trivial solutions (cf. [13, Thm. 5.2]). In other words, assume that Upc ∈H(curl, D)
is a Maxwell solution in D with γDU

pc = 0. Then Upc = 0 unless κ2 ∈ SDir where the set SDir

of eigenvalues of the interior Maxwell problem with homogeneous Dirichlet boundary condition is
countable and accumulates only at infinity (see Remark 6.2 ahead).

Remark 2.5. In the case of lossy materials, i.e. material parameters with non-zero imaginary
values, our entire program will remain valid. However, for the sake of brevity we forgo this case
both for perfect conducting and dielectric scattering problems.
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2.3. Dielectric scattering problem. Given two dielectric media which occupy D and Dc, with
real material parameters µ1, ε1 > 0 in D and with µ2, ε2 > 0 in Dc, and with κi := ω

√
µiεi,

i = 1, 2, for a given incident field Uinc ∈ Hloc(curl, D
c) such that curl curlUinc − κ22Uinc = 0,

we seek again time-harmonic solutions with common circular frequency ω. Specifically, we seek
fields Ui such that

U1 ∈H(curl, D) , U2 ∈Hκ2
(curl, Dc) , (2.11)

curl curlU1 − κ21U1 = 0 in D , curl curlU2 − κ22U2 = 0 in Dc . (2.12)

Observe that U1 is the total field in D while U2 is the exterior scattered field. Hence, the total
exterior field is Utot,2 = Uinc+U2 in Dc. The problem (2.11) - (2.12) is completed by transmission
conditions on the interface Γ. The tangential components of the electric field and magnetic flux
densities should be continuous across Γ. Denoting by γcD and γcN the operators in Definition 2.1
with respect to Dc. Define γ̂NU := n× curlU|Γ. Then the transmission conditions on Γ read

γDU
1 − γcDU2 = γcDU

inc =:mde, (2.13)

µ−1
1 γ̂NU

1 − µ−1
2 γ̂N

c
U2 = µ−1

2 γ̂N
c
Uinc =: jde . (2.14)

Given data mde, jde ∈ X(Γ) we wish to find U1,U2 satisfying (2.11)–(2.12). The dielectric
problem has at most one solution (cf. [13, Thm. 6.1]).

Remark 2.6. Existence and uniqueness of solutions for these exterior problems is established, for
example, in the monographs [15] and [31, Thm. 5.4.8]. A key argument in the proof is Rellich’s
lemma for uniqueness in order to apply Fredholm alternative arguments. Observe the introduction
of weighted function spaces Hκ(curl, D

c), which are Hilbert and impose radiation conditions
essentially [31, 1]. This avoids the use of spaces of locally integrable functions on unbounded
domains, which are no longer Hilbert but Fréchet in nature. Therefore, whenever discussing
existence and uniqueness of solutions we will consider both types of spaces: Fréchet-spaces of
locally integrable function which satisfy radiation conditions and Hilbert spaces with suitable
weights at infinity. The latter, separable weighted Hilbert spacesHκ(curl, D

c) for the formulation
of the exterior problems will allow in Section 4 ahead to develop the stochastic setting based on
Bochner integrals, and in particular obviates the use of more general notions of integration.

3. Shape Derivatives

As we are concerned with the scattered fields in the presence of small random shape variations
of the boundary Γ, we perform a first-order perturbation analysis of the electromagnetic scattering
problems introduced in Section 2. To simplify notation, we assume in what follows that in (2.7)
holds Ne = 0 and H = {0}; in the general case, the ensuing analysis applies upon localization to
each connected component of Γ.

3.1. Shape Calculus. As in [28, 23], our analysis is based on the first derivative of the scattered
fields with respect to the geometry Γ of the scatterer. This derivative is also known as shape
gradient. For numerous applications in time-harmonic acoustic and electromagnetic scattering,
such shape gradients have been developed in the past decade, mainly in the context of shape
optimization and for the inverse problem of shape identification; we refer to [28, 32, 33, 16, 18]
and associated bibliography. To define the shape gradients, we consider a one-parameter family
{Dδ}δ of domains defined for |δ| < δ0 as follows:

(S1) for δ = 0, we consider given a nominal domain D0 with C2-boundary Γ0, unit normal
vector n0 pointing from D0 into Dc

0, and a Γ0-transversal, C
2-unit perturbation field

ψ : Γ0 7→ R3, i.e. n0 ·ψ ≥ ζ > 0 and ‖ψ‖2 = 1 on Γ0, defining the space C2(Γ0;R
3); and,

(S2) for 0 ≤ |δ| < δ0, boundary surfaces Γδ are given by

Γδ(ψ) := Tδψ(Γ0) = {x = Tδψ(x0) := (I+δψ) (x0) : x0 ∈ Γ0} , (3.1)

where the operator I denotes identity.
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Proposition 3.1. Assume that in (3.1) the perturbation field ψ ∈ C2(Γ0;R
3) satisfies n0 · ψ ≥

ζ > 0 and ‖ψ‖2 = 1 on Γ0. Then there exists δ0 > 0 depending on the maximum curvature
of Γ0, such that (3.1) uniquely defines a C2-surface for every 0 ≤ |δ| < δ0. For these δ, the
transformation Tδψ := I+δψ : x 7→ x + δψ(x) is a C2-diffeomorphism from Γ0 to Γδ(ψ). If, in
particular, Γ0 is a C3-boundary, then the assertion remains valid with ψ = n0, the unit normal
exterior vector field to Γ0.

Proof. By compactness of the bounded nominal surface Γ0 and by the continuity of the mapping
Γ0 ∋ x0 → n0(x0) · ψ(x0), there exists c0 > 0 such that min{n0(x0) · ψ(x0) : x0 ∈ Γ0} ≥ c0 > 0.
Since Γ0 is a C2-boundary, for sufficiently small δ0 > 0, the set enclosed by the surfaces Γ0 and
Γδ0(ψ) is a tubular neighborhood of Γ0, i.e. for each x in this set, there exists a δ such that
δ0 > |δ| ≥ 0 and a unique x0 ∈ Γ0 such that the mapping x = Tδψ(x0) = x0 + δψ(x0) is a
bijective C2(Γ0)-diffeomorphism. �

Up to now, the transformations Tδψ were introduced on the nominal surface Γ0 = ∂D0 enclosing
the bounded nominal domain D0 ⊂ R3. For sufficiently small |δ|, the transformations Tδψ admit
a unique C2-extension to D0 and Dc

0, still denoted by Tδψ, such that Tδψ(R) ≡ I for R ≥ R0 > 0
(cf. (2.3) for R and R) sufficiently large, and such that

Dδ(ψ) := int(Γδ(ψ)) = Tδψ(D0) , 0 ≤ |δ| < δ0 , (3.2)

is likewise a bijective C2-diffeomorphism. In particular, its inverse, denoted by T−1
δψ , maps Dδ(ψ)

bijectively ontoD0. For each domainDδ(ψ) andD
c
δ(ψ) := R3\Dδ(ψ) with 0 ≤ |δ| < δ0, there exist

unique solutions of the perfect conductor and dielectric problems, described in Sections 2.2 and
2.3, respectively. We denote these solutions by Upc

δ and Ude
δ := (U1

δ ,U
2
δ), respectively. Evidently,

Upc
δ and (U1

δ ,U
2
δ) depend also on ψ; we shall write occasionally Upc

δ (ψ) and (U1
δ ,U

2
δ)(ψ) to

emphasize this dependence. Using the diffeomorphsim Tδψ : D0 → Dδ(ψ) in (3.1) and (3.2), we
denote by

Ŭpc
δ := Upc

δ ◦ Tδψ and (Ŭ1
δ , Ŭ

2
δ) := (U1

δ ◦ Tδψ,U2
δ ◦ Tδψ) , 0 ≤ |δ| < δ0 (3.3)

the pullbacks of the solutions Upc
δ and (U1

δ ,U
2
δ) to their corresponding nominal domains D0 and

D0 × Dc
0. Due to T0 = I, Ŭpc

0 ≡ Upc
0 in Dc

0 and (Ŭ1
0, Ŭ

2
0) ≡ (U1

0,U
2
0) in D0 × Dc

0. The shape
derivatives in the direction ψ are now defined as

dUpc
0 (ψ) = lim

δ→0
δ−1

(
Ŭpc

δ (ψ)−Upc
0

)
in Hκ(curl, D

c
0) ,

(dU1
0, dU

2
0)(ψ) = lim

δ→0
δ−1

(
Ŭ1

δ(ψ)−U1
0, Ŭ

2
δ(ψ)−U2

0

)
in H(curl, D0)×Hκ2

(curl, Dc
0) ,

with the shape derivative shorthand dUde
0 (ψ) := (dU1

0, dU
2
0)(ψ).

The existence of these limits, to which we refer as “domain derivatives” or “shape derivatives”,
has been established in [28, 19, 25, 33, 29] and the references there. Shape derivatives are solutions
of Maxwell equations without source terms and, therefore, can be approached numerically by
boundary reduction to (systems of) boundary integral equations on the nominal surfaces Γ0. We
next present the boundary value problems characterizing the shape gradients for Problems I and
II.

3.2. Shape Derivative of the Perfect Conductor Problem. Following [28, 33], there holds
the following characterization of the shape derivative dUpc

δ (ψ) of Upc
δ (ψ).

Proposition 3.2. For the solution Upc

δ (ψ) of the perfect conductor scattering problem (2.9)–
(2.10) with scatterer geometry Dc

δ(ψ) with boundary Γδ(ψ), the first shape derivative dUpc
0 (ψ) at

the nominal boundary Γ0 of the nominal domain D0 in the direction ψ ∈ C2(Γ0;R
3) also solves

the perfect conductor scattering problem:

curl curl dUpc
0 (ψ)− κ2dUpc

0 (ψ) = 0 in Dc
0 , (3.4)

where dUpc
0 (ψ) ∈Hκ(curl, D

c
0) and also satisfies the boundary condition:

γcDdU
pc
0 (ψ) = gpc

D (Upc
0 ,U

inc,ψ) on Γ0 , (3.5)
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where gpc
D ∈ X(Γ0) is given in terms of the nominal solution Upc

0 , the associated incident field
Uinc and perturbation field ψ by

gpc
D (Upc

0 ,U
inc,ψ) := (ψ · n0)γ̂N(U

pc
0 +Uinc)× n0 − curlΓ0

(
(ψ · n0)(n0 · (Upc

0 +Uinc))
)
. (3.6)

Based on Proposition 3.2, we have the shape Taylor expansion of the perfect conductor problem:

Ŭpc
δ (ψ) = Upc

0 + δdUpc
0 (ψ) +O(δ2) , 0 ≤ |δ| < δ0 , (3.7)

with O(δ2) valid in Hκ(curl, D
c
0).

3.3. Shape Derivative of the Dielectric Interface Problem. We now precise the notion of
shape differentiability for the solution of the dielectric interface problem.

For a given incident field Uinc ∈ Hloc(curl, D
c
δ) such that curl curlUinc − κ22U

inc = 0, let
Ude

δ = (U1
δ ,U

2
δ) be the solution pair of the dielectric scattering problem (2.11)–(2.13) with respect

to the scatterer geometry Γδ(ψ).
Shape differentiability of the solution pair Ude

δ of the dielectric scattering problem (2.11)–(2.13)
was shown in [19, Section 6], where the following result was proved:

Proposition 3.3. The first derivative dUde
0 (ψ) = (dU1

0, dU
2
0)(ψ) of the solution pair Ude

δ (ψ) =(
U1

δ ,U
2
δ

)
(ψ) of the dielectric scattering problem (2.11)–(2.13) with respect to the scatterer geom-

etry Γδ(ψ) at the nominal boundary Γ0 in the direction ψ ∈ C2(Γ0;R
3) solves the transmission

problem:
curl curl dU1

0(ψ)− κ21dU1
0(ψ) = 0 in D0 ,

curl curl dU2
0(ψ)− κ22dU2

0(ψ) = 0 in Dc
0 ,

(3.8)

with dU2
0(ψ) ∈Hκ2

(curl, Dc) and interface conditions on Γ0:

γDdU
1
0(ψ)− γcDdU2

0(ψ) = gde
D (Ude

0 ,U
inc,ψ) ,

µ−1
1 γ̂NdU

1
0(ψ)− µ−1

2 γ̂N
c
dU2

0(ψ) = gde
N (Ude

0 ,U
inc,ψ) ,

(3.9)

where the data gde
D and gde

N belong to X(Γ0) and are given in terms of the associated incident field
Uinc, the nominal solution Ude

0 and of the perturbation field ψ by

gde
D (Ude

0 ,U
inc,ψ) := −(ψ · n0)

(
γ̂NU

1
0 − γ̂N(U2

0 +Uinc)
)
× n0

+ curlΓ0

(
(ψ · n0)(n0 ·U1

0 − n0 · (U2
0 +Uinc))

)
,

gde
N (Ude

0 ,U
inc,ψ) := −(ψ · n0)

(
κ21
µ1
γDU

1
0 −

κ22
µ2
γD(U

2
0 +Uinc)

)

+ curlΓ0

(
(ψ · n0)(µ

−1
1 curlΓ0

U1
0 − µ−1

2 curlΓ0
(U2

0 +Uinc))
)
,

with γ̂N as defined in (2.14).

Based on Proposition 3.3, we have the shape Taylor expansion of the dielectric interface problem:

Ŭde
δ (ψ) = Ude

0 + δdUde
0 (ψ) +O(δ2) , 0 ≤ |δ| < δ0 , (3.10)

in H(curl, D0)×Hκ2
(curl, Dc

0). We remark that (3.10) can be transported by T−1
δψ(ω) to Dδ(ω)∪

Dc
δ(ω). For later use in the FOSM analysis, we note in passing that the shape derivative dUde

0 (ψ)
depends on the perturbation field ψ linearly and only through Cauchy data on Γ0, which holds
generically, due to Hadamard’s theorem (cf. [37]): dUde

0 (ψ) is solution of the linear operator
equation (3.8)–(3.9) and the boundary data gde := (gde

D , gde
N ) in (3.9) are linear in ψ.

4. First Order Second Moment (FOSM) Analysis

We considered the shape differentiability of the model problems and presented, in Sections
3.2 and 3.3, the boundary value problems which characterize the corresponding shape gradients
for a given domain perturbation field ψ. In the present section, we consider random domain
perturbation fields ψ; we show that the solutions of the model problems on the perturbed domains
become random variables taking values in suitable function spaces. We also derive, using the shape
gradients derived in Sections 3.2 and 3.3, deterministic expressions for first-order approximations
of the second moments of the random electric fields. For this, our main argument hinges on the
linear dependence of the shape gradients dUpc

0 (ψ) and dUde
0 (ψ) on the direction field ψ.
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4.1. Random Fields. We introduce parts of the theory presented in [39]. Let (Ω,A,P) be a
probability space, where, as customary, Ω denotes the set of all elementary events, A a σ-algebra
of events and P a probability measure. We define a random field g with values in a generic,
separable Hilbert space X as a strongly measurable mapping g : Ω → X which maps events
E ∈ A to Borel sets in X. This induces a measure P̃ on X.

Let k ∈ N. We say that a random variable g : Ω → X is in the Bochner space Lk(Ω,P;X)

if ω 7→ ‖g(ω)‖kX is measurable and integrable so that ‖g‖Lk(Ω,P;X) :=
(∫

Ω
‖g(ω)‖kX dP(ω)

)1/k
is

finite. If so, for k = 1, the mathematical expectation:

E[g] :=

∫

Ω

u(ω) dP(ω) ∈ X (4.1)

exists as a Bochner integral and it holds

‖E[g]‖X ≤ ‖g‖L1(Ω,P;X) . (4.2)

Let B denote a continuous linear mapping from X into another separable Hilbert space Y .
For a random variable g in Lk(Ω,P;X) one constructs another random variable h(ω) = B g(ω) ∈
Lk(Ω,P;Y ) and

‖B g‖Lk(Ω,P;Y ) ≤ ‖g‖Lk(Ω,P;X) . (4.3)

Furthermore,

B

∫

Ω

g(ω) dP(ω) =

∫

Ω

B g(ω) dP(ω) . (4.4)

In order to define statistical moments, we introduce for k ∈ N and for a separable Hilbert space
X the k-fold tensor product space:

X(k) := X ⊗ · · · ⊗X︸ ︷︷ ︸
k-times

(4.5)

equipped with the natural norm ‖·‖X(k) , which is a cross-norm, i.e.

‖g1 ⊗ · · · ⊗ gk‖X(k) = ‖g1‖X · · · ‖gk‖X , (4.6)

for all g1, . . . , gk in X. We refer to [35, Chap. II.4] and the references there for these and further
results on tensor products of separable Hilbert spaces. Let now X and Y be separable Hilbert
spaces. For B in L(X,Y ), the space of linear continuous mappings from X to Y , there is a unique
linear, continuous tensor product operator:

B
(k) := B⊗ · · · ⊗ B︸ ︷︷ ︸

k-times

∈ L(X(k), Y (k)) . (4.7)

For a random field u ∈ Lk(Ω,P;X), consider the k-fold simple tensor product u(k) := u(ω)⊗· · ·⊗
u(ω). Then, u(k) ∈ L1(Ω,P;X(k)). For u ∈ Lk(Ω,P;X) with k ∈ N, the kth moment of u(ω) is
defined by

Mku = E
[
u⊗ · · · ⊗ u︸ ︷︷ ︸

k-times

]
=

∫

ω∈Ω

u(ω)⊗ · · · ⊗ u(ω)︸ ︷︷ ︸
k-times

dP(ω) . (4.8)

Nonetheless, in the present work we will just focus on first and second order moments, i.e. k = 1, 2.

Remark 4.1. For a vector space3 X and for k ∈ N, we denote by Xk = X × ... × X the k-fold
cartesian product of X, with graph norm given by the sum of k components, which is not to be
confused with k-fold tensor product X(k) in (4.5).

3All spaces are understood over the coefficient field C, unless explicitly stated otherwise.
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4.2. Random Surfaces. For the analysis of shape uncertainty in the scattering problems, we
assume that the scatterers are given as ensembles of surfaces Γδ(ψ) with nominal geometry Γ0

parametrized by random perturbation fields ψ, which we assume to be C2(Γ0;R
3)-random fields

over a probability space (Ω,A,P). Denote by B(C2(Γ0;R
3)) the σ-algebra of Borel sets on the

separable Banach space C2(Γ0;R
3). Then a random domain perturbation field is an (A,B)-

measurable mapping ψ : Ω→ C2(Γ0;R
3). With this mapping, and with δ0 > 0 sufficiently small,

for all δ0 > |δ| ≥ 0, we associate a one-parameter family of random surfaces via the mapping:

Ω ∋ ω 7→ Γδ(ψ(ω)) = Tδψ(ω)(Γ0) = (I+δψ(ω))(Γ0) , (4.9)

where the collection {Tδψ(ω) = I+δψ(ω) : ω ∈ Ω} of diffeomorphisms is measurable with respect to
the topology generated by the open neighborhoods in the set of all diffeomorphisms from Γ0 → Γδ.

We shall confine ourselves in the remainder of this work to normal perturbation fields4,

ψ(x0, ω) = η(x0, ω)n0(x) , x0 ∈ Γ0 , η ∈ L2(Ω,P;C2(Γ0;R)) . (4.10)

As before, n0 denotes the exterior unit normal vector to the nominal boundary Γ0 = ∂D0 and
η ∈ L2(Ω,P;C2(Γ0)) a scalar, random perturbation amplitude, i.e. a measurable mapping such
that ‖η‖L2(Ω,P;C2(Γ0)) ≤ 1. If Γ0 is a C3-boundary, for |δ| > 0 sufficiently small and for a P-a.s.

realization η(·, ω) ∈ C2(Γ0), conditions (S1) and (S2) hold and the corresponding realization:

Γδ(ω) = Tδψ(ω)(Γ0) = (I+δψ(ω))(Γ0) = (I+δη(·, ω)n0)(Γ0) (4.11)

is then P-a.s. a C2-manifold embedded into R3; as before, we denote each realization of the
perturbed domain by Dδ(ω) = int(Γδ(ω)) = Tδψ(ω)(D0) and D

c
δ(ω) := R3\Dδ(ω).

For a given, random perturbation field ψ(ω) and sufficiently small |δ| ≥ 0, and P-a.e. ω, the
model electromagnetic scattering problems I and II from Section 2 in the stochastically perturbed
domains Dδ(ω) will admit unique solutions, denoted Upc

δ (ω) and Ude
δ (ω), respectively – the reader

should note the implicit dependence on ψ. The collections {Upc
δ (ω) : ω ∈ Ω} and {Ude

δ (ω) : ω ∈
Ω} of individual solutions for each realization of the geometry Dδ(ω) are candidates for random
solutions. As maps from (Ω,A) into the appropriate functional spaces for the corresponding
Maxwell problems I and II, these collections must verify strong measurability.

4.3. Random Shape Perfect Conductor. Let Uinc ∈H loc(curl, D
c
δ(ω)) be a given, determin-

istic incident field such that curl curlUinc − κ2Uinc = 0 in Dc
δ(ω). The random shape perfect

conductor time-harmonic scattering problem can be stated as follows: we seek a scattered field
Upc

δ (ω) in Dc
δ(ω) such that (2.2) and (2.3) hold in Dc

δ(ω), with

Upc
δ ∈Hκ(curl, D

c
δ(ω)) , (4.12)

and Dirichlet boundary condition:

γcDU
pc
δ = −γcDUinc =:mpc

δ (ω) on Γδ(ω) . (4.13)

Since for 0 ≤ |δ| < δ0 with sufficiently small δ0, all realizations Γδ(ω) of the random boundary
are closed C2-surfaces in R3, for P-a.s. perturbation amplitude η(·, ω) in (4.10), the problem
(4.12)–(4.13) admits a unique solution Upc

δ (ω) ∈ Hκ(curl, D
c
δ(ω)) which satisfies (2.2) and (2.3)

in Dc
δ(ω).

Proposition 4.2. Assume hypotheses (4.10), (4.11). Then, the following statements hold:

(i) There exists δ0 > 0 depending on Γ0 and on κ, but independent of Uinc such that, for

every 0 ≤ |δ| < δ0, the family {Ŭpc

δ (ω) : ω ∈ Ω} of solutions to the perfect conductor
problem is a Hκ(curl, D

c
0)-valued random variable on (Ω,A,P), to which we shall refer as

random solution of the perfect conductor problem.
(ii) For sufficiently small domain perturbation amplitudes 0 ≤ |δ| < δ0, for P-a.s. ω the shape

Taylor expansion of the random solution field of the perfect conductor problem is

Ŭpc

δ (ω) = Upc
0 + δdUpc

0 (η(·, ω)n0) +O(δ2) P-a.s. in Hκ(curl, D
c
0) . (4.14)

4Similar considerations remain valid for more general random domain perturbation fields, ψ(ω), as long as the
outgoing condition is preserved, i.e. property (S1) in Section 3.1 is fulfilled.
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(iii) The corresponding shape gradient dUpc
0 (η(·, ω)n0) defined in (3.4)–(3.5) belongs to the

space L2(Ω,P;Hκ(curl, D
c
0)).

Proof. Assuming (4.10), (4.11), we first prove (i). For each realization ω and for every 0 ≤ |δ| < δ0,
the corresponding C2-diffeomorphism Tδψ is bijective from D0 to Dδ(ψ(ω)) and from Dc

0 to
Dc

δ(ψ(ω)). For each ω, there exists a unique solution of the perfect conductor problem inDc
δ(ψ(ω)),

Upc
δ (ψ(ω)) ∈Hκ(curl, D

c
δ(ψ(ω))). Therefore, the collection {Upc

δ (ψ(ω)) : ω ∈ Ω} is well-defined,
and thus, for every ω, the pullback Ŭpc

δ (ω) = Upc
δ (ψ(ω)) ◦ Tδψ(ω) belongs to Hκ(curl, D

c
0).

The existence of the shape derivative in direction ψ implies continuous dependence of Upc
δ (ψ)

on the scatterers’ shape ψ: the map ψ 7→ Ŭpc
δ (ψ) is continuous from the space of perturbation

fields {ψ ∈ C2(Γ0;R
3) : (S1) & (S2) hold} to Hκ(curl, D

c
0). The collection {Ŭpc

δ (ω) : ω ∈ Ω} is,
therefore, the composition of a continuous map ψ 7→ Ŭpc

δ (ψ) with the strongly measurable map
ω 7→ ψ(ω). As compositions of strongly measurable and continuous maps are strongly measurable,

the map ω 7→ Ŭpc
δ (ω) is strongly measurable from (Ω,A) to (Hκ(curl, D

c
0) ,B(Hκ(curl, D

c
0)), and

therefore a Hκ(curl, D
c
0)-valued random function.

Point (ii) is deduced by observing that the shape Taylor expansion (4.14) follows from (3.7)
upon noting that the assumptions of Proposition 3.2 hold P-a.s.

Finally, the square integrability with respect to P, i.e. η ∈ L2(Ω,P;C2(Γ0)), implies the finite-
ness of second statistical moments of the random Cauchy data gpc

D (Upc
0 ,U

inc, η(·, ω)n0). This is
a consequence of the linear dependence of gpc

D in (3.6) on the domain perturbation field ψ(ω) =
η(·, ω)n0. Since the perfect conductor problem (3.4)–(3.6) is linear and η ∈ L2(Ω,P;C2(Γ0)), this
linear dependence of the data on η implies dUpc

0 (η(·, ω)n0) ∈ L2(Ω,P;Hκ(curl, D
c
0)) as stated in

(iii). �

We remark that the shape Taylor expansion (4.14) is formulated on the ω-independent nominal
domains Dc

0 and Γ0 = ∂D0. Transporting (4.14) via the diffeomorphism T−1
δψ(ω) to Γδ(ω) results

in

Upc
δ (ω) = (Upc

0 + δdUpc
0 (η(·, ω)n0)) ◦ T−1

δψ(ω) +O(δ
2) in Hκ(curl, D

c
δ(ω)) .

4.4. Random Dielectric Interface.

Proposition 4.3. Let (4.10), (4.11) hold. Then,

(i) There exists δ0 > 0 such that, for every 0 ≤ |δ| < δ0, the mapping Ω ∋ ω 7→ Ŭde
δ (ω) is

measurable from (Ω,A) to

(H(curl, D0)×Hκ2(curl, D
c
0),B(H(curl, D0))× B(Hκ2(curl, D

c
0))) .

(ii) For 0 ≤ |δ| < δ0, and for P-a.e. ω holds the shape Taylor expansion over the space
H(curl, D0)×Hκ2

(curl, Dc
0):

Ŭde
δ (ω) = Ude

0 + δdUde
0 (η(·, ω)n0) +O(δ2) . (4.15)

(iii) The random Cauchy data gde(Ude
0 ,U

inc, η(·, ω)n0) defining the corresponding shape gra-
dients dUde

0 (η(·, ω)n0) via (3.8), (3.9), have finite second moments, and

dUde
0 (η(·, ω)n0) ∈ L2(Ω;P;H(curl, D0)×Hκ2

(curl, Dc
0)) .

Proof. We take the cue from the perfect conductor case and repeat similar arguments to prove (i).
Similarly for its shape derivative: assertion (ii) follows from (3.10) by inserting ψ = η(·, ω)n0 into
the expressions gde

D and gde
N for the dielectric scatterer Cauchy data in the boundary condition

(3.9). Lastly, statement (iii), concerning the square integrability with respect to P and implying
the finiteness of second statistical moments of the random Cauchy data, gde

D (Ude
0 ,U

inc,ψ), and
gde
N (Ude

0 ,U
inc,ψ), comes from the linear dependence of gde

D and gde
N on the domain perturbation

field ψ and from the assumption that η ∈ L2(Ω,P;C2(Γ0)). �
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5. Boundary Reduction and Galerkin Boundary Element Approximation

The boundary value problems (3.4)–(3.5) and (3.8)–(3.9), characterizing the shape gradients
of the model problems are governed by the homogeneous Maxwell equations with Cauchy data
prescribed on the nominal boundary Γ0 = ∂D0. The Cauchy data of these problems depend only
on boundary values of solutions to the nominal problem, which is a consequence of Hadamard’s
theorem characterizing shape gradients as Radon measures supported on Γ0 (see, e.g., [37] for a
discussion). In computing these shape gradients, for homogeneous media it is therefore suggestive
to reduce these problems to boundary integral equations on the nominal boundaries, which are
equivalent to the variational problems (3.4)–(3.5) and (3.8)–(3.9) that characterize the shape
gradients. This procedure of boundary reduction is well known (e.g. [30, 36, 31] and references
therein) and widely used in computational electromagnetics. This boundary reduction is not
unique; in the so-called indirect method of boundary reduction, the electric and magnetic fields in
the volume domain are represented as potentials of unknown current densities on the scatterer
though lacking physical meaning; for our shape-sensitivity analysis, we propose the direct method
of boundary reduction as developed in [13]. This results in BIEs where the unknown layer densities
on the scatterer are the Cauchy data of the domain problems. Furthermore, as we showed above,
the second moment analysis requires these Cauchy data, and therefore, BIEs obtained by the
direct method of boundary reduction are in a sense natural in our context. We add that any
other, indirect, boundary reduction is equally applicable.

We review the corresponding boundary reduction in Section 5.1 ahead, establish properties of
the corresponding boundary integral operators, and finally generalize the reasoning presented in
[39], for the Helmholtz equation, to the FOSM analysis of the presently considered model problems.
Thus, one derives in tensorized, variational BIEs on Γ0×Γ0, which, as we show, are well posed in
suitable tensor products of trace spaces. We develop the BIEs for a generic bounded domain D
with bounded, connected C2 boundary Γ = ∂D.

5.1. Variational Boundary Integral Equations.

5.1.1. First Green formula. From [10], we know that

∀U ,V ∈H(curl, D) :

∫

D

(curlU ·V −U · curlV) dD = b (γDV, γDU) . (5.1)

We define the bilinear form ΦD : H(curl, D)×H(curl, D)→ C by

ΦD(U,V) :=

∫

D

(
κ−1 curlU · curlV − κU ·V

)
dD. (5.2)

For U,V ∈Hκ(curl, D
c) we define correspondingly ΦDc(U,V).

Assume that U ∈H(curl, D) is a Maxwell solution in D and V ∈H(curl, D). Then

ΦD(U,V) = b (γDV, γNU) . (5.3)

Remark 5.1. The following symmetry between electric and magnetic field quantities takes place:
assume that U ∈H(curl, D) is a Maxwell solution in D and let Ũ := κ−1 curlU. Then, we have

Ũ = κ−1 curlU, U = κ−1 curl Ũ,

γDŨ = γNU, γDU = γNŨ.

5.1.2. Potentials. We recall the three-dimensional fundamental solution Gκ for the Helmholtz
equation:

Gκ(x,y) =
eiκ‖x−y‖2

4π ‖x− y‖2
, (5.4)

where κ ≥ 0 denotes the wavenumber. The corresponding scalar single layer potential reads

(Ψκv)(x) :=

∫

Γ

Gκ(x,y)v(y)dSy , x ∈ D ∪Dc . (5.5)

When applied to tangent vectors so as to yield volume potentials, we will simply use boldface Ψκ.
The following mapping and coercivity properties of the potentials will be required.



12 C. JEREZ-HANCKES AND CH. SCHWAB

Proposition 5.2. For every κ ≥ 0, the mappings:

Ψκ : H− 1
2+σ(Γ)→ H1+σ(D)×H1+σ

loc (Dc) , Ψκ : V ′
π(Γ)→H1(D)×H1

loc(D
c)

are linear and continuous for any σ ∈
[
− 1

2 ,
1
2

]
. Moreover, there are positive constants such that

∀u ∈ H−1/2(Γ) :
〈
u, γDΨ

0u
〉
− 1

2 ,
1
2

& ‖u‖2− 1
2
, ∀λ ∈ V ′

π(Γ) : b
(
λ, γDΨ

0λ
)
& ‖λ‖2V ′

π

.

The electric potential Ψκ
E generated by the electric surface current j ∈X(Γ) is defined by

Ψκ
Ej := κΨκj+ κ−1∇Ψκ divΓ j = κ−1 curl curlΨκj . (5.6)

Analogously, we define a magnetic version Ψκ
M of Ψκ

E generated by m ∈X(Γ) as

Ψκ
Mm := curlΨκm . (5.7)

These potentials are solutions of the Maxwell equations in D ∪Dc without sources, satisfying

κ−1 curlΨκ
E = Ψκ

M , κ−1 curlΨκ
M = Ψκ

E . (5.8)

With the mapping properties of Ψκ, Ψκ, we deduce that the potentials Ψκ
E ,Ψ

κ
M are continuous

from X(Γ) to H(curl curl, D)×Hκ(curl curl, D
c) and similarly for equations (5.6), (5.7), (5.8).

5.1.3. Boundary Integral Operators. The traces γD, γ
c
D, γN, γ

c
N can be applied to Ψκ

E , Ψ
κ
M , and

yield continuous mappings from X(Γ) to X(Γ). For the interior trace operators of the potentials,
it holds

γNΨ
κ
E = γDΨ

κ
M , γNΨ

κ
M = γDΨ

κ
E , (5.9)

with similar relations valid for exterior traces γcD and γcN.
The direct method of boundary reduction is formulated in terms of Dirichlet and Neumann

jumps [γD] := γD − γcD and [γN] := γN − γcN, respectively. With I denoting the identity mapping,
these jumps satisfy the following jump relations for Ψκ

E (see [9]):

[γD]Ψ
κ
E = 0 , [γN]Ψ

κ
E = − I , [γD]Ψ

κ
M = − I , [γN]Ψ

κ
M = 0 .

Assume that U|D ∈ H(curl, D) is a Maxwell solution in D, and that U|Dc ∈ Hκ(curl, D
c) is a

Maxwell solution in Dc. Then we have with j := [γN]U, m := [γD]U the integral representation
formula [9]:

U = −Ψκ
Ej−Ψκ

Mm = −
(
Ψκ

E

Ψκ
M

)⊤(
j
m

)
on D ∪Dc . (5.10)

Applying the symmetric parts {γD} := 1
2 (γD + γcD), {γN} := 1

2 (γN + γcN) of the traces to (5.10),
yields for j,m ∈X(Γ),

Aκ

(
m

j

)
:=

(
{γD}
{γN}

)
(−Ψκ

Ej−Ψκ
Mm) , (5.11)

where we introduce the matrix boundary integral operator Aκ:

Aκ :=

(
Mκ Cκ

Cκ Mκ

)
:X2(Γ)→X2(Γ) , (5.12)

with entries defined as

Cκ := −{γD}Ψκ
E = −{γN}Ψκ

M , Mκ := −{γN}Ψκ
E = −{γD}Ψκ

M . (5.13)

With these elements, we can construct interior and exterior Calderón projectors, defined respec-
tively by

Pκ :=
1

2
I+Aκ and P

c
κ :=

1

2
I−Aκ,

mapping interior and exterior Cauchy data of Maxwell solutions into themselves. Note that the
range of Pκ coincides with the kernel of Pc

κ.
In the proof of coercivity of the electric field operator Cκ and of the matrix operator Aκ, and

also in the stability proofs of the sparse tensor product Galerkin discretization, the following sign-
flipping isomorphism is known to play an essential role. Let u ∈ X(Γ) admit a stable Hodge
decomposition u = v +w, v ∈ V (Γ) and w ∈W (Γ) as indicated in Theorem 2.3. We denote by
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Θ :X(Γ)→X(Γ) the sign-flipping isomorphism associated with the mapping u = v+w 7→ v −w
(cf. [13, Def. 3.11]).

Proposition 5.3. ([13, Thm. 3.12]) Let u ∈X(Γ) admit a decomposition u = v +w, v ∈ V (Γ)
and w ∈W (Γ). Denote by Θ : X(Γ) → X(Γ) the sign-flipping isomorphism associated with the
mapping u = v + w 7→ v −w. Then, there exists a compact operator T : X2(Γ) → X2(Γ) and
α > 0 such that

Re

{
B

(
(Aκ +T)

(
m

j

)
,

(
Θm
Θj

))}
≥ α

∥∥∥∥
(
m

j

)∥∥∥∥
2

X2

∀m, j ∈X(Γ) , (5.14)

where the bilinear form B : X2(Γ)×X2(Γ)→ C is defined as follows:

B

((
m

j

)
,

(
m′

j′

))
:= b (m,m′) + b (j, j′) . (5.15)

5.2. Galerkin BEM. We recapitulate convergence results of abstract Galerkin discretizations of
the BIE reformulations of the nominal problems from [10, 13, 7].

5.2.1. Abstract convergence theorem. Consider a Hilbert space X with stable decomposition X =
V ⊕W , i.e. for every u ∈X there exists a unique decomposition u = v+w with ‖v‖X+‖w‖X .

‖u‖X . With this decomposition, we associate the mapping Θ: X → X with u = v + w 7→
v −w. Consider further a nested sequence {Xh}h≥0 of closed subspaces Xh ⊂ X with discrete
decompositions Xh = Vh ⊕Wh which satisfy the following assumptions:

(A1) The family {Xh}h≥0 is dense in the space X, i.e.
⋃

h≥0

Xh =X .

(A2) for all h, it holds Wh ⊂W and

∀ vh ∈ Vh : inf
v∈V
‖vh − v‖X ≤ δh ‖v‖X , (5.16)

with δh → 0 for h→ 0.

Proposition 5.4. [[27, 13]] Assume that A : X →X ′ is continuous and that there exist a compact
operator T : X →X ′ and a constant α > 0 such that

Re {〈(A+ T )u,Θu〉} ≥ α ‖u‖2X , ∀ u ∈X,

where 〈·, ·〉 denotes the duality pairing between X ′ and X. Assume further that A is one-to-one.
Let {Xh}h≥0 denote a sequence of subspaces of X satisfying (A1) and (A2). Then there exists
a discretization level h0 > 0 depending on Γ0 and on κ such that for all f ∈ X ′ and for all
h0 ≥ h > 0 the Galerkin equations:

〈Auh,vh〉 = 〈f ,vh〉 ∀ vh ∈Xh ,

admit a unique solution uh ∈Xh. The sequence {uh}h≤h0
converges quasi-optimally: there exists

C > 0 independent of h such that for u = A−1f ∈X it holds

‖u− uh‖X ≤ C inf
vh∈Xh

‖u− vh‖X .

5.2.2. Galerkin BEM. We recall that the surface Γ is assumed to be a closed C2 surface. For a
dense, one parameter family {Xh}h of finite dimensional subspaces ofX(Γ), we introduce discrete
Hodge-decompositions:

Wh := {wh ∈Xh : divΓ wh = 0} , Vh := {vh ∈Xh :

∫

Γ

vh ·wh = 0 ∀wh ∈Wh} . (5.17)

By construction, Wh ⊂W , but generally Vh 6⊂ V .
Let now Th be a family of regular triangulations decomposing Γ. Both Raviart-Thomas (RT)

and the Brezzi-Douglas-Marini (BDM) finite elements (see e.g., [6] for definitions and properties)
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can be defined on Th and are conforming approximations of the space X0(Γ) := {u ∈ V 0
π :

divΓ u ∈ L2(Γ)} endowed with norm:

‖u‖X0 := ‖u‖V 0
π

+ ‖divΓ u‖0 .

Note that the injection X0(Γ) ⊂ X(Γ) is dense. We denote by Xh the approximation of X(Γ)
generated either by RT or by BDM finite elements of order k ≥ 0 or k ≥ 1, respectively.

Let Rh be the standard interpolation operator [6] from regular vectors on Γ0 ontoXh. We recall
that this interpolation operator is obtained by defining the degrees of freedom on the reference
triangle (or square) T̂ and then transforming vectors by the standard Piola transform [6, Section
III.1.3]. Moreover, moments up to order k of the normal component to the edges are among the
degrees of freedom. We refer to [27] for a suitable definition on curved nominal boundaries Γ0. The
following properties on the projectors Rh have been identified in [13, 7] as sufficient for stability
and consistency of Galerkin BEM:

(P1): For any s > 0, Rh : X0(Γ) ∩ V s
π (Γ) → Xh is linear and uniformly continuous in h

[6, Formula (3.40)] and there exists a function depending on s, denoted by δs, such that
δs : R

+ → R+ with δs(h)→ 0 when h→ 0 and

‖u− Rh u‖X0 ≤ Cδs(h)
(
‖u‖X0 + ‖u‖V s

π

)
.

For Ṽh := {v ∈X(Γ) : divΓ v ∈ divΓ(Xh)} and for s > 0 there holds

u ∈ Ṽh ∩ V s
π (Γ) , ‖u− Rh u‖V 0

π

≤ Cδs(h) ‖u‖V s
π

.

(P2): Let Lh denote the L2-orthogonal projection from L2(Γ) onto the space divΓ(Xh). For
RT finite elements of order k and for the BDM family of finite elements of order k − 1,
the space divΓ(Xh) consists of piecewise polynomials of degree k [6]. Then, for any s > 0
there holds [6, Proposition 3.7]:

u ∈X0(Γ) ∩ V s
π (Γ) , divΓ(Rh u) = Lh(divΓ u) .

In [7, 27], (P1) and (P2) have been verified for RT and BDM boundary elements of any order
k, which thus satisfy assumptions (A1) and (A2). RT0 elements coincide in particular with the
so-called RWG (Rao-Wilton-Glisson) boundary elements [34].

5.3. Electromagnetic scattering at a perfect conductor. In Section 2.2 we defined the per-
fect conductor problem. For non-smooth boundaries, the problem was considered in [9, 27, 7],
where an indirect boundary element method was used. Here we use the so-called direct method
where the unknown in the boundary integral equation is the Neumann trace of the domain solu-
tion. Both approaches lead to BIEs with the EFIE operator Cκ. The inf-sup condition for this
operator follows as a special case from Proposition 5.3.

5.3.1. Boundary Reduction. We consider the unknown Neumann data:

jpc = γcNU
pc on Γ . (5.18)

The properties of the Calderón projector imply

(
1
2 I+Aκ

)(mpc

jpc

)
= 0 (5.19)

if and only if there exists Upc satisfying (2.9) and (5.18). The first row of (5.19) implies

Cκ j
pc = −( 12 I+Mκ)m

pc on Γ . (5.20)

which is known as the EFIE.

Proposition 5.5. Assume κ2 /∈ SDir. Then the boundary integral equation (5.20) holds if and
only if there exists Upc satisfying (2.9) and (5.18).

For a proof of Proposition 5.5, we refer to [13]. With the isomorphism Θ introduced in Propo-
sition 5.3, we have coercivity for Cκ:
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Proposition 5.6. ([13, Thm 5.4]) There is a compact operator Tpc : X(Γ)→X(Γ) and a constant
αpc > 0 such that

∀ j ∈X(Γ) : Re {b (Θj, (Cκ +T
pc)j)} ≥ αpc ‖j‖2X . (5.21)

For κ2 /∈ SDir, the BIE (5.20) admits, for every mpc ∈X(Γ), a unique solution jpc ∈X(Γ).
If κ2 ∈ SDir, then also jpc = γcNU

pc is a solution of (5.20). The solution of (5.20) has the form

jpc = γcNU
pc + γNŨ

pc where Ũpc is a Maxwell solution in D with γDŨ
pc = 0. Using this jpc and

mpc in the representation formula (5.10) gives valid Maxwell solutions according to

Ψκ
Ej

pc +Ψκ
Mm

pc =

{
Upc in Dc ,

−Ũpc in D .

Based on (5.21), we introduce the bilinear forms cκ(·, ·) and µκ(·, ·) corresponding to the “con-
ductive, electric” and “magnetic” operators in the BIE (5.20):

cκ(̃j, j) := b

(
j̃,Cκ j

)
, µκ(̃j,m) := b

(
j̃, ( 12 I+Mκ)m

)
, j, j̃,m ∈X(Γ) . (5.22)

5.3.2. Galerkin Discretization. Denote by a subscript ℓ ∈ N the discretization level corresponding
to meshwidth hℓ = 2−ℓh0. We choose a family {Xℓ}ℓ of finite dimensional subspaces of X(Γ)
satisfying Assumptions (A1) and (A2) of Section 5.2.1 and consider the Galerkin discretization:

Find jpcℓ ∈Xℓ : cκ(̃jℓ, j
pc
ℓ ) = −µκ(̃jℓ,m

pc) for all j̃ℓ ∈Xℓ. (5.23)

This allows one to define linear mappings Πpc
ℓ : X(Γ) → Xℓ, the Galerkin projectors associated

to the perfect conductor problem, with ranges Xℓ, for ℓ ≥ L0 with a certain L0 > 0. We combine
Propositions 5.6 and 5.4 to obtain the next result.

Theorem 5.7. Assume κ2 /∈ SDir and let jpc ∈ X(Γ) denote the solution of (5.20). Then there
exists L0 > 0 and Cpc > 0, both dependent on κ and Γ0, such that, for all ℓ ≥ L0, the discretized
problem (5.23) admits a unique Galerkin solution jpcℓ ∈Xℓ, which converges quasi-optimally:

‖jpc − jℓ‖X ≤ Cpc inf
j̃ℓ∈Xℓ

∥∥∥jpc − j̃ℓ

∥∥∥
X
.

Also, the family of projectors {Πpc

ℓ }ℓ≥L0
is stable, i.e. their norms are uniformly bounded with

respect to ℓ ≥ L0.

5.4. Electromagnetic scattering at a dielectric interface. We now consider the transmission
problem between two dielectric media with different electromagnetic properties in the two domains
D and Dc and derive a boundary integral formulation. Recall the definitions given in Section 2.3.
The coercivity property of the BIOs in this formulation follows from the coercivity property of
the operator Aκ defined in (5.12). Here, and unlike the case of the perfect conductor problem, we
need the general case of this theorem which requires the compactness property of M.

5.4.1. Boundary integral reformulation. Following Section 5.1.3 and simplifying notation for op-
erators Ai,Ci,Mi for i = 1, 2 where subscripts refer to wavenumbers κi, we also introduce

Âi :=

(
1 0
0 κiµ

−1
i

)
Ai

(
1 0
0 κ−1

i µi

)
=

(
Mi κ−1

i µi Ci

κiµ
−1
i Ci Mi

)
.

Let us recall the Cartesian product spaceX2(Γ) :=X(Γ)×X(Γ) so that data ξde := (mde, jde) ∈
X2(Γ). We consider Cauchy unknown defined by

ξ1 :=

(
γD

µ−1
1 γ̂N

)
U1, ξ2 :=

(
γcD

µ−1
2 γ̂N

c

)
U2, ξ1, ξ2 ∈X2(Γ) . (5.24)

The projection properties of the Calderón operator imply
(

1
2 I−Â1

)
ξ1 = 0,

(
1
2 I+Â2

)
ξ2 = 0, ξ1 − ξ2 = ξde , (5.25)
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if and only if there exists Ude satisfying (2.12) and (5.24). To derive an equivalent BIE we write
ξ1 = ξ2 + ξde and subtract the first equation from the second one in (5.25) to obtain the BIEs:

(
Â1 + Â2

)
ξ2 =

(
1
2 I−Â1

)
ξde , (5.26)

(
Â1 + Â2

)
ξ1 =

(
1
2 I+Â2

)
ξde . (5.27)

The BIEs (5.26)–(5.27) hold if and only if there exist (U1,U2) satisfying (2.12) and (5.24) (cf.

[13, Thm. 6.2]). The boundary integral operator Â1 + Â2 which appears in (5.26) and (5.27) is
coercive with Θ: X(Γ)→X(Γ) from Proposition 5.3 (cf. [13, Thm. 6.3]).

Theorem 5.8. There exists a compact operator T
de : X2(Γ) → X2(Γ) and a constant αde > 0

such that, with the isomorphism Θ in Proposition 5.3,

∀ ξ ∈X2(Γ) : Re
{
B

((
Â1 + Â2 + T

de
)
ξ,Θξ

)}
≥ αde ‖ξ‖2X2 . (5.28)

with the bilinear form B as defined in (5.15).

Corollary 5.9. The boundary integral equation (5.27) admits a unique solution ξ1 ∈X2(Γ).

5.4.2. Galerkin discretization. We choose a family {Xℓ}ℓ≥1 of finite dimensional subspaces of
X(Γ) satisfying assumptions (A1) and (A2) of Section 5.2.1 and consider the Galerkin dis-
cretization: find ξ1ℓ ∈X2

ℓ :=Xℓ ×Xℓ such that

B

((
Â1 + Â2

)
ξ1ℓ , ξ̃ℓ

)
= B

((
1
2 I+Â2

)
ξde, ξ̃ℓ

)
for all ξ̃ℓ ∈X2

ℓ . (5.29)

The above induces mappings Πde
ℓ : X2(Γ) → X2

ℓ : ξ2 7→ ξ2ℓ , which constitute as before a family
Galerkin projectors associated to the dielectric problem for ℓ ≥ L0, with L0 as indicated below.
Propositions 5.8 and 5.4 immediately yield the next result:

Theorem 5.10. ([13, Thm. 6.5]) Let ξ1 ∈ X2(Γ) denote the solution of (5.27). There exists
L0 > 0 and Cde, dependent on κi, i = 1, 2, such that for all ℓ ≥ L0 the Galerkin equations (5.29)
admit a unique solution ξ1ℓ ∈X2

ℓ .
The family {Πde

ℓ }ℓ is uniformly bounded with respect to ℓ ≥ L0. The approximate solutions
ξ1ℓ = Πde

ℓ ξ
1 converge quasi-optimally:

∥∥ξ1 − ξ1ℓ
∥∥
X2 ≤ C0 inf

ξ̃ℓ∈X2
ℓ

∥∥ξ1 − ξ̃ℓ
∥∥
X2 .

6. Sparse Tensor Second Moment Galerkin Approximation

The BIEs arising from the direct method of boundary reduction of problems defining the shape
gradients portray the generic form Au = Bf . In the present section, we present the boundary
reduction of the nominal problems for the model problems considered in Section 2. We indicate
the strong ellipticity of the resulting BIOs, following [13], and quasi-optimality of their Galerkin
discretizations.

6.1. Tensor BIEs. The FOSM perturbation analysis of the model problems in Sections 2.2 and
2.3 leads to tensorized BIEs on the nominal boundaries Γ0; we are then faced with tensorized
versions of the abstract BIE Au = Bf with deterministic operators A and B, but with random
right-hand side f . Our FOSM analysis is based on a deterministic equation for the second moment
of the random solution u.

Proposition 6.1. Assume given A ∈ L(X,Z), B ∈ L(Y, Z) for three Hilbert spaces X,Y, Z, with
A boundedly invertible. Then, for f ∈ L2(Ω,P;Y ), the solution of the operator stochastic equation:

Au(ω) = Bf(ω) (6.1)

admits a unique solution u ∈ L2(Ω,P;X) whose second moment, u(2) := E[u ⊗ u] ∈ X(2), is the
unique solution of the deterministic tensor operator equation:

(A⊗A)u(2) = (B ⊗B)M2f in Z(2) , (6.2)

whereM2f := E[f ⊗ f ] ∈ Y (2).
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Proof. The bounded invertibility of A and the linearity of equation (6.1) imply u(ω) = A−1Bf(ω)
and, since A and B are deterministic,

u(2) = E[u⊗ u] = E
[
(A−1Bf)⊗ (A−1Bf)

]
= (A⊗A)−1(B ⊗B)E[f ⊗ f ] , (6.3)

as claimed. �

The preceding abstract result will apply in particular to the boundary integral reformulations
of the Maxwell problems (3.4)–(3.5) and (3.8)–(3.9) which characterize the shape gradients for
our model problems. We next specify it for these problems, indicating in each case the particular
choices for A, B and f .

6.1.1. Perfect Conductor Problem. Comparing (3.4)–(3.5) with (2.2)–(2.9), the shape derivative
dUpc

0 (η(·, ω)n0) admits the integral representation (5.10). Specifically, we seek a random electrical
current5 djpc(ω) that originates the solution dUpc

0 (η(·, ω)n0) ∈Hκ(curl, D
c
0) by satisfying the BIE

(5.20):

Cκ dj
pc(ω) = −

(
1

2
I+Mκ

)
gpc
D (Upc

0 ,U
inc, η(·, ω)n0) , (6.4)

where Upc
0 and Uinc are the scattered and incident volume electric fields for the nominal boundary

problem as described in Section 3.2. The BIE (6.4) is of the general form (6.1) with the instances6

X,Y, Z ←X(Γ0) , A← Cκ , B ← −
(
1

2
I+Mκ

)
, f ← gpc

D (Upc
0 ,U

inc, η(·, ω)n0) . (6.5)

By Proposition 4.2, η ∈ L2(Ω,P;C2(Γ0)) implies gpc
D ∈ L2(Ω,P;X(Γ0)). Let κ /∈ SDir, Theorem

5.6 establishes the bounded invertibility of Cκ and, together with its linearity as well as that of
1
2 I+Mκ, one obtains that P-a.s. there exists a unique solution djpc ∈ L2(Ω,P;X(Γ0)) of the BIE
(6.4). By the representation formula (5.10), it holds

dUpc
0 (η(·, ω)n0) = −

(
Ψκ

E

Ψκ
M

)⊤(
djpc(ω)
gpc
D (ω)

)
∈ L2(Ω,P;Hκ(curl, D

c
0)) in Dc

0,

due to djpc, gpc
D (ω) in L2(Ω,P;X(Γ0)) and due to the linearity of the representation formula.

From the shape Taylor expansion (4.14) and again from (5.10), we find the first order determin-
istic approximation for the second moment of the scattered field in the volume Dc

0 by tensorizing the

representation formula (5.10): we evaluate the tensor product expectation of (Ŭpc
δ (ω)−Upc

0 )
∣∣
Dc

0

as follows

E

[
(Ŭpc

δ (ω)−Upc
0 )⊗ (Ŭpc

δ (ω)−Upc
0 )
]

= δ2E[dUpc
0 ⊗ dUpc

0 ] +O(δ3)

= δ2
(
Ψκ

E

Ψκ
M

)⊤

⊗
(
Ψκ

E

Ψκ
M

)⊤

E

[(
djpc

gpc
D

)
⊗
(
djpc

gpc
D

)]
+O(δ3)
(6.6)

which holds in Hκ(curl, D
c
0)

(2).
By Proposition 6.1 with (6.5), the second moment (djpc)(2) := E[djpc ⊗ djpc] ∈X(2)(Γ0) solves

the tensorized, deterministic BIE: find (djpc)(2) ∈X(2)(Γ0) such that, by (6.5), it holds

C
(2)
κ (djpc)(2) =

(
1

2
I+Mκ

)(2)

M2gpc
D , (6.7)

whereM2gpc
D = E [gpc

D ⊗ gpc
D ] ∈X(2)(Γ0) and tensor operators C(2)

κ and
(
1
2 I+Mκ

)(2)
are defined

as in (4.7). Observe that the minus sign on the right-hand side of (6.4) is cancelled in the
tensorization.

By the bounded invertibility of the boundary integral operator Cκ on X(Γ0) which follows

from κ 6∈ SDir and from Theorem 5.6, the tensorized operator C(2)
κ , appearing in (6.7) is likewise

5Observe that djpc is not necessarily the shape derivative of current jpc. In fact, it can only be interpreted as a
density originating the field shape derivative at Γ0.

6We specify the boundary on which X is built, in this case X(Γ0).
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boundedly invertible so that (6.7) admits a unique solution (djpc)(2) which coincides with the
second moment of the random Cauchy data djpc ∈ L2(Ω,P;X(Γ0)).

Remark 6.2. If κ ∈ SDir, the spectrum of the interior Dirichlet problem in the nominal domain
D0, the BIE still provides the correct solution in the exterior domain Dc

0; in D0, however, the
solution is unique only up to “resonant modes” (cf. comments on [13, p. 480]). We emphasize
that this nonuniqueness is a consequence of the presently adopted, direct method of boundary
reduction for the shape gradients presented in Propositions 4.2, 4.3. These “volume Maxwell
problems” admit unique solutions, for all admissible shapes, due to the Silver-Müller conditions.
An alternative boundary reduction of the problems in Propositions 4.2, 4.3 which does not exhibit
resonances is via the so-called Combined Field Integral Equation (CFIE) approach in [11]. As
this approach involves the same integral operators as the presently considered direct method of
boundary reduction, the ensuing FoSM analysis and their sparse tensor Galerkin discretization
can be performed along the same lines, with analogous error bounds and complexity.

6.1.2. Dielectric Interface Problem. Comparison between Problems (3.8)–(3.9) and (2.12)–(2.13)
reveals that the shape derivatives dUde

0 (η(·, ω)n0) = (dU1
0, dU

2
0)(η(·, ω)n0) also admit the integral

representation (5.10) in terms of random Cauchy data7 dξ1(ω) of the solution dU1
0(η(·, ω)n0) ∈

H(curl, D0). The reformulation of (3.8)–(3.9) in terms of the BIE (5.27) then reads

(Â1 + Â2)dξ
1(ω) =

(
1

2
I+Â2

)
gde(Ude

0 ,U
inc, η(·, ω)n0) . (6.8)

This equation is of the general form (6.1) with the instances:

X,Y, Z ←X2(Γ0) , A← Â1 + Â2 , B ← 1

2
I+Â2 , f ← gde(Ude

0 ,U
inc, η(·, ω)n0) . (6.9)

By Proposition 4.3, η ∈ L2(Ω,P;C2(Γ0)) implies f ∈ L2(Ω,P;X2(Γ0)). The bounded invertibility

of Â1 + Â2 established in Theorem 5.8 and the linearity of Â1 + Â2 and of 1
2 I+Â2 then implies

that there exists a unique solution dξ1 ∈ L2(Ω,P;X2(Γ0)) of the BIE (6.8). By (5.24) and the
representation formula (5.10), we also have

dU1
0(η(·, ω)n0) = −

(
Ψκ1

E

Ψκ1

M

)⊤

dξ1(ω) ∈ L2(Ω,P;H(curl, D0)) in D0 ,

with an analogous representation of dU2
0(η(·, ω)n0) in terms of dξ2(ω). Here, the square inte-

grability of dU1
0 follows from dξ1(ω) ∈ L2(Ω,P;X2(Γ0)) and the linearity of the representation

formula.
From the shape Taylor expansion (4.15), we find the first order deterministic approximation for

the second moment of (Ŭ1
δ(ω)−U1

0)|D0
, valid in H(curl, D0)

(2):

E

[
(Ŭ1

δ(ω)−U1
0)⊗ (Ŭ1

δ(ω)−U1
0)
]

= δ2E[dU1
0 ⊗ dU1

0] +O(δ3)

= δ2
(
Ψκ1

E

Ψκ1

M

)⊤

⊗
(
Ψκ1

E

Ψκ1

M

)⊤

E[dξ1 ⊗ dξ1] +O(δ3) .

An analogous expression holds for (Ŭ2
δ(ω)−U2

0)|Dc

0
in Hκ2

(curl, Dc
0)

(2).

By Proposition 6.1 with (6.9), the second moment (dξ1)(2) := E[dξ1⊗dξ1] ∈ (X2)(2)(Γ0) solves
the tensorized, deterministic BIE: find (dξ1)(2) ∈ (X2)(2)(Γ0) such that

(Â1 + Â2)
(2)(dξ1)(2) =

(
1

2
I+Â2

)(2)

M2gde . (6.10)

By the bounded invertibility of Â1 + Â2 on X2(Γ0), the tensorized operator (Â1 + Â2)
(2), defined

by (4.7), appearing in (6.10) is likewise boundedly invertible on (X2)(2)(Γ0) so that the tensorized
BIE (6.10) admits a unique solution (dξ1)(2) which coincides with the two-point correlation of the
random Cauchy data ξ1(ω) ∈ L2(Ω,P;X2(Γ0)).

7As before, dξ1(ω) is not the shape derivative of the Cauchy data ξ1(ω) but the solution pair originating the
field dU1 in Ω0.
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6.2. Sparse Tensor Galerkin BEM. Stable Galerkin discretizations of the tensorized BIEs
(6.2), (6.7) and (6.10), are now obtained as in [26]. Since we will henceforth work over the
nominal domain surface Γ0, we simply write X ≡ X(Γ0). Consider a sequence of nested, regular
triangulations {Tℓ}ℓ≥0 of the nominal boundary Γ0, and set hℓ = maxK∈Tℓ

diam(K). Taking
hℓ ∼ O(2−ℓ), we indicate the nested triangulations by writing T0 � T1 � ... � Tℓ � .... On the
sequence {Tℓ}ℓ≥0 of triangulations of the nominal boundary Γ0, we introduce a family {Xhℓ

}hℓ
of

finite dimensional subspaces of X satisfying Assumptions (A1) and (A2) of Section 5.2.1 and in
particular the discrete decompositions introduced in Section 5.2.

In the construction of sparse tensor product spaces from [26], the explicit dependence of the
subspace on the discretization level ℓ in the sequence {Tℓ}ℓ≥0 will be important; to indicate it, we
write from now on {Xℓ}ℓ≥0 in place of {Xhℓ

}hℓ
. Due to the nestedness T0 � T1 � ... � Tℓ � ...,

we obtain X0 ⊂ X1 ⊂ .... It follows readily from Theorems 5.7 and 5.10 that for either the
tensor BIEs (6.7) or (6.10) –the FOSM shape uncertainty of the perfect conductor and dielectric
interface problems, respectively– for ℓ ≥ L0, where L0 is as in Theorems 5.7 and 5.10, the Galerkin
solutions converge quasi-optimally. Being tensor products of boundary element spaces Xℓ (resp.

X
(2)
ℓ ) entails quadratic complexity of dim(Xℓ).
Based on our previous work for the EFIE in [26], we present a so-called sparse tensor product

Galerkin discretization of the BIEs (6.7), (6.10). To this end, introduce the index set:

Λ(L,L0) := {(ℓ, ℓ′) ∈ N0 : 0 ≤ ℓ, ℓ′ ≤ L0 + L, ℓ+ ℓ′ ≤ 2L0 + L} , (6.11)

for discretization levels L,L0 ≥ 0, with L0 > 0 to be specified, and recall from [39, 26], the sparse
tensor product spaces:

̂
X

(2)
ℓ ⊂X(2)

ℓ and ̂(X2
ℓ )

(2) ⊂ (X2
ℓ )

(2),

defined by the non-direct sums:

̂
X

(2)
L :=

∑

(ℓ,ℓ′)∈Λ(L,L0)

Xℓ ⊗Xℓ′ ,
̂(X2

L)
(2) :=

∑

(ℓ,ℓ′)∈Λ(L,L0)

X2
ℓ ⊗X2

ℓ′ . (6.12)

Here, we used the convention Xℓ := {0} and X2
ℓ := {0}×{0} for ℓ < 0. Note that for every L ≥ 0

we have

X
(2)
L0
⊂ ̂
X

(2)
L , (X2

L0
)(2) ⊂ ̂(X2

L)
(2) . (6.13)

Based on these spaces, the sparse tensor product Galerkin BEM are defined next:

I. For the perfect conductor BIE (6.7) we seek
̂

(djpc)
(2)
L ∈ ̂

X
(2)
L such that

c(2)κ

(
j̃
(2)
L ,

̂
(djpc)

(2)
L

)
= µ(2)

κ

(
j̃
(2)
L ,M2gpc

D

)
∀ j̃(2)L ∈ ̂

X
(2)
L , (6.14)

where the bilinear forms c
(2)
κ and µ

(2)
κ mapping X(2) ×X(2) → C are defined as follows:

for dyads j1⊗ j2, j̃1⊗ j̃2 ∈X(2), c
(2)
κ

(
j̃1 ⊗ j̃2, j1 ⊗ j2

)
:= cκ(̃j1, j1)cκ(̃j2, j2). This definition

extends by bilinearity to finite linear combinations of dyads. As X is a separable Hilbert
space, any j(2) ∈ X(2) is the limit, in the norm ‖ · ‖X(2) , of finite linear combinations of
dyads. By the continuity of cκ(·, ·) on X ×X, we may pass to the limit:

∀j(2), j̃(2) ∈X(2) : c(2)κ

(
j̃(2), j(2)

)
= lim

I→∞

I∑

i,i′=1

cici′c
(2)
κ

(
j̃1,i′ ⊗ j̃2,i′ , j1,i ⊗ j2,i

)

and obtain a continous bilinear form c
(2)
κ (·, ·) on X(2) ×X(2). The definitions of µ

(2)
κ (·, ·)

and B
(2)(·, ·) for B(·, ·) as in (5.15) are analogous.

II. For the corresponding dielectric tensor product BIE (6.10): find
̂

(dξ1)
(2)
L ∈ ̂(X2

L)
(2) such

that for all ξ̃
(2)
L ∈ ̂(X2

L)
(2) holds
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B
(2)

(
ξ̃
(2)
L ,
(
Â1 + Â2

)(2) ̂
(dξ1)

(2)
L

)
= B

(2)

(
ξ̃L

(2)
,

(
1

2
I−Â2

)(2)(M2gde
D

M2gde
N

))
, (6.15)

A counting argument shows that there exist constants C1, C2 > 0, depending on L0 but not on
L, such that it holds

dim(
̂
X

(2)
L ) ≤ C1 dim(XL) log(dim(XL)) , dim( ̂(X2

L)
(2)) ≤ C2 dim(XL) log(dim(XL)). (6.16)

Sparse tensor products of boundary edge element spaces are stable [26, Thm. 5.1].

Theorem 6.3. There exists a level L0 sufficiently large, depending on D0 and on the wavenumbers
κ, κ1, κ2, and positive constants Cpc, Cde, such that for all L ≥ 0 hold discrete inf-sup conditions:

inf
0 6=j

(2)
L

∈
̂
X

(2)
L

sup

0 6=j̃
(2)
L

∈
̂
X

(2)
L

c
(2)
κ

(
j̃
(2)
L , j

(2)
L

)

∥∥∥j(2)L

∥∥∥
X(2)

∥∥∥j̃(2)L

∥∥∥
X(2)

≥ Cpc , (6.17)

and

inf
0 6=ξ

(2)
L

∈ ̂(X2
L
)(2)

sup
0 6=ξ̃

(2)
L

∈ ̂(X2
L
)(2)

B
(2)

(
ξ̃
(2)
L ,
(
Â1 + Â2

)(2)
ξ
(2)
L

)

∥∥∥ξ̃(2)L

∥∥∥
(X2)(2)

∥∥∥ξ(2)L

∥∥∥
(X2)(2)

≥ Cde . (6.18)

In particular, with this choice of L0, for every L ≥ 0 the sparse tensor Galerkin boundary integral

equations (6.14), (6.15) admit unique solutions
̂

(djpc)
(2)
L ∈ ̂

X
(2)
L and

̂
(dξ1)

(2)
L ∈ ̂(X2

L)
(2) which

converge quasi-optimally in X(2) and in (X2)(2), respectively.

7. Algorithmic Realization, Error Analysis and Complexity

Theorem 6.3 implies that the Galerkin projections onto the sparse tensor product spaces
̂
X

(2)
L

and ̂(X2
L)

(2) are well-defined and stable. We address the computational realization of the sparse
tensor Galerkin projections from Theorems 5.7 and 5.10. These projections are easily realized
when bases for the “detail spaces” Xℓ ∩ X⊥

ℓ−1 are available; such bases with good condition
properties are furnished, for example, by multi-resolution wavelet bases of X. Unfortunately, the
construction of stable, piecewise polynomial bases for general surfaces Γ0 does not appear to be
available, currently (see, however, [3] for an “almost stable” construction).

Even if available, their implementation would mandate modification of the existing EFIE
Galerkin codes which are, as a rule, based on the RWG (Rao-Wilton-Glisson) boundary ele-
ments [34] (which correspond on regular triangulations T of Γ0 to RT elements of order zero and
satisfy conditions (A1) and (A2)). We therefore outline in Section 7.1 an alternative approach for
the computational realization of the Galerkin projections for L ≥ L0 which is not based on the
explicit availability of such bases, but involves only the ‘usual’ one-scale RWG type basis on each
level, and is based on the so-called combination technique. Its use in the context of sparse tensor
product Galerkin discretizations for potential and Helmholtz problems was proposed recently in
[22]. Here, we briefly review this approach, and indicate the essential modifications entailed by
the more complicated structure of the index set Λ(L,L0) defined in (6.11).

7.1. Realization of Tensorized Boundary Element Basis. From Theorems 5.7 and 5.10 we
recall the corresponding Galerkin projectors Πpc

ℓ and Πde
ℓ with ranges in Xℓ and X

2
ℓ , respectively.

We only detail the analysis for the perfect conductor case, as similar considerations apply for
the dielectric case. Accordingly, in the following we set Πℓ ≡ Πpc

ℓ to ease notation. Also recall

cκ(̃j, j) : X ×X → C the bilinear form corresponding to the electric field integral operator Cκ

from (5.22). The definition of the Galerkin projection Πℓ implies the Galerkin orthogonality:

∀ j ∈X : cκ(̃jℓ, j−Πℓj) = 0 ∀ j̃ℓ ∈Xℓ . (7.1)
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By Theorem 6.3, the sparse tensor product Galerkin projectors Π̂
(2)
L are, for L ≥ L0, well defined,

stable –i.e. bounded independent of L– and admit, for L ≥ L0, the representation:

Π̂
(2)
L = Π

(2)
L0

+
∑

(ℓ,ℓ′)∈Λ̂(L,L0)

(Πℓ −Πℓ−1)⊗ (Πℓ′ −Πℓ′−1) . (7.2)

Here, for 0 ≤ L0 < L, we defined the index set:

Λ̂(L,L0) = {(ℓ, ℓ′) ∈ N2
0 : L0 < ℓ, ℓ′ ≤ L, ℓ+ ℓ′ ≤ 2L0 + L} ⊂ Λ(L,L0) . (7.3)

With the help of Galerkin projectors Πℓ :X →Xℓ, we define the spaces:

Yℓ := (Πℓ −Πℓ−1)Xℓ , ℓ ≥ L0 + 1 . (7.4)

Then, for every L > 0, holds the multi-level splitting via direct sums:

Yℓ ⊂Xℓ , ℓ ≥ L0 + 1 and XL0+L =XL0+L−1 ⊕ YL0+L = ... =XL0
⊕

L0+L⊕

ℓ=L0+1

Yℓ . (7.5)

The following decomposition of the sparse tensor product space
̂
X

(2)
L defined in (6.12) for L,L0 ≥ 0

corresponds to (7.2):

̂
X

(2)
L = X

(2)
L0
⊕

⊕

(ℓ,ℓ′)∈Λ̂(L,L0)

Yℓ ⊗ Yℓ′

= X
(2)
L0
⊕


 ⊕

{L0+1≤ℓ,ℓ′≤L}∩{ℓ+ℓ′≤2L0+L}

Yℓ ⊗ Yℓ′




⊕XL0
⊗
(
XL0

⊕
L0+L⊕

ℓ=L0+1

Yℓ

)
⊕
(
XL0

⊕
L0+L⊕

ℓ=L0+1

Yℓ

)
⊗XL0

= X
(2)
L0
⊕
(

L0+L⊕

ℓ=L0+1

2L0+L−ℓ⊕

ℓ′=L0+1

Yℓ ⊗ Yℓ′

)
⊕XL0 ⊗XL0+L ⊕XL0+L ⊗XL0

⊆ X(2),

(7.6)

where, for L = 0 and for L0 > 0, this reduces to the full tensor product space at level L0. Note
also that for L0 = 0, due to X0 := {0}, (7.6) reduces to the “usual” combination technique
representation of the standard sparse tensor product space presented for example in [22, Sec. 4.2].

We next derive a suitable decomposition of the tensorized Galerkin formulation which uses only

the regular Galerkin bases. To this end, we recall the definition of the bilinear form c
(2)
κ (·, ·) of

the tensorized EFIE operator C(2)
κ defined in (6.14).

The Galerkin orthogonality (7.1) and Fubini’s theorem imply the following result which gen-
eralizes [22, Lem. 6] to L0 > 0: for arbitrary indices ℓ, ℓ′ ∈ [L0 + 1, L0 + L] with L0, L ≥ 1 it
holds

∀ ĵ(2)ℓ ∈ Yℓ ⊗X2L0+L−ℓ, ĵ
(2)
ℓ′ ∈ Yℓ′ ⊗X2L0+L−ℓ′ : c(2)κ (ĵ

(2)
ℓ , ĵ

(2)
ℓ′ ) = 0 if ℓ 6= ℓ′ . (7.7)

We recall the variational tensorized EFIE (6.14): find

̂
(djpc)

(2)
L ∈ ̂

X
(2)
L : c(2)κ

(
j̃
(2)
L ,

̂
(djpc)

(2)
L

)
= µ(2)

κ

(
j̃
(2)
L ,M2gpc

D

)
∀ j̃(2)L ∈ ̂

X
(2)
L .

Recall definition (6.12) of the space
̂
X

(2)
L , L ≥ 0, which depends implicitly on L0 ≥ 0.

The orthogonality (7.7) implies with (7.6) the representation
̂

(djpc)
(2)
L =

∑L0+L
ℓ=L0

v̂ℓ, where the
v̂ℓ ∈ Yℓ ⊗X2L0+L−ℓ are determined by the L− L0 + 1 independent Galerkin problems:

v̂ℓ ∈ Yℓ ⊗X2L0+L−ℓ : c(2)κ

(
j̃
(2)
ℓ , v̂ℓ

)
= µ(2)

κ

(
j̃
(2)
ℓ ,M2gpc

D

)
∀ j̃(2)ℓ ∈ Yℓ ⊗X2L0+L−ℓ , (7.8)

for ℓ = L0, ..., L.
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Using (7.4), i.e. Yℓ = (Πℓ − Πℓ−1)X for ℓ = L0 + 1, ..., L, we find the one-scale representation
or combination formula:

̂
(djpc)

(2)
L =

L0+L∑

ℓ=L0

v̂ℓ =

L0+L∑

ℓ=L0

(pℓ,2L0+L−ℓ − pℓ−1,2L0+L−ℓ) , (7.9)

where the elements pℓ,2L0+L−ℓ ∈Xℓ⊗X2L0+L−ℓ, to which we shall refer as solution details, satisfy
the one-scale tensor Galerkin problems: for L0 < ℓ, ℓ′ ≤ L0 + L, we seek

pℓ,ℓ′ ∈Xℓ ⊗Xℓ′ : c(2)κ (qℓ,ℓ′ ,pℓ,ℓ′) = µ
(2)
κ (qℓ,ℓ′ ,M2gpc

D ) ∀ qℓ,ℓ′ ∈Xℓ ⊗Xℓ′ . (7.10)

In addition, pL0,L0
∈X(2)

L0
denotes the full tensor Galerkin solution, being well-defined by Theorem

6.3, since all discretization levels in (7.10) are greater or equal than L0.

7.2. Error Analysis. We now investigate the asymptotic –when L tends to infinity– convergence
rate of the sparse tensor Galerkin BEM discretizations (6.12), (6.14). To this end, we assume given
a one parameter family {Xs}s≥0 of smoothness spaces X =X0 ⊃X1 ⊃ ... such that the boundary
integral operators Cκ and Mκ are isomorphisms from Xs onto Xs, and Aκ : (Xs)2 7→ (Xs)2

isomorphically. On smooth nominal boundaries Γ0, this holds for Xs = H−1/2+s(divΓ; Γ0) (cf.
[31]). However, if Γ0 is non-smooth, such as polyhedra or screens, analogous mapping properties
hold true in these spaces only in a restricted range of s or for certain families Xs of weighted
Sobolev spaces [9].

For the boundary element subspace Xℓ = Xhℓ
, ℓ = 0, 1, 2, ... defined in Section 6.2, denote by

Pℓ :X 7→Xℓ theX-orthogonal projection ontoXℓ withX
⊥
ℓ denoting the complement space. We

assume that for every j ∈Xs the boundary element spacesXℓ satisfy the approximation property :

‖j− Pℓ j‖X . inf
j′
ℓ
∈Xℓ

‖j− j′ℓ‖X . 2−sℓ ‖j‖Xs , ℓ = 0, 1, 2, ... (7.11)

Theorem 7.1. Assume that the boundary integral operators Cκ and Mκ are isomorphisms from
Xs onto Xs with Xs = H−1/2+s(divΓ; Γ0). Then, the tensorized boundary integral operators

C
(2)
κ ,M(2)

κ constitute isomorphisms from (Xs)(2) to (Xs)(2). The FOSM BIE (6.7) then admits,
for smooth Upc

0 , two-point correlations (djpc)(2) andM2gpc
D in (6.7) which belong (Xs)(2).

Due to Theorem 6.3, for L0 ≥ 0 sufficiently large and depending on the wavenumber and
on D0, but fixed independently of L, the sparse tensor Galerkin BEM solutions exist and are
quasi-optimal: for the EFIE, with the sparse Galerkin projector (7.2), there holds

∥∥∥∥(djpc)(2) −
̂

(djpc)
(2)
L

∥∥∥∥
X(2)

.

∥∥∥∥(djpc)(2) − P̂
(2)
L (djpc)(2)

∥∥∥∥
X(2)

. (7.12)

Here, the sparse tensor projector P̂
(2)
L is defined as in (7.2), (7.3), with Pℓ in place of Πℓ.

Denoting P−1 j = 0 the projector with range {0} ⊂ X, we may introduce for every ℓ ≥ 0 the
detail projector :

Qℓ := Pℓ−Pℓ−1 :X →Xℓ ∩X⊥
ℓ−1 , ℓ = 0, 1, 2, ... (7.13)

The approximation property (7.11) implies the detail estimate:

∀ ℓ ∈ N0, ∀ j ∈Xs : ‖Qℓ j‖X ≤ ‖j− Pℓ j‖X + ‖j− Pℓ−1 j‖X . 2−sℓ ‖j‖Xs . (7.14)

The cross-norm property (4.6) implies with (7.14) then

∀ ℓ, ℓ′ ∈ N0, ∀ j(2) ∈Xs ⊗Xs′ :
∥∥∥(Qℓ⊗Qℓ′)j

(2)
∥∥∥
X(2)

. 2−(sℓ+s′ℓ′)
∥∥∥j(2)

∥∥∥
Xs⊗Xs′

. (7.15)

The density of the boundary element spaces {Xℓ}ℓ≥0 defined in Section 6.2 in the space X (cf.
[13]) implies the norm-convergent expansions:

∀ j ∈X : j =
∑

ℓ≥0

Qℓ j , ∀ j(2) ∈X(2) : j(2) =
∑

ℓ,ℓ′≥0

(Qℓ⊗Qℓ′)j
(2) . (7.16)
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From (7.16), the quasi-optimality (7.12) and from the definition (7.3) of the index set Λ̂(L,L0),
we may bound the right hand side of (7.12) for (djpc)(2) ∈ (Xs)(2) by
∥∥∥∥(djpc)(2) −

̂
(djpc)

(2)
L

∥∥∥∥
X(2)

.
∥∥∥
∑

ℓ,ℓ′≥0

(Qℓ⊗Qℓ′)(dj
pc)(2) −

∑

(ℓ,ℓ′)∈Λ̂(L,L0)

(Qℓ⊗Qℓ′)(dj
pc)(2)

∥∥∥
X(2)

.
∑

ℓ+ℓ′≥2L0+L

∥∥∥(Qℓ⊗Qℓ′)(dj
pc)(2)

∥∥∥
X(2)

.
∑

ℓ+ℓ′≥2L0+L

2−s(ℓ+ℓ′)
∥∥∥(djpc)(2)

∥∥∥
(Xs)(2)

≃




2L0+L∑

ℓ=0

∞∑

ℓ′+ℓ≥2L0+L

2−s(ℓ+ℓ′) +
∑

ℓ>2L0+L

2−sℓ
∑

ℓ′≥0

2−sℓ′



∥∥∥(djpc)(2)

∥∥∥
(Xs)(2)

≃ (2L0 + L+ 1)2−s(2L0+L)
∥∥∥(djpc)(2)

∥∥∥
(Xs)(2)

.

(7.17)

7.3. Computational Complexity. We consider the perfect conductor case as similar results
hold for the dielectric case. To estimate the asymptotic computational complexity, we note that
the stiffness matrix of (7.10) is, in fact, a Kronecker product of the EFIE one-scale Galerkin
stiffness matrices i.e. Cℓ′ ⊗ Cℓ given by Cℓ = (cκ

(
ψℓ
j′ , ψ

ℓ
j

)
)1≤j,j′≤Nℓ

with Nℓ = dim(Xℓ), and

with Xℓ given in terms of the one-scale basis (e.g. the RWG basis) at discretization level ℓ as
Xℓ = span{ψℓ

j : 1 ≤ j ≤ Nℓ}. The Kronecker product Cℓ′ ⊗ Cℓ is never formed explicitly, but
only approximately accessed factor-wise in (multipole-accelerated) matrix-vector products during
iterative solves of (7.10). Due to the structure of the sparse tensor product space, the total
number of degrees of freedom (DOFs) involved in computing all details {pℓ,ℓ′}L0<ℓ,ℓ′≤L0+L in the
combination formula (7.9) is O(NL(logNL)

b) for some b > 0 with a constant depending on L0

and on the wavenumber, as well as on D0.
Using a preconditioner for the RWG EFIE, either of multilevel type developed in [3], or of

Calderón-type as proposed in [2] for the matrices Cℓ and fast matrix-vector multiplication by the

FMM (see e.g. [14] and references therein), approximate matrix-vector multiplications C̃ℓ of the
single-level Galerkin matrices Cℓ are realized in O(Nℓ(logNℓ)

b) work and memory. This results
in a log-linear with respect to the number NL of DOF on Γ0 solution procedure of the sparse
tensor Galerkin discretizations (6.14), (6.15) and, in particular, of the FOSM BIEs (6.7), (6.10)
for the deterministic approximation of the second order statistics of the random scattered field.

We observe that for this particular solution procedure only approximations C̃ℓ of the one-scale
Galerkin stiffness matrices Cℓ of the boundary integral operators have to be realized numerically,
however on all levels ℓ = 0, ..., L.

Once the approximate covariance
̂

(djpc)
(2)
L of the random surface current in

̂
X

(2)
L has been

computed, the covariance of the far-field is approximated by inserting
̂

(djpc)
(2)
L into the tensorized

representation formula (6.6). In order to evaluate the resulting expression numerically to an
accuracy on the order of the discretization error in log-linear complexity with respect to NL, the
number of degrees of freedom on Γ0, clustering techniques must again be used as in, e.g. [5],
together with tensorization by the combination formula (7.9).

8. Concluding Remarks

Domain and shape differentiability for electromagnetic and acoustic scattering have been well
investigated in the context of shape optimization and inverse problems. We only refer to [28, 33, 16]
and the references there. Usually, in these works explicit expressions for the first –and in certain
cases second– domain derivatives for a number of boundary problems have been obtained. The
first order domain derivatives of these problems can, with the methodology of the present paper, be
used for a FOSM analysis of scattering in the presence of domain uncertainty. The resulting linear,
tensorized boundary value problems characterize, to leading order, the second order statistics of
the scattered field in terms of the statistics of the domain variation. Upon boundary reduction,
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tensorized BIEs result which allows sparse tensor Galerkin discretization with RWG boundary
element as developed in the present paper.

Although the sparse tensor Galerkin discretization developed in Section 6 of the present work for
boundary integral reformulations of the Maxwell equations is well-defined and stable on Lipschitz
surfaces as arise in most engineering applications, for such surfaces, the shape calculus and the
present FOSM analysis are not valid, as the FOSM perturbation analysis presented here assumed
C2-continuity of the surfaces. The normal direction field ψ = η(·, ω)n0 used in (4.10), for example,
for the shape calculus in Section 4.2, has to be reinterpreted in the presence of corners and edges
in Γ0. While for polyhedral surfaces we still expect the shape gradients to be solutions of the
homogeneous Maxwell equations (3.4)–(3.5) and (3.8)–(3.9) in the nominal domain D0, the Radon
measure supported on Γ0 which characterizes the shape gradient will not admit a bounded density
with respect to the surface measure dS on Γ0. The Radon measure characterizing the shape
gradient provided by Hadamard’s theorem will still be supported on Γ0. The shape gradient
contains in general a singular part supported at corners and edges of Γ0. Extending the present
FoSM boundary element analysis will require nonstandard boundary integral formulations which
accomodate measure-valued input data. Details will be presented elsewhere.
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