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Abstract

We extend the reduced basis accelerated Bayesian inversion methods for affine-parametric, linear operator
equations which are considered in [15, 16] to non-affine, nonlinear parametric operator equations. We generalize
the analysis of sparsity of parametric forward solution maps in [18] and of Bayesian inversion in [41, 42] to the
fully discrete setting, including Petrov-Galerkin high-fidelity (“HiFi”) discretization of the forward maps. We
develop adaptive, stochastic collocation based reduction methods for the efficient computation of reduced bases
on the parametric solution manifold. The nonlinearity with respect to the distributed, uncertain parameters and
the unknown solution is collocated; specifically, by the so-called Empiricial Interpolation Method (EIM). For the
corresponding Bayesian inversion problems, computational efficiency is enhanced in two ways: first, expectations
with respect to the posterior are computed by adaptive quadratures with dimension-independent convergence
rates proposed in [42]; the present work generalizes [42] to account for the impact of the PG discretization
in the forward maps on the expectation of the Quantities of Interest (QoI). Second, we propose to perform
the Bayesian estimation only with respect to a parsimonious, reduced basis approximation of the posterior
density. In [42], under general conditions on the forward map, the infinite-dimensional parametric, deterministic
Bayesian posterior was shown to admit N -term approximations which converge at rates which depend only on
the sparsity of the parametric forward map. We present dimension-adaptive collocation algorithms to build
finite-dimensional parametric surrogates. In several numerical experiments, the proposed algorithms exhibit
dimension-independent convergence rates which equal, at least, the currently known rate estimates for N -term
approximation. We propose to accelerate Bayesian estimation by offline computation of reduced basis surrogates
of the Bayesian posterior density. The parsimonious surrogates can be employed for online data assimilation
and for Bayesian estimation. They also open a perspective for optimal experimental design.

Keywords:
Bayesian inversion, sparse grid, reduced basis, generalized empirical interpolation, greedy algorithm,
high-fidelity, Petrov-Galerkin Finite Elements, goal-oriented a-posteriori error estimate, a-priori error
estimate, uncertainty quantification

Email address: {peng.chen,christoph.schwab}@sam.math.ethz.ch (Peng Chen and Christoph Schwab)

Preprint submitted to Elsevier June 30, 2015



Contents

1 Introduction 3

2 Bayesian Inversion of Parametric Operator Equations 5

2.1 Nonlinear operator equations with uncertain input . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Uncertainty parametrization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Bayesian Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Parametric Bayesian posterior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Well-posedness and approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 Forward and Posterior Sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Adaptive Sparse Grid Algorithms 12

3.1 Adaptive Univariate Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Adaptive Sparse Grid Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 High-Fidelity Petrov-Galerkin Approximation 14

5 Reduced Basis Compression 15

5.1 Reduced Basis Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Generalized Empirical Interpolation Method (GEIM) . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3 Goal-oriented A-posteriori Error Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.4 Adaptive greedy algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6 Numerical Experiments 23

6.1 Affine-parametric, nonlinear operator equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.1.1 Sparse grid approximation error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.1.2 High-fidelity approximation error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.1.3 Reduced basis compression errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.2 Nonaffine, nonlinear problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2.1 Sparse grid approximation error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.2.2 Reduced basis compression error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7 Conclusions 32

8 Appendix: A-Priori Error estimates 32

8.1 Dimension truncation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8.2 High-fidelity PG Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8.3 Reduced Basis Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2



1. Introduction

Efficient computational response prediction for complex systems in engineering and in the sciences, governed
by partial differential or integral equations, subject to uncertain input parameters and conditional on noisy
measurements, is a core task in computational Uncertainty Quantification (UQ), see e.g. [35, 45, 31, 27, 34,
5, 41, 21, 15, 16]. In the general framework of Bayesian estimation, this amounts to numerical evaluation of a
mathematical expectation, with respect to the Bayesian posterior measure. Computationally, this boils down to
“numerical integration”, with respect to this posterior measure. Assuming additive gaussian observation noise
with covariance Γ > 0, according to Bayes’ theorem the posterior density depends on the negative log-likelihood
of the (covariance weighted) quadratic observation-to-response mismatch. Therefore, given observation data,
Bayesian estimation entails integration over all possible realizations of the uncertain input. If these inputs
consist of a finite number of state variables, therefore, Bayesian estimation amounts to an integration problem
over a finite-dimensional parameter space. Here, we are interested in the case of “distributed uncertain input
data”, such as uncertain spatially heterogeneous permeabilities, constitutive parameters, loadings or uncertain
domains of definition. Their exact, parametric description requires a countable number of parameters, such as for
example a sequence of Fourier coefficients, or of spectral modes or wavelet coefficients. Bayesian estimation for
such inputs then becomes a problem of integration over function space. Upon introduction of a basis in the space
of uncertain input data results a (formally) infinite-dimensional, parametric integration problem; approximating
parametric representations of uncertain inputs by truncated basis expansions renders these problems finite- but
possibly very high-dimensional. Due to the curse of dimensionality, standard numerical integration methods
then exhibit low convergence rates in terms of the number of “samples” (each “sample” corresponding to one so-
called forward numerical solution of a differential or integral equation). To overcome the curse of dimensionality,
sampling methods such as Markov Chain Monte-Carlo (MCMC) methods, have established themselves for
the approximate computation of these expectations, in terms of sample averages, with samples drawn from
the Bayesian posterior density. They have the advantage of dimension-independent convergence rate 1/2 in
terms of N , the number of PDE “forward” solves, and the possibility of updating the sampler dynamically
on datastreams. In [44], we proved sparsity results for the countably-parametric family of Bayesian posterior
densities which implied that, in principle, dimension-independent N -term approximation rates > 1/2 were
feasible provided that the parametric data-to-response maps have sufficient sparsity. Adaptive, deterministic
quadrature algorithms which realized, in numerical experiments such high, dimension independent convergence
rates were first presented in [41, 42]. Despite the drastic reduction in the number of forward solves afforded by
these deterministic quadrature methods, for systems goverend by partial differential equations the high cost per
solve renders these methods prohibitive, albeit superior to MCMC and other sampling methods.

Following earlier work [12, 11] by the first author, in the present paper we extend our work [15, 16] on
accelerating the sparse deterministic quadrature [41, 42] for Bayesian inversion by forward solutions through
reduced basis surrogates. Specifically, we cover nonlinear as well as non-affine parametric forward problems,
including Bayesian inversion for (smooth) nonlinear partial differential equations with uncertain loadings, un-
certain coefficients, and in uncertain domains. While the main conclusions of this work are analogous to our
findings in the case of affine-parametric, linear operator equations in [15], we introduce in the present paper
additional algorithmic developments to deal with strong nonlinearities in parametric dependence as well as for
governing equations.

Reduced basis (RB) [38, 14], and more general model order reduction techniques, were developed to accelerate
large-scale computations in engineering by compressing the so-called “high-fidelity” solution manifold to a
possibly small subspace, with certified approximation accuracy on a given set of input data. This implies obvious
CPU time savings in case that many instances of the problem need to be solved. Recently, this concept has
been extended to multi-parametric PDEs which are to be solved on possibly high-dimensional parameter spaces.
Here, RB solution at any given parameter is sought by solving a RB compression problem formulated through
either Galerkin or Petrov-Galerkin approximation. If the (HiFi) solution manifold is low dimensional, the RB
compression can dramatically reduce the computational cost in the large number of approximate solutions of
the HiFi problem. The quasi-optimal approximation property of the RB compression, as compared to the
rates afforded by the Kolmogorov N -width, has been proved in [4, 2]. Dimension-independent bounds on N
widths of solution manifolds for high-dimensional, parametric problems were recently proved for a wide range
of nonlinear operator equations in [18], thereby establishing a foundation of RB algorithms for such problems.
The scope of problems includes stochastic optimal control [10, 13] by multilevel RB construction, risk prediction
[9] with hybrid evaluation, statistical moment evaluations for arbitrary probability distribution by a weighted
version of RB [12], etc. Recently, RB compression for Bayesian inverse problems have also been considered
in [36, 31, 27, 30, 21]. In [36], RB methods are presented for low dimensional Bayesian inverse problems, full
tensor-grid numerical quadrature was used. Key to the efficient computational realization of RB methods are
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efficient and low-cost a posteriori error estimates and greedy algorithms. In [27], a non-linear model reduction
problem is solved by using masked projection of the discrete equations. A parameter and state model reduction
method is introduced in [31] for the reduction in both the state variable dimension and the parameter dimension,
where the parameter is taken as the discrete value of the coefficient field at each HiFi discrezation node. A
combined computational and geometrical framework for model order reduction and estimation is presented
in [30] in the context of hemodynamics. More recently, a data-driven model reduction is introduced in [21]
in combination with Monte-Carlo sampling techniques. There, increased efficiency of sampling according to
the posterior density instead of the prior density is demonstrated computationally. These methods are either
limited to low dimensional parametric forward models or lack efficient algorithms to construct the reduced basis
functions without taking advantage of the sparsity of the parametric forward solution and the posterior density
function.

In order to deal with the nonaffinity and nonlearity in the RB compression, we adopt the (generalized)
empirical interpolation method ((G)EIM) [32]. We carry out an a priori error analysis of the interpolation error,
and show that it can achieve dimension-independent convergence rate under the assumption of ℓp sparsity and
holomorphic dependence of the residual w.r.t. the parameters. A goal-oriented a posteriori error estimate for
the interpolation error is also developed. In order to achieve better effectivity of the a posteriori error estimate,
we compute surrogates by EIM of the nonaffine and nonlinear terms.

In the numerical experiments for demonstration of the proposed algorithms, we consider a nonlinear (semi-
linear) elliptic problem with uncertainty from diffusion coefficient field, and a nonaffine and nonlinear problem
with shape uncertainty. The sparse grid interpolation and integration error, the high-fidelity discretization
error, the reduced basis compression error as well as the empirical interpolation error are reported for the two
problems. Different dimensions, ranging from a few tens to a few hundreds, and different sparsity parameters
are used to demonstrate the dependence of the convergence rates. The effectivity of the goal-oriented a poste-
riori error estimate is also reported for both reduced basis compression and empirical interpolation for the two
problems.

The structure of the paper is as follows: in Section 2, we review the Bayesian approach to inverse problems,
recently developed in [20, 22], for abstract operator equations with “distributed uncertainty”, ie., with uncertain
input data which may take values in infinite-dimensional function spaces. Upon uncertainty parametrization
with an unconditional basis Ψ in the space X of uncertainties, the forward problem becomes a countably
parametric operator equation. Generalizing our work [15, 16], we admit smooth, nonlinear operator equations
and nonlinear parameter dependence including, for example, domain uncertainty, and semilinar elliptic and
parabolic PDEs, as well as boundary integal equation formulations of forward problems. We also review in
Section 2 results on sparsity of holomorphic-parametric forward maps, from [17, 18] and the references there,
which entail, as we show by generalizing [41], corresponding sparsity of the Bayesian posterior densities. We
include moreover also the error analysis for abstract Petrov-Galerkin discretizations of the parametric forward
problems thereby accomodating all mixed Finite Element Methods for viscous, incompressible flows which arise,
eg., in mathematical modelling of biofluid flow problems [26].

Section 3 then presents a class of dimension-adaptive sparse grid algorithms to sweep the parameter space
of the uncertain inputs, which will be used for empirical interpolation in the reduced basis construction as well
as for numerical integration in the Bayesian estimation.

Section 4 presents the error analysis of general Petrov-Galerkin discretizations of the parametric forward
problems, generalizing our earlier work [41, 42] where this discretization error was not explicitly analyzed.

Section 5 finally develops all algorithms necessary for the RB compression of the forward maps in the
present context, drawing on previous work [38, 15, 8]. The nonlinear dependence on the parameter sequence is
handled by the empirical interpolation method (EIM) and its variants. We present, in particular, a novel greedy
strategy for computing a parsimonious computational RB compression of the Bayesian posterior density. The
existence of approximate, low-parametric surrogate Bayesian densities follows from the abstract sparsity results
presented in Section 2, and in [41, 42]. Importantly, this approximation can be computed offline. The presently
proposed algorithms therefore allow for fast, online Bayesian estimation. The RB posterior density can also be
used for efficient computational data-to-response sensitivity analysis, thereby opening the perspective of online
experimental design, an aspect of our work which is to be developed elsewhere.

In Section 6, we present several numerical experiments for nonlinear, elliptic problems with uncertain coef-
ficients and in uncertain domains.

We include mathematical analysis of approximation errors, sparsity results and dimension-independent con-
vergence rate estimates in an Appendix, Section 8.
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2. Bayesian Inversion of Parametric Operator Equations

We consider Bayesian inversion of a class of abstract, smooth, nonlinear parametric operator equations.
Admissible problems comprise elliptic and parabolic PDEs with uncertain coefficients, source terms and domains.
We review classical results on well-posedness of these equations, with particular attention to the case when
the “parameter” is related to an uncertain, “distributed” input u taking values in an infinite-dimensional,
separable Banach space X. Assuming at hand an unconditional basis Ψ = {ψj}j≥1 of X, uncertain inputs
are associated with infinite sequences of parameters. We review Baysian estimation of response functionals
(“Quantities of Interest”) as mathematical expectationsa over all admissible inputs from X, conditional on
given data δ ∈ Y , based on [22]. Upon uncertainty parametrization with the basis Ψ, we convert the problem of
Bayesian estimation with respect to a given Bayesian prior measure π0 on X into an integration problem over
an infinite-dimensional coordinate set associated with the basis Ψ. In Section 2.6, we present a generalization
of results from [18, 41, 42] stating that for holomorphic, parametric operator equations the parametric forward
response maps and the Bayesian posterior densities are sparse. This allows for dimension-independent N -term
approximation rates limited only by sparsity. We also account for the effect of Petrov-Galerkin discretizations
of the forward maps on the error in the Bayesian estimate, which effect was not considered in the mentioned
references.

2.1. Nonlinear operator equations with uncertain input

Let X and Y denote separable Hilbert spaces. For a distributed, uncertain parameter u ∈ X, we consider
a “forward” operator R(q;u) depending on u and acting on q ∈ X . We assume known a “nominal parameter
instance” 〈u〉 ∈ X (such as, for example, the expectation of an X-valued random field u), and consider, for
u ∈ BX(〈u〉;R), an open ball of sufficiently small radius R > 0 in X centered at a nominal input instance
〈u〉 ∈ X, the nonlinear operator equation

given u ∈ BX(〈u〉;R) , find q ∈ X s.t. Y′〈R(q;u), v〉Y = 0 ∀v ∈ Y . (1)

Given u ∈ BX(〈u〉;R), we call a solution q0 of (1) regular at u if and only if R(·;u) is differentiable with respect
to q and if the differential DqR(q0;u) ∈ L(X ;Y ′) is an isomorphism. For the well-posedness of operator
equations involving R(q;u), we assume the map R(·;u) : X 7→ Y ′ admits a family of regular solutions locally,
in an open neighborhood of the nominal parameter instance 〈u〉 ∈ X.

Assumption 1. We assume the structural conditions

R(q;u) = A(q;u)− F (u) in Y ′ , (2)

and that for all u in a sufficiently small, closed neighborhood X̃ ⊆ X of 〈u〉 ∈ X the parametric forward problem:
for every u ∈ X̃ ⊆ X, given F (u) ∈ Y ′, find q(u) ∈ X such that the residual equation (1) is well-posed. Ie.,
for every fixed u ∈ X̃ ⊂ X, and for every F (u) ∈ Y ′, there exists a unique solution q(u) of (1) which depends
continuously on u.

We call the set {(q(u), u) : u ∈ X̃} ⊂ X ×X a regular branch of solutions of (2) if

X̃ ∋ u 7→ q(u) is continuous as mapping from X 7→ X ,
R(q(u);u) = 0 in Y ′ .

(3)

We call the solutions in the regular branch (3) nonsingular if, in addition, the differential

(DqR)(q(u);u) ∈ L(X ,Y ′) is an isomorphism from X onto Y ′, for all u ∈ X̃ . (4)

The following proposition collects well-known sufficient conditions for well-posedness of (2). For regular branches
of nonsingular solutions given by (2) - (4), the differential DqR satisfies the so-called inf-sup conditions.

Proposition 2.1. Assume that Y is reflexive and that, for some nominal value 〈u〉 ∈ X of the uncertain input
data, the operator equation (2) admits a regular branch of solutions (3). Then the differential DqR at (〈u〉, q0)
given by the bilinear map

X × Y ∋ (ϕ, ψ) 7→ Y′〈DqR(q0; 〈u〉)ϕ, ψ〉Y
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is boundedly invertible, uniformly with respect to u ∈ X̃ where X̃ ⊂ X is an open neighborhood of the nominal
instance 〈u〉 ∈ X of the uncertain parameter. In particular, there exists a constant β > 0 such that there holds

∀u ∈ X̃ :

inf
0 6=ϕ∈X

sup
0 6=ψ∈Y

Y′〈(DqR)(q0;u)ϕ, ψ〉Y
‖ϕ‖X ‖ψ‖Y

≥ β > 0 ,

inf
0 6=ψ∈Y

sup
0 6=ϕ∈X

Y′〈(DqR)(q0;u)ϕ, ψ〉Y
‖ϕ‖X ‖ψ‖Y

≥ β > 0
(5)

and

∀u ∈ X̃ : ‖(DqR)(q0, u)‖L(X ,Y′) = sup
0 6=ϕ∈X

sup
0 6=ψ∈Y

Y′〈(DqR)(q0;u)ϕ, ψ〉Y
‖ϕ‖X ‖ψ‖Y

≤ β−1 . (6)

Under conditions (5) and (6), for every u ∈ X̃ ⊆ X, there exists a unique, regular solution q(u) of (2) which is
uniformly bounded with respect to u ∈ X̃ in the sense that there exists a constant C(F, X̃) > 0 such that

sup
u∈X̃

‖q(u)‖X ≤ C(F, X̃) . (7)

For (5) - (7) being valid, we shall say that the set {(q(u), u) : u ∈ X̃} ⊂ X × X̃ forms a regular branch of
nonsingular solutions.

If the data-to-solution map X̃ ∋ u 7→ q(u) is also Fréchet differentiable with respect to u at every point
of the regular branch {(q(u);u) : u ∈ X̃} ⊂ X × X̃, the dependence of the “forward map”, i.e. the mapping
relating u to q(u) with the branch of nonsingular solutions, is locally Lipschitz on X̃: there exists a Lipschitz
constant L(F, X̃) such that

∀u, v ∈ X̃ : ‖q(u)− q(v)‖X ≤ L(F, X̃)‖u− v‖X . (8)

This follows from the identity (Duq)(u) = −(DqR)−1(DuR), and from the isomorphism property (DuRq)(q0; 〈u〉) ∈
Liso(X ,Y ′) which is implied by (5) and (6), and from the continuity of the differentialDqR on the regular branch.

In what follows, we will place ourselves in the abstract setting (1) with uniformly continuously differentiable
mapping R(q;u) in a product of neighborhoods BX(〈u〉;R)×BX (q(〈u〉);R) ⊂ X×X of sufficiently small radius
R > 0, satisfying the structural assumption (2). In Proposition 2.1 and throughout what follows, q(〈u〉) ∈ X
denotes the unique regular solution of (2) at the nominal input 〈u〉 ∈ X.

2.2. Uncertainty parametrization

We shall be concerned with the particular case where u ∈ X is a random variable taking values in (a subset
X̃ of) the Banach space X. We assume that X is separable, infinite-dimensional, and admits an unconditional
Schauder basis Ψ: X = span{ψj : j ≥ 1}. Then, every u ∈ X̃ ⊂ X can be parametrized in this basis, i.e.

u = u(y) := 〈u〉+
∑

j≥1

yjψj for some y = (yj)j≥1 ∈ U . (9)

Examples of representations (9) are Karhunen–Loève expansions (see, e.g., [43, 45, 22]) or by unconditional
Schauder bases (see, e.g., [19]). We point out that the representation (9) is not unique: rescaling yj and ψj will
not change u. We may and will assume, therefore, throughout what follows that the sequence {ψj}j≥1 is such
that U = [−1, 1]N. Norm-convergence of the series (9) in X is then implied by the summability condition

∑

j≥1

‖ψj‖X <∞ , (10)

assumed throughout in what follows.
We assume further that uncertain inputs u with “higher regularity” (when measured in a smoothness scale

{Xt}t≥0 with X = X0 ⊃ X1 ⊃ X2 ⊃ ... on the admissible input data) correspond to stronger decay of ψj : for
u ∈ Xt ⊂ X, in (9) the {ψj}j≥1 are assumed scaled such that

b := {‖ψj‖X}j≥1 ∈ ℓp(N) for some 0 < p(t) < 1 , (11)

where the sequence b = (bj)j≥1 given by bj := ‖ψj‖X . We also introduce the subset

U = {y ∈ [−1, 1]N : u(y) := 〈u〉+
∑

j≥1

yjψj ∈ X̃} . (12)
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Once an unconditional Schauder basis {ψj}j≥1 has been chosen, every realization u ∈ X can be identified in
a one-to-one fashion with the pair (〈u〉,y) where 〈u〉 denotes the nominal instance of the uncertain datum u
and y is the coordinate vector in representation (9). Inserting (9) into (1), we obtain the equivalent, countably-
parametric form: given F : U → Y ′,

find q(y;F ) ∈ X : ∀y ∈ U : R(q;y) := A(q;y)− F (y) = 0 in Y ′ . (13)

Remark 2.1. In what follows, by a slight abuse of notation, we identify the subset U in (12) with the countable
set of parameters from the infinite-dimensional parameter domain U ⊆ RN without explicitly writing so. The
operator A(q;u) in (2) then becomes, via the parametric dependence u = u(y), a parametric operator family
A(q;u(y)) which we denote (with slight abuse of notation) by {A(q;y) : y ∈ U}, with the parameter set U =
[−1, 1]N (again, we use in what follows this definition in place of the set U as defined in (12)). In the particular
case that the parametric operator family A(q;y) in (2) is linear, we have A(q;y) = A(y)q with A(y) ∈ L(X ,Y ′).
We do not assume, however, that the maps q 7→ A(q;y) are linear in what follows, unless explicitly stated.

With this understanding, and under the assumptions (7) and (8), the operator equation (2) will admit, for
every y ∈ U , a unique solution q(y;F ) which is, due to (7) and (8), uniformly bounded and depends Lipschitz
continuously on the parameter sequence y ∈ U : there holds

sup
y∈U

‖q(y;F )‖X ≤ C(F,U), (14)

and, if the local Lipschitz condition (8) holds, there exists a Lipschitz constant L > 0 such that

‖q(y;F )− q(y′;F )‖X ≤ L(F,U)‖u(y)− u(y′)‖X . (15)

The Lipschitz constant L > 0 in (15) is not, in general, equal to L(F,U) in (8): it depends on the nominal
instance 〈u〉 ∈ X and on the choice of basis {ψj}j≥1.

Unless explicitly stated otherwise, throughout what follows, we shall identify q0 = q(0;F ) ∈ X in Proposition
2.1 with the solution of (1) at the nominal input 〈u〉 ∈ X.

2.3. Bayesian Estimation
Following [45, 22, 44, 41, 42], we equip the space of uncertain inputs X and the space of solutions X of the

forward maps with norms ‖ · ‖X and with ‖ · ‖X , respectively. We consider the abstract (possibly nonlinear)
operator equation (2) where the uncertain operator A(·;u) ∈ C1(X ,Y ′) is assumed to be locally boundedly
invertible, at least locally for the uncertain input u sufficiently close to a nominal input 〈u〉 ∈ X, i.e. for
‖u − 〈u〉‖X sufficiently small so that, for such u, the response of the forward problem (2) is uniquely defined.
We define the forward response map, which maps a given uncertain input u and a given forcing F to the response
q in (2) by

X ∋ u 7→ q(u) := G(u;F (u)) , where G(u, F ) : X × Y ′ 7→ X . (16)

To ease notation, we do not list the dependence of the response on F and simply denote the dependence
of the forward solution on the uncertain input as q(u) = G(u). We assume given an observation functional
O(·) : X → Y , which denotes a bounded linear observation operator on the space X of observed system responses
in Y . Throughout the remainder of this paper, we assume that there is a finite number K of sensors, so that
Y = RK with K < ∞. Then O ∈ L(X ;Y ) ≃ (X ′)K . We equip Y = RK with the Euclidean norm, denoted by
| · |. For example, if O(·) is a K-vector of observation functionals O(·) = (ok(·))Kk=1.

In this setting, we wish to predict computationally an expected (under the Bayesian posterior) system
response of the QoI, conditional on given, noisy measurement data δ. Specifically, we assume the data δ to
consist of observations of system responses in the data space Y , corrupted by additive observation noise, e.g. by
a realization of a random variable η taking values in Y with law Q0. We assume the following form of observed
data, composed of the observed system response and the additive noise η

δ = O(G(u)) + η ∈ Y . (17)

We assume that Y = RK and that η in (17) is Gaussian, i.e. a random vector η ∼ Q0 ∼ N (0,Γ) with a positive
definite covariance Γ on Y = RK (i.e., a symmetric, positive definite covariance matrix Γ ∈ RK×K

sym which we

assume to be known. The uncertainty-to-observation map of the system G : X → Y = RK is G = O◦G, so that

δ = G(u) + η = (O ◦G)(u) + η ∈ Y ,

7



where Y = L2
Γ(R

K) denotes random vectors taking values in Y = RK which are square integrable with respect
to the Gaussian measure on Y = RK . Bayes’ formula [45, 22] yields a density of the Bayesian posterior with
respect to the prior whose negative log-likelihood equals the observation noise covariance-weighted, least squares
functional (also referred to as “potential” in what follows) ΦΓ : X × Y → R by ΦΓ(u; δ) =

1
2 |δ − G(u)|2Γ, ie.

ΦΓ(u; δ) =
1

2
|δ − G(u)|2Γ :=

1

2

(
(δ − G(u))⊤Γ−1(δ − G(u))

)
. (18)

In [45, 22], an infinite-dimensional version of Bayes’ rule was shown to hold in the present setting. In particular,
the local Lipschitz assumption (8) on the solutions’ dependence on the data implies a corresponding Lipschitz
dependence of the Bayesian Potential (18) on u ∈ X. Specifically, there holds the following version of Bayes’
theorem. Bayes’ Theorem states that, under appropriate continuity conditions on the uncertainty-to-observa-
tion map G = (O ◦G)(·) and on the prior measure π0 on u ∈ X, for positive observation noise covariance Γ in
(18), the posterior πδ of u ∈ X given data δ ∈ Y is absolutely continuous with respect to the prior π0.

Theorem 2.2. ([22, Thm. 3.3]) Assume that the potential ΦΓ : X × Y 7→ R is, for given data δ ∈ Y , π0

measurable on (X,B(X)) and that, for Q0-a.e. data δ ∈ Y there holds

Z :=

∫

X

exp (−Φ(u; δ))π0(du) > 0 .

Then the conditional distribution of u|δ exists and is denoted by πδ. It is absolutely continuous with respect to
π0 and there holds

dπδ

dπ0
(u) =

1

Z
exp (−Φ(u; δ)) . (19)

In particular, then, the Radon-Nikodym derivative of the Bayesian posterior w.r.t. the prior measure admits a
bounded density w.r.t. the prior π0 which we denote by Θ, and which is given by (19).

2.4. Parametric Bayesian posterior

We parametrize the uncertain datum u in the forward equation (2) as in (9). Motivated by [41, 42], the basis
for the presently proposed deterministic quadrature approaches for Bayesian estimation via the computational
realization of Bayes’ formula is a parametric, deterministic representation of the derivative of the posterior
measure πδ with respect to the uniform prior measure π0 on the set U of coordinates in the uncertainty
parametrization (12). The prior measure π0 being uniform, we admit in (9) sequences y which take values
in the parameter domain U = [−1, 1]J, with an index set J ⊂ N. We consider the countably-parametric,
deterministic forward problem in the probability space

(U,B,π0) . (20)

We assume throughout what follows that the prior measure π0 on the uncertain input u ∈ X, parametrized in the
form (9), is the uniform measure. Being π0 a countable product probability measure, this assumption implies
the statistical independence of the coordinates yj in the parametrization (9). With the parameter domain U as
in (20) the parametric uncertainty-to-observation map Ξ : U → Y = RK is given by

Ξ(y) = G(u)
∣
∣
∣
u=〈u〉+

∑
j∈J

yjψj

. (21)

Our reduced basis approach is based on a parametric version of Bayes’ Theorem 2.2, in terms of the uncertainty
parametrization (9). To present it, we view U as the unit ball in ℓ∞(J), the Banach space of bounded sequences
taking values in U .

Theorem 2.3. Assume that Ξ : Ū → Y = RK is bounded and continuous. Then πδ(dy), the distribution of
y ∈ U given data δ ∈ Y , is absolutely continuous with respect to π0(dy), i.e. there exists a parametric density
Θ(y) such that

dπδ

dπ0
(y) =

1

Z
Θ(y) (22)

with Θ(y) given by

Θ(y) = exp
(
−ΦΓ(u; δ)

)
∣
∣
∣
u=〈u〉+

∑
j∈J

yjψj

, (23)
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with Bayesian potential ΦΓ as in (18) and with normalization constant Z given by

Z = Eπ0 [Θ] =

∫

U

Θ(y) dπ0(y)> 0 . (24)

Bayesian inversion is concerned with the approximation of a “most likely” system response φ : X → Z (some-
times also referred to as Quantity of Interest (QoI) which may take values in a Banach space Z) of the QoI
φ, conditional on given (noisy) observation data δ ∈ Y . In particular the choice φ(u) = G(u) (with Z = X )
facilitates computation of the “most likely” (as expectation under the posterior, given data δ) system response.
With the QoI φ we associate the deterministic, infinite-dimensional, parametric map

Ψ(y) = Θ(y)φ(u) |u=〈u〉+
∑

j∈J
yjψj

= exp
(
−ΦΓ(u; δ)

)
φ(u)

∣
∣
∣
u=〈u〉+

∑
j∈J

yjψj

: U → Z . (25)

Then the Bayesian estimate of the QoI φ, given noisy observation data δ, reads

Eπδ

[φ] = Z ′/Z, Z ′ :=

∫

y∈U

Ψ(y)π0(dy), Z :=

∫

y∈U

Θ(y)π0(dy) . (26)

The task in computational Bayesian estimation is therefore to approximate the ratio Z ′/Z ∈ Z in (26). In the
parametrization with respect to y ∈ U , Z and Z ′ take the form of infinite-dimensional, iterated integrals with
respect to the prior π0(dy).

2.5. Well-posedness and approximation

For the computational viability of Bayesian inversion the quantity Eπδ

[φ] should be stable under perturba-
tions of the data δ and under changes in the forward problem stemming, for example, from discretizations as
considered in Section 4.

Unlike deterministic inverse problems where the data-to-solution maps can be severely ill-posed, for Γ > 0
the expectations (26) are Lipschitz continuous with respect to the data δ, provided that the potential ΦΓ in (18)
is locally Lipschitz with respect to the data δ in the following sense.

Assumption 2. Let X̃ ⊆ X and assume ΦΓ ∈ C(X̃ × Y ;R) is Lipschitz on bounded sets. Assume also that
there exist functions Mi : R+ ×R+ → R+ (depending on Γ > 0) which are monotone, non-decreasing separately
in each argument, such that for all u ∈ X̃, and for all δ, δ1, δ2 ∈ BY (0, r)

Φ(u; δ) ≥ −M1(r, ‖u‖X), (27)

and
|ΦΓ(u; δ1)− ΦΓ(u; δ2)| ≤M2(r, ‖u‖X)‖δ1 − δ2‖Y . (28)

Under Assumption 2, the expectation (26) depends Lipschitz on δ (see [22, Sec. 4.1] for a proof):

∀φ ∈ L2(πδ1 , X;R) ∩ L2(πδ2 , X;R) ‖Eπδ1
[φ]− Eπδ2

[φ]‖Z ≤ C(Γ, r)‖δ1 − δ2‖Y . (29)

Below, we shall be interested in the impact of approximation errors in the forward response of the system
(e.g. due to discretization and approximate numerical solution of system responses) on the Bayesian predictions
(26). For continuity of the expectations (26) w.r.t. changes in the potential, we impose the following assumption.

Assumption 3. Let X̃ ⊆ X and assume Φ ∈ C(X̃ × Y ;R) is Lipschitz on bounded sets. Assume also that
there exist functions Mi : R+ ×R+ → R+ which are monotonically non-decreasing separately in each argument,
such that for all u ∈ X̃, and all δ ∈ BY (0, r), Equation (27) is satisfied and

|ΦΓ(u; δ)− ΦNΓ (u; δ)| ≤M2(r, ‖u‖X)‖δ‖Y ψ(N) (30)

where ψ(N) → 0 as N → ∞.

By πδN we denote the Bayesian posterior, given data δ ∈ Y , with respect to ΦNΓ .
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Proposition 2.4. Under Assumption 3, and the assumption that for X̃ ⊆ X and for some bounded B ⊂ X we
have π0(X̃ ∩B) > 0 and

X ∋ u 7→ exp(M1(‖u‖X))(M2(‖u‖X))2 ∈ L1
π0

(X;R) ,

there holds, for every QoI φ : X → Z such that φ ∈ L2
πδ(X;Z) ∩ L2

πδ
N

(X;Z) uniformly w.r.t. N , that Z > 0 in

(24) and

‖Eπδ

[φ]− Eπδ
N [φ]‖Z ≤ C(Γ, r)‖δ‖Y ψ(N) . (31)

For a proof of Proposition 2.4, we refer to [22, Thm. 4.7, Rem. 4.8].
Below, we shall present concrete choices for the convergence rate function ψ(N) in estimates (30), (31) in

terms of i) “dimension truncation” of the uncertainty parametrization (9), i.e. to a finite number of s ≥ 1 terms
in (9), and ii) Petrov-Galerkin Discretization of the dimensionally truncated problem, iii) generalized polynomial
chaos (gpc) approximation of the dimensionally truncated problem for particular classes of forward problems.
The verification of the consistency condition (30) in either of these cases will be based on (cf. [24])

Proposition 2.5. Assume we are given a sequence {qN}N≥1 of approximations to the parametric forward
response X ∋ u 7→ q(u) ∈ X such that, with the parametrization (9),

sup
y∈U

‖(q − qN )(y)‖X ≤ ψ(N) (32)

with a consistency error bound ψ ↓ 0 as N → ∞ monotonically and uniformly w.r.t. u ∈ X̃ (resp. w.r.t. y ∈ U).
By GN we denote the corresponding (Galerkin) approximations of the parametric forward maps. Then the
approximate Bayesian potential

ΦN (u; δ) =
1

2
(δ − GN (u))⊤Γ−1(δ − GN (u)) : X × Y 7→ R , (33)

where GN := O ◦GN , satisfies (30).

2.6. Forward and Posterior Sparsity

A central role in convergence rate estimates of the approximations presented in the following sections are
sparsity results on the parametric forward solution manifold {q(y) : y ∈ U} ⊂ X in (16) as well as on the
corresponding Bayesian posterior manifold {Θ(y) : y ∈ U}. As was shown in [18, 44, 40, 41, 42], the sparsity
results take the form of summability conditions on coefficient sequences in gpc expansions of the parametric
responses q(y) and of the parametric posterior densities Θ(y) and Ψ(y) in (23) and in (25), respectively. These
results imply convergence rates of N -term gpc approximations of these countably-parametric quantities which
are independent of number of active parameters in the approximations. The results obtained in [18, 40, 41, 42]
require holomorphic, parametric dependence of the parametric forward solution map U ∋ y 7→ q(y) which we
review next. Throughout the rest of this section, all Banach spaces are understood as spaces over the complex
coefficient field, without notationally indicating this. Holomorphic parameter dependence with respect to the
parameters zj = yj+ iwj ∈ C is made precise, with a view towards (Legendre series) polynomial approximation:
we introduce for s > 1 the Bernstein ellipse in the complex plane

Es :=
{
w + w−1

2
: w ∈ C , 1 ≤ |w| ≤ s

}

, (34)

which has semi axes of length (s+ s−1)/2 and (s− s−1)/2. For sequences ρ := (ρj)j≥1 with ρj > 1, with (34)
we introduce tensorized poly-ellipses

Eρ :=
⊗

j≥1

Eρj . (35)

Definition 2.1. For ε > 0 and 0 < p < 1 and for a positive sequence b = (bj)j≥1 ∈ ℓp(N), the parametric
residual map R in (13) satisfies the (b, p, ε)-holomorphy assumption if and only if

1. For each y ∈ U , there exists a unique solution q(y) ∈ X of the problem (1). The parametric solution map
y 7→ q(y) from U to X is uniformly bounded, i.e.

sup
y∈U

‖q(y)‖X ≤ B0 , (36)
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for some finite constant B0 > 0.

2. There exists a constant Bε > 0 such that for any sequence ρ := (ρj)j≥1 of poly-radii ρj > 1 that satisfies

∞∑

j=1

(ρj − 1)bj ≤ ε, (37)

the map q admits a complex extension z 7→ q(z) that is holomorphic with respect to each coordinate zj of
the parameter sequence z = (zj)j≥1 in a cylindrical set Oρ :=

⊗

j≥1 Oρj . Here, Oρj ⊂ C is an open set
containing the Bernstein ellipse Eρj . This extension is bounded on Eρ :=

⊗

j≥1 Eρj , according to

sup
z∈Eρ

‖q(z)‖X ≤ Bε . (38)

The relevance of (b, p, ε)-holomorphy of countably-parametric maps such as z → q(z) is clear from the following
approximation result, which is, for example, [18, Thm. 2.2]. To state it, we denote by Λ = {ν ∈ NN

0 : |ν| <∞}
the countable set of sequences of finitely supported multi-indices.

Theorem 2.6. Assume that X is a Hilbert space and that the map U ∋ y 7→ q(y) ∈ X is (b, p, ε)-holomorphic.
Then the parametric solution map admits the (unconditionally convergent) Legendre series expansion

∀y ∈ U : q(y) =
∑

ν∈Λ

qνLν(y) , (39)

where, for ν ∈ Λ, we defined Lν(y) :=
∏

j≥ Lνj (y) with Ln the Legendre polynomial of degree n on (−1, 1) with
normalization ‖Ln‖L∞(−1,1) = 1, and where the Legendre coefficients qν = (q, Lν) ∈ X with (·, ·) denoting the
L2(U ;µ)-innerproduct with respect to the uniform probability measure µ =

⊗

j≥1 dyj/2 on U .
The sequence q := (‖qν‖X )ν∈Λ ∈ ℓpm(Λ), which denotes the set of sequences indexed by Λ whose decreasing

rearrangement is p-summable.
Moreover, there exists a nested sequence {ΛM}M∈N of index sets ΛM ⊂ Λ of cardinality at most M and an

associated sequence {ΓM}M∈N of sparse grids which are unisolvent for PΛM
= span{yν : ν ∈ ΛM} such that the

corresponding sparse grid interpolation operators SΛM
satisfy

‖q − SΛM
q‖L∞(U ;X ) ≤ CiM

−s , s = 1/p− 1 . (40)

Moreover, the sparse grid integration satisfies

||Eπ0 [q]− Eπ0 [SΛM
q]||X ≤ CeM

−s, s = 1/p− 1 . (41)

Here, the constant Ci > 0 and Ce are independent of ΛM and of ΓM .

For a proof of Theorem 2.6, we refer to [18, Thms. 2.2, 4.1] for interpolation and to [41, Thm. 4.7] for
integration.

By Theorem 2.6, (b, p, ε)-holomorphic, countably-parametric mappings afford dimension-independent poly-
nomial approximation order s = 1/p − 1. It is therefore of interest to identify problems whose parametric
solution maps are (b, p, ε)-holomorphic.

Theorem 2.7. Assume (i) the uncertain input u ∈ X satisfies (9) with basis fulfilling (11), (ii) problem (1)
is well-posed for all u in the sense of Assumption 1, (iii) the isomorphism property (4) holds, (iv) the map
(q, u) 7→ R(q;u) is complex continuously differentiable from X ×X into Y ′. Then,

1. the parametric solution family {q(y) : y ∈ U} of the nonlinear operator equation (1) with residual map R
in (13) admits an extension to the complex domain which is (b, p, ε)-holomorphic with the same sequence
b and the same p defined in (10), see [18, Thm 4.3];

2. the parametric Bayesian posterior density Θ(y) in (23) and the density Ψ(y) in (25) are likewise (b, p, ε)-
holomorphic, with the same sequence b and the same p. The constants Bε in (38) for Θ and Ψ depend on
the observation noise covariance Γ > 0 in (18) as Bε(Γ) ≤ B̄ε exp(c/Γ) for some B̄ε > 0 and c > 0 which
are independent of Γ, see [44, 41, 42].

Theorem 2.7 provides with Theorem 2.6 the basis for sparse grid approximations in the parametric space
with dimension-independent convergence rate s = 1/p − 1 which is only limited by the sparsity p of the basis
expansion (9), but is independent of the dimension of the parameter space resp. of the dimension of the
interpolation space.
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3. Adaptive Sparse Grid Algorithms

Theorem 2.6 in the last section guarantees the existence of sparse generalized polynomial approximations
of the forward solution map and of the posterior density which approximate these quantities with dimension-
independent convergence rate. We exploit this sparsity in two ways: first, in the choice of sparse parameter
samples during the offline-training phase of model order reductions, and, as already proposed in [41, 42], for
adaptive, Smolyak-based numerical integration for the evaluation of the Bayesian estimate. Both are based
on constructive algorithms for the computation of such sparse polynomial approximations. To this end, we
follow [16] and introduce adaptive univariate interpolation and integration, and then present the corresponding
adaptive sparse grid approximation.

3.1. Adaptive Univariate Approximation

In the univariate case U = [−1, 1], given a set of interpolation nodes −1 ≤ y1 < · · · < ym ≤ 1, the
interpolation operator I : C(U ;Z) → Pm−1(U)⊗Z reads

Ig(y) =
m∑

k=1

g(yk)lk(y), (42)

where the function g ∈ C(U ;Z), representing e.g. the parametric forward solution map q with Z = X or the
posterior density Θ with Z = R; lk(y), 1 ≤ k ≤ m, are the associated Lagrange polynomials in Pm−1(U),
the space of polynomials of degree at most m − 1. To define the sparse collocation, as usual the interpolation
operator defined in (42) is recast as telescopic sum, ie.,

ILg(y) =
L∑

l=1

△lg(y) , (43)

where L represents the level of interpolation grid; △l := Il − Il−1 with I0g ≡ 0. Let Ξl denote the set of all
interpolation nodes in the grid of level l, such that the grid is nested, i.e. Ξl ⊂ Ξl+1, l = 0, . . . , L − 1, with
Ξ0 = ∅ and ΞL = {y1, . . . , ym}. As Il−1g(y) = g(y) for any y ∈ Ξl−1, we have Il−1 = Il ◦ Il−1 and, with the
notation Ξl△ = Ξl \ Ξl−1, the interpolation operator (43) can be written in the form

ILg(y) =
L∑

l=1

∑

yl
k
∈Ξl

△

(Il − Il ◦ Il−1)g(y) =

L∑

l=1

∑

yl
k
∈Ξl

△

(g(ylk)− Il−1g(y
l
k))

︸ ︷︷ ︸

sl
k

llk(y) , (44)

where slk represents the interpolation error of Il−lg evaluated at the node ylk ∈ Ξl△, k = 1, . . . , |Ξl△|, so that we
can use it as a posteriori error estimator for adaptive construction of the interpolation (44). More precisely, we
start from the root level L = 1 with the root interpolation node y = 0; then, whenever the interpolation error
estimator

Ei := max
yL
k
∈ΞL

△

|sLk | (45)

is larger than a given tolerance, we refine the interpolation to level L+ 1 by adding a new interpolation node.
One possible choice is adding a Leja node

yL+1
1 = argmax

y∈U

L∏

l=1

|y − yl| , (46)

or Clenshaw–Curtis (more than one) nodes

yL+1
k = cos

(
k

2L−1
π

)

, k = 0, 1 for L = 1; k = 1, 3, . . . , 2L−1 − 1 for L ≥ 2 . (47)

Based on the adaptive interpolation, an associated quadrature formula is given by

E[g] ≈ E[ILg] =
L∑

l=1

∑

yl
k
∈Ξl

△

slkw
l
k, being wlk = E[llk] , (48)
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for which the integration error estimator can be taken as

Ee :=

∣
∣
∣
∣
∣
∣

∑

yL
k
∈ΞL

△

sLkw
L
k

∣
∣
∣
∣
∣
∣

. (49)

3.2. Adaptive Sparse Grid Approximation

In multiple dimensions y ∈ U = [−1, 1]J , an adaptive sparse grid (SG) interpolation is obtained by ten-
sorization of the univariate interpolation formula (43)

SΛM
g(y) =

∑

ν∈ΛM

(△ν1
1 ⊗ · · · ⊗ △νJ

J ) g(y) , (50)

where ΛM is the downward closed index set defined in Theorem 2.6. As Λ1 ⊂ · · · ⊂ ΛM and as the interpolation
nodes are nested, the SG formula (50) can be rewritten as

SΛM
g(y) =

M∑

m=1

∑

yνm

k
∈Ξνm

△

(

g(yνm

k )− SΛm−1g(y
νm

k )
)

︸ ︷︷ ︸

s
νm

k

lν
m

k (y) , (51)

where Ξνm

△ is the set of added nodes corresponding to the index νm = (νm1 , . . . , ν
m
J ) = Λm \ Λm−1; l

νm

k (y) =

lν1k1(y1) ⊗ · · · ⊗ lνJkJ (yJ), is the multidimensional Lagrange polynomial; sν
m

k denotes the interpolation error of

SΛm−1
g evaluated at yνm

k , which can be used as an interpolation error estimator for the construction of the SG.
More explicitly, we start from the initial index ν = 1 = (1, . . . , 1), thus Λ1 = {1}, with root node y = 0 =

(0, . . . , 0). We then look for the active index set ΛaM such that ΛM ∪ {ν} remains downward closed for any
ν ∈ ΛaM . E.g. for ΛM = {1} when M = 1, we have ΛaM = {1 + ej , j = 1, . . . , J}, being ej = (0, . . . , j, . . . , 0)
whose j-th entry equals one while all other entries are zero. For each ν ∈ ΛaM , we evaluate the errors of the
interpolation SΛM

g at the nodes Ξν
△, and enrich the index set ΛM+1 = ΛM ∪ {νM+1} with the new index

νM+1 := argmax
ν∈Λa

M

max
yν
k
∈Ξν

△

1

|Ξν
△| |s

ν
k| , (52)

where the error is balanced by the work measured in terms of the number of new nodes |Ξν
△|. An adaptive

sparse grid quadrature can be constructed similar to (50) as

E[g] ≈ E[SΛM
g] =

M∑

m=1

∑

yνm

k
∈Ξνm

△

sν
m

k wνm

k , wherewνm

k = E[lν
m

k ] , (53)

for which can enrich the index set with the new index

νM+1 := argmax
ν∈Λa

M

1

|Ξν
△|

∣
∣
∣
∣
∣
∣

∑

yν
k
∈Ξν

△

sνkw
ν
k

∣
∣
∣
∣
∣
∣

. (54)

To terminate the SG algorithm for either interpolation or quadrature, we monitor the following heuristic error
estimators compared to some prescribed tolerances, respectively:

Ei := max
ν∈Λa

M

max
yν
k
∈Ξν

△

|sνk| and Ee :=

∣
∣
∣
∣
∣
∣

∑

ν∈Λa
M

∑

yν
k
∈Ξν

△

sνkw
ν
k

∣
∣
∣
∣
∣
∣

. (55)

Remark 3.1. The interpolation and integration error estimators (55) are not rigorous compared to the true
interpolation and integration errors. In fact, Ei may underestimate the true worst-case scenario interpolation
error as it is only the maximum interpolation error over a finite number of SG nodes instead of the whole
parameter domain: Ee only measures the contribution of integration forward neighboring SG nodes.

13



4. High-Fidelity Petrov-Galerkin Approximation

For the high-fidelity (“HiFi” for short) numerical solution of the parametric, nonlinear problem (1) at any
given y ∈ U , we consider the Petrov-Galerkin (PG) discretization in the one-parameter family of pairs of
subspaces Xh ⊂ X and Yh ⊂ Y where h represents a discretization parameter, for instance the meshwidth
of a PG Finite Element discretization (when Xh = Yh, the PG discretization becomes the classical Galerkin
discretization). We assume that the dimensions of the two subspaces are equal, i.e. Nh = dim(Xh) = dim(Yh) <
∞, ∀h > 0. To ensure the convergence of the HiFi PG solution qh ∈ Xh to the exact solution q ∈ X as h → 0,
we assume the subspace families Xh and Yh to be dense in X and Y as the discretization parameter (being, for
example, a meshwidth or an inverse spectral order) h→ 0, i.e.

∀w ∈ X : lim
h→0

inf
wh∈Xh

||w − wh||X = 0, and ∀v ∈ Y : lim
h→0

inf
vh∈Yh

||v − vh||Y = 0 . (56)

Moreover, to quantify the convergence rate of the discrete approximation, we introduce scales of smoothness
spaces X s ⊂ X = X 0 and Ys ⊂ Y = Y0 indexed by the smoothness parameter s > 0. Here, we have in mind for
example spaces of functions with s extra derivatives in Sobolev or Besov spaces. Then, for appropriate choices
of the subspaces Xh and Yh hold the approximation properties: there exist constants Cs > 0 such that for all
0 < h ≤ 1 holds

∀w ∈ X s : inf
wh∈Xh

||w − wh||X ≤ Csh
s||w||X s and ∀v ∈ Ys : inf

vh∈Yh

||v − vh||Y ≤ Csh
s||v||Ys . (57)

Here, the constant Cs is assumed independent of the discretization parameter h but may depend on the smooth-
ness parameter s. For small values of h and/or if s is large, the PG discretization produces high-fidelity (HiFi)
approximations qh ∈ Xh of the true solution q ∈ X by solving

given y ∈ U, find qh(y) ∈ Xh : Y′〈R(qh(y);y), vh〉Y = 0 ∀vh ∈ Yh . (58)

To solve the nonlinear, parametric HiFi-PG approximation problem (58) numerically, we use a Newton iteration
based on the parametric tangent operator of the nonlinear residual: for any given y ∈ U , choose the initial

guess of the solution q
(1)
h (y) ∈ Xh. Then, for k = 1, 2, . . . , we search δq

(k)
h (y) ∈ Xh such that

Y′〈DqR(q
(k)
h (y);y)(δq

(k)
h (y)), vh〉Y = −Y′〈R(q

(k)
h (y);y), vh〉Y ∀vh ∈ Yh , (59)

and update the solution by

q
(k+1)
h (y) = q

(k)
h (y) + δq

(k)
h (y) . (60)

We terminate the Newton Iteration with qh(y) = q
(k+1)
h (y) once the following stopping-criterion is satisfied:

||δq(k)h (y)||X ≤ εtol or ||R(q
(k)
h (y);y)||Y′ ≤ εtol . (61)

Remark 4.1. The Newton iteration (59), (60) converges only locally, and globalization techniques in (60) are

required: for example, a rescaled increment α(k)δq
(k)
h (y), where the step length α(k) is determined by a line

search and Wolfe or Goldstein conditions. We refer to [46, Sec. 4, 5] for details (see also [23]).

In the HiFi-PG discretization, we denote the bases for Xh and Yh, respectively, by {wnh}Nh

n=1 and {vnh}Nh

n=1. In

these bases, the PG approximation q
(k)
h (y) and δq

(k)
h (y) takes the form

q
(k)
h (y) =

Nh∑

n=1

q
(k)
h,n(y)w

n
h and δq

(k)
h (y) =

Nh∑

n=1

δq
(k)
h,n(y)w

n
h , (62)

and the algebraic formulation of the parametric HiFi-PG problem (59) reads: find δq
(k)
h (y) ∈ RNh such that

J
(k)
R (y)δq

(k)
h (y) = r

(k)
h (y) , (63)

where δq
(k)
h (y) = (q

(k)
h,1(y), . . . , q

(k)
h,Nh

(y))⊤ and where the tangent stiffness matrix J
(k)
R (y) ∈ RNh×Nh is given by

(

J
(k)
R (y)

)

nn′
=Y′

〈

DqR(q
(k)
h (y);y)(wn

′

h ), vnh

〉

Y
, n, n′ = 1, . . . , Nh , (64)
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and the load vector r
(k)
h (y) ∈ RNh takes the form

(

r
(k)
h (y)

)

n
= −Y′

〈

R
(

q
(k)
h (y);y

)

, vnh

〉

Y
, n = 1, . . . , Nh . (65)

With the notation Oh = (Oh(w
1
h), . . . ,Oh(w

Nh

h ))⊤ and qh(y) = (qh,1(y), . . . , qh,Nh
(y))⊤, we have

Θh(y) = exp

(

−
(

δ −O⊤
h qh(y)

)⊤

Γ−1
(

δ −O⊤
h qh(y)

))

. (66)

When the number Nh of HiFi degrees of freedom is large, the system (63) may become too costly to solve. This
renders the HiFi-PG solution qh(y) at a large number of parameter values y ∈ U computationally infeasible.

5. Reduced Basis Compression

In order to reduce the computational cost for the solution of the parametric HiFi-PG problem (58), we
propose a projection-based model order reduction. Precisely, we project the parametric solution on a few problem-
adapted, reduced bases rather than onto a large numberNh of HiFi (finite element) basis functions. In doing this,
the reduction of computational complexity critically depends on affine separability of the uncertain parameters
from the physical variables [28, 7, 6]. To construct an affine representation/approximation of the HiFi-PG
problem (58), we rely on the empirical interpolation method applied to the HiFi-PG discretization.

5.1. Reduced Basis Compression

Instead of projecting the solution into the HiFi space Xh ⊂ X , we project it into a RB space XN ⊂ Xh
of reduced dimension N = dim(XN ) ≤ Nh. We also choose the RB test space such that YN ⊂ Yh with
dim(YN ) = N , which will be constructed to guarantee the stability of the RB-PG compression problem

given y ∈ U, find qN (y) ∈ XN : Y′〈R(qN (y);y), vN 〉Y = 0 ∀vN ∈ YN . (67)

The RB-PG problem (67) can be solved by a Newton iteration: for given y ∈ U , initialize the iteration with

q
(1)
N (y) ∈ XN , e.g. a simple case q

(1)
N (y) = 0. For k = 1, 2, . . . , find δq

(k)
N (y) ∈ XN such that

Y′〈DqR(q
(k)
N (y);y)(δq

(k)
N (y)), vN 〉Y = −Y′〈R(q

(k)
N (y);y), vN 〉Y ∀vN ∈ YN . (68)

Next, update the RB solution as

q
(k+1)
N (y) = q

(k)
N (y) + δq

(k)
N (y) . (69)

We termine the iteration (68) with qN (y) = q
(k+1)
N (y), once the following criterion is satisfied for a prescribed

tolerance εtol:
||δq(k)N (y)||X ≤ εtol or ||R(q

(k)
N (y);y)||Y′ ≤ εtol . (70)

As pointed out in Remark 4.1, in order to ensure convergence of the Newton scheme, we update with rescaled

increment α(k)δq
(k)
N corresponding to step length α(k) determined by a line search (e.g. [23]).

The accuracy of the RB-PG compression crucially depends on the RB space XN . The space XN should consist
of N basis functions which are “most representative” among all HiFi-PG approximations of the parametric
solutions qh(y) ∈ Xh, uniformly with respect to y ∈ U . The basis functions can be constructed either as a
set of HiFi solutions selected by a greedy algorithm or as their compression obtained via proper orthogonal
decomposition. As the latter require a large number of HiFi solutions prior to compression, especially for high-
dimensional parametric problems, we use the former approach. Formally, the RB space XN is given by the span
of “snapshots”, ie., of HiFi-PG solutions at N selected parameter samples yn, 1 ≤ n ≤ N . We express this
formally as

XN = span{qh(y1), . . . , qh(y
N )} . (71)

For the selection of the parameter samples, we apply a greedy algorithm which is steered by a computable,
goal-oriented error estimator △N (y) which depends on the QoI. For example, △Θ

N (y) for the approximation of
the density of the Bayesian posterior, ie., as estimator of |Θh(y)−ΘN (y)|. To ensure computational efficiency,
we require that the estimator is computable in complexity that does not depend on the number Nh of HiFi-PG
degrees of freedom. We defer the design of computable error estimators to the next section and assume them
available for now. The greedy algorithm for the selection of the RB samples reads: pick the first parameter
sample y1 randomly or as the barycenter of the (assumed convex) parameter space U , and define the first RB
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space X1 = span{qh(y1)}; then, for N = 1, 2, . . . , until a stopping criterion is satisfied (e.g. maximum number
of basis functions or prescribed error tolerance), we pick the next sample as

yN+1 = argmax
y∈U

△N (y) , (72)

where the parameter space U is replaced by a finite training sample set Ξt ⊂ U as, e.g., the set of adaptive
sparse grid nodes or random samples. After solving the HiFi-PG problem (58) at yN+1, we enrich the RB space
as XN+1 = XN ⊕ span{qh(yN+1)}. In order to obtain a well-conditioned algebraic RB system (90), we perform
Gram-Schmidt orthogonalization procedure on the RB basis functions with respect to a suitable inner project,
e.g. the one associated with the norm of X , yielding a set of orthonormal basis wnN with (wnN , w

n′

N )X = δnn′ ,
1 ≤ n, n′ ≤ N .

To ensure the stability of the RB-PG approximations (90), we construct the RB test space YN via a
“supremizer” approach [39], where the operator T

q
(k)
N

(y)
: Xh → Yh is defined in our setting as

(T
q
(k)
N

(y)
wh, vh)Y = Y′〈DqR(q

(k)
N (y);y)(wh), vh〉Y ∀vh ∈ Yh, 1 ≤ n ≤ N , (73)

where (·, ·)Y is the inner-product in the Hilbert space Y. By definition, we have that T
q
(k)
N

(y)
wh is the suprem-

izer (maximizer by continuity and compactness) for the element wh ∈ Xh with respect to the functional

Y′〈DqR(q
(k)
N (y);y)(wh), · 〉Y : Yh → R, i.e.

T
q
(k)
N

(y)
wh = argsup

vh∈Yh

Y′〈DqR(q
(k)
N (y);y)(wh), vh〉Y . (74)

Then, at every intermediate solution q
(k)
N (y), we define the RB test space YN as

YN ≡ Y
q
(k)
N

(y)
:= span

{

T
q
(k)
N

(y)
w1
N , . . . , Tq(k)

N
(y)
wNN

}

, (75)

where wnN , 1 ≤ n ≤ N , are the basis functions of XN . Under this choice of the RB test space, we have

βN := inf
wN∈XN

sup
vN∈YN

Y′〈DqR(q
(k)
N (y);y)(wN ), vN 〉Y

||wN ||X ||vN ||Y

(by (74)) = inf
wN∈XN

Y′〈DqR(q
(k)
N (y);y)(wN ), T

q
(k)
N

(y)
wN 〉Y

||wN ||X ||T
q
(k)
N

(y)
wN ||Y

(by (73)) = inf
wN∈XN

(

T
q
(k)
N

(y)
wN , Tq(k)

N
(y)
wN

)

Y

||wN ||X ||T
q
(k)
N

(y)
wN ||Y

((·, ·)Y = || · ||2Y) = inf
wN∈XN

||T
q
(k)
N

(y)
wN ||Y

||wN ||X

(XN ⊂ Xh) ≥ inf
wh∈Xh

||T
q
(k)
N

(y)
wh||Y

||wh||X

(by (73) and (74)) = inf
wh∈Xh

sup
vh∈Yh

Y′〈DqR(q
(k)
N (y);y)(wh), vh〉Y

||wh||X ||vh||Y
=: βk,Nh (y) > 0 ,

(76)

which implies that the RB-PG problem (90) is well-posed in the RB spaces XN and YN as long as the HiFi-PG

problem (59) is well-posed at q
(k)
N (y), with quantitative preservation of the discrete stability βk,Nh (y).

Remark 5.1. The construction of the RB test space presented above is equivalent to the least-squares PG
approximation of the nonlinear reduced basis problem (67), which is more expensive to assemble compared to
the matrix of the Galerkin approximation or of PG with a fixed test basis.

5.2. Generalized Empirical Interpolation Method (GEIM)

The resulting computable solution of problem (68) generally depends on the number Nh of HiFi degrees
of freedom (unless the residual operator R is affine-parametric with respect to y and linear with respect to
the solution qN , which case was considered in detail in [16]). For nonaffine and nonlinear problems under
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consideration here, we ensure efficiency by greedy compression of the nonaffine parametric, nonlinear residual
R(·;y) ∈ Y ′, through the so-called generalized empirical interpolation method (GEIM) [32]. As explained, for
example, in [32, Section 1], we require that the range of the parametric operator residual map F := {R(·;y) :
y ∈ U} ⊂ Y ′, is compact. This is, in engineering applications, a consequence of some (minimal) PDE regularity
and of Rellich’s theorem. Since the residual R(·;y) is evaluated on the HiFi space Xh, this compactness will also
follow from the continuity R(·;y) : X → Y ′ and from the fact that Nh := dim(Xh) < ∞ (albeit not uniformly
w.r. to the HiFi discretization parameter h). The GEIM assumes at hand a dictionary Σ ⊂ Y ≃ L(Y ′) which
dictionary satisfies the GEIM properties: Σ1: ∀σ ∈ Σ : ‖σ‖Y = 1, and Σ2 (unisolvency): for every ϕ ∈ F holds:
σ(ϕ) = 0 for every σ ∈ Σ implies ϕ = 0. The GEIM builds recursively a sequence {FM}M≥1 of M -dimensional
subspaces FM = span{ϕ1, ..., ϕM} ⊂ F and associated subsets ΣM = {σ1, ..., σM} ⊂ Σ of linearly independent
functionals such that for every ϕ ∈ F exists a unique GEIM interpolant JM [ϕ], given by the affine expression

JM [ϕ] =
M∑

m=1

λm[ϕ]rm , (77)

such that σi(JM [ϕ]) = σi(ϕ) for i = 1, ...,M . By GEIM property Σ2, given collections {r1, ..., rM} of reduced
bases with span{r1, ..., rM} = span{ϕ1, ..., ϕM} = FM ⊂ F , the GEIM interpoland JM [ϕ] is well-defined, and
the coefficients λm[ϕ] in (77) can be obtained from the solution of a (dense!) linear system of equations of
(hopefully small) order M (see [32, Section 1]). We emphasize that the linear system becomes diagonal if the
reduced bases span{r1, ..., rM} are biorthogonal to the sets ΣM of observation functionals, ie. when σi(rj) = δij .

If F ⊂ C0(D), it is possible to choose Σ as a collection of Dirac (nodal) functionals; the GEIM reduces in
this case to its nodal version, the (original) empirical interpolation method (EIM for short) [1]. In the numerical
experiments ahead, we build affine approximations of the nonaffine and nonlinear residual R by interpolating
at a finite number of HiFi finite element nodes as follows: let T denote a shape regular, simplicial triangulation
of the physical domain D with Ne elements {Ki}Ne

i=1 and the finite element nodes {xn}Nh

n=1. We say that the

finite element basis functions {wnh}Nh

n=1 are a locally supported nodal basis of the HiFi space Xh if

wnh(xm) = δmn, xm ∈ K(n) and wnh(x) = 0, ∀x 6∈ K(n), ∀m,n = 1, . . . , Nh , (78)

where δmn denotes the Kronecker symbol, i.e. δmn = 1 if m = n and δmn = 0 otherwise, and K(n) denotes
the set of elements surrounding the node xn. Nodal bases are available, for instance, for any Lagrangian Finite
Element space in the sense of Ciarlet, cp. e.g. [3, Section 3.1]. We develop this now for the particular case of
continuous, Lagrangian Finite Elements on regular, simplicial triangulation T of D, where the GEIM dictionary
Σ becomes simply Dirac masses σn concentrated on the HiFi Finite Element nodes xn in the element Ki ∈ T ,
i = 1, . . . , Ne. Then Σ = {σn, 1 ≤ n ≤ Nh}, and for any ϕ ∈ C0(D) holds

σm(ϕ) = ϕ(xm), ∀m = 1, . . . , Nh , (79)

Then JMR(q
(k)
N (y);y), the empirical interpolation (EI) of the parametric residual map R(q

(k)
N (y);y) in (68), is

given by

JMR(q
(k)
N (y);y) :=

M∑

m=1

λ(k)m (y)rm(x) , (80)

where the terms λ
(k)
m (y), 1 ≤ m ≤ M , k = 1, 2, . . . , depend only on the parameter y, and the reduced bases

rm(·), 1 ≤ m ≤M , to be constructed later, depend only on the physical variable x ∈ D. The coefficient vector

λ(k)(y) = (λ
(k)
1 (y), . . . , λ

(k)
M (y))⊤ is obtained by solving a nodal interpolation problem

σm′

(
M∑

m=1

λ(k)m (y)rm(x)

)

= σm′

(

R(q
(k)
N (y);y)

)

, m′ = 1, . . . ,M , (81)

whose computational cost depends on (a) the cost for evaluating the right hand side, and (b) the cost for
the numerical solution of the dense (in fact, lower triangular) M ×M linear system. For partial differential

equation models, evaluation of the right hand side involves q
(k)
N (y) only at the nodes in the set of elements K(m′)

surrounding the node xm′ for locally supported HiFi basis functions. With the approximation of the residual
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in (80), the Jacobian of the residual can be evaluated at any wh ∈ Xh, 1 ≤ n ≤ Nh by

Dq(JMR(q
(k)
N (y);y))(wh) =

M∑

m=1

Dq(λ
(k)
m (y))(wh)rm ≡ rDq(λ

(k)(y))(wh) , (82)

where we have denoted the vector of basis functions r = (r1, . . . , rM ); the coefficient λ(k)(y) implicitly depends

on the state variable q
(k)
N (y) through the solution of the interpolation problem (81). To make this dependence

explicit, we denote by R the matrix with entries Rmm′ = rm′(xm), 1 ≤ m,m′ ≤M , and by σ = (σ1, . . . , σM )⊤

a vector of the nodal functionals. Then, upon inverting (81), we obtain

λ(k)(y) = R−1σ
(

R
(

q
(k)
h (y);y

))

, (83)

where R−1 ∈ RM×M (or a factorization of R) needs to be computed and stored only once. The cost for evaluation
of (83) depends only on M : it is O(M) for the functional evaluation and O(M2) for the matrix-vector product.
The accuracy of the affine approximation (80) depends on the number M , the basis functions rm, 1 ≤ m ≤M ,
as well as the functionals σm, 1 ≤ m ≤M . In order to obtain an accurate and efficient approximation (80), we
adopt a greedy algorithm following that for empirical interpolation [1] to construct the basis functions rm and
the functionals σm, 1 ≤ m ≤M , which we describe next. Suppose we are given a realization of the residual (to
be specified later), denoted (with slight abuse of notation) as R : D → R with pointwise definition, we define
the first functional σ1 and the first basis function r1 as

σ1 = argmax
σ∈Σ

|σ(R)| and r1 :=
R

σ1(R)
. (84)

Then, forM = 1, 2, . . . , given a new realization of the residual (provided according to a posteriori error estimator
in Sec. 5.3), and still denoted as R, we define the next functional and the next basis function as

σM+1 = argmax
σ∈Σ

|σ(R−JMR)| and rM+1 =
R−JMR

σM+1(R−JMR)
, (85)

where JMR is the EI defined in (80). The construction of EI is terminated until the interpolation error (or
some computable estimator of it such as the one presented in Sec. 5.3) is below a prescribed tolerance.

Remark 5.2. Instead of the Lagrange interpolation (81), the coefficient can also be obtained by solving mini-
mum residual (or least squares) problems when the number of functionals is larger than the number of EI basis
functions, as employed in [6] using gappy POD reconstruction for affine approximation.

Remark 5.3. The EI can be applied selectively to interpolate only the nonlinear term rather than the complete
residual term: when the residual operator can be written more explicitly as

R(q(y);y) := A(y)q(y) +B(q(y);y)− F (y) , (86)

where A and B are linear and nonlinear parametric operators w.r.t. q, respectively, the EI may be applied only
for an affine approximation of the nonlinear term B(q(y);y) if A and F are affine w.r.t. y and still denote the
approximation as (with slight abuse of notation)

JMR(q(y);y) = A(y)q(y) + JMB(q(y);y)− F (y) . (87)

If A and/or F depends in a nonaffine fashion on the parameter sequence y, besides direct interpolation of the
whole residual R, one can also apply the EI for the nonlinear term B and for the nonaffine function in A and/or
F , leading to separate empirical interpolation of each nonlinear and/or nonaffine term, i.e.

JMR(q(y);y) = J A
MA

A(y)q(y) + J B
MB

B(q(y);y)− J F
MF

F (y) , (88)

where M = (MA,MB ,MF ); J A
MA

, J B
MB

, and J F
MF

are the EI interpolants with MA,MB, and MF terms.

Remark 5.4. The EIM [1] and its variants, including the discrete empirical interpolation method (DEIM) [7],
the empirical operator interpolation method (EOIM) [25], as well as the nodal version of GEIM proposed here,
employ the same greedy construction algorithm in different contexts. DEIM was proposed to directly approximates

the assembled finite element quantities [7], e.g. −Y′〈R(u
(k)
h (y);y), vh〉Y ; EOIM approximates the nonlinear
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operator and was applied in the finite volume context [25], while the nodal EIM approximates the residual R
with nodal representation of the solution in the context of Petrov-Galerkin finite element approximation.

Let qN,M (y) ∈ XN denote the RB-PG solution of (67) with the residual operator R approximated by its
empirical interpolation JMR, then we have the RB-EI problem:

given y ∈ U, find qN,M (y) ∈ XN : Y′〈JMR(qN,M (y);y), vN 〉Y = 0 ∀vN ∈ YN . (89)

Problem (89) can again be solved by a Newton iteration: find δq
(k)
N,M (y) ∈ XN such that

Y′〈Dq

(

JMR(q
(k)
N,M (y);y)

)

(δq
(k)
N,M (y)), vN 〉Y = −Y′〈JMR(q

(k)
N,M (y);y), vN 〉Y ∀vN ∈ YN . (90)

Given {wnN}Nn=1 a basis of XN , we express the parametric, RB solution q
(k)
N,M (y) and the increment δq

(k)
N,M (y) as

q
(k)
N,M (y) =

N∑

n=1

q
(k,n)
N,M (y)wnN and δq

(k)
N,M (y) =

N∑

n=1

δq
(k,n)
N,M (y)wnN . (91)

The algebraic formulation of problem (90) can be written as: find δq
(k)
N,M (y) ∈ RN such that

J
(k)
N,M (y)δq

(k)
N,M (y) = r

(k)
N,M (y) . (92)

Here, δq
(k)
N,M (y) = (δq

(k,1)
N,M (y), . . . , δq

(k,N)
N,M (y))⊤ and the Jacobian matrix J

(k)
N,M (y) ∈ RN×N is given by

(

J
(k)
N,M (y)

)

nn′
=

M∑

m=1

(

Dq(λ
(k)(y))(wn

′

N )
)

m
Y′〈rm, vnN 〉Y , 1 ≤ n, n′ ≤ N . (93)

where the vector Dq(λ
(k)(y))(wn

′

N ) ∈ RM is generated in O(M2) operations as in (82). The quantities

Y′〈rm, vnN 〉Y (with {vnN}Nn=1 denoting the basis of YN ), 1 ≤ m ≤ M , 1 ≤ n ≤ N , can be computed and
stored for only once when {vnN}Nn=1 are y-independent. The right hand side of (92) is given by

(

r
(k)
N,M (y)

)

n
= −

M∑

m=1

λ(k)m (y) Y′〈rm, vnN 〉Y , 1 ≤ n ≤ N , (94)

where λ
(k)
m (y) is computed as in 83 with O(M2) operations. In summary, the solution of the algebraic problem

(92) takes O(M2N2) operations for assembling and O(N3) operations for solving. These numbers are inde-
pendent of the number Nh of HiFi degrees of freedom. Upon termination of the Newton iteration, the RB-EI
surrogate qN,M (y) in (90) of the parametric forward map is available and for any instance δ ∈ Y of data δ ∈ Y ,
a parsimonious RB-EI compression of the Bayesian posterior density ΘN,M (y) can be obtained in O(KN)
operations (K is the number of observations)

ΘN,M (y) = exp

(

−
(

δ −O⊤
NqN,M (y)

)⊤

Γ−1
(

δ −O⊤
NqN,M (y)

))

, (95)

where ON = (O(w1
N ), . . . ,O(wNN ))⊤ and qN,M (y) = (q

(K,1)
N,M (y), . . . , q

(K,N)
N,M (y))⊤.

As the approximate Jacobian (82) allows an affine-parametric representation, for the definition of the para-
metric RB test basis functions {vnN (y)}Nn=1, we can write the supremizing operator more explicitly as (see also
[15])

T
q
(k)
N,M

(y)
wh =

M∑

m=1

Dq(λ
(k)
m (y))(wh)Tm , (96)

where the basis function Tm, is given as the solution of the following problem: find Tm ∈ Yh such that

(Tm, vh)Y = Y′〈rm, vh〉Y ∀vh ∈ Yh, ∀m = 1, . . . ,M . (97)
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Therefore, the (n, n′), 1 ≤ n, n′ ≤ N , entry of the Jacobian (93) is given by

(

J
(k)
N,M (y)

)

nn′
=

M∑

m=1

M∑

m′=1

(

Dq(λ
(k)(y))(wn

′

N )
)

m

(

Dq(λ
(k)(y))(wnN )

)

m′
(Tm, Tm′)Y , (98)

where the HiFi quantities (Tm, Tm′)Y , 1 ≤ m,m′ ≤M need to be computed and stored only once, while at each
Newton iteration, the Jacobian matrix is assembled with O(M2N2) operations.

5.3. Goal-oriented A-posteriori Error Estimates

The construction of both the RB compression and the EI relies on the greedy algorithm. For its computa-
tional realization an inexpensive and reliable a-posteriori error estimator is crucial. We develop now such an
estimator to compute the posterior density and related QoI in Bayesian inversion. The estimator is based on the
HiFi posterior density Θh as example to present a goal-oriented a-posteriori error estimator based on the dual-
weighted-residual. Firstly, we formally expand Θh(y) = Θ(qh(y)) at its approximate ΘN,M (y) = Θ(uN,M (y))
as

Θ(qh(y))−Θ(qN,M (y)) = DqΘ(qN,M (y))(qh(y)− qN,M (y)) +O(||qh(y)− qN,M (y)||2X ) , (99)

whereDqΘ(qN,M (y)) denotes the Fréchet derivative of Θ with respect to q evaluated at qN,M (y), whose existence
can be proved as in [15]. The dual problem associated with the first term reads: given qN,M (y) ∈ XN , find the
HiFi solution ψh(y) ∈ Yh such that

Y′〈DqR(qN,M (y);y)(wh), ψh(y)〉Y = DqΘ(qN,M (y))(wh) ∀wh ∈ Xh . (100)

In order to reduce the computational cost for solving the HiFi linear dual problem (100), we apply the RB
compression, where the RB trial space YduN is constructed as

YduN = span{ψh(y1), . . . , ψh(y
N )} ≡ span{ψ1

N , . . . , ψ
N
N } , (101)

where ψnN , 1 ≤ n ≤ N , are the orthonormal basis of YduN . The RB test space X du
N with basis {φnN}Nn=1 can be

constructed in the same way using the supremizer operator as in the last section. Then the RB-PG compression
of the dual problem (100) reads: given qN,M (y) ∈ XN , find ψN (y) ∈ YduN such that

Y′〈DqR(qN,M (y);y)(φnN ), ψN (y)〉Y = DqΘ(qN,M (y))(φnN ) ∀φnN ∈ X du
N . (102)

Moreover, upon application the EI of the residual R(qN,M (y);y), we obtain the RB-EI compression of the dual
problem (100): given qN,M (y) ∈ XN , find ψN,M (y) ∈ YduN such that

Y′〈Dq (JM (R(qN,M (y);y))) (φnN ), ψN,M (y)〉Y = DqΘ(qN,M (y))(φnN ) ∀φnN ∈ X du
N . (103)

Let ψN,M (y) = (ψ
(1)
N,M (y), . . . , ψ

(N)
N,M )⊤ denote the coefficient vector of the RB-EI dual solution ψN,M (y) on the

basis {ψnN}Nn=1, then the algebraic formulation of problem (103) can be written as

JN,M (y)ψN,M (y) = DqΘ(qN,M (y)) , (104)

where the Jacobian matrix JN,M (y) is defined as

(JN,M (y))nn′ =

M∑

m=1

Dq(λm(y))(φnN )Y′〈rm, ψn
′

N 〉Y , 1 ≤ n, n′ ≤ N . (105)

As Y′〈rm, ψn
′

N 〉Y is parameter-independent (or ψn
′

N can be written as an affine expansion on parameter-independent
supremizers as done in (98)), they can be computed and stored once and for all. Assembling of JN,M (y) takes
O(M2N2) operations for any y ∈ U . The right hand side DqΘ(qN,M (y)) is defined as

(DqΘ(qN,M (y)))n = DqΘ(qN,M (y))(φnN ) = 2Θ(qN,M (y))
(

−δ +O⊤
NqN,M (y)

)⊤

Γ−1O(φnN ) , (106)

where O(φnN ) can be computed and stored once and for all. Evaluation of DΘ(qN,M (y)) takes O(KN2)
operations. Therefore, it takes O((M2 +K)N2) operations to assembe (104) and O(N3) operations to solve it.
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To this end, we compute the first term of the expansion (99) by the definition of the dual problem (100) as

DqΘ(qN,M (y))(qh(y)− qN,M (y)) = Y′〈DqR(qN,M (y);y)(qh(y)− qN,M (y)), ψh(y)〉Y
= Y′〈DqR(qN,M (y);y)(qh(y)− qN,M (y)), ψN,M (y)〉Y
+O(||qh(y)− qN,M (y)||X ||ψh(y)− ψN,M (y)||Y) .

(107)

Moreover, by the (formal) Taylor expansion of R(qh(y);y) at qN,M (y), we have

DqR(qN,M (y);y)(qh(y)− qN,M (y)) = R(qh(y);y)−R(qN,M (y);y) +O(||qh(y)− qN,M (y)||2X ) . (108)

By the definition of the HiFi-PG problem (58) and ψN,M (y) ∈ YduN ⊂ Yh, we have

Y′〈R(qh(y);y), ψN,M (y)〉Y = 0 ; (109)

moreover, by the EI compression of R(qN,M (y);y), we have

−Y′〈R(qN,M (y);y), ψN,M (y)〉Y = −Y′〈JMR(qN,M (y);y), ψN,M (y)〉Y
−Y′ 〈(JM+Mest

− JM )R(qN,M (y);y), ψN,M (y)〉Y
−Y′ 〈(J − JM+Mest

)R(qN,M (y);y), ψN,M (y)〉Y ,

(110)

where we use a (presumably more accurate) EI with Mest more terms to obtain a computable a-posteriori error
estimator for the EI error with M terms. In doing this, we assume implicitly that the third term is dominated
by the second term when Mest is large. A combination of (107), (108), (109), and (110) leads to the following
computable a-posteriori error estimate

DqΘ(qN,M (y))(qh(y)− qN,M (y)) ≈ △Θ
N,M (y) = △Θ,RB

N,M (y) +△Θ,EI
N,M (y) (111)

where the first term, defined as

△Θ,RB
N,M (y) := −Y′〈JM (R(qN,M (y);y)) , ψN,M (y)〉Y (112)

provides an error estimate of the RB compression error, and the second term given by

△Θ,EI
N,M (y) := −Y′〈(JM+Mest

− JM ) (R(qN,M (y);y)) , ψN,M (y)〉Y , (113)

provides an error estimate of the EI compression error. Given qN,M (y) and ψN,M (y), evaluation of △Θ
N,M (y)

takes O((M+Mest)
2N2) operations in total, which is independent of the number Nh of HiFi degrees of freedom.

As △Θ
N,M (y) is an approximation of the first order Taylor expansion of Θ(qh(y)) at qN,M (y), we may correct

the RB-EI compression ΘN,M (y) = Θ(qN,M (y)) by

ΘcN,M (y) = ΘN,M (y) +△Θ
N,M (y) , (114)

which is supposed to be more accurate than ΘN,M (y) for the approximation of Θ(qh(y)), as long as ΘN,M (y)
provides a good approximation of DqΘ(qN,M (y))(qh(y)− qN,M (y)) for any given y ∈ U .

Remark 5.5. When the residual operator is explicitly given as (86) with affine-parametric A and F , we have

△Θ,RB
N,M (y) :=Y′ 〈F (y)−A(y)qN,M (y)− JM (B(qN,M (y);y)), ψN,M (y)〉Y , (115)

and
△Θ,EI
N,M (y) := −Y′〈(JM+Mest

− JM ) (B(qN,M (y);y)) , ψN,M (y)〉Y . (116)

When the residual operator is given as (88) with nonaffine terms A and F , we have

△Θ,RB
N,M (y) :=Y′ 〈J F

MF
F (y)− J A

MA
A(y)qN,M (y)− J B

MB
(B(qN,M (y);y)), ψN,M (y)〉Y , (117)

and

△Θ,EI
N,M (y) :=Y′〈(J F

MF+Mest
− J F

MF
)F (y)

− (J A
MA+Mest

− J A
MA

)A(y)qN,M (y)− (J B
MB+Mest

− J B
MB

)B(qN,M (y);y), ψN,M (y)〉Y .
(118)
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5.4. Adaptive greedy algorithm

Algorithm 1 Adaptive greedy algorithm for SG-RB-EI construction

1: procedure Initialization:

2: Specify the tolerance εrbei for the RB-EI compression of Θ; specify the tolerances εsg, εei and εrb, and/or
the maximum number of nodes/bases Mmax

sg , Mmax
ei and Nmax for the construction of SG, RB and EI,

respectively. Set Esg = 2εsg; choose Mest ∈ N (e.g. as 10);
3: Initialize the SG, RB and EI compression with Msg = N = 1 and Mei =Mest;

a. solve the primal and dual HiFi problems (58) and (100) at the root node y1 = 0 ∈ U ;

b. initialize the sparse grid index set Λ1 = {1}, and construct the SG approximation, either the interpo-
lation as SΛ1Θh(y) = Θh(y

1) or the integration as E[SΛ1Θh] = Θh(y
1);

c. initialize the EI compression (80) by (84) and (85) based on a set of R(q
(k)
h (y);y) at some random

samples y ∈ U , yielding basis functions rm and nodes xm, 1 ≤ m ≤Mest;

d. initialize the RB-EI compression with the primal trial space X1 = span{qh(y1)} and the dual trial
space Y1 = span{ψh(y1)}, compute all the offline quantities for (92) and (103).

4: end procedure

5: procedure Construction:

6: while Msg < Mmax
sg and Esg > εsg do

7: compute the active index set ΛaMsg
for the SG approximation;

8: for each ν ∈ ΛaMsg
do

9: compute the set of added nodes Ξν△ associated to ν;
10: for each y ∈ Ξν△ do

11: solve the primal and dual RB-EI problems (89) and (103);

12: compute the error estimator △Θ
N,M (y), △Θ,RB

N,M (y) and △Θ,EI
N,M (y) in (111);

13: if △Θ
N,M (y) ≥ εrbei then

14: solve the primal and dual HiFi problems (58) and (100);

15: if △Θ,EI
N,M ≥ εei then

16: refine the EI according to (85) based on the collections R(q
(k)
h (y));

17: end if

18: if △Θ,RB
N,M ≥ εrb then

19: enrich the primal and dual RB spaces with qh(y) and ψh(y), respectively;
20: end if

21: compute the offline quantities for RB-EI compressions and error estimates;
22: end if

23: end for

24: end for

25: compute the SG error estimate Ea with the RB-EI approximate ΘΘ
N,M ;

26: enrich ΛMsg
by the index νMsg+1 corresponding to the largest SG error estimate;

27: set Msg =Msg + 1 and go to next step;
28: end while

29: end procedure

We construct the EI and RB compressions by a greedy search algorithm based on the a-posteriori error
estimator (111). To illustrate this, based on the parametric posterior density Θ(y) and present a combined and
goal-oriented greedy algorithm for the simultaneous construction of SG, EI and RB in Algorithm 1. During
initialization, we specify the tolerances for the each of the SG, EI and RB compression errors as well as for the
RB-EI compression of the posterior density Θ at every y ∈ U . We may also specify the maximum number of
the nodes/bases for each approximation in order to terminate the greedy search. To initialize the SG, either for
interpolation or integration, we solve the primal and dual HiFi problems at the root node of the sparse grid and
construct a constant (w.r. to y) approximation based on the solution. The EI is initialized with Mest terms

by performing a greedy algorithm outlined as in (84) and (85) based on a set of the residuals R(q
(k)
h (y);y),

1 ≤ k ≤ K, at a sequence of random samples y ∈ U . More explicitly, the following algorithms are feasible:

(i) take the residual (e.g. R(q
(k∗)
h (y1);y1) at k∗ := argmaxk∈{1,...,K(y1)} ||R(q

(k)
h (y1);y1)||Y′ , here y1 is the

first sample) as the first basis function to construct the EI with M = 1. Then for each new sample y,
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take the residual R(q
(k∗)
h (y);y) at k∗ = argmaxk∈{1,...,K(y)} ||R(q

(k)
h (y);y) − JMR(q

(k)
h (y);y)||Y′ as the

next basis function to update the EI, and set M :=M + 1;

(ii) perform a proper orthogonal decomposition (POD) for R(q
(k)
h (y);y), 1 ≤ k ≤ K, at each sample y ∈ U ,

and take the first POD mode (or the first few POD modes) as the new basis function to construct and
update the EI, governed by the EI error estimate as in (i).

(iii) in the case the residual is approximated as in (87), we may adopt the same scheme as in (i); an alternative

scheme is to take B(q
K(y)
h (y);y) as the basis function to update the EI for the nonlinear term B, which

may provide accurate approximation of B at the solution of (86).

(iv) in the case the residual is approximated as in (88), we can update the EI compression for each term, using
the bases A(y), B(qh(y);y) and F (y) at the selected realization y ∈ U , respectively.

It is also of practical importance to allow for construction of more than one basis functions for the EI compression
at each y. The RB-PG compressions for both the primal and dual problems are initialized by the solution at
the root node. In the procedure of construction for the SG-RB-EI compression, we replace Θ(qh(y)) for all
y in the sparse grids by their RB-EI compression ΘN,M (y) (or the corrected value ΘcN,M (y)); whenever the
approximation does not meet the prescribed tolerance at some y ∈ U , we refine the EIM and/or the RB
compressions if their a-posteriori error estimates are larger than their error tolerances.

6. Numerical Experiments

We present two numerical examples, one focusing on a nonlinear operator with affine parametrization,
the second addressing a simultaneously nonlinear operator and nonaffine parametrization arising from the
transformation of shape uncertainty from a given realization of a random domain to a fixed, “nominal” domain.

6.1. Affine-parametric, nonlinear operator equation

We consider a semilinear, parametric elliptic problem in the physical domain D = (0, 1)2: given y ∈ U , find
q(y) : D → R such that

− div(u(y)∇q(y)) + q3(y) = f in D, q(y) = 0 on ∂D, (119)

where homogeneous Dirichlet boundary data are prescribed on the whole boundary only for simplicity (mixed
or inhomogeneous boundary data can be handled by the present techniques without essential changes). This
problem fits into the abstract setting (1) with X = Y = H1

0 (D).
The parametric diffusion coefficient u(y) is defined as in (9), where for some truncation dimension J ∈ N+

we specify

〈u〉 = 2 and ψj =
1

jα
sin(j1πx1) sin(j2πx2), j = 1, . . . , J , (120)

where x = (x1, x2) ∈ D, j1 = j− [j/
√
J ]×

√
J , and j2 = (j−j1)/

√
J , and we set the scaling parameter as α = 2.

Note that we set the random coefficient as affine w.r.t. the parameter y in order to focus on the approximation
for the nonlinear term. See [16] for the treatment of nonaffine coefficients such as eu. We assume that the K = 9
observation data are given by Gaussian convolutions (signifying, for example, sensors such as transducers) of
the forward solution at randomly sampled parameters y ∈ U ,

ok(q(y)) = Gauss(q(y);x(k), dk) :=

∫

D

1√
2πdk

exp

(

− (x− x(k))2

2d2k

)

q(y)dx, (121)

where the locations x(1), . . . , x(K) are uniformly distributed inside the domain D and the width d1 = · · · = dK
is such that an dk ball-about x(k) is contained in D. The covariance operator of the gaussian observation noise
η is chosen as Γ = σ2I, being I the K ×K identity matrix. We set d1 = 0.1 and σ = 0.1. For the high-fidelity
approximation, we use the Finite Element Method with continuous, piecewise polynomials on a uniform mesh
of size h = 2−n, n ∈ N+. As indicated in Remark 5.3, we apply the EI only for the nonlinear term q3(y) of
problem (119), whose construction is as in section 5.
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6.1.1. Sparse grid approximation error

In the first experiment, we test the convergence of the adaptive sparse grid interpolation and integration
errors w.r.t. the number of indices and w.r.t. the number of PDE solves in J = 64 parameter dimensions. We
construct the adaptive sparse grid using the interpolation error indicator (52) and the integration error indicator
(54), respectively. We specify the mesh size as h = 2−5. Hierarchical Clenshaw-Curtis nodes (47) are used for
both the interpolation and the integration.
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Figure 1: Decay of the interpolation (a) and the integration (b) error estimators (55) w.r.t. the number of indices (left) and PDE
solves (right), for which the adaptive sparse grid is constructed by the integration error indicator (0) (54) and the interpolation
error indicator (1) (52).

The convergence results of the interpolation and the integration of the parametric posterior density Θ(y)
are reported in Figure 1. From these results we can draw the following observations: (i) the interpolation error
indicator leads to much smaller interpolation error compared to that by the integration error indicator; it is
also evident that the integration error indicator results in much smaller integration error compared to that by
interpolation error indicator, which suggests that for different approximation purpose, choosing an appropriate
error indicator is very important. (ii) the convergence rate of the interpolation w.r.t. the number of indices is
larger than M−s, with s = 1/p − 1 = 2 − 1 = 1 for the choice of basis in (120), as predicted in Theorem 2.6,
which is due to that more than one node is used for each index for the choice of the Clenshaw-Curtis nodes; this
effect can be demonstrated by the fact that the convergence rate is in good agreement with the prediction M−1

when we plot the error against the number of nodes (PDE solves). (iii) the observed convergence rate of the
integration error estimator w.r.t. the number of PDE solves, evidently M−2, is of higher order than the first
order M−1 predicted in Theorem 2.6. We conjecture that this is due to that the integration error is measured
in L1(U)-norm (in average) while the interpolation error is measured in L∞(U)-norm (the worst case scenario).

6.1.2. High-fidelity approximation error

In this experiment, we study the convergence of the high-fidelity approximation error w.r.t. the mesh size
with different polynomial degrees as well as the dependence of the number of basis functions for EI and RB
compressions on the mesh size. We first pick a random sample ȳ ∈ U of dimension J = 64, at which we solve the
high-fidelity problem (58) on a uniform mesh of size h = 2−n, where we choose n = 4, 5, 6, 7, 8 and set h̄ = 2−8

as the reference value to compute the accurate approximation of the observation functional Oh̄(qh̄(ȳ)) ∈ RK .
We compute the finite element error at h by

finite element error (h) = |Oh(qh(ȳ))−Oh̄(qh̄(ȳ))| . (122)

We use both linear and quadratic continuous, piecewise polynomial functions as the finite element basis functions
to test the convergence rate of the finite element error w.r.t. the mesh size. The convergence result is displayed
in the left part of Figure 2, where the finite element error is plotted against the reciprocal of the mesh size
1/h. From this figure we can observe an empirical asymptotic convergence rate of O(h2) for P1 Lagrange Finite
Elements and of O(h4) for P2 Lagrange Finite Elements, indicating the sharpness of the asymptotic convergence
estimates in Theorem 8.2 ahead. These rates are, in fact, consistent with the Aubin-Nitsche duality argument
mentioned in Remark 8.1 ahead: based on this argument, we expect a rate of hk+k

′

with k = k′ = 1 for P1
Lagrange Finite Elements and a rate of k = k′ = 2 for P2 Lagrange Finite Elements. In order to investigate the
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Figure 2: Left: decay of finite element error |Oh(qh(ȳ)) − Oh̄(qh̄(ȳ))| w.r.t. the reciprocal of the mesh size (1/h); right: the
number of basis functions at different 1/h constructed for EI and RB compressions by Algorithm 1, where the EI and RB tolerances
εei = 10−7 and εrb = 10−5.

influence of the mesh size (P1 element is used) to the number of the basis functions in EI and RB, we construct
the SG-RB-EI interpolation (corresponding to the SG interpolation shown in Figure 1) by the adaptive greedy
algorithm 1 with the maximum number of sparse grid nodes set asMmax

a = 10000 (in these experiments, we also
set the maximum number of EI basis functions Mmax

n = 10000 and RB basis functions Nmax = 10000) and the
tolerance of the EI as εei = 10−7 and εrb = 10−5 (at the same level of SG interpolation error, see Figure 1), while
the tolerance for SG is set as 10−16 to guarantee that the maximum number of sparse grid nodes is reached for
all the cases of mesh size. The number of basis functions is shown for different cases in the right part of Figure
2. It is evident from the numerical results that for sufficiently refined mesh in the HiFi PG solution (in the
considered example already at h = 2−5), the number of RB functions becomes independent of the meshwidth h;
specificially, there are 65 RB’s for h = 2−5, 63 RB’s for h = 2−6 and 64 RB’s for h = 2−7. This implies that the
parametric solution manifold (more precisely, solutions at the 10000 sparse grid nodes in the parameter domain)
is well represented by the small number of RB basis functions, regardless of the Finite Element mesh width
employed in the HiFi discretization, provided it is “small enough”, meaning that the HiFi PG discretization
resolves all reduced bases contributing to the solution. The same observation holds for EI compression, where
the number of EI basis functions is independent of h for h = 2−4 and h = 2−5 and for h = 2−6 and h = 2−7,
which is again much smaller than the number of sparse grid nodes 10000. This result demonstrates that the EI
and RB approximations in the parametric forward model can allow for a significant reduction of computational
work in Bayesian inversion; in our numerical experiments, we solved the HiFi problem only at a small portion
(< 1%) of the number of SG interpolation nodes, and solved the RB surrogate at all remaining SG nodes.

6.1.3. Reduced basis compression errors

In this experiment, we first investigate the convergence of the RB compression errors, including RB error and
EI error, w.r.t. the number of basis functions, and demonstrate the effectivity of the a-posteriori error estimators.
We run the greedy algorithm (lines 10 to 23 in the adaptive greedy algorithm 1) for the construction of the RB-
EI compression with 1000 random samples. The tolerances for EI and RB are set as 10−8 and 10−5, respectively.
We record all the errors and error estimators during the greedy construction, which can be regarded as the test
errors and error estimators with the same 1000 random parameter samples, and which we denote as a test set
Ξtest.

Figure 3 depicts the errors and error estimators under consideration. On the left, we show the actual RB-EI
compression error, denoted Error, the error estimator △dwr and the RB error estimator △rb. Both estimators
are very close to each other, implying that the error estimators are effective. All three quantities decay with a
rate of about N−1.5 when the number of basis functions is relatively small, and with a rate of approximately
N−3 for a larger number of basis functions. The error of the corrected posterior density ΘcN,M is smaller than

that without correction and decays asymptotically with a rate N−3. Note that this convergence rate is larger
than that of the adaptive sparse grid interpolation error N−1. On the right side of Figure 3, the error and error
estimator for the EI compression are shown besides the RB-EI compression error. In this example, the EI error
and its error estimator are very close, indicating that the error estimator is rather effective in this problem.
Moreover, the EI error asymptotically converges with a rate N−3, which is larger than the SG convergence
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Figure 3: Decay of RB compression errors and error estimators (left) w.r.t. the number of RB basis functions, where △DWR =
△Θ

N,M (y∗) is the dual-weighted residual error estimator at y∗ = argmax
y∈Ξtest

△Θ
N,M (y) in (111), Error = |Θh(y

∗)−ΘN,M (y∗)|,

Errorc = |Θh(y
∗) − Θc

N,M (y∗)|, △RB = △Θ,RB
N,M

(y∗) is the RB error estimator in (111); (right) w.r.t. the number of EI basis

functions, where ErrorEI = |ΘN (y∗)−ΘN,M (y∗)|, where ΘN (y∗) is the RB compression without performing EI evaluated at y
∗,

△EI = △Θ,EI
N,M

(y∗) is the EI error estimator in (111).

rate N−1 as predicted by Theorem 8.5. Moreover, we observe that the corrected RB-EI error and the EI error
are quite close. Therefore, in order to achieve a more accurate, corrected RB-EI compression, the EI should
be constructed such that its error is smaller than that of the RB error. This can be realized by choosing the
tolerance for EI substantially smaller than that for RB. However, it is difficult to choose the optimal tolerances
for RB-EI, which depend on the number of basis functions and the quantity of interest. In the numerical
experiments reported here, it was essential to choose the tolerance for EI two to three orders of magnitude
smaller than that for RB.

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 # PDE solves

 a
p

p
ro

x
im

a
ti
o

n
 e

rr
o

r

 

 

 ASG interpolation

 N =9,  M =8

 N =22,  M =25

 N =65,  M =71

10
0

10
1

10
2

10
3

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 # PDE solves

 a
p

p
ro

x
im

a
ti
o

n
 e

rr
o

r

 

 

 ASG integration

 N =21,  M =22

 N =65,  M =72

 N =142,  M =182

Figure 4: Decay of interpolation (left) and integration (right) error estimators by the adaptive SG and the adaptive SG-RB-EI at
different tolerances for the construction of EI and RB by Algorithm 1

In order to see how the tolerances for the EI-RB construction influence the accuracy of the SG interpola-
tion and in particular SG integration, we run the adaptive greedy algorithm 1 with (εrb, εei) = (10−2, 10−4),
(10−3, 10−5) and (10−5, 10−7) for SG interpolation and (εrb, εei) = (10−3, 10−5), (10−5, 10−7) and (10−7, 10−9)
for SG integration according to the error in Figure 1. The results are shown in Figure 4. For SG interpolation,
only 65 RB basis functions and 71 EI basis functions are sufficient to produce the same interpolation accuracy
as that without RB-EI compression, so that only 71 HiFi problems are solved, compared to 104. For SG inte-
gration, more basis functions are required for both EI (182) and RB (142) in order to guarantee that the same
SG integration accuracy around 10−8 is maintained. Note that the number of RB and EI basis functions are
still dramatically less that the number of HiFi PDE solves required by SG without RB-EI compression.

In the last experiment, we investigate the convergence of SG and RB-EI for parametric problems for various
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Figure 5: Decay of error estimators of the adaptive SG (left) and the RB-EI compression (right) at different dimensions.

parameter dimensions. Specifically, we consider parameter dimensions J = 16, 64 and 256 and run the SG
construction for both interpolation and integration as well as the greedy strategy (lines 10 to 24 in Algorithm
1) for RB-EI construction with 1000 random samples. We report the results in Figure 5. The convergence rate
of the SG interpolation and integration only slightly increases to the rate N−1 and N−2, respectively, as the
dimension grows from 16 to 256 confirming that the convergence rate is independent of the dimension of the
parameter space. The same observation holds for the convergence rate of the RB-EI compression error. The
convergence rate increases to O(N−3) as the dimension of the parameter space increases; the order 3 is larger
than the convergence rate for either SG interpolation and SG based Smolyak integration. Moreover, when the
number of RB basis functions surpasses the number of parameter dimensions, the convergence rate becomes
larger than 3, empirically displaying an exponential error decay in terms of N .

6.2. Nonaffine, nonlinear problem

We consider a nonlinear operator equation in a random domain [18], which is non-affine w.r. to the parameter
sequence y and nonlinear w.r. to the ‘state’ (being the domain): given y ∈ U , find q(y) : Du(y) → R such that

−△q(y) + q3(y) = f in Du(y), q(y) = 0 on ∂Du(y), (123)

where the random domain Du(y) is homeomorphic to the unit disc, and explicitly given by

Du(y) := {x = (r cos(θ), r sin(θ)) : 0 ≤ r < u(y), 0 ≤ θ < 2π} . (124)

Here, the random radius u(y), as defined in (9), is given explicitly by

u(0) = 〈u〉 = 1 and ψj =
0.5

jα
sin(jθ) j ≥ 1, where α > 2 . (125)

Let Fu denote a transformation map from the reference domain D〈u〉, the unit disk of R2 centered at the origin,
to the parametric domain Du, given by Fu(r cos(θ), r sin(θ)) := (u(y)r cos(θ), u(y)r sin(θ)). Then the nonlinear
operator equation (123) becomes: given y ∈ U , find q(y) : D〈u〉 → R such that

{

−div(M(y)∇q(y)) + q3(y)d(y) = fd(y) in D〈u〉,

q(y) = 0 on ∂D〈u〉,
(126)

where d(y) denotes the determinant of the Jacobian dFu of the map Fu, given as d(y) = (u(y))2;

M(y) := d(y)dF−1
u dF−⊤

u =

(
1 + (b(y))2 −b(y)

−b(y) 1

)

where b(y) :=
∂θu(y)

u(y)
. (127)

This (highly non-affine parametric) problem also fits into the abstract setting (1) with the choices X = Y =
H1

0 (D〈u〉). We assume that theK = 9 observation data are given as in (121) with x(k) = (0.5 cos(2πk/K), 0.5 sin(2πk/K))
and with dk = 0.1, k = 1, . . . ,K. The observation noise is as in Section 6.1.

27



6.2.1. Sparse grid approximation error

In this test, we generate a regular, triangle mesh with 14060 vertices and use continuous, piecewise linear
P2 elements on this mesh for the HiFi discretization. Scaling parameters α = 3, 4 are used in the adaptive
construction of the sparse grid approximation (interpolation and integration) of the HiFi density. We truncate
the parameter domain at dimension J = 64. The convergence results are shown in Figure 6. As the convergence
rates for the interpolation error is approximately α − 2 (M−1 when α = 3 and M−2 when α = 4) and for
the integration error is approximately α − 1 (M−2 when α = 3 and M−3 when α = 4), which is one order
lower compared to the rates α − 1 for interpolation and α for integration in the last section. This is mainly
due to the first order derivative with respect to θ being involved in the matrix M(y) in (127) through b(y);
this leads to a less sparse problem as the series of ∂θu(y), more explicitly ∂θψj(θ) = cos(jθ)/2jα−1, such that
{||∂θψj(θ)||L∞((0,2π))}j≥1 ∈ ℓp for p > 1/(α− 1) instead of p > 1/α as for the example in the last section, which
further leads to the dimension-independent convergence rate M−s in Theorem 2.6, for s = 1/p − 1 < α − 2.
Moreover, it is also shown in Figure 6 that for interpolation (respectively integration), the interpolation (resp.
integration) error estimator gives rise to more accurate approximation than the integration (resp. interpolation)
error estimator.

10
0

10
1

10
2

10
3

10
4

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

 # PDE solves

 e
rr

o
r 

e
s
ti
m

a
to

r

 

 

 0−a

 0−b

 1−a

 1−b

 N
−1

 N
−2

10
0

10
1

10
2

10
3

10
4

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

 # PDE solves

 e
rr

o
r 

e
s
ti
m

a
to

r

 

 

 0−a

 0−b

 1−a

 1−b

 N
−2

 N
−3

Figure 6: Interpolation (a) and integration (b) error estimates w.r.t. the number of PDE solves (the same as the number of sparse
grid nodes) with the sparse grid constructed by integration (0) and interpolation (1) error indicators; left: α = 3; right: α = 4.

6.2.2. Reduced basis compression error

In this experiment, we test the compression error from RB and EI, respectively, and demonstrate the SG-RB-
EI algorithm for the high dimensional integration in Bayesian inversion. At first, we run the greedy algorithm
for the construction of RB space at J = 64 dimensions with the goal-oriented a posteriori error estimator △Θ

N ,
defined as

△Θ
N (y) := −Y′〈(R(qN (y);y)) , ψN (y)〉Y , (128)

where qN (y) and ψN (y) are the solutions of the primal and dual RB-PG compression problems. We use a
training set Ξtrain of 1000 random samples for the construction. The RB compression error and error estimators
are shown in Figure 7, where we can see that the error estimator and the error (compared to HiFi Θh) can not
be distinguished, which implies that the goal-oriented RB error estimator is very effective. Both the error and
the error estimator converge with rate N−(α−1) (N−2 for α = 3 on the left part of Figure 7 and N−3 for α = 4
on the right part of Figure 7), which is as that for the SG integration error as shown in Figure 6. Moreover, we
can observe that the RB density with correction, i.e. ΘcN (y) = ΘN (y) +△Θ

N (y), achieves much smaller error
compared to the RB density without correction ΘN (y) = Θ(qN (y)), and displays asymptotically a convergence
rate of N−2(α−1). We remark that this much faster convergence attributes to that the error estimator △Θ

N (y)
is very effective as a surrogate of the RB error |Θh(y)−ΘN (y)|.

In order to see the interpolatory property of the EI for the residual R, as well as for the linear term
A, the nonlinear term B and the forcing term F , we first solve the HiFi-PG problem (58) and collect the

residual R(q
(k)
h (y);y) (1 ≤ k ≤ K(y)), respectively A(y), B(qh(y);y) (only collected at the final solution

qh(y) = q
K(y)
h (y)) and F (y), at a training set Ξtrain of 1000 random samples. Then we perform the greedy

algorithm (steps (84) and (85)) for the construction of the EI to approximate the collected quantities. The
interpolation errors are shown in Figure 8, which displays a convergence rate of M−(α−1) (M−2 when α = 3 in
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Figure 7: Convergence of the RB error Error = maxy∈Ξtrain
|Θh(y)−ΘN (y)| , RB error estimator △RB = maxy∈Ξtrain

△Θ
N (y),

and the RB error for the corrected RB density Errorc = maxy∈Ξtrain
|Θh(y)−Θc

N (y)|. Left: α = 3; right: α = 4.

the left part and M−3 for α = 4 in the right part of Figure 8) for the residual term R, as well as for A, B and
F . Note that as A(y) and F (y) do not depend on the solution qh(y), a much faster decay is observed for the
interpolation errors of A(y) after 128 terms and of F (y) after 64 terms, which are twice as and equal to the

number of dimensions J = 64. The interpolation errors of the residual R(q
(k)
h ) and in particular the nonlinear

term B(qh(y);y), which depend on the solutions, decay with a consistent convergence rate. We remark that
the convergence rate of the EI interpolation error is identical to the rate for SG integration and larger than
the SG interpolation, see Figure 6. We remark further that the EI error is measured as the maximum of the
approximation of the residual for all the random samples at all finite element nodes, namely pointwise worst-case
scenario error.
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Figure 8: Convergence of the EI error ErrorA = maxy∈Ξtrain,σ∈σset
|σ(A(y) − JA

MA
A(y))|, the same definition for ErrorB and

ErrorF , and ErrorR = maxk,y∈Ξtrain,σ∈σset
|σ(R(q

(k)
h

(y);y)− JMR(q
(k)
h

(y);y))|. Left: α = 3; right: α = 4.

Next, we run the greedy algorithm 1 for the construction of RB-EI compression based on a training set
Ξtrain of 1000 random samples and using the goal-oriented a posteriori error estimator (111). Two types of the
EI are applied, the first is to interpolation the whole residual term R and the second is to interpolate the linear
term A, nonlinear term B and constant term F separately as in (88). The comparison of the convergence of
the compression errors and error estimators is shown in Figure 9. It is evident that the uniform interpolation
leads to rather ineffective a posteriori error estimate, displaying large oscillation. On the other hand, the error
estimator △DWR = △Θ

N,M with separate interpolation of each term A, B, and F provides a good estimate for

the RB-EI compression error, even if it is not as effective as the estimator △Θ
N without the EI compression of

the residual shown in Figure 7. The same observation holds for the RB error and for its error estimator in
the right part of Figure 9 as well as for the EI error and its estimator, in the left part of Figure 10. However,
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when we construct a very fine EI at the initial step by using 200 training samples, the error estimator △DWR

provides a rather effective estimate of the RB-EI compression error, as shown in the right part of Figure 10, so
that we can correct the RB-EI posterior density with the error estimator, leading to smaller compression error
Errorc as displayed in Figure 10. The RB and the EI errors and their estimators decay asymptotically with a
rate N−(α−1) for α = 3, the same as that of SG integration error.
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Figure 9: Convergence of the RB compression error Error = maxy∈Ξtrain
|Θh(y) − ΘN,M (y)|, the error estimator

△DWR = maxy∈Ξtrain
△Θ

N,M (y); the RB error ErrorRB = maxy∈Ξtrain
|Θh(y) − ΘN (y)| and error estimator △EI =

maxy∈Ξtrain
△Θ,RB

N,M
(y). Left: using EI directly for the residual R; right: using EI separately for A, B, and F .
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Figure 10: Convergence of the RB-EI compression error Error = maxy∈Ξtrain
|Θh(y) − ΘN,M (y)|, the error estimator

△DWR = maxy∈Ξtrain
△Θ

N,M (y); the EI error ErrorEI = maxy∈Ξtrain
|ΘN (y) − ΘN,M (y)| and error estimator △EI =

maxy∈Ξtrain
△Θ,EI

N,M
(y). Left: initial training size for EI interpolation M0 = 20; right: M0 = 200.

In the last test, we run the full greedy algorithm for the SG-RB-EI construction and the evaluation of the
integration of the density Θ. We set the number of maximal SG nodes as 10000 and the SG tolerance as 10−16.
Different tolerances, 10−4, 10−6, 10−8 are set in the termination criteria for the relative error of the RB-EI
construction with separate EI for the interpolation of A, B and F . The corresponding convergence of the
integration errors are shown in Figure 11. The decay is locked earlier for higher tolerance, which indicates that
as more SG nodes are used for the integration, a lower tolerance should be used for the RB-EI construction.
At tolerance 10−8, the RB and the EI error estimators at each of the 10000 SG nodes are displayed in the left
and right parts of Figure 11, respectively. We observe that in this example, the two error estimators decay
asymptotically with a rate of M−(α−1). As for the EI, the decay rate is superior to this rate when the number
of EI functions exceeds 128, which is about twice the truncation dimension J = 64 as also observed in Figure
8 for the linear and constant terms. The total numbers of RB functions are 45, 256, 708 at the three different
tolerances, which is approximately the same as the number of SG nodes for integration with the same level
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of accuracy. The corresponding numbers of EI functions are (MA,MB ,MF ) = (82, 45, 37), (194, 149, 70), and
(303, 314, 86) for the three tolerances.
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Figure 11: Decay of the error for the integration of the density Θ, by the SG-RB-EI approximation with different tolerances (for

relative error) for RB-EI construction, tol = 10−4, 10−6 and 10−8. The RB error estimator △Θ,RB
N,M

(left) and the EI error estimator

△Θ,EI
N,M

(right) at the 10000 SG nodes are shown for the case tol = 10−8.

In order to test the RB-EI compression for Bayesian inversion for new observation data, we randomly pick a
new input y ∈ U and compute a noisy observation δ. We then run the SG-RB-EI algorithm for the evaluation
of the integration of the posterior density, where the RB-EI functions are fixed as those constructed at tolerance
10−8 in the offline construction. The convergence of the SG integration error estimator, and of the RB and
the EI error estimators are shown in Figure 12. We observe that the RB-EI errors remain very small over all
SG nodes and the SG integration error estimator decays without saturation, which indicates that the RB-EI
surrogates constructed offline are accurate for online evaluation. The advantage of the RB-EI compression is
that, given new data, we only need to solve the RB-EI compression problem instead of the HiFi approximation
problem in order to evaluate the quantities of interest by SG integration. This largely reduces the computational
cost whenever the HiFi solution of the forward problem is computationally costly. We remark that the RB-
EI minimizes the worst-case scenario error while the error for SG integration, being an integral quantity, is
measured in the “average” sense.
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Figure 12: Decay of the error for the SG integration of the density Θ, with the density at each SG node evaluated by RB-EI

approximation, which has been constructed with tolerance tol = 10−8 offline. Shown are also the RB error estimator △Θ,RB
N,M

(left)

and the EI error estimator △Θ,EI
N,M

(right) at the 10000 SG nodes.
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7. Conclusions

We extended our work [15] on the RB acceleration of the deterministic quadrature approach from [41, 42]
for computational Bayesian inversion of linear, affine-parametric operator equations with distributed, uncertain
input data to nonlinear operator equations with possibly non-affine parametric inputs. The generalization
is based on methods for RB acceleration for forward solves of the parametric problem with uncertain input
data; specifically, a nodal version of EIM due to [1]. Based on sparsity results of the countably-parametric,
deterministic Bayesian posterior densities, their N -widths are known to be small (cf. [41, 42]), being bounded
by approximation errors of N -term truncated gpc expansions. To ease the presentation, we considered uniform
prior π0(dy). We add that the present results extend to “informed prior measures” π0 which admit a (b, p)-
holomorphic density ρ(y) with respect to the uniform measure. In the present work we proposed algorithms for
construction of parsimonious surrogate maps of the parametric forward solution, as well as for the parametric
Bayesian posterior density. The construction of the RB surrogates of the parametric forward maps is effected by
a greedy search which, as we showed, can be performed offline, before the actual Bayesian estimation step. In
particular, before assimilating observation data for the quadrature approximation of the Bayesian expectation,
conditional on observation data. In all numerical experiments, for nonlinear problems on uncertain domains of
definition, convergence rates which are independent of the dimension of the set of active parameters and at least
as good as the N -term approximations rates were achieved. The possibly large convergence rates of adaptive
Smolyak quadrature approximation of the Bayesian estimates reported in [41, 42] were realized also here in
all computed examples. The required online CPU time, however, was substantially reduced as compared to
[41, 42]. We remark that the presently proposed approach of generating offline a parsimonious RB surrogate of
the parametric forward map prior to the evaluation of the Bayesian estimate will also allow to accelerate other
Bayesian estimation methods, such as MCMC methods; we refer to [29] for an error analysis of such acceleration
methods.

8. Appendix: A-Priori Error estimates

We provide a-priori error estimates of each of the approximations in the proposed algorithms. We account in
particular for dimension truncation of the parameter domains, HiFi-PG approximation, model order reduction
including error contributions from the RB compression and the EI. A combined error estimate is also proved
for the approximation of the Bayesian posterior density and the related quantities of interest.

8.1. Dimension truncation

For a truncation dimension J ∈ N, denote the J-term truncation of parametric representation (9) of the
uncertain datum u by uJ ∈ X. Dimension truncation is equivalent to setting yj = 0 for j > J in (9) and we
denote by qJ(y) the solution of the corresponding parametric weak problem (13). Unique solvability of (13)
implies qJ(y) = q({y1, y2, ..., yJ , 0, ...}). For y ∈ U , define y{1:J} := (y1, y2, ..., yJ , 0, 0, ...). Proposition 2.1 holds
when u(y) is replaced by uJ(y), with κ > 0 in (5) independent of J for sufficiently large J .

Our estimation of the dimension truncation error q(y)− qJ(y) relies on two assumptions.

Assumption 4. (i) We assume the p-summability (11) of the sequence b given by bj := ‖ψj‖X in (9). From
the definition of the sequence b = (bj)j≥1 in (11), the condition is equivalent to

∑

j≥1 b
p
j < ∞. (ii) the bj in

(11) are enumerated so that
b1 ≥ b2 ≥ · · · ≥ bj ≥ · · · . (129)

Consider the J-term truncated problem: given uJ ∈ X̃,

find qJ ∈ X : Y′〈R(qJ ;uJ), w〉Y = 0 ∀w ∈ Y . (130)

Proposition 8.1. Under assumptions (10), (11), for every F ∈ Y ′, for every y ∈ U and for every J ∈ N, the
parametric solution qJ(y) of the dimensionally truncated, parametric weak problem (13) with J-term truncated
parametric expansion (9) satisfies, with bj as defined in (11),

sup
y∈U

‖q(y)− qJ(y)‖X ≤ C(F,X)
∑

j≥J+1

bj (131)
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for some constant C > 0 independent of J . The same bound (with different constants independent of J) holds
for the approximation of the posterior density Θ and QoI Ψ as well as for their integration. In addition, if
conditions (10), (11) and (129) hold, then

∑

j≥J+1

bj ≤ min

(
1

1/p− 1
, 1

)(
∑

j≥1

bpj

)1/p

J−s, s =
1

p
− 1 . (132)

8.2. High-fidelity PG Approximation

To establish the well-posedness of the HiFi-PG approximation problem (58) as well as the a-priori and
a-posteriori error estimates for the approximate solution qh, we impose classical assumptions from nonlinear
Finite Element analysis, as e.g. in [37].

Assumption 5. Let a(·, ·;y) : X × Y → R denote the parametric bilinear form for each y ∈ U associated with
the Fréchet derivative of R at q, i.e.

a(w, v;y) :=Y′ 〈DqR(q(y);y)(w), v〉Y ∀w ∈ X , ∀v ∈ Y . (133)

We assume the following conditions hold

A1 stability: the parametric bilinear form a satisfies the discrete PG inf-sup condition

∀y ∈ U : inf
0 6=wh∈Xh

sup
0 6=vh∈Yh

a(wh, vh;y)

||wh||X ||vh||Y
=: βh(y) ≥ βh > 0 , (134)

where the inf-sup constant βh(y) depends on h and on y and may vanish βh(y) → 0 as h→ 0.

A2 consistency: the best approximation satisfies the consistent approximation property

∀y ∈ U : lim
h→0

1

β2
h(y)

inf
wh∈Xh

‖q(y)− wh‖X = 0 . (135)

In view of the convergence rate in (57), (135) amounts to require hs/β2
h(y) → 0 as h→ 0.

A3 local Lipschitz continuity: there exists ǫ0 and L > 0 such that for all w ∈ X with ||q(y) − w||X ≤ ǫ0,
there holds

∀y ∈ U : ‖DqR(q(y);y)−DqR(w;y)‖L(X ,Y′) ≤ L||q(y)− w||X . (136)

Assumption 5 is sufficient to guarantee the existence of a solution qh(y) ∈ Xh of the HiFi-PG approximation
problem (58) for any y ∈ U , which is locally unique and satisfies a-priori error estimate. We present the results
in the following theorem, whose proof follows that in [37].

Theorem 8.2. Under Assumption 5, there exists h0 > 0 and η0 > 0 such that for 0 < h ≤ h0, there exists
a solution qh(y) ∈ Xh of the HiFi-PG approximation problem (58), which is unique in BX (q(y); η0βh(y)).
Moreover, for 0 < h ≤ h0, there holds the a-priori error estimate

||q(y)− qh(y)||X ≤ 2
||a(y)||
β(y)

(

1 +
||a(y)||
βh(y)

)

inf
wh∈Xh

||q(y)− wh||X , (137)

where ||a(y)|| := ||DqR(q(y);y)||L(X ,Y′). Depending on the smoothness parameter s > 0 (see (57)) and the
polynomial degree r ≥ 1 of the Finite Element space, we have

inf
wh∈Xh

||q(y)− wh||X ≤ Chk||q(y)||X s , k = min{s, r} , (138)

where C is independent of the mesh size h and uniformly bounded w.r.t. y. Moreover, we have the a-posteriori
error estimate

||q(y)− qh(y)||X ≤ 4

β(y)
||R(qh(y);y)||Y′ . (139)

Remark 8.1. The same convergence rate as in (137) can be obtained for the HiFi approximation of the obser-
vation functional Oh(·) evaluated at qh (since it is linear and bounded) as well as for the posterior density Θh
defined in (66). In fact, by the Aubin-Nitsche duality argument, a larger convergence rate is expected for HiFi
approximation of Oh(qh), as demonstrated in Sec. 6.1.2.
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8.3. Reduced Basis Compression

We observe that the compression error for the RB-EI solution qN,M (y), at any y ∈ U , can be split as

||qh(y)− qN,M (y)||X ≤ ||qh(y)− qN (y)||X + ||qN (y)− qN,M (y)||X , (140)

where the first term is due to the RB compression and the second term is due to the EI compression of the
residual. The same splitting holds for the compression error for the RB-EI dual solution ψN,M (y). To bound
the first term, we establish the optimal approximation property of the RB-PG compression problem (67).

Theorem 8.3. Under Assumption 5, there exist N0 > 0 and η0 > 0 such that for N ≥ N0, there exists a solution
qN (y) ∈ XN of the RB-PG compression problem (67) which is unique in B(qN (y); η0βN (y)). Moreover, for
N ≥ N0, there holds the (uniform w.r. to y) a-priori error estimate

||qh(y)− qN (y)||X ≤ 2
||aN ||
β(y)

(

1 +
||aN ||
βN (y)

)

inf
wN∈XN

||qh(y)− wN ||X , (141)

where the bilinear form aN : XN × YN → R is defined at the RB-PG solution qN (y) as

aN (wN , vN ;y) :=Y′ 〈DqR(qN (y);y)(wN ), vN 〉Y ∀wN ∈ XN , ∀vN ∈ YN , (142)

which is equipped with the norm ||aN || := ||DqR(qN (y);y)||L(X ,Y′). Moreover, there holds the a-posteriori error
estimate

||qh(y)− qN (y)||X ≤ 4

βh(y)
||R(qN (y);y)||Y′ . (143)

Proof We verify the assumptions 5 in the RB spaces XN and YN , in particular A1 stability and A2

consistency since A3 Lipschitz continuity is valid for qh(y) with constant ǫ0/2 by the triangle inequality
with the fact that ||q(y) − qh(y)||X ≤ η0βh(y) ≤ ǫ0/2. The rest of the proof follows the same as that for the
a-priori error estimate of the HiFi-PG approximation error as in Theorem 8.2.

As the sequence of finite dimensional RB subspaces X1 ⊂ X2 ⊂ · · · ⊂ XN ⊂ Xh, and XN = Xh when
N = Nh, moreover the solution manifold Mh := {qh(y) ∈ Xh : y ∈ U} is compact, we have that there exists
N0 such that for any N ≥ N0, there holds ||qh(y) − qN (y)||X ≤ ǫ0/2, so that the A3 Lipschitz continuity

in Assumption 5 holds at qh(y) for w = qN (y) ∈ X . By the construction of the RB test functions with the
supremizer approach in (75), we have the stability estimate as in (76)

βN (y) := inf
0 6=wN∈XN

sup
0 6=vN∈YN

aN (wN , vN ;y)

||wN ||X ||vN ||Y
≥ inf

0 6=wh∈Xh

sup
0 6=vh∈Yh

Y′〈DqR(qN (y);y)(wh), vh〉Y
||wh||X ||vh||Y

=: βNh (y) .

(144)
Moreover, by A1 stability in Assumption 5, for any 0 6= wh ∈ Xh we have

βh(y)||wh||X ≤ sup
0 6=vh∈Yh

Y′〈DqR(qh(y);y)(wh), vh〉Y
||vh||Y

= sup
0 6=vh∈Yh

(

Y′〈(DqR(qh(y);y)−DqR(qN (y);y))(wh), vh〉Y
||vh||Y

+
Y′〈DqR(qN (y);y)(wh), vh〉Y

||vh||Y

)

≤ L||qh(y)− qN (y)||X ||wh||X + sup
0 6=vh∈Yh

Y′〈DqR(qN (y);y)(wh), vh〉Y
||vh||Y

,

(145)

where the second equality is due to A3 Lipschitz continuity in Assumption 5 at qh(y) and w = qN (y). We
choose N0 such that when N ≥ N0, there holds L||qh(y)− qN (y)||X ≤ βh(y)/2, then we obtain from (144) and
(145) that βN (y) ≥ βh(y)/2 > 0, so that A1 stability in Assumption 5 holds in the RB trial and tes spaces
XN and YN . As a consequence, we have (note that ||qh(y)− qN (y)||X → 0 as N → Nh)

∀y ∈ U : lim
N→Nh

1

β2
N (y)

inf
wN∈XN

||qh(y)− wN ||X = 0 , (146)

i.e. A2 consistency holds in the RB space XN . �

The optimal approximation property of the RB-PG compression in Theorem 8.3 implies
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Theorem 8.4. Under Assumption 5 and the assumptions of Theorem 2.7, the compression error of the RB
solution of the RB-PG problem (67) can be bounded by

sup
y∈U

||qh(y)− qN (y)||X ≤ CN−s, s =
1

p
− 1 , (147)

where the constants C does not depend on N . The same convergence rate holds for the compression error of the
RB dual solution ψN (y) of the RB-PG dual problem (102).

Proof Assumption 5 and Theorem 8.3 implies that the assumptions in Theorem 2.7 hold in both the HiFi
spaces Xh and Yh, and the RB spaces XN and YN , in particular (ii) the well-posedness and (iii) the isomorphism
property due to the inf-sup condition in Xh×Yh and XN ×YN , which further implies that the HiFi solution qh
and the RB solution qN admit extension to the complex domain which is (b, p, ε)-holomorphic with the same
sequence b and with the same p defined in (10). Consequently, there exist SG interpolants for both qh and
qN , whose interpolation errors decay with dimension-independent convergence rate N−s, s = 1/p − 1. Then
the proof of (147) follows using the optimality of RB compression, by a comparison argument between the RB
compression error and the SG interpolation error, which is bounded as in Theorem (2.6). We refer to [15] for
more details of the proof in the linear and affine case. �

As for the EI compression error of the second term in (140), we have

Theorem 8.5. Under Assumption 5 and the assumptions of Theorem 2.7, there exists an integer M0 such that
for every M ≥M0 holds

sup
y∈U

||qN (y)− qN,M (y)||X ≤ CMM
−s, s =

1

p
− 1 , (148)

where the constant CM > 0 depends on the Lebesgue constant LM of the empirical interpolant.
When LM ≤ CMk for some k > 0, one has that CM in (148) does not depend on M .

Proof By the RB-PG compression problem (67) and the RB-EI compression problem (89), we have

Y′〈R(qN (y);y), vN 〉Y =Y′ 〈JMR(qN,M (y);y), vN 〉Y ∀vN ∈ YN , (149)

Subtracting R(qN,M (y);y) on both sides and changing the sign results in

Y′〈R(qN,M (y);y)−R(qN (y);y), vN 〉Y =Y′ 〈R(qN,M (y);y)− JMR(qN,M (y);y), vN 〉Y ∀vN ∈ YN . (150)

By a formal Taylor expansion of R(qN,M (y);y) at qN (y), the left hand side can be written as

Y′〈R(qN,M (y);y)−R(qN (y);y), vN 〉Y =Y′ 〈DqR(qN (y);y)(qN,M (y)−qN (y)), vN 〉Y+O(||qN,M (y)−qN (y)||2X ) ,
(151)

By the inf-sup condition (144) with βN (y) ≥ βh(y)/2, we have

sup
0 6=vN∈YN

Y′〈DqR(qN (y);y)(qN,M (y)− qN (y)), vN 〉Y
||vN ||Y

≥ βN (y)||qN,M (y)− qN (y)||X . (152)

As qN,M (y) → qN (y) when M → Nh, i.e. the EI becomes more accurate with more EI basis functions, and
qN,M (y) = qN (y) when M = Nh, there exists M0 such that when M ≥M0, the second term in (150) satisfies

O(||qN,M (y)− qN (y)||2X ) ≤ (βN/2)||qN,M (y)− qN (y)||X . (153)

On the other hand, for the right hand side of (150) we have

sup
0 6=vN∈YN

Y′〈R(qN,M (y);y)− JMR(qN,M (y);y), vN 〉Y
||vN ||Y

≤ ||(I − JM )R(qN,M (y);y)||Y′ , (154)

where I denotes the identity operator in Y ′. As qN,M (y) is the solution of the RB-EI compression problem (89),
which fulfils the assumptions in Theorem 2.7, in particular, (ii) problem (89) is well-posed by the supremizer
approach; (iii) the isomorphism property holds due to the inf-sup stability condition in XN and YN ; (iv)
JMR(q, u) = rR−1σ(R(q, u)) is complex continuously differentiable w.r.t. q and u as rR−1σ(·) is linear
and bounded. By Theorem 2.7, qN,M admits a continous extension to the complex domain which is (b, p, ε)-
holomorphic, and so does R(qN,M (y);y) due to the complex continuous differentiability. Therefore, as in
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Theorem 2.6, there exists a SG interpolation SM for R(qN,M (y);y) such that

sup
y∈U

‖(I − SM )R(qN,M (y);y)‖Y′ ≤ CM−s, s =
1

p
− 1 (155)

with constant C independent of M . By the triangle inequality,

||(I − JM )R(qN,M (y);y)||Y′ ≤ ||(I − SM )R(qN,M (y);y)||Y′ + ||(SM − JM )R(qN,M (y);y)||Y′ , (156)

where the second term can be rewritten due to JMSMR = SMR (since JM is exact for the subspace ZM =
span{R(qN,M (ym);ym) : m = 1, . . . ,M} due to the interpolation property, and due to SMR ∈ ZM ) as

||(SM − JM )R(qN,M (y);y)||Y′ = ||JM (SM − I)R(qN,M (y);y)||Y′ ≤ LM ||(I − SM )R(qN,M (y);y)||Y′ , (157)

where LM is the Lebesgue constant of JM . It is proved in [1] that LM ≤ 2M − 1. This bound, however, is
likely too pessimistic: in practical experiments LM is observed to grow linearly w.r.t. M [33]. Consequently, a
combination of (155), (156) and (157) yields the estimate

||(I − JM )R(qN,M (y);y)||Y′ ≤ C(1 + LM )M−s, s =
1

p
− 1 . (158)

In the case that the Lebesgue constant of EI grows algebraically w.r.t M , i.e. if there exists C > 0 such that
LM ≤ CMk for all M ≥ 1 with some k > 0, by the fact JMSMR = SMR, it can be shown as in [18, Thm. 3.1]
that

||(I − JM )R(qN,M (y);y)||Y′ ≤ CM−s, s =
1

p
− 1 . (159)

A combination of (150), (151), (152), (153), (154), together with (158) or (159) concludes with the constant
CEI = 2Ci(1 + LM )/βN or 2C/βN when LM ≤ CMk for some k > 0. �

Note that the RB solution qN (y) and the RB-EI solution qN,M (y) are approximations of the HiFi solution
qh(y), which is an approximation of the true solution q(y). To emphasize this dependence, we denote the
HiFi-RB solution as qh,N (y) and the HiFi-RB-EI solution as qh,N,M (y) for any y ∈ U . A combination of the
previous estimates on the HiFi, RB and EI errors leads to the following result.

Theorem 8.6. Under Assumption 5 and the assumptions of Theorem 2.7, there holds the a priori error estimate
for the HiFi-RB-EI compression of the solution

sup
y∈U

||q(y)− qh,N,M (y)||X ≤ CHiFih
k + CRBN

−s + CEIM
−s , (160)

where the constant CHiFi does not depend on h, CRB does not depend on N , CEI does not depend on M when
the EI Lebesgue constant LMEI

is bounded as LMEI
≤ CMk

EI for some k > 0, as in Theorem 8.5.

Proof The estimate is a result of the triangle inequality

||q(y)− qh,N,M (y)||X ≤ ||q(y)− qh(y)||X + ||qh(y)− qh,N (y)||X + ||qh,N (y)− qh,N,M (y)||X (161)

together with the estimates in Theorem 8.2, Theorem 8.4 and Theorem 8.5. Note that when taking the bound
(161) the supremum over y ∈ U , the first term can be bounded uniformly w.r.t. y as ||a(y)|| and ||q(y)||X s can
be bounded from above, and β(y) and βh(y) can be bounded from below, uniformly w.r.t. y, by Proposition
2.1, and Assumption 5. �

Accounting for the SG integration error in the approximation of Eπ0 [Θ] and Eπ0 [Ψ], we obtain

Theorem 8.7. Under Assumption 2, the assumptions of Theorem 2.7, and Assumption 5, there holds the a
priori error estimate

|Eπ0 [Θ]− Eπ0 [SΛMSG
Θh,N,MEI

]| ≤ C(Γ, r)||δ||Y (CHiFihk + CRBN
−s + CEIM

−s
EI ) + CSGM

−s
SG , (162)

where the constant CSG does not depend onMSG, and the remaining constants are as given in (31) and Theorem
8.6. The same estimate holds also for any QoI Ψ defined in (25).

Proof The proof is a result of the triangle inequality

|Eπ0 [Θ]−Eπ0 [SΛMSG
Θh,N,MEI

]| ≤ |Eπ0 [Θ]−Eπ0 [Θh,N,MEI
]|+ |Eπ0 [Θh,N,MEI

]−Eπ0 [SΛMSG
Θh,N,MEI

]| , (163)
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where the first term is bounded as in the first term of (162) by Proposition (31) and Theorem 8.6, and the
second term can be bounded as

|Eπ0 [Θh,N,MEI
]− Eπ0 [SΛMSG

Θh,N,MEI
]| ≤ sup

y∈U
|Θh,N,MEI

− SΛMSG
Θh,N,MEI

| , (164)

which is estimated using Theorem 2.6 and the fact that Θh,N,MEI
is (b, p, ε)-holomorphic as qh,N,MEI

is so (see
[44]), which is shown in the proof of Theorem 8.5. We denote this bound as CSGM

−s
SG. �

[1] M. Barrault, Y. Maday, N.C. Nguyen, and A.T. Patera. An empirical interpolation method: application
to efficient reduced-basis discretization of partial differential equations. Comptes Rendus Mathematique,
Analyse Numérique, 339(9):667–672, 2004.

[2] P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova, and P. Wojtaszczyk. Convergence rates for
greedy algorithms in reduced basis methods. SIAM Journal on Mathematical Analysis, 43(3):1457–1472,
2011.

[3] S.C. Brenner and L.R. Scott. The mathematical theory of finite element methods. Springer Verlag, 2008.

[4] A. Buffa, Y. Maday, A.T. Patera, C. Prudhomme, and G. Turinici. A priori convergence of the greedy
algorithm for the parametrized reduced basis method. ESAIM: Mathematical Modelling and Numerical
Analysis, 46(03):595–603, 2012.

[5] T. Bui-Thanh, O. Ghattas, J. Martin, and G. Stadler. A computational framework for infinite-dimensional
Bayesian inverse problems Part I: The linearized case, with application to global seismic inversion. SIAM
J. Sci. Comput., 35(6):A2494–A2523, 2013.

[6] K. Carlberg, C. Bou-Mosleh, and C. Farhat. Efficient non-linear model reduction via a least-squares Petrov–
Galerkin projection and compressive tensor approximations. International Journal for Numerical Methods
in Engineering, 86(2):155–181, 2011.

[7] S. Chaturantabut and D.C. Sorensen. Nonlinear model reduction via discrete empirical interpolation. SIAM
Journal on Scientific Computing, 32(5):2737–2764, 2010.

[8] P. Chen. Model order reduction techniques for uncertainty quantification problems. PhD thesis, EPFL,
2014.

[9] P. Chen and A. Quarteroni. Accurate and efficient evaluation of failure probability for partial differential
equations with random input data. Computer Methods in Applied Mechanics and Engineering, 267(0):233–
260, 2013.

[10] P. Chen and A. Quarteroni. Weighted reduced basis method for stochastic optimal control problems with
elliptic PDE constraints. SIAM/ASA J. Uncertainty Quantification, 2(1):364–396, 2014.

[11] P. Chen and A. Quarteroni. A new algorithm for high-dimensional uncertainty quantification based on
dimension-adaptive sparse grid approximation and reduced basis methods. EPFL, MATHICSE Report 09,
2014. Accepted in Journal of Computational Physics, in press., 2015.

[12] P. Chen, A. Quarteroni, and G. Rozza. A weighted reduced basis method for elliptic partial differential
equations with random input data. SIAM Journal on Numerical Analysis, 51(6):3163 – 3185, 2013.

[13] P. Chen, A. Quarteroni, and G. Rozza. Multilevel and weighted reduced basis method for stochastic
optimal control problems constrained by Stokes equations. EPFL, MATHICSE Report 33, 2013, Accepted
in Numerische Mathematik, in press, 2015.

[14] P. Chen, A. Quarteroni, and G. Rozza. Reduced order methods for uncertainty quantification problems.
ETH Report 03, Submitted, 2015.

[15] P. Chen and Ch. Schwab. Sparse-grid, reduced-basis Bayesian inversion. Technical Report 2014-36, Seminar
for Applied Mathematics, ETH Zürich, Switzerland, 2014.
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