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Maxwell’s Equations: Continuous and Discrete

Ralf Hiptmair

Abstract This is an introduction to the spatial Galerkin discretization of Maxwell’s

equations on bounded domains covering both modeling in the framework of exterior

calculus, the construction of discrete differential forms, and a glimpse of a priori

discretization error estimates. The presentation focuses on central ideas, skipping

technical details for the sake of lucid presentation.

1 Introduction

These lecture notes are meant to be a gentle introduction to the spatial discretization

of electromagnetic field problems. To a large extent, emphasis is on lucidity and

intuitive understanding, sometimes at the expense of rigorous developments. The

reader can be assured that there is a rigorous underpinning for all results mentioned

in these notes, but the details may be outside their scope and can be found in the

references supplied in the beginning of each of the following sections.

A geometric perspective is favored with emphasis on structural properties of the

Maxwell equations. Those become most apparent when using exterior calculus as a

tool for mathematical modeling. Thus, differential forms, their discrete counterparts,

and related numerical analysis techniques will play a prominent role throughout this

text.

The notes are organized in three sections. The first presents Maxwell’s equations

from the angle of exterior calculus covering the basic equations up to variational

formulations. The second section introduces finite element exterior calculus aiming

for a spatial Galerkin discretization of Maxwell’s equations in variational form. The
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final section then delves into the numerical analysis of the discretized equations in

order to establish a priori convergence estimates.

2 Maxwell’s Equations

Bibliographical notes

In this section Maxwell’s equations are first put in the framework of exterior calculus

of differential forms. This calculus is a core subject in differential geometry and

covered in standard textbooks, see, for instance, [38, Ch. V,X,XI,XII] and [39, Ch. 8

& 9]. In these books it is mainly presented from a formal algebraic and differential

calculus perspective. A more geometric approach is adopted in [21, Ch. IV] and,

in particular, in the work of A. Bossavit, see the original articles [13–16], and the

review articles [18], [19, Ch. I & II]. Since the author has been much inspired by

A. Bossavit, he recommends these latter two works as supplementary reading and

as a source for many more useful references. Moreover, in parts this section follows

[35, Sect. 2] and some more details can be found in that survey.

2.1 Fields

Electrodynamics is a continuum field theory and, from a classical non-relativistic

perspective, its key quantities, the various fields, are functions of spatial position

x and time t. In this section I will try to explain in intuitive terms why viewing

electromagnetic quantities as mere vectorfields R3 → R3 fails to capture important

structural aspects and differences.

2.1.1 The electric field

To grasp the nature of a physical quantity, we recommend to study ways how it

is measured. There are two ways to measure the first fundamental electrodynamic

quantity, the electric field e (units 1 V
m

):

(i) (Hypothetical) local measurement in point x at time t by determining the virtual

work it takes to displace a test charge q by δx:

δW = qe(x, t) ·δx .

From this perspective

e(x, t) is a linear mapping from displacements into R.
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(ii) (Almost practical) non-local measurement from the work required to move a

test charge along a directed path γ

W = q

∫

γ
e ·ds .

This formula reveals that

e is a quantity that can be integrated along directed curves.

2.1.2 The magnetic induction

The second fundamental electrodynamic quantity, the magnetic induction b (units

1 Vs
m2 ) can also be measured in two ways:

(i) (Hypothetical) local measurement at (x, t) from the virtual work needed to turn

a tiny magnetic needle (magnetic moment m)

δw = (b(x, t)×m) ·δ r = b(x, t) · (m× δ r) ,

where the vector δ r ∈ R3 is directed along the axis of rotation and its length

represents the angle of rotation, see Figure 1a. We may conclude that

b(x, t) should be read as an anti-symmetric bilinear mapping (δ r,m)→ R.

(ii) (Almost practical) non-local measurement that relies on the work required to

move a current carrying wire loop:

W = I

∫

Σ
b ·ndS ,

where I is the current and Σ is the orientable surface swept by the loop with unit

normal vector field n, see Figure 1b. This leads to the interpretation that

b is a quantity that assigns a total flux to oriented bounded surfaces.

2.2 Differential and Integral Forms

Now we learn about classes of functions on a piecewise smooth n-dimensional mani-

fold Ω that fit quantities like the electric field e and the magnetic induction b as

introduced above. Of course, in classical electrodynamics Ω is a domain in R3, but

the manifold perspective is necessary for dealing with boundary conditions properly.
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m

|δ r|

δ r

(a) Turning a magnetic needle

Σ

(b) moving a wire loop

Fig. 1: Local (a) and non-local measurement (b) of the magnetic induction b

2.2.1 Fundamental concepts

The first concept is related to “non-local maesurements”. To state it we denote

Mℓ(Ω): the set of piecewise smooth compact oriented ℓ-dimensional sub-manifolds

of Ω , 0 ≤ ℓ≤ n.

Notion 1 (Integral form [35, Def. 1]) An (integral) ℓ-form ω , 0 ≤ ℓ ≤ n on Ω is a

continuous (∗) and additive (∗∗) mapping ω : Mℓ(Ω)→K (K= R or K= C).

The vector space of ℓ-forms on Ω will be denoted by F ℓ(Ω).

(∗) Continuity of ω is with respect to a “deformation topology”, made precise in

the special field of “geometric integration theory”, cf. [19, p. 125].

(∗∗) Additivity of ω means that its value for the union of disjoint sub-manifolds is

the sum of the values for each of them.

The evaluation of an ℓ-form for a sub-manifold of suitable dimension is usually

written as integration:

ω ∈ F
ℓ(Ω) :

∫

Σ
ω := ω(Σ) , Σ ∈ Mℓ(Ω) .

In light of Notion 1, the considerations of Sections 2.1.1 and 2.1.2 teach us that

• the electric field e should be viewed as a 1-form, and

• the magnetic induction can be regarded as a 2-form.

Already Maxwell had this insight, since in his 1891 “Treatise on Electricity and

Magnetism” he wrote

Physical vector quantities may be divided into two classes, in one of which the quantity is

defined with reference with respect to a line, while in the other the quantity is defined with

reference to an area.
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Now we turn to a concept of ℓ-forms corresponding to the local measurement

procedures described above. This is the usual approach in differential geometry as

in [38, Sect. V.3] or [22, Sect. 2.1], because its rigorous mathematical handling is

easier than that of integral forms.

Definition 1. A (continuous) differential ℓ-form ω on a C1-manifold Ω is a (con-

tinuous) mapping ω : Ω → Λ ℓ(TΩ (·)), that is, ω assigns to every x ∈ Ω a unique

alternating ℓ-multilinear form on the tangent space TΩ (x) at Ω in x.

We write C0Λ ℓ(Ω)/C∞Λ ℓ(Ω) for the vector space of continuous/smooth differ-

ential ℓ-forms on Ω .

For a domain (open subset) Ω ⊂ Rn we find TΩ (x) = Rn for every x ∈ Ω so that

an ℓ-form on Ω is a function with values in Λ ℓ(Rn).
Simple formal considerations establish the connection between integral and dif-

ferential ℓ-forms and connect the non-local and local point of view. Tacitly smooth-

ness is assumed.

Differential form → integral form:

The integration of continuous differential forms is a standard technique, see [38,

Ch. XI] and often introduced using charts (coordinates). Here, we follow [19,

Rem. 6.1] and give a lucid explanation for the transition from differential forms

to integral forms for ℓ = 1,2 and a domain Ω ⊂ Rn. It goes without saying that

there is a close link between the local and integral point of view: every piecewise

smooth curve can be arbitrarily well approximated by tiny line segments. Similarly,

any oriented surface can be tiled with flat triangles, which inherit its orientation, cf.

Figure 2 for n = 3. The next step can be viewed as Riemann summation. For ℓ= 1

we just sum up the values that ω assigns to the line segments, where the position

arguments are taken as their midpoints. For ℓ= 2, we feed the vectors spanning the

parallelograms to the differential 2-form ω evaluated at their centers of gravity, and

then add the values returned.

Fig. 2: Flat tilings plus Riemann integration switch from local to integral forms,

cf. [19, Fig. 6.1]
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Integral form → differential form:

Again, we restrict ourselves to a domain Ω ⊂ R
n with the simple tangent space

TΩ (x) = Rn for all x ∈ Ω . Then we can perform localization as follows: For “con-

tinuous (∗)” ω ∈ F ℓ(Ω) we can define for any v j ∈Rn, j = 1, . . . , ℓ,

ω(x)(v1, . . . ,vℓ) := lim
t→0

ℓ!

tℓ

∫

Σt

ω , Σt = convex{x,x+ tv1, . . . ,x+ tvℓ} , (1)

where the integral is set to zero, in case Σt collapses to a lower-dimensional patch. If

the limit exists, obviously ω(x) ∈ Λ ℓ(Rn), because swapping two spanning vectors

changes the orientation of Σt .

2.2.2 Euclidean vector proxies in 3D

For a domain Ω ⊂Rn consider ω ∈C0Λ ℓ(Ω) := {Ω →Λ ℓ(Rn) continuous}. From

linear algebra we know that dimΛ ℓ(Rn) =
(

n
ℓ

)
. Hence, after picking an arbitrary ba-

sis of Λ ℓ(Rn), ω can be represented by its
(

n
ℓ

)
coefficient functions. In other words,

(continuous) vector fields provide an isomorphic model of C0Λ ℓ(Ω). Clearly, the

concrete vector field representative for ω ∈ C0Λ ℓ(Ω) will depend on the choice of

basis. In other words, it will depend on coordinates. Admittedly, the vector field

model captures entire exterior calculus. However, the involvement of coordinates

often conceals essential coordinate-independent properties and the different nature

of quantities like the electric field and magnetic induction.

A special choice of basis for n = 3 is stipulated by orthogonality requirements

and the resulting vector field representatives have been dubbed “vector proxies”

by A. Bossavit [14, Sect. 1.4]. The concrete definition of the underlying isomor-

phism can be inferred from Table 1. Usually, vector proxies will be distinguished

by an overset arrow (
−→e ,

−→
b ,

−→
h ,

−→
d ,−→u etc.). Occasionally, we will use the notation

V.P.(ω) for the Euclidean vector proxy of a differential form ω .

Table 1: Relationship between differential forms and vectorfields in three-

dimensional Euclidean space (v,v1,v2,v3 ∈R3), cf. Table 2.1 in [35]. The operation

“·” is the canonical inner product in Euclidean space, “×” the cross product. See

also [6, Tab. 2.2].

Differential form Related function u/vectorfield u

ℓ= 0 x 7→ ω(x) −→u (x) := ω(x) −→u : Ω→R

ℓ= 1 x 7→ {v 7→ ω(x)(v)} −→u (x) ·v := ω(x)(v) −→u : Ω → R3

ℓ = 2 x 7→ {(v1 ,v2) 7→ ω(x)(v1 ,v2)}
−→u (x) · (v1 ×v2) := ω(x)(v1 ,v2)

−→u : Ω → R
3

ℓ = 3 x 7→ {(v1 ,v2,v3) 7→ ω(x)(v1 ,v2,v3)}
−→u (x)det(v1,v2,v3) := ω(x)(v1 ,v2,v3)

−→u : Ω → R
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The integration of differential forms expressed in terms of their vector proxies

u/u according to Table 1 gives rise to familiar integrals:

0-form ω ∈C0Λ 0(Ω) :
∫
x

ω = u(x) ∀x ∈ Ω ,

1-form ω ∈C0Λ 1(Ω) :
∫
γ

ω =
∫
γ

u ·ds ∀γ ∈ M1(Ω) ,

2-form ω ∈C0Λ 2(Ω) :
∫
Σ

ω =
∫
Σ

u ·ndS ∀Σ ∈ M2(Ω) ,

3-form ω ∈C0Λ 3(Ω) :
∫
V

ω =
∫
V

u(x)dx ∀V ∈ M3(Ω) .

(2)

Here, n is a unit normal vector field to Σ , whose direction is induced by the orienta-

tion of Σ .

2.2.3 Transformation of forms

Let Φ stand for a diffeomorphism mapping the n-dimensional manifold Ω̂ onto Ω .

It can be used to “pull back” any integral form on Ω to Ω̂ according to the following

definition [39, Sect. 8.2.1]:

Definition 2. Given ω ∈ F ℓ(Ω) its pullback Φ∗ω ∈ F ℓ(Ω̂) is defined by

∫

Σ̂
Φ∗ω :=

∫

Φ(Σ̂ )
ω ∀Σ̂ ∈ Mℓ(Ω̂) .

This induces a linear isomorphism Φ∗ : F ℓ(Ω)→ F ℓ(Ω̂ ).

There is a local version of the pullback for differential forms and it reads

(Φ∗ω)(x̂)(v̂1, . . . , v̂ℓ) := ω(Φ(x̂))(DΦ(x̂)v̂1, . . . ,DΦ(x̂)v̂ℓ)
x̂ ∈ Ω̂ ,
v̂ j ∈ T

Ω̂
(x̂) ,

(3)

where DΦ is the differential of Φ . The pullback for Euclidean vector proxies in

3D can be computed from (3) and the corresponding vector analytic operations are

listed in Table 2.

Table 2: Pullback and trace of Euclidean vector proxies differential forms of degree

ℓ on Ω ⊂ R3, [35, (2.16)-(2.19)]

forms/vector proxies Pullback trace onto ∂ Ω

ℓ= 0 u = V.P.(ω), −→v = V.P.(Φ∗ω) −→v (̂x) =−→u (x) t∂Ω
−→u (x) =−→u (x)

ℓ= 1
−→u = V.P.(ω), −→v = V.P.(Φ∗ω) −→v (̂x) = DΦ (̂x)⊤−→u (x) t∂Ω

−→u (x) =−→u t(x)
ℓ= 2

−→u = V.P.(ω), −→v = V.P.(Φ∗ω) −→v (̂x) = detDΦ (̂x)DΦ (̂x)−1−→u (x) t∂Ω
−→u (x) =−→u (x) ·n(x)

ℓ= 3 −→u = V.P.(ω), −→v = V.P.(Φ∗ω) −→v (̂x) = detDΦ (̂x)−→u (x) —
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If Σ ⊂ Ω is a sub-manifold of Ω , the pullback associated with the canonical

embedding ιΣ : Σ → Ω provides the trace operators tΣ := ι∗Σ : F ℓ(Ω) → F ℓ(Σ).
For Euclidean vector proxies in 3D they become point trace, tangential trace, and

normal component, respectively, see Table 2. The notation tΣ is used for forms and

vector proxies, alike.

Equality of traces on interfaces supplies suitable compatibility conditions that

make it possible to glue integral forms across the interface.

Lemma 1 (Compatibility condition for integral forms [19, Sect. 7], [32, Thm. 8]).

Given a partition Ω = Ω 1 ∪Ω 2 of a manifold Ω into “nice” sub-manifolds Ω1 and

Ω2, Ω1 ∩Ω2 = /0, and two integral forms ω1 ∈ F ℓ(Ω1), ω2 ∈F ℓ(Ω2), we have for

ω :=

{
ω1 on Ω1

ω2 on Ω2

that ω ∈ F
ℓ(Ω) ⇔ tΓ ω1 = tΓ ω2 ,

where Γ := Ω 1 ∩Ω 2.

The idea behind Lemma 1 is to consider ℓ-dimensional oriented sub-manifolds

of Ω that are contained in Γ . The value ω assigns to those must be unique.

2.3 Topological Electrodynamic Laws

2.3.1 Circulation and Flux Laws

Let {Σ(t)}t∈R, be a family of orientable, compact, and piecewise smooth 2-surfaces,

whose elements vary smoothly with time t, thus forming a “space-time tube”. Then

the first “axiom” of electrodynamics, Faraday’s law can be stated as (for any t1, t2 ∈
R)

t2∫

t1

∫

∂Σ(τ)

e(τ)dτ =
∫

Σ(t1)

b(t1)−
∫

Σ(t2)

b(t2) ⇔
∫

∂Σ(t)

e(t) =−
d

dt

∫

Σ(t)

b(t) . (FL)

Faraday’s law links electric field and magnetic induction through integrals that per-

fectly fit the integral forms interpretation of the fields, recall Section 2.2.

The second law, that we treat as another “axiom” is Ampere’s law and it links two

electrodynamic quantities that have not been mentioned so far, the magnetic field h

(units 1 A
m

), the electric displacement d (units 1 As
m2 ), and the electric current j (units

1 A
m2 ):

t2∫

t1

∫

∂Σ(τ)

h(τ)dτ =
∫

Σ(t2)

d(t2)−
∫

Σ(t1)

d(t1)+

t2∫

t1

∫

Σ(τ)

j(τ)dτ
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⇔

∫

∂Σ(t)

h(t) =
d

dt

∫

Σ(t)

d(t)+

∫

Σ(t)

j(t) . (AL)

Ampere’s law expects us to consider integrals of the magnetic field h along curves,

whereas d and j enter through their fluxes through surfaces. Matching this with our

notion of (integral) forms, we find

• that the magnetic field h should be regarded as a 1-form,

• that 2-forms are the right device to describe both d and j.

Remark 1. The electric current can play the role of sources in electrodynamic mod-

els. Then j will be a prescribed quantity reflecting the interaction of electromagnetic

fields with other physical systems. Hence, from now, think of j as given.

Remark 2. Another subtle distinction can be made labeling the quantities in Am-

pere’s law twisted forms, see [16, Sect. 2] and [21, Sect. 28]. This is not needed for

our purposes and I am not going to dwell on this.

2.3.2 Exterior Derivative

Integration of forms over boundaries features prominently both in (FL) and (AL).

Recall that the boundary of an oriented piecewise smooth manifold of dimension d

is an orientable d − 1-dimensional manifold that can be equipped with an induced

orientation, see Figure 3. This induced orientation is implicitly imposed through the

boundary operator ∂ . For an in-depth discussion of orientation refer to [19, Sect. 4].

+

−

Fig. 3: 1-, 2-, and 3-dimensional submanifolds of R3 and the induced orientation of

their boundaries. Remember that the orientation of a path is given by its direction,

the orientation of a surface by an internal sense of turning, and the orientation of a

volume by a corkscrew rule.

Definition 3 (Exterior derivative). Let Ω be an n-dimensional manifold. Then the

exterior derivative dℓ : F ℓ(Ω)→ F ℓ+1(Ω), 0 ≤ ℓ < n, is defined by
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∫

Σ
dℓω :=

∫

∂Σ
ω ∀Σ ∈ Mℓ+1(Ω) ,

and dn ω := 0 for ω ∈ F n(Ω).

By the very definition of d1 we can now state (FL) and (AL) concisely as

Faraday’s law d1 e =−∂tb ,

Ampere’s law d1 h = ∂td+ j .

(FL)

(AL)

We highlight an immediate consequence of Definition 3:

Corollary 1. The exterior derivative dℓ : F ℓ(Ω) → F ℓ+1(Ω) is a linear operator

and commutes with the pullback: Φ∗◦dℓ = d̂ℓ◦Φ∗ for any diffeomorphism Φ : Ω̂ →
Ω (d̂ℓ is the exterior derivative on F ℓ(Ω̂ )).

Hence, if e, b solve (FL) and h, d satisfy (AL), then the transformed fields Φ∗e,

Φ∗b, and Φ∗h, Φ∗d again solve (FL) and (AL), respectively, where Φ : R3 → R3

is any diffeomorphism. In other words, we can warp space in arbitrary ways and the

induced transformations take solutions of Maxwell’s equations to other solutions

of Maxwell’s equations. Therefore (FL) and (AL) have been labelled “topological

laws”; their set of solutions is invariant under arbitrary pullbacks connected with

diffeomorphic deformations of space.

The evident fact that “the boundary of a boundary is empty”, ∂ ◦ ∂ = /0, permits

us to conclude a fundamental property of the exterior derivative:

Theorem 2. For ℓ ∈ {0, . . . ,n− 1} holds dℓ+1◦dℓ = 0 .

Thus, a simple consequence of applying d2 to (AL) is the continuity equation

0 = ∂t d2 d+d2 j = ∂tρ +d2 j , (4)

where ρ := d2 d ∈ F 3(Ω) is a 3-form modeling the density of electric charges.

Assuming “smoothness” of an (integral) form, the exterior derivative can be lo-

calized [22, Sect. 2.3], [38, Sect. V.3]:

Theorem 3 (Generalized Stokes’ theorem). On a domain Ω ⊂ Rn the exterior

derivative of a differential ℓ-form ω ∈C1Λ ℓ(Ω) is

(dℓ ω)(x)(v1, . . . ,vℓ+1) :=
ℓ+1

∑
k=1

(−1)k(Dω)(x)vk(v1, . . . ,vk−1,vk+1, . . . ,vℓ+1) ,

for all x ∈ Ω and “tangent vectors” vk ∈Rn. Here Dω : Ω → L(Rn,Λ ℓ(Rn)) is the

(Fréchet) derivative of ω .

This paves the way for computing the vector proxy incarnations of the exterior

derivatives [6, Sect. 2.3]:
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V.P.(dℓ ω) =





gradu , for ℓ= 0,

curlu , for ℓ= 1,

divu , for ℓ= 2,

, u/u := V.P.(ω), ω ∈C1Λ ℓ(Ω) . (5)

The classical Gauss’ and Stokes’ theorem confirm that these operators comply with

Definition 3. By (5), for vector proxies
−→
e ,

−→
b ,

−→
h ,

−→
d , and

−→
j of the various electro-

magnetic fields, the local versions Faraday’s and Ampere’s law read

(FL) ⇒ curl−→e =−∂t
−→
b ,

(AL) ⇒ curl
−→
h = ∂t

−→
d +

−→
j .

(6)

(7)

This is the classical form of Maxwell’s equations written as first order partial differ-

ential equations for vector fields with three components.

Remark 3. The use of exterior calculus for the description of electromagnetic fields

and the statement of electromagnetic models is well established, see [8], [39,

Sect. 9.8], [21, Ch. VI], or [31, Sect .3.5]. Surprisingly, as discovered in [37], the

perspective of differential forms also sheds fresh light on boundary integral formu-

lations for acoustics and electromagnetics.

2.3.3 Potentials

The converse of Theorem 2 holds under some assumption on the topological class

of the manifold on which the forms are defined.

Theorem 4 (Existence of potentials). If the manifold Ω has trivial topology, that

is, all Betti numbers except the first vanish, then

Ker(dℓ) := {ω ∈ F
ℓ(Ω) : dℓ ω = 0}= dℓ−1 F

ℓ−1(Ω) .

The ℓ− 1-form whose exterior derivative yields an ℓ-form ω with dℓ ω = 0, is

called a potential for ω . The proof of this theorem for differential forms makes use

of so-called Poincaré liftings, see [38, Sect. V.4].

Let us sketch a formal justification of Theorem 4 for Ω = Rn and ℓ = 1. For

every x ∈ Ω let γ(x) be the line segment connecting x and 0. Given η ∈ F 1(Ω),
define ω ∈ F 0(Ω) (a plain function) by ω(x) :=

∫
γ(x) η . For any directed path π

with endpoints x0,x1 this 0-form satisfies

∫

π
d0 ω = ω(x1)−ω(x0) =

∫

γ(x1)
η −

∫

γ(x0)
η =

∫

π
η ,

since 0 =

∫

Σ
d1 η =

∫

∂Σ
η =

∫

π
η −

∫

γ(x1)
η +

∫

γ(x0)
η ,

where Σ is the 2-surface bounded by π , γ(x0), and γ(x1) (with suitable orientation).

For general Ω this surface may not exist owing to topological obstructions.
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A similar argument settles the case ℓ = 2 for Ω = Rn. Now, write Σ(γ) for the

oriented surface generated by retracting the directed path γ to 0. By the retract of a

set to 0 we mean the union of all line segments connecting points of the set with 0.

Given η ∈ F 2(Ω) with d2 η = 0 we fix ω ∈ F 1(Ω) by

∫

γ
ω :=

∫

Σ(γ)
η ∀γ ∈ M1(Ω) .

For an arbitrary Γ ∈ M2(Ω) let V stand for the volume defined by its retract to 0.

Then
∫

Γ
d1 ω =

∫

∂Γ
ω =

∫

Σ(∂Γ )
η =

∫

∂V
η +

∫

Γ
η =

∫

V
d2 η

︸ ︷︷ ︸
=0

+

∫

Γ
η .

Also here, topology may thwart the existence of a suitable V .

There is also a local version of Theorem 4 for differential forms, and in terms of

Euclidean vector proxies it tells us that in Ω = R3

curlu = 0 ⇒ ∃ f : Ω → R : u = grad f ( f is a scalar potential.), (8)

divu = 0 ⇒ ∃f : Ω → R
3 : u = curl f (f is a vector potential.) (9)

Remark 4. For general Ω an ℓ-form in Ker(dℓ) is still the exterior derivative of

some η ∈F ℓ−1(Ω) after adding a correction from a finite-dimensional cohomology

space. Since Ω =R3 for Maxwell’s equations, we need not worry about topological

obstructions. The situation is completely different in the case of so-called magneto-

quasistatic models (eddy current models), where scalar potentials for curl-free mag-

netic fields outside conductors may fail to exist.

Electromagnetic potentials

Another axiom in electrodynamics is the non-existence of magnetic monopoles, that

is, d2 b = 0 at “initial time” t = 0. Then we conclude from Theorem 2 and Faraday’s

law (FL) that

d1 e =−∂tb
d2=⇒ ∂t d2 b = 0

d2 b(0)=0
=⇒ d2 b = 0 ∀t .

As a consequence, there exists a magnetic vector potential a ∈ F 1(Ω) such that

b = d1 a. Plugging the vector potential into Faraday’s law, we arrive at

d1 e =−∂t d1 a =⇒ d1(e+ ∂ta) = 0
Thm. 4
=⇒ ∃v ∈ F

0(Ω) : e =−∂ta−d0 v .

This 0-form (= function) v is known as electric scalar potential. In vector proxy

notation the two potentials satisfy
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−→
b = curl−→a , −→e + ∂t

−→a =−gradv , (10)

where we identified the function v and 0-form v.

Gauge freedom

Even for given fields e and b, the potentials will not be unique, because for any

w ∈ F 0(Ω) holds

b = d1 a ,

e =−∂ta−d0 v
,

v′ = v+w

a′ = a+

∫ t

0
wdt

⇒
b = d1 a′ ,

e =−∂ta
′−d0 v′ .

(11)

This possibility to modify the potentials without affecting the fields proper is known

as gauge freedom. It takes so-called gauge conditions, that is, extra constraints on

the potentials, to render them unique [17].

2.4 Energies and Material Laws

2.4.1 The exterior product

There is a special bilinear way to combine two alternating forms into another al-

ternating form whose degree is the sum of the degrees of the factors. This binary

operation is called the exterior product (wedge product). By pointwise definition it

can be extended to continuous differential forms on a manifold Ω [6, Sect. 2.1]

∧ :

{
C0Λ ℓ(Ω)×C0Λ m(Ω) → C0Λ ℓ+m(Ω)

(ω ,η) 7→ ω ∧η .

The most important formulas connecting the exterior product and other operations

on differential forms are (ω ∈C0Λ ℓ(Ω) ,η ∈C0Λ m(Ω), 0 ≤ ℓ,m ≤ n)

(Anti-)commutativity: ω ∧η = (−1)ℓm(η ∧ω) , (12)

Commutes with pullback: Φ∗ω ∧Φ∗η = Φ∗(ω ∧η) , (13)

Leibniz rule: dℓ+m(ω ∧η) = dℓ ω ∧η +(−1)ℓ(ω ∧dm η) . (14)

Standard bilinear pointwise operations are recovered when considering ∧ on the

side of Euclidean vector proxies:

V.P.(ω ∧η) =





−→u ×−→v , for ℓ= m = 1,
−→u ·−→v , for ℓ= 2, m = 1
−→u −→v , for ℓ= 0, m = 1,2

,
−→u /−→u := V.P.(ω), ω ∈C1Λ ℓ(Ω) ,
−→v := V.P.(η), η ∈C1Λ m(Ω) .

(15)
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Following [6, Sect. 2.2], we introduce Hilbert spaces of ℓ-forms on a piecewise

smooth manifold Ω

L2Λ ℓ(Ω) :=

{
ω ∈ F ℓ(Ω) : x 7→ ω(x)(v) ∈ L2(Ω)
for every smooth vectorfield v on Ω

}
.

For a domain Ω ⊂ R3 a form on Ω is in L2Λ ℓ(Ω), if and only if its vector proxy

belongs to (L2(Ω))(
n
ℓ).

As a consequence of the Riesz representation theorem the exterior product allows

to express duality in spaces of differential forms:

Theorem 5. The exterior product ∧ : C0Λ ℓ(Ω)×C0Λ m(Ω)→C0Λ ℓ+m(Ω) can be

extended to L2Λ ℓ(Ω)×L2Λ m(Ω) by continuity. This extension provides a duality

pairing between L2Λ ℓ(Ω) and L2Λ n−ℓ(Ω) through the bilinear form

(ω ,η) 7→

∫

Ω
ω ∧η .

2.4.2 Field energies

Mathematically speaking, in electrodynamics an energy is a mapping from fields to

non-negative numbers. Therefore, for a bounded domain Ω ⊂ R3 we introduce

electric field energy: Eel : L2Λ 2(Ω)→ R≥0 ,

magnetic field energy: Emag : L2Λ 2(Ω)→R≥0 .

Then, the values Eel(d) and Emag(b) (unit J) provide the energy content of the fields

d and b.

Assumption 6 (Properties of field energies)

Both Eel and Emag are Fréchet-differentiable and strictly convex.

This ensures that the Fréchet derivatives

DEel,DEmag :L2Λ 2(Ω)→ (L2Λ 2(Ω))′ = L2Λ 1(Ω) (by Thm. 5)

are strictly monotone operators and, hence, isomorphisms, see [44, Sect. 10.3.2].

In many settings the field energies are localized in the sense that there are two

functions (“energy densities”)

Eel,Emag : Ω ×Λ 2(R3)→ R

such that

Eel(d) =
∫

Ω
Eel(x,d(x))dx , Emag(b) =

∫

Ω
Emag(x,b(x))dx .
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If Eel and Emag are differentiable and x-uniformly strictly convex in their second

argument, Assumption 6 is satisfied. Moreover, the Fréchet derivatives with respect

to the second argument D2Eel(x,d) and D2Emag(x,b) are isomorphisms Λ 2(R3)→
Λ 1(R3).

Finally, writing 〈·, ·〉 for the duality pairings in L2Λ 2(Ω)/Λ 2(R3), and appealing

to Theorem 5 we find that for all d′ ∈C∞Λ 2(Ω)

〈
DEel(d),d

′
〉
=

∫

Ω

〈
D2Eel(x,d(x)),d

′(x)
〉

dx =

∫

Ω
D2Eel(x,d(x))∧d′(x)dx .

A very special, but common case, is local quadratic field energies, where

Eel(x,d(x)) =
1
2 βel(x)(d(x),d(x)) ,

Emag(x,b(x)) =
1
2 βmag(x)(b(x),b(x)) ,

x ∈ Ω ,
(16a)

(16b)

with x-uniformly positive definite bilinear forms βel,βmag : Ω → L(Λ 2(R3)×
Λ 2(R3),R). In this case, switching to Euclidean vector proxies, we may write

Eel(x,d(x)) =
1
2

−→
d (x)⊤ε−1(x)

−→
d (x) ,

Emag(x,b(x)) =
1
2

−→
b (x)⊤µ−1(x)

−→
b (x) ,

x ∈ Ω ,
(17a)

(17b)

where ε : Ω → R3,3 and µ : Ω → R3,3 are position dependent symmetric positive

definite (spd) 3× 3-matrices, the dielectric tensor and the magnetic permeability

tensor, respectively.

Remark 5. The concept of energy content of a field in the presence of matter is

inherently macroscropic (phenomenological), because it ignores very complex in-

teractions at the atomic level.

2.4.3 Material laws

Material laws state a one-to-one correspondence between the electric field e and

the displacement current d, and between the magnetic induction b and the magnetic

field h. In concrete terms we stipulate

e = e(d) = DEel(d) ∈ L2Λ 1(Ω) ,

h = h(b) = DEmag(b) ∈ L2Λ 1(Ω) .

(18a)

(18b)

The inverses of these material laws can be stated as

d(e) = DE
∗
el(e) , b(e) = DE

∗
mag(h) , (19)

where E ∗
el : L2Λ 1(Ω)→R and E ∗

mag : L2Λ 1(Ω)→R are the strictly convex Fenchel

conjugates of Eel and Emag, called co-energies in physics [19, Def. 12.2].



16 Ralf Hiptmair

Relying on the duality from Theorem 5, we can cast the material laws (18a),

(18b), and (19) into variational form.

∫

Ω
e(d)∧d′ =

〈
DEel(d),d

′
〉

∀d′ ∈ L2Λ 2(Ω) , (20a)

∫

Ω
h(b)∧b′ =

〈
DEmag(b),b

′
〉

∀b′ ∈ L2Λ 2(Ω) , (20b)

∫

Ω
d(e)∧ e′ =

〈
DE

∗
el(e),e

′
〉

∀e′ ∈ L2Λ 1(Ω) , (20c)

∫

Ω
b(h)∧h′ =

〈
DE

∗
mag(h),h

′
〉

∀h′ ∈ L2Λ 1(Ω) , (20d)

Special case: Local quadratic energies

For energies given by (16a) and (16b), which are still continuous on L2Λ 2(Ω), the

general formulas (18a), (18b), and (19) become

e(x) = Mel(d(x)) ⇔ d(x) = M−1
el (d(x)) ,

h(x) = Mmag(b(x)) ⇔ b(x) = M−1
mag(h(x)) ,

for almost all x ∈ Ω ,
(21a)

(21b)

where both Mel and Mmag are bounded linear operators Λ 2(R3) → Λ 1(R3). They

are specimens of Hodge operators, which, in the general case, induce isomorphisms

Λ ℓ(Rn) ∼= Λ n−ℓ(Rn). By pointwise application Hodge operators can be defined for

continuous differential forms, and then can be extended to L2Λ ℓ(Ω). For these

Hodge operators we adopt the customary notation ⋆ and write for (21a) (21b)

e = ⋆ε−1d ⇔ d = ⋆ε e , h = ⋆µ−1b ⇔ b = ⋆µh . (22)

Then the field energies can be expressed by

Eel =
1
2

∫

Ω
⋆ε−1d∧d = 1

2

∫

Ω

⋆ε e∧ e ,

Emag =
1
2

∫

Ω
⋆µ−1b∧b = 1

2

∫

Ω

⋆µh∧h .

Remark 6. The notation in (22) hints that the Hodge operators emerge from the ma-

terial tensors ε and µ introduced in (17a) and (17b). These tensors can be viewed

as coordinate representations of a Riemannian metric on Ω . Indeed, the usual defi-

nition of Hodge operators on Λ ℓ(Rn) relies on inner products in Rn [18, Sect. 4].

The vector proxy form of (22) is immediate from (17):

−→
d (x) = ε(x)−→e (x) ⇔ −→

e (x) = ε(x)−1−→d (x) ,
−→
b (x) = µ(x)

−→
h (x) ⇔

−→
h (x) = µ(x)−1−→b (x) ,

a.e. in Ω .
(23a)

(23b)



Maxwell’s Equations: Continuous and Discrete 17

Thus, the variational material laws (20) can be expressed as

∫

Ω

−→
d (x) ·−→e ′(x)dx =

∫

Ω
ε(x)−→e (x) ·−→e ′(x)dx ∀−→e ′ ∈ (L2(Ω))3 ,

⇔

∫

Ω

−→
e (x) ·

−→
d ′(x)dx =

∫

Ω
ε−1(x)

−→
d (x) ·

−→
d ′(x)dx ∀

−→
d ′ ∈ (L2(Ω))3 ,

(24a)
∫

Ω

−→
b (x) ·

−→
h ′(x)dx =

∫

Ω
µ(x)

−→
h (x) ·

−→
h ′(x)dx ∀

−→
h ′ ∈ (L2(Ω))3 ,

⇔

∫

Ω

−→
h (x) ·

−→
b ′(x)dx =

∫

Ω
µ−1(x)

−→
b (x) ·

−→
b ′(x)dx ∀

−→
b ′ ∈ (L2(Ω))3 .

(24b)

Remark 7. There is another local material law that is often encountered in electro-

magnetic field models, known as Ohm’s law. It links the electric field e and the

current j according to

j = ⋆σ e . (25)

Here, σ = σ(x) is another metric tensor called the conductivity. Expressed in terms

of vector proxies (25) reads

−→
j (x) = σ(x)−→e (x) a.e. in Ω , (26)

with σ : Ω → R3,3 uniformly spd.

2.4.4 Energy balance (Poynting’s theorem)

If the fields e, b, d, and h satisfy Maxwell’s equations, the total field energy Etot :=
Eel +Emag fulfills [19, Prop 12.1]

d
dt

Etot(t) =
d
dt

(
Eel(d(t))+Emag(b(t))

)

= 〈DEel(d(t)),∂td(t)〉+
〈
DEmag(b(t)),∂tb(t)

〉

=

∫

Ω
e(t)∧∂td(t)+h(t)∧∂tb(t) ,

using Ampere’s law (AL) to eliminate ∂td and Faraday’s law (FL) on ∂tb,

=

∫

Ω
e(t)∧ (d1 h(t)− j)+h(t)∧ (−d1 e)

=

∫

Ω
(e∧d1 h−h∧d1 e)(t)− (e∧ j)(t) =

∫

∂Ω
(e∧h)(t) −

∫

Ω
(e∧ j)(t) .

In the last step we used integration by parts, that is, we combined Definition 3 and

the Leibniz rule (14). The first term is the Poynting vector 2-form, whose integral
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supplies the flow of electromagnetic energy through a surface. The second term is

the power consumed by dissipation.

2.5 Maxwell’s Equations: Variational Approach

Next, we derive the weak form of well-posed boundary value problems for Maxwell’s

equations (FL) and (AL) equipped with general material laws in weak form given

in (20). Throughout we focus on a bounded domain Ω ⊂R3. Analogous considera-

tions for time-harmonic fields can be found in [35, Sect.2.3]. As a key tool we recall

the integration by parts formula for ω ∈C1Λ ℓ(Ω), η ∈C1Λ k(Ω):

∫

Ω
dℓ ω ∧η +(−1)ℓ(ω ∧dk η) =

∫

∂Ω
ω ∧η . (27)

2.5.1 a-based variational formulation

As in Section 2.3.3 we employ the electromagnetic potentials, but do so in a par-

ticular way, using the gauge freedom (11) to drop the scalar electric potential v

(“temporal gauge”, v = 0), which leaves us with a vector potential a ∈ F 1(Ω) that

is just a temporal primitive of the electric field and satisfies

e(t) =−∂ta(t) and b(t) = d1 a(t) in Ω . (28)

First, test (AL) with a′ ∈ C∞Λ 1(Ω) (independent of time) and integrate by parts

according to (27), which yields

∫

Ω
h(t)∧d1 a′ +

∫

∂Ω
h(t)∧a′ = ∂t

∫

Ω
d(t)∧a′ +

∫

Ω
j(t)∧a′ .

Next, use (20b) and (20c) to rewrite the first terms on both sides,

〈
DEmag(b(t)),d1 a′

〉
+
∫

∂Ω
h(t)∧a′ = ∂t

〈
DE

∗
el(e(t)),a

′
〉
+
∫

Ω
j(t)∧a′ ,

and then plug in (28):

〈
DEmag(d1 a(t)),d1 a′

〉
+

∫

∂Ω
h(t)∧a′

= ∂t

〈
DE

∗
el(−∂ta(t)),a

′
〉
+
∫

Ω
j(t)∧a′ , (29)

which is supposed to hold for all a′ ∈ C∞Λ 1(Ω). Formally, this is a non-linear

second-order evolution problem for the unknown 1-form valued function a = a(t).
Initial conditions a(0) and ∂ta(0) have to be supplied.
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For local linear material laws (22) we seek a = a(t) such that

∫

Ω
(⋆µ−1 d1 a(t))∧d1 a′ + ∂ 2

t

∫

Ω
(⋆ε a(t))∧a′

=−
∫

∂Ω
h(t)∧a′ +

∫

Ω
j(t)∧a′ . (30)

This is a linear 2nd-order evolution problem, posed on the “energy space”

HΛ ℓ(Ω) := {ω ∈ L2Λ ℓ(Ω) : dℓ ω ∈ L2Λ ℓ+1(Ω)} for ℓ= 1 . (31)

The spaces HΛ ℓ(Ω) are Sobolev spaces of differential forms on Ω [6]. They are

Hilbert spaces with inner product (⋆ is the Euclidean Hodge operator)

(ω ,η)HΛ ℓ(Ω) :=

∫

Ω
(⋆ω)∧η +(⋆dℓ ω)∧dℓ η , ω ,η ∈ HΛ ℓ(Ω) . (32)

The spaces C∞Λ ℓ(Ω) are dense in HΛ ℓ(Ω). For a domain Ω ⊂ R3 and ℓ = 1 the

Hilbert space of vector proxies isomorphic to HΛ 1(Ω) is the well-known Sobolev

space H(curl,Ω), for ℓ = 2 we get H(div,Ω), and for ℓ = 0 the function space

H1(Ω), see [35, Sect. 2.4].

Thus, in terms of vector proxies the electrodynamic evolution problem in the

a-based formulation reads: find
−→a (t) ∈ H(curl,Ω) with

∫

Ω

µ−1 curl
−→
a (t) · curl

−→
a ′ dx+ ∂ 2

t

∫

Ω

ε−→a (t) ·−→a ′ dx

=−
∫

∂Ω

(
−→
h (t)×−→a ′) ·ndS+

∫

Ω

−→
j (t) ·−→a ′ dx (33)

for all
−→
a ′ ∈ H(curl,Ω).

2.5.2 h-based variational formulation

Alternatively, we may test Faraday’s law (FL) with h′ ∈C∞Λ 1(Ω) (independent of

time), which, after integration by parts (27), yields

∫

Ω
e(t)∧d1 h′ +

∫

∂Ω
e(t)∧h′ =−∂t

∫

Ω
b(t)∧h′ . (34)

We use the material laws (20a) and (20d) to replace the two integrals over Ω :

〈
DEel(d(t)),d1 h′

〉
+
∫

∂Ω
e(t)∧h′ =−∂t

〈
DE

∗
mag(h(t)),h

′
〉
.

Then replace d by means of Ampere’s law (integrated in time) and obtain the varia-

tional problem: seek h̃ = h̃(t) such that



20 Ralf Hiptmair

〈
DEel(d(0)+d1 h̃(t)−

∫ t

0
j(τ)dτ),d1 h′

〉
+

∫

∂Ω
e(t)∧h′

=−∂t

〈
DE

∗
mag(∂t h̃(t)),h

′
〉
, (35)

for all h′ ∈ C∞Λ 1(Ω). The unknown field h̃(t) is a temporal primitive of h: h̃(t) =∫ t
0 h(τ)dτ; in particular h̃(0) = 0.

Using the local linear material laws (22) we recover a special variant of (35):

Seek h̃(t) ∈ HΛ 1(Ω) such that

∫

Ω
(⋆ε−1 d1 h̃(t))∧d1 h′ + ∂ 2

t

∫

Ω
(⋆µ h̃(t))∧h′ dx =

−
∫

∂Ω
e(t)∧h′ −

∫

Ω
⋆ε−1

(
d(0)+

∫ t

0
j(τ)dτ

)
∧d1 h′ (36)

for all h′ ∈ HΛ 1(Ω). Rewriting this for vector proxies gives us: Find
−̃→
h (t) ∈

H(curl,Ω) with

∫

Ω

ε−1 curl
−̃→
h (t) · curl

−→
h ′ dx+ ∂ 2

t

∫

Ω

µ
−̃→
h (t) ·

−→
h ′ dx =

−

∫

∂Ω

(−→e (t)×
−→
h ′) ·ndS+

∫

Ω

ε−1
(−→

d (0)+

∫ t

0

−→
j (τ)dτ

)
· curl

−→
h ′ dx (37)

for all
−→
h ′ ∈ H(curl,Ω).

Remark 8. We frequently have the possibility to cast a single boundary value prob-

lem or evolution problem into several variational forms. The standard example is

the standard (primal) and mixed (dual) variational formulation of scalar second-

order elliptic boundary value problems. For a more general discussion refer to [11,

Sect. 1.3].

2.5.3 Boundary conditions

Both variational formulations (29) and (35) feature undetermined boundary terms

and have to be supplemented with boundary conditions. To that end, we partition

Γ := ∂Ω into three parts Γ = Γe∪̇Γm∪̇Γi with disjoint interiors. Each part may not

be present and collapse to /0.

On these parts of Γ different boundary conditions on the fields are imposed by

means of the trace operators tΓ from Section 2.2.3:
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• Electric boundary conditions on Γe: tΓe e(t) = ge(t) ∈ F
1(Γe) .

• Magnetic boundary conditions on Γm: tΓm h(t) = gm(t) ∈ F
1(Γm) .

• Impedance boundary conditions on Γi: tΓi
h(t) = Z(tΓi

e(t)) ,

where Z : F 1(Γi)→ F 1(Γi) is a local or non-local impedance map, which boils

down to a surface Hodge operator in the simplest case.

➊ For the a-based variational formulation (29)

☞ electric boundary conditions are essential and have to be enforced on the trial

1-forms and (in their homogeneous variant) on the test 1-forms,

☞ magnetic boundary conditions are natural and taken into account on the right

hand side of the variational formulation,

☞ impedance boundary conditions give rise to another term on the left hand side

of (29).

Assuming benign nonlinearity of DEel and DEmag, we arrive at the following

variational evolution problem: seek a(t) ∈ HΛ 1(Ω) with (tΓe a)(t) = −
∫ t

0 ge(τ)dτ
such that

〈
DEmag(d1 a(t)),d1 a′

〉
− ∂t

〈
DE

∗
el(−∂ta(t)),a

′
〉
+
∫

Γi

Z(−∂t tΓi
a(t))∧a′ =

−
∫

Γm

gm(t)∧a′ +
∫

Ω
j(t)∧a′ , (38)

for all a′ ∈ HΛ 1(Ω) satisfying tΓe a′ = 0.

➋ In the case of the h-based variational formulation (35)

☞ electric boundary conditions become natural boundary conditions and show

up on the right hand side of the variational formulation,

☞ magnetic boundary conditions have to be imposed on trial and test 1-forms,

that is, they are essential,

☞ impedance boundary conditions engender another contribution to the left hand

side of the variational formulation.

Hence, taking into account the various boundary conditions, the variational for-

mulation becomes: Seek a temporal primitive h̃(t) ∈ HΛ 1(Ω) of the magnetic field

with tΓm h̃(t) =
t∫

0

gm(τ)dτ , such that

〈
DEel(d(0)+d1 h̃(t)−

∫ t

0
j(τ)dτ),d1 h′

〉
+ ∂t

〈
DE

∗
mag(∂t h̃(t)),h

′
〉
+

∫

Γi

Z−1(∂t h̃(t))∧h′ =−

∫

Γe

ge(t)∧h′ , (39)

for all h′ ∈ HΛ 1(Ω) with tΓm h′ = 0.
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Remark 9. When viewing electric boundary conditions as Dirichlet boundary condi-

tions, magnetic boundary conditions as Neumann boundary conditions, and relating

impedance boundary conditions to Robin boundary conditions, striking similarities

between Maxwell’s equations and scalar second-order elliptic evolution problems

become apparent. This is not a coincidence, because both Maxwell’s equations and

the scalar wave equation belong to a single family of evolution problems. Using

exterior calculus, they can even be stated in a unified way. Some details are give in

Section 4.1 and a comprehensive discussion can be found in [33, Sect. 2].

3 Co-chains and Whitney Forms

Now we are concerned with the discretization of electromagnetic fields. The key

insight from Section 2.1 was that, from a non-local point of view, fields are integral

ℓ-forms, cf. Definition 1, assigning (real/complex) values to oriented ℓ-dimensional

submanifolds of R3. Discretization means that we switch to a description of the

fields involving only finitely many degrees of freedom. To begin with, the choice

of these degrees of freedom will be guided by our understanding of integral forms.

Then, in the spirit of Finite Element Exterior Calculus (FEEC), we pursue the con-

struction of discrete differential forms that are valid integral forms, uniquely deter-

mined by the degrees of freedom, and satisfy fundamental algebraic properties with

respect to the exterior derivative. We also study a key tool in FEEC: commuting

projectors.

Bibliographical notes

The topics of these section are covered in [6, Sects. 2-5], and [35, Sect. 3], and some

aspects are addressed in [19, Ch. IV]. A complete survey of discrete differential

forms is given in the Periodic Table of Finite Elements by D. Arnold [4]. Using

vector proxies, discrete differential forms can be treated as classical (mixed, vector

valued) finite element functions. This is the perspective adopted in [11, Sects. 2.3-

2.6] and [40, Ch. 5-6]. Some of the ideas and results presented below are fairly

recent and covered only in research articles, which are cited locally.

3.1 Meshes

We aim for discrete fields that are mappings from a finite number of oriented

ℓ-dimensional submanifolds of R
3 to R (or C). However, arbitrary sets of sub-

manifolds will usually not be eligible, because Maxwell’s equations in integral form

as stated in (FL) and (AL) rely on the concept of a boundary of a surface. Thus, the
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set of submanifolds in the representation of discrete fields must be closed with re-

spect to the boundary operator ∂ . Such special sets are given in the next definition,

cf. [12, Sect. 5.2.1], [19, Sect. 14]. In fact, it describes special instances of so-called

cell complexes [7, Sect. 3.1].

Definition 4 (Mesh/triangulation [35, Def. 3]). A mesh/triangulation Th of a

bounded domain Ω ⊂ R3 is a finite collection of oriented cells (→ set F3(Th)
of 3-facets), faces (→ set F2(Th) of 2-facets), edges (→ set F1(Th) of 1-facets),

and vertices (→ set F0(Th) of 0-facets) such that

(i) every ℓ-facet f ∈Fℓ(Th) is the diffeomorphic image of an open non-degenerate

polytope in Rℓ,

(ii) F0(Th)∪F1(Th)∪F2(Th)∪F3(Th) is a partition of Ω ,

(iii) for every F ∈ Fℓ(Th), 0 < ℓ ≤ 3, there are f1, . . . , fm ∈ Fℓ−1(Th) such that

∂F = f 1 ∪·· ·∪ f m,

(iv) for each f ∈ Fℓ(Th), 0 ≤ ℓ < 3, there is a F ∈ Fℓ+1(Th) such that f ⊂ ∂F .

The generic term for the elements of Fℓ(Th) is ℓ-facets.

A special type of meshes are tetrahedral meshes, whose faces are (flat) triangles,

whereas all cells are tetrahedra, see Figure 4. Another special case are tensor product

meshes, for which the cells are axis aligned bricks and the faces are squares. Of

course, all the meshes can be subject to global homeomorphisms of R3 and will

remain valid meshes under this transformation.

Fig. 4 Oriented tetrahedron:

cell of a tetrahedral mesh.

The orientation of the edges

is given by their directions,

the orientation of the face

by “sense to turn on the

tangential plane”, the orien-

tation of the tetrahedron by a

corkscrew rule [19, Fig. 14.2].

3.2 Co-chains

3.2.1 Definition

Sloppily speaking, co-chains are discrete versions of integral forms [35, Sect. 3.1].
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Definition 5 (Co-chain [35, Def. 4]). An ℓ-co-chain ω̌ , ℓ ∈ {0,1,2,3}, on a mesh

Th of Ω is a mapping ω̌ : Fℓ(Th)→ R.

The values an ℓ-co-chain assigns to ℓ-facets are sometimes called coefficients or

degrees of freedom (d.o.f.). Figure 5 illustrates the phrase “the d.o.f. of an ℓ-co-

chain are located on the ℓ-facets”. Obviously, the ℓ-co-chains on a fixed mesh Th

form a vector space C ℓ(Th) with dimension

dimC
ℓ(Th) = ♯Fℓ(Th) . (40)

Thus, after ordering the ℓ-facets of Th, we can identify C ℓ(Th)∼= R
♯Fℓ(Th).

0-co-chain: 1-co-chain:

2-co-chain: 3-co-chain:

Fig. 5: “Locations” of degrees of freedoms for different co-chains

3.2.2 Co-chain calculus

In Sections 2.2.3 and 2.3.2 we learned about fundamental concepts in the calculus of

(differential) forms, the trace and the exterior derivative. Those remain meaningful

for co-chains. For instance, the trace of a co-chain ω̌ ∈ C ℓ(Th), ℓ ∈ {0,1,2}, onto

∂Ω is just the restriction of ω̌ to { f ∈ Fℓ(Th) : f ⊂ ∂Ω}.

To define the (discrete) exterior derivative of co-chains, we need the notion of

relative orientation of two facets F ∈ Fℓ(Th) and f ∈ Fℓ−1(Th), 0 < ℓ≤ 3:

σr( f ,F) :=





1 , if f ⊂ ∂F and orientations of f and ∂F match,

−1 , if f ⊂ ∂F and orientations of f and ∂F do not match,

0 , if f 6⊂ ∂F .

(41)
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Definition 6 (Discrete exterior derivative). The discrete exterior derivative of co-

chains is a mapping dℓ : C ℓ(Th)→ C ℓ+1(Th), 0 ≤ ℓ < 3, defined by

(dℓ ω̌)(F) := ∑
f∈Fℓ(Th)

σr( f ,F) ω̌( f ) , F ∈ Fℓ+1(Th) .

Discrete gradient

-1

+1

-1-1

D0: vertex-edge incidence

matrix

Discrete rotation

+1
+1

-1

D1: edge-face incidence matrix

Discrete divergence

+1

+1

+1

+1

D2: face-cell incidence matrix

Fig. 6: Visualization of the action of the discrete exterior derivatives of co-chains on

a 3D mesh through local stencils [35, Fig. 3.1]

Figure 6 illustrates the action of the discrete exterior derivatives on the d.o.f.s of

co-chains. Obviously, dℓ : C ℓ(Th)→C ℓ+1(Th) is a linear operator. Thus, assuming

an ordering of the facets, dℓ can be represented by a matrix Dℓ ∈ {−1,0,1}Nℓ+1,Nℓ ,

N j := dimC j(Th) = ♯F j(Th). These matrices are the so-called incidence matrices

of the mesh [19, Sect. 14], see also Figure 6.

A simple computation shows that the analogue of Theorem 2 holds for the dis-

crete exterior derivative:

Theorem 7. dℓ+1 ◦dℓ = 0 ⇔ Dℓ+1Dℓ = 0, ℓ ∈ {0,1,2}.

There is also a counterpart of Theorem 4 for co-chains [35, Thm. 3.1]:

Theorem 8 (Co-chain potentials). If Ω has trivial topology, then

Ker(dℓ) := {ω̌ ∈ C
ℓ(Th) : dℓ ω̌ = 0}= dℓ−1 C

ℓ−1(Th) ⇔ KerDℓ = ImDℓ−1.

3.3 Discrete electrodynamic laws

Since the co-chain calculus furnishes a counterpart of the exterior derivative, the

topological electrodynamic laws (FL) and (AL) can be lifted to the discrete setting.

To do so, we consider a mesh Th of a bounded domain Ω ⊂ R3 and introduce the

co-chain sampling operators (also called de Rham maps)
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Sℓ :

{
F ℓ(Ω) → C ℓ(Th)

ω 7→
(∫

f ω
)

f∈Fℓ(Th)

, ℓ ∈ {0,1,2,3} . (42)

These operators evaluate integral forms for the special submanifolds provided by

the mesh Th. Owing to the compatibility of the exterior derivative dℓ (Definition 3)

and of its co-chain version dℓ (Definition 6), there holds

dℓ ◦Sℓ = Sℓ+1 ◦dℓ on F
ℓ(Ω) . (43)

This renders Sℓ the perfect tool for “projecting” Maxwell’s equations (FL), (AL)

onto co-chains. To do this, let the (integral) forms e,b,h,d, j solve (FL) and (AL)

on Ω . Then we may define their co-chain interpolants:

ě := S1e , b̌ := S2b , ȟ := S1h , ď := S2d , ǰ := S2j .

From the integral forms (FL) and (AL) and (42) it is immediate that these co-chains

fulfill:

D1ě =−∂t b̌ , (44a)

D1ȟ = ∂t ď+ ǰ . (44b)

Here, the co-chains are viewed as vectors of d.o.f.s and the discrete exterior deriva-

tives have been replaced with the corresponding incidence matrices. The equations

(44) may be regarded as circuit equations; for instance, (44a) is an electric network

formed by the edges of the mesh with faces defining the loops. Sometimes the fact

that the interpolants exactly satisfy the circuit equations is advertised as “perfect

consistency of the co-chain model”.

It goes without saying that Theorems 7 and 8 lead to co-chain versions of the con-

tinuity equation (4) and discrete electromagnetic potentials in C 1(Th) and C 0(Th),
respectively, satisfying (10) on the co-chain side. Also for co-chain potentials we

have gauge freedom similar to (11).

3.4 Whitney forms

3.4.1 Whitney map

Co-chain calculus could capture the topological electrodynamic laws, but cannot

accommodate the material laws (18), which require square integrable differential

form arguments defined almost everywhere in Ω . Thus we need an “interpolation”

device for reconstructing (integral) forms ∈ L2Λ ℓ(Ω) from co-chains ∈ C ℓ(Th).
This will be accomplished by linear “extension operators”

Wℓ : C
ℓ(Th)→ L2Λ ℓ(Ω) , (45)
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called Whitney maps in [47]. We dub its range the space of Whitney ℓ-forms and

write

W
ℓ(Th) :=Wℓ(C

ℓ(Th)) . (46)

Before we delve into concrete constructions, we state a few fundamental alge-

braic properties of Wℓ as guidelines [35, Sect. 3.2]

(W1) Extension property:

Sℓ ◦Wℓ = Id on C
ℓ(Th) . (47)

(If one interpolates an extended co-chain, the same co-chain is recovered.)

(W2) Compatibility with exterior derivatives:

dℓ ◦Wℓ =Wℓ+1 ◦dℓ on C
ℓ(Th) . (48)

(Extending the discrete exterior derivative of a co-chain yields the same as the

exterior derivative of the extended co-chain.)

(W3) Locality: for all T ∈ Th and ω̌ ∈ C ℓ(Th)

ω̌( f ) = 0 ∀ f ∈ Fℓ(Th), f ⊂ T ⇒ Wℓω̌ |T = 0 . (49)

(If a co-chain is zero on all ℓ-facets contained in the boundary of a mesh cell, its

extension must vanish on the whole cell.)

(W4) Polynomial:

∀ω̌ ∈ C
ℓ(Th), T ∈ Th :

Wℓω̌ |T ∈C∞Λ ℓ(T ) and

x ∈ T 7→
(
(Wℓω̌)(x)

)
(v) affine linear ∀v ∈R

3 .

(50)

(On each cell of the mesh the extended form is a valid smooth differential form

according to Definition 1 with affine linear vector proxies.)

A projection, called the nodal interpolation operator is obtain by combining

extension with sampling

Iℓ : F
ℓ(Ω)→ W

ℓ , Iℓ :=Wℓ ◦Sℓ . (51)

The projection property is straightforward from (47). From (48) and (43) we infer

that nodal interpolation meshes well with the exterior derivative.

Lemma 2 (Commuting diagram property for nodal interpolation).

dℓ ◦Iℓ = Iℓ+1 ◦dℓ on F
ℓ(Ω) .

The locality property (W3) of the Whitney map implies strict locality of nodal

interpolation.
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Lemma 3 (Locality of nodal interpolation).

∀ω ∈ F
ℓ(Ω), T ∈ Th : ω |T = 0 ⇒ (Iℓω)|T = 0 .

3.4.2 Local construction of simplicial Whitney forms

We consider a simplicial mesh, whose cells are tetrahedra and single out a tetra-

hedron T := convex{a1,a2,a3,a4}. On T we build concrete instances of Whitney

maps Wℓ, 0 ≤ ℓ < 3, following an idea of A. Bossavit [19, Sect. 23].

➊ ℓ= 0: We are given values ω̌(a j), j = 1,2,3,4, for a 0-co-chain in the vertices

of T and seek to extend them linearly. Of course, this will boil down to standard

linear interpolation, but we are going to view it from a different angle.

A point x ∈ T can be written as a “weighted combination of the vertices”:

x =
4

∑
j=1

λ j(x) , (52)

where the functions λ j : T → [0,1] are the barycentric coordinates of T : λ j(ak) =
δ jk, δ the Kronecker symbol [6, Sect. 4.1]. Inspired by this formula, we express

W0ω̌ as a corresponding linear combination of vertex values:

(W0ω̌)(x) :=
4

∑
j=1

λ j(x)ω̌(a j) , (53)

which results in plain old linear interpolation.

➋ ℓ = 1: Now we are given edge values ω̌([ai,a j]), where [ai,a j] stands for the

edge connecting ai and a j. Adapting the idea from ℓ = 0, in analogy to (52), we

write an arbitrary line segment [x,y] ⊂ T as a “weighted sum of edges of T ”, see

Figure 7:

[x,y] ={tx+(1− t)y ; 0 ≤ t ≤ 1}

=

{

∑
i

(tλi(x)+ (1− t)λi(y))ai ; 0 ≤ t ≤ 1

}

=

{

∑
i

(
t ∑

j

λ j(y)λi(x)+ (1− t)∑
j

λ j(x)λi(y)

)
ai ; 0 ≤ t ≤ 1

}

=

{

∑
i

∑
j

λi(x)λ j(y)(tai +(1− t)a j) ; 0 ≤ t ≤ 1

}
.

(54)

Taking the cue from (53) this suggests the definition
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∫

[x,y]

W1ω̌ :=∑
i

∑
j

λi(x)λ j(y)ω̌([ai,a j])

:=∑
i< j

(λi(x)λ j(y)−λi(y)λ j(x)) ω̌([ai,a j]) .

(55)

Fig. 7 A line segment [x,y]
inside the tetrahedron T . The

set equation (54) writes it as a

weighted sum of edges of T . a1

a2

a3

a4
x

y

[x,y]

➌ ℓ = 2: The 2-co-chain ω̌ is determined on T by the values ω̌([ai,a j,ak]) it

assigns to the faces of T , here designated by a triple of vertices. Similar to (54)

we may write an oriented triangle [x,y,z] as a combination of faces of T weighted

with products barycentric coordinate functions. The formula, which we skip here,

suggests the definition

∫

[x,y,z]

W2ω̌ :=
4

∑
i=1

4

∑
j=1

4

∑
k=1

λi(x)λ j(y)λk(z)ω̌([ai,a j,ak])

:= ∑
i< j<k

(λi(x)λ j(y)λk(z)+λk(x)λi(y)λ j(z)+λ j(x)λk(y)λi(z)) ω̌([ai,a j,ak])

(56)

The forms obtained through (55) and (56) are clearly smooth and by Formula 1

we can recover the associated differential forms according to Definition 1. For in-

stance, from (55) we obtain for x ∈ T and all v ∈ R
3

(W1ω̌)(x)(v) = lim
t→0

1

t

∫

[x,x+tv]

W1ω̌

= lim
t→0

∑
i< j

(λi(x)
λ j(x+ tv)−λ j(x)

t
−λ j(x)

λi(x+ tv)−λi(x)

t
)ω̌([ai,a j])

= ∑
i< j

(λi(x)d0 λ j(x)(v)−λ j(x)d0 λi(x)(v))ω̌([ai,a j]) .
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The 1-forms β 1
i, j := λi d0 λ j −λ j d0 λi play the role of “local shape functions” or “lo-

cal basis forms”. They arise from extending a “unit 1-co-chain” and their Euclidean

vector proxies read, see (5) and (15),

V.P.(β 1
i, j) = λi gradλ j −λ j gradλi . (57)

The same manipulation succeeds for (56) yield for x ∈ T and any two vectors

v,w ∈ R3

(W2ω̌)(x)(v,w) = lim
t→0

2

t2

∫

[x,x+tv,x+tw]

W2ω̌

= 2 ∑
i< j<k

(
λi(x)

(
d0 λ j(x)∧d0 λk(x)

)
(v,w)−

λ j(x)
(
d0 λi(x)∧d0 λk(x)

)
(v,w)+

λk(x)
(
d0 λi(x)∧d0 λ j(x)

)
(v,w)

)
ω̌([ai,a j,ak]) .

We can read off the local basis 2-forms

β 2
i, j,k := λi

(
d0 λ j ∧d0 λk

)
−λ j

(
d0 λi ∧d0 λk

)
+λk

(
d0 λi ∧d0 λ j

)
,

whose vector proxies are

V.P.(β 2
i, j,k) = λi gradλ j × gradλk +λ j gradλk × gradλi +λk gradλi × gradλ j .

(58)

From the vector proxies of the local basis forms we get alternative vector analytic

representations of the spaces spanned by them, see Table 3. We point out that all

the local spaces contain the constant functions and all the vector proxies are linear

functions, as we demanded in property (W4).

Table 3 also gives the linear functionals underlying the sampling operators Sℓ,

the so-called “local degrees of freedom”. Their form in vector proxy notation can

be deduced from (2).

Degree Local spaces Local d.o.f.

ℓ= 0 W 0(T ) = {x 7→ a · x+β , a ∈ R
3,β ∈R} −→u 7→ −→u (ai)

ℓ= 1 W 1(T ) = {x 7→ a× x+b, a,b ∈ R3} −→u 7→
∫
[ai,a j ]

−→u ·ds

ℓ= 2 W 2(T ) = {x 7→ αx+b, α ∈ R,b ∈ R
3} −→u 7→

∫
[ai,a j ,ak]

−→u ·ndS

ℓ= 3 W 3(T ) = {x 7→ α , α ∈R} −→u 7→
∫

T
−→u dx

Table 3: Vector analytic (vector proxy) formulas for the local spaces on a tetrahedron

spanned by the local basis forms

Remark 10. This procedure can even be generalized to ℓ-co-chains in arbitrary di-

mension n and an n-simplex T ⊂ Rn, n ∈ N:
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(Wℓω̌)(x) = ∑
I

ℓ

∑
j=0

(−1) j
(

λi j
d0 λi0 ∧ . . .∧d0 λi j

∧ . . .∧d0 λiℓ︸ ︷︷ ︸
β ℓ

I

)
· ω̌([aI ])

where I = (i0, . . . , iℓ), 0 ≤ l ≤ n, runs through all ℓ+1-subsets of {0, . . . ,n} and the

ordering is induced by the orientation of the corresponding ℓ-facet [ai0 , . . . ,aiℓ ]. The

symbol ω̌([aI]) stands for value assigned by the ℓ-co-chain coefficient associated

with that facet. Of course, the β ℓ
I can be regarded as local basis forms.

3.4.3 Local commuting diagram property

Let us examine the commuting property (48) for the extensions defined by (53), (55),

and (56). We do this locally on a tetrahedron T . First, for ℓ = 0, given a 0-co-chain

ω̌ ∈ C 0(Th) and x,y ∈ T , we find, thanks to ∑4
j=1 λ j ≡ 1,

∫

[x,y]

W1(d0 ω̌) =
4

∑
i=1

4

∑
j=1

λi(x)λ j(y)(d0 ω̌)([ai,a j])

=
4

∑
i=1

4

∑
j=1

λi(x)λ j(y)
(
ω̌(a j)− ω̌(ai)

)

=
4

∑
j=1

λ j(y)ω̌(a j)−
4

∑
i=1

λi(x)ω̌(ai)

= (W0(ω̌))(y)− (W0(ω̌))(x) =

∫

∂ [x,y]

W0ω̌ =

∫

[x,y]

d0W0ω̌ ,

by definition of the exterior derivative. This amounts to (48) for ℓ = 0, because x

and y have been arbitrary.

In the case ℓ = 1 we proceed along similar lines and pick x,y,z ∈ T , write △ :=
[x,y,z] and get on T for ω̌ ∈ C 2(Th)

∫

△

W2(d1 ω̌) = ∑
i, j,k

λi(x)λ j(y)λk(z)
(
d1(ω̌)

)
([ai,a j,ak])

= ∑
i, j,k

λi(x)λ j(y)λk(z)(ω̌([ai.a j])+ ω̌([a j.ak])+ ω̌([ak.ai]))

= ∑
i, j

λi(x)λ j(y)ω̌([ai,a j])+

∑
j,k

λ j(y)λk(z)ω̌([a j,ak])+

∑
k,i

λk(z)λi(x)ω̌([ak,ai])
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=

∫

[x,y]

W1ω̌ +

∫

[y,z]

W1ω̌ +

∫

[z,x]

W1ω̌ =

∫

∂ [x,y,z]

W1ω̌ =

∫

[x,y,z]

d1W1ω̌ .

Since this holds for any triangle inside T we conclude (48) for ℓ = 1. Of course,

when adopting the above construction of Wℓ in any dimension, (48) will always

hold.

3.4.4 Global Whitney forms

Thus far, the construction of Wℓ has been utterly local. We aim for a integral form

on the entire domain Ω , however. According to Lemma 1 we have to verify that the

traces of the local co-chain extensions agree on both sides of all faces of the mesh.

This is ensured, once we can demonstrate that the trace of Wℓ, 0 ≤ ℓ < 3, onto a face

f ∈F2(Th) depends only on the (unique) co-chain coefficients associated with that

face.

To discuss this for ℓ = 1 we pick a tetrahedron T = [a1,a2,a3,a4] and, without

loss of generality, the face f = [a1,a2,a3]. For any x,y ∈ f the construction gives

∑
[x,y]

W1(ω̌) =
4

∑
i=1

4

∑
j=1

λi(x)λ j(y) ω̌([ai,a j]) = ∑
i:ai∈ f

∑
j:a j∈ f

λi(x)λ j(y) ω̌([ai,a j]) ,

because barycentric coordinate functions not belonging to vertices of f vanish on

that face. Hence t fW1ω̌ depends only on ω̌ | f and will be independent of the adja-

cent tetrahedron on which we have built the Whitney map, cf. Figure 8.

Fig. 8 The compatibility

of local extensions of 1-co-

chains in 2D by means of the

Whitney map. The underlying

co-chain had coefficient 1

for the vertical edge, 0 on all

other edges. The tangential

continuity of the vector prox-

ies hints at the agreement of

traces of the local extensions.

Summing up, the local constructions introduced in the previous section define

integral forms on Ω and, thus, spaces W ℓ(Th) ⊂ L2Λ ℓ(Ω) of Whitney ℓ-forms

on the tetrahedral mesh Th. By construction, the elements of W ℓ(Th) are valid

integral forms, because their integrals make sense for any ℓ-dimensional oriented

sub-manifold of Ω .
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3.4.5 Affine equivalence

There is a unique affine map Φ between any two non-degenerate tetrahedra T and T̂

such that T =Φ(T̂ ). To begin with, since the pullback operator Φ∗ from Definition 2

commutes with both the exterior derivative and the wedge product, we readily infer

from the formulas for the local basis forms given in Section 3.4.2 that those are

mapped onto each other under pullback

β̂ ℓ
f̂
= Φ∗β ℓ

f , f = Φ( f̂ ) .

Here β̂ ℓ
f̂

is the basis form on T̂ associated with the ℓ-dimensional facet f̂ of T̂ ,

and β ℓ
f a basis form on T belonging to the ℓ-facet f of T . This is a key property,

known as “affine equivalence” in the theory of finite elements [24, Sect. 2.3]. As a

consequence the pullback also transforms local spaces of Whitney forms into each

other.

Remark 11. Invariance under pullback paves the way for defining parametric Whit-

ney forms, cf. [24, Sect. 4.3]. If the cells of a mesh are obtained as diffeomorphic

images of a single simplex, inverse pullbacks of Whitney forms on that simplex sup-

ply the building blocks for piecewise smooth integral forms with facet integrals as

degrees of freedom.

3.4.6 General discrete differential forms

The Whitney forms introduced above are just the simplest (lowest order) represen-

tatives of families of discrete differential forms on meshes that comprise members

of any local polynomial degree, the higher order discrete differential forms.

There is a unified way to obtain generalizations of Whitney forms on simpli-

cial meshes in any dimension and of arbitrarily high polynomial degree. This was

pioneered in [32] and fully elaborated in [6, Section 4], using a device from co-

homology theory, the Koszul lifting. Possible degrees of freedom for these discrete

differential forms are weighted traces on suitable facets of the mesh (“moments”),

but there might be more “geometric” choices, see [19, Sect. 25] and [43]. Yet, the

principal concern when choosing local basis functions for higher order discrete dif-

ferential are computational aspects like ease of evaluation [1], conditioning of the

resulting linear systems [2], or separation of functions in the kernel of dℓ [34, 48].

Counterparts of Whitney forms have been found for tensor product meshes,

see [5] for their construction, and even on hybrid meshes comprising tetrahedra,

hexahedra, and prisms [9,10,41]. Suitable higher order extensions are also described

in these articles.
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3.5 Commuting projections

3.5.1 Nodal interpolation

The nodal interpolation operators Iℓ from (51) for Whitney forms satisfy the very

special properties of perfect locality (Lemma 3) and that they commute with the

exterior derivative (Lemma 2). These extraordinary features are somewhat marred

by the fact that, in 3D,

except for ℓ = 3, the nodal interpolation operators Iℓ are not

bounded on the energy space HΛ ℓ(Ω), as defined in (31).

This is well known for ℓ = 0: the point sampling operator S0 is not bounded on

the standard Sobolev space H1(Ω), because there is no continuous embedding of

H1(Ω) into C0(Ω), as H1(Ω) contains unbounded functions. In 3D counterexam-

ples can easily be constructed for ℓ = 1,2, too. Even worse, for ℓ = 1 the operator

I1 fails to be bounded even on the space of vectorfields with components in H1(Ω),
though the norm of this space is clearly stronger than that of H(curl,Ω).

This flaw thwarts interpolation error estimates of the form
∥∥−→u − I1

−→u
∥∥

L2(Ω)
≤

Ch
∥∥−→u
∥∥

H1(Ω)
with a constant independent of

−→u (h is the mesh width of Th). We

have to settle for estimates like [35, Thm. 3.14]

∥∥−→u − I1
−→u
∥∥

L2(Ω)
≤Ch

(∥∥−→u
∥∥

H1(Ω)
+
∥∥curl−→u

∥∥
H1(Ω)

)
∀−→u sufficiently smooth ,

(59)

where C > 0 depends only on the shape regularity of the mesh (The notion of shape

regularity of a mesh is presented, e.g., in [35, Section 3.6] following [24, Sec-

tion 3.1].). Yet, for many purposes in numerical analysis (59) is not sufficient.

Fortunately, there is a very special interpolation error estimate for ℓ= 1 that often

comes handy [35, Lemma 4.6]:

Lemma 4. The interpolation operator I1 : C∞(Λ 1(Ω))→ W 1 can be extended to a

bounded operator on {−→u ∈ (H1(Ω))3 : curl−→u ∈W 2(Th)} (a space of vectorfields

with components in H1(Ω), whose curls are piecewise constant) and satisfies

∥∥−→u − I1
−→u
∥∥

L2(Ω)
≤Ch

∣∣−→u
∣∣
H1(Ω)

∀−→u ∈ (H1(Ω))3, curl−→u ∈ W
2(Th) ,

with a constant C > 0 depending only on the shape regularity of the mesh Th.

Proof. Pick one tetrahedron T ∈ Th and, without loss of generality, assume 0 ∈ T .

Then define the lifting operator, cf. the “Koszul lifting” [6, Sect. 3.2],

−→w 7→ K
−→w , K

−→w (x) := 1
3
−→w (x)× x , x ∈ T . (60)

Elementary calculations reveal that for any constant vectorfield −→w ≡ const.

curlK−→w =−→w , (61)
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∥∥K−→w
∥∥

L2(T)
≤ hT

∥∥−→w
∥∥

L2(T )
, (62)

K
−→w ∈ W

1(T ) . (63)

Here hT is the size of T . The continuity (62) permits us to extend K to (L2(T ))3.

Given −→u ∈ (H1(T ))3 with curl−→u ≡ const3, by (63) we know that Kcurl−→u is a

linear function. Thus, an inverse inequality yields

∣∣Kcurl−→u
∣∣
H1(T)

≤Ch−1
T

∥∥Kcurl−→u
∥∥

L2(T )

(62)

≤ C
∥∥curl−→u

∥∥
L2(T )

, (64)

with C > 0 depending only on shape regularity of T . Next, by (61) and the existence

of a scalar potential, see (8),

curl(−→u −Kcurl−→u ) = 0 ⇒ ∃−→p ∈ H1(T ) :
−→u −Kcurl−→u = grad−→p .

(65)

From (64) we conclude that −→p ∈ H2(T ) and |−→p |H2(T ) ≤ C
∣∣−→u
∣∣
H1(T )

. Moreover,

thanks to the commuting diagram property we have

−→u − I1
−→u = Kcurl−→u − I1Kcurl−→u︸ ︷︷ ︸

=0 by (63)

+grad(−→p − I0
−→p ) . (66)

Next, recall that I0 agrees with standard linear interpolation on a tetrahedron.

That is bounded on H2(T ) and its interpolation error satisfies |−→p − I0
−→p |H1(T ) ≤

ChT |
−→p |H2(T ). Thus, we arrive at

∥∥−→u − I1
−→u
∥∥

L2(T )
= |−→p − I0

−→p |H1(T ) ≤ChT |
−→p |H2(T ) ≤ChT

∣∣−→u
∣∣
H1(T )

.

Summation over all tetrahedra of the mesh finishes the proof.

3.5.2 Decomposition based projections

If boundedness on HΛ ℓ(Ω) (defined in (31)) and the commuting diagram property

matter most and one can dispense with locality (Lemma 3), there is a simple re-

placement for nodal interpolation. We review its construction for a bounded domain

Ω ⊂ R3 with trivial topology, cf. Theorem 4, equipped with a tetrahedral mesh Th.

As tools we use

(i) the L2Λ ℓ(Ω)-orthogonal Helmholtz decomposition [40, Sect. 3.7]:

L2Λ ℓ(Ω) = dℓ−1 HΛ ℓ−1(Ω)︸ ︷︷ ︸
=Ker(dℓ)∩W ℓ(Th)

⊕X
ℓ(Ω) . (67)

For ℓ= 0, the first space should be replaced by the set of constant functions. On

the complement of Ker(dℓ) there holds, cf. [35, Cor. 4.4],
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‖ω‖L2Λ ℓ(Ω) ≤C‖dℓ ω‖L2Λ ℓ+1(Ω) ∀ω ∈ X
ℓ(Ω) , (68)

with constants C > 0 depending only on Ω .

(ii) the L2Λ ℓ(Ω)-orthogonal discrete Helmholtz decomposition

W
ℓ(Th) = dℓ−1 W

ℓ−1(Th)⊕X
ℓ(Th) , (69)

where the first space coincides with the kernel of dℓ in W ℓ for ℓ > 0, and, again,

is the constant functions for ℓ= 0.

The estimate (68) remains true for Whitney forms. As a tool the proof uses

Lemma 4 and so-called regular decompositions that will be introduced later in Sec-

tion 4.4, Page 42.

Lemma 5 (Discrete Friedrichs inequality [35, Thm. 4.7]). With a constant de-

pending only on Ω and the shape regularity of the mesh Th

‖ωh‖L2Λ ℓ(Ω) ≤C‖dℓ ωh‖L2Λ ℓ+1(Ω) ∀ωh ∈ X
ℓ(Th) .

Next, we introduce a lifting operator Lℓ : HΛ ℓ(Ω)→ X ℓ−1(Th) by

(dℓ−1Lℓω −ω,dℓ−1 ηh)L2Λ ℓ(Ω) = 0 ∀ηh ∈ X
ℓ−1(Th) . (70)

Since the kernel of dℓ−1 has been removed from X ℓ−1(Th), this is a valid definition.

It is the key ingredient in

Pℓ := dℓ−1◦Lℓ+Lℓ+1 ◦dℓ . (71)

Lemma 6 (“Helmholtz projection”). The linear operator Pℓ according to (71) is a

bounded projector HΛ ℓ(Ω)→ W ℓ(Th) and commutes with the exterior derivative.

Proof. To see that P2
ℓ = Pℓ note that dℓ−1(Lℓωh) = ωh for all ωh ∈ Ker(dℓ) ∩

W ℓ(Th) and Lℓ+1dℓ ωh = ωh for all ωh ∈ X ℓ(Th).
Clearly, ‖dℓ−1Lℓω‖L2Λ ℓ(Ω) ≤ ‖ω‖L2Λ ℓ(Ω) for every ω ∈ L2Λ ℓ(Ω). Then, by

virtue of Lemma 5, Lℓ : HΛ ℓ(Ω) → HΛ ℓ−1(Ω) is bounded. The boundedness of

Pℓ : HΛ ℓ(Ω)→ HΛ ℓ(Ω) is an immediate consequence.

The commuting diagram property follows from dℓ ◦dℓ−1 = 0:

dℓ ◦Pℓ = dℓ ◦Lℓ+1 ◦dℓ = (dℓ ◦Lℓ+1 +Lℓ+2 ◦dℓ+1)◦dℓ = Pℓ+1 ◦dℓ .

Evidently, both Helmholtz decompositions have a distinctly non-local character,

because they both rely on the L2Λ ℓ(Ω) inner product on Ω . Thus,Pℓ cannot be local

in the sense that Pℓω |T for T ∈ Th depends only on ω restricted to a neighborhood

of T .
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3.5.3 Local quasi-interpolation

The first to achieve a breakthrough was J. Schöberl in [46], a manuscript that was

published only as a technical report. He was inspired by the well-known so-called

quasi-interpolation operator, see [42, Sect. 2.1.1]

Q0 :

{
L2Λ 0(Ω) → W 0(Th) ,

ω 7→ ∑
p∈F0(Th)

∫
Tp

wp(x)ω(x)dx ·β 0
p , (72)

where Tp ∈ F3(Th) is a cell abutting the vertex p, and wp ∈ L∞(Ω) is a function

supported on Tp that satisfies

∫

Ω
wpβ 0

q dx =

{
1 , if p = q ,

0 , otherwise,
p,q ∈ F0(Th) . (73)

These properties ensure that Q0 is a bounded projector: Q2
0 = Q0. Moreover, func-

tions that are constant in a local neighborhood of T are preserved on T .

Schöberl’s feat was to generalize Q0 to a family of bounded operators Qℓ :

L2Λ ℓ(Ω)→ W ℓ(Th) defined as

Q1ω := ∑
[x,y]∈F1(Th)



∫

Tx

∫

Ty

wx(x
′)wy(y

′){

∫

[x′,y′]

ω} dy′ dx′


 ·β 1

[x,y] , (74)

Q2ω := ∑
[x,y,z]∈F2(Th)



∫

Tx

∫

Ty

∫

Tz

wx(x
′)wy(y

′)wz(z
′){

∫

[x′,y′,z′]

ω} dz′ dy′ dx′


 ·β 2

[x,y,z] .

(75)

All these operators satisfy dℓ ◦Qℓ =Qℓ+1 ◦dℓ and enjoy the approximation property

‖ω −Qℓω‖L2Λ ℓ(Ω) ≤Ch |ω |H1Λ ℓ(Ω) , ∀ω ∈ H1Λ ℓ(Ω) , (76)

with C > 0 depending only on shape regularity. Here H1Λ ℓ(Ω) designates the space

of ℓ-forms with vector proxy components in H1(Ω). However, except for Q0 the

other quasi-interpolation operators are no projections. The same flaw also marred a

mollifier based construction presented in [23].

The ultimate solution, an explicit formula providing bounded, local, commuting,

projectors that map HΛ ℓ(Ω)→ W ℓ(Th) for any simplicial mesh in any dimension

n and 0 ≤ ℓ ≤ n, was only recently discovered by R. Falk and R. Winther in [29,

Eq. (4.2)]. As Schöberl’s invention, it is a quasi-interpolation based on weighted

local integrals. Unfortunately, the scheme is too complicated to be covered here in

detail and we merely summarize the result, which is an immensely powerful tool in

the numerical analysis of discrete differential forms.
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Theorem 9 (Falk-Winther local commuting projections [29, Thms. 4.5, 4.7,

5.2]). For any simplicial mesh Th of Ω ⊂ Rn there is a family of linear bounded

projection operators Qℓ : HΛ ℓ(Ω)→ W ℓ(Th), ℓ ∈ {0, . . . ,n}, such that

(i) they commute with the exterior derivative

Qℓ+1 ◦dℓ = dℓ ◦Qℓ on HΛ ℓ(Ω) , (77)

(ii) they are quasi-local: for all T ∈ Th the restriction Qω |T depends only on ω
restricted to a mesh-neighborhood ΩT of T ,

(iii) they satisfy the approximation property

‖ω −Qℓω‖L2Λ ℓ(T ) ≤ChT |ω |H1Λ ℓ(ΩT )
, ∀ω ∈ H1Λ ℓ(ΩT ) , (78)

where C > 0 depends only on the shape regularity of Th and ℓ.

Indeed, the construction in [29] even covers higher-order generalizations of

Whitney forms. A simplified presentation for Whitney forms in 2D is given in [30].

4 Whitney Form Galerkin Discretization of the Maxwell Cavity
Problem

In this section we perform an a priori convergence analysis for the Galerkin dis-

cretization of a particular Maxwell boundary value problem in frequency domain.

Trial and test spaces are supplied by Whitney 1-forms, aka lowest order edge el-

ements. This will allow us to discuss a few fundamental considerations and tech-

niques. Of course, only a tiny fraction of the numerical analysis developed for com-

putational electromagnetism can be covered.

Throughout this section Ω ⊂R3 is a Lipschitz polyhedron, equipped with a sim-

plicial mesh Th.

Bibliographical notes

The main references for this section are [35, Sect. 5] and [40, Ch. 7]. Refined duality

estimates are given in [50], whereas for the analysis of edge element discretizations

of the time-dependent linear Maxwell equations like (33) we refer to [25] and [49].

4.1 Maxwell cavity problem

We consider Maxwell’s equations on Ω with local linear material laws (22) that

can be expressed by means of Hodge operators. Their vector proxy representation is
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given in (23). Moreover, we rely on a frequency domain model, that is, the evolution

equations are subject to a continuous Fourier transform in time, which amounts to

replacing every temporal derivative ∂t with a multiplication with ıω , ω the angular

frequency and ı the imaginary unit. The unknowns will be complex valued forms on

Ω (“phasors”), for which we retain the same symbols as in Section 2.3:

dℓ e =−ıω ⋆µ h

d2−ℓh = ıω ⋆ε e+ j

}
in Ω , ℓ= 1 .

(79a)

(79b)

We impose impedance boundary conditions as a simple version of so-called absorb-

ing (transparent) boundary conditions:

t∂Ω h = ⋆λ t∂Ω e on ∂Ω , (80)

with an impedance λ , which is a Riemannian metric on ∂Ω .

For the remainder of this section we switch to the vector proxy perspective intro-

duced in Section 2.2.2. Then the a-based variational formulation (33) (in frequency

domain) reads: seek
−→a ∈V such that

aM(−→a ,−→a ′) :=

∫

Ω

µ−1(x)curl
−→
a · curl

−→
a ′−ω2ε(x)−→a ·−→a ′ dx−

ıω

∫

∂Ω

λ (x)−→a t ·
−→a ′

t dS = ıω

∫

Ω

−→
j ·−→a ′ dx ∀−→a ′ ∈V , (81)

posed on the Hilbert space (subscript t tags a tangential component trace, cf. Table 2)

V = H∂Ω (curl,Ω) := {−→w ∈ H(curl,Ω) : −→w t ∈ (L2(∂Ω))3} , (82)

with norm

∥∥−→w
∥∥2

H∂ Ω (curl,Ω)
:=
∥∥−→w
∥∥2

L2(Ω)
+
∥∥curl−→w

∥∥2

L2(Ω)
+
∥∥−→w t

∥∥2

L2(∂Ω)
. (83)

This is the maximal Hilbert space on which the bilinear form aM of (81) is still

continuous. We remind that µ , ε , and λ are bounded and uniformly positive definite

tensor coefficients.

Deliberately, the degree of the form e (and, indirectly, h) was retained as param-

eter ℓ in (79a). When we set ℓ = 0, that is, e is read as a 0-form, h as a 2-form, and

j as a 3-form, then we arrive at the equations of the acoustic cavity problem in fre-

quency domain. Its “a-based” variational formulations reads in vector proxies: seek
−→u ∈ H1(Ω)

aH(
−→u ,−→u ′) :=

∫

Ω

µ−1(x)grad−→u ·grad−→u ′−ω2ε(x)−→u −→u ′ dx+
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ıω

∫

∂Ω

λ(x)−→u −→u ′ dS =

∫

Ω

f−→u ′ dx ∀−→u ′ ∈ H1(Ω) . (84)

Evidently, there are sweeping structural similarities between (81) and (84), of

course. Yet, in one respect the acoustic boundary value problem will be substan-

tially simpler than its electromagnetic counterpart. Hence, it makes didactic sense,

to discuss (84) before addressing the more difficult (81).

For the sake of simplicity, in the sequel we restrict ourselves to the case µ = ε =
λ ≡ 1 of constant coefficients scaled to unity. This does not affect the gist of any

argument.

4.2 Splittings of H(curl,Ω)

In this section we provide decompositions of vectorfields in H(curl,Ω) into curl-
free components and some complement spaces. They have turned out to be pivotal

tools in the mathematical and numerical analysis of Maxwell’s equations. For the

sake of simplicity, we assume trivial topology of Ω throughout, cf. Theorem 4.

4.3 Helmholtz decomposition

The Helmholtz decomposition of (67) can be restricted to HΛ ℓ(Ω) and then pro-

vides an HΛ ℓ(Ω)-orthogonal splitting of HΛ ℓ(Ω). The important observation is

that the X ℓ-component will enjoy some smoothness. Let us look at Helmholtz de-

compositions from the angle of vector proxies in 3D: For ℓ= 1 we get

H(curl,Ω) = gradH1(Ω)⊕ (H(curl,Ω)∩H0(div0,Ω))︸ ︷︷ ︸
=:XT (Ω)

, (85)

where

H0(div0,Ω) := {−→w ∈ (L2(Ω))3 : div
−→w = 0, −→w ·n = 0 on ∂Ω} , (86)

and for ℓ= 2 the Helmholtz decomposition becomes

H(div,Ω) = curlH(curl,Ω)⊕ (H(div,Ω)∩H0(curl0,Ω)) , (87)

with

H0(curl0,Ω) := {−→w ∈ (L2(Ω))3 : curl−→w = 0,−→w t = 0 on ∂Ω} . (88)

The enhanced smoothness of the complement spaces like XT (Ω) is asserted in the

following result, see [3, Section 2]:
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Theorem 10 (Regularity of complements in Helmholtz decomposition). If Ω has

C1,1-smooth boundary or Ω is convex, then XT (Ω) := H(curl,Ω)∩H0(div0,Ω)
(equipped with the norm of H(curl,Ω)) is continuously embedded into (H1(Ω))3.

Proof. (outline) For Ω with smooth boundary, integration by parts and manipula-

tions of surface differential operators lead to the identity

∣∣−→w
∣∣2
H1(Ω)

+

∫

∂Ω
B(−→w × n,−→w × n)dS =

∥∥curl−→w
∥∥2

L2(Ω)
+
∥∥div

−→w
∥∥2

L2(Ω)
,

where B is the curvature tensor on ∂Ω . The second ingredient for the proof is

the density of (H1(Ω))3 in XT (Ω). This holds true, provided that the Neumann

problem for −∆ is 2-regular on Ω , which is guaranteed under the assumptions of

the theorem, see [3, Lemma 2.10].

A simple counterexample demonstrates that the assumptions of the theorem are

necessary:

Fig. 9 A domain Ω generated

by forming the tensor product

of a 2D polygon with a re-

entrant corner (angle φ ∗ >
π) with an interval (in z-

direction). The shaded planes

correspond to ∂ Ω .

z

r

φ ∗

Ω

In the geometric setting depicted in Figure 9, consider the function, given in

cylindrical coordinates,

ψ(r,φ ,z) = rπ/ω cos(
π

φ∗
φ) , 0 ≤ φ ≤ φ∗, r > 0 .

We find that in a neighborhood of the edge −→w := gradψ satisfies

• curl−→w = 0 and div
−→w = 0,

• −→w ·n = 0 on ∂Ω ,

• but
−→w 6∈ (H1(Ω))3, because “

∫
Ω |grad−→w |2 dx = ∞”.

As a consequence, functions in XT (Ω) may fail to belong to (H1(Ω))3 in case of

non-smooth Ω with reentrant (“non-convex”) edges.
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4.4 Regular decomposition

To remedy the potential loss of H1(Ω)-regularity of functions in XT (Ω), we can

sacrifice the strict L2(Ω)-orthogonality of the Helmholtz decomposition (85) and

settle for decompositions that are “merely” stable. Those will be dubbed “regular

decompositions” in the sequel [35, Lemma 2.4].

Theorem 11 (Regular decomposition). There are continuous linear mappings R :

H(curl,Ω) → (H1(Ω))3 and N : H(curl,Ω) → H(curl0,Ω) := H(curl,Ω) ∩
Ker(curl) such that

Id= R+N and
∥∥R−→w

∥∥
H1(Ω)

≤C
∥∥curl−→w

∥∥
L2(Ω)

.

This theorem can be remembered as

“ H(curl,Ω) = (H1(Ω))3 + curl-free ” .

Existence of regular decompositions can be established easily using a powerful

lifting operator that has been discovered recently [27]:

Theorem 12 (Regularized Poincaré lifting). There is a continuous operator Y :

(L2(Ω))3 → (H1(Ω))3 that satisfies

curlY(−→w ) =−→w ∀−→w ∈ H(div0,Ω) .

Proof (of Theorem 11). We simply define R := Y ◦ curl and N := Id−R. The map-

ping properties of R are immediate from those of Y.

To demonstrate an application of regular decompositions, we use them to prove

the discrete Friedrichs inequality from Lemma 5 for ℓ= 1.

Proof (of Lemma 5 for ℓ= 1). Pick −→x h ∈ X 1(Th) and rewrite

∥∥−→x h

∥∥2

L2(Ω)
=
(−→x h − I1R

−→x h,
−→x h

)
L2(Ω)

+
(
(I1 − Id)R−→x h,

−→x h

)
L2(Ω)

+
(
R
−→x h,

−→x h

)
L2(Ω)

.
(89)

Since, by the commuting diagram property for nodal interpolation from Lemma 2,

curl(−→x h − I1R
−→x h) = curl−→x h − I2(curlR−→x h) = curl−→x h − I2(curl−→x h) = 0 ,

the first term in (89) vanishes, because
−→x h is orthogonal to Ker(curl)∩W 1(Th). To

estimate the second term Lemma 4 and the continuity of R come handy and yield

∥∥(I1 − Id)R−→x h

∥∥
L2(Ω)

≤Ch
∣∣R−→x h

∣∣
H1(Ω)

≤Ch
∥∥curl−→x h

∥∥
L2(Ω)

. (90)

Again citing the continuity of R to bound the third term, we finally arrive at
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∥∥−→x h

∥∥2

L2(Ω)
≤C(h+ 1)

∥∥curl−→x h

∥∥
L2(Ω)

∥∥−→x h

∥∥
L2(Ω)

.

All constants may depend only on the shape regularity of the mesh and the domain

Ω .

Remark 12. Since tangential traces of vectorfields in (H1(Ω))3 are contained in

(L2(∂Ω))3, we find that R(H(curl,Ω)) ⊂ H∂Ω (curl,Ω) for the operator R from

Theorem 11. This enables us to restrict regular decompositions to H∂Ω (curl,Ω)
using the restrictions of the operators of Theorem 11 to H∂Ω (curl,Ω). Below we

will tacitly use these “H∂Ω (curl,Ω)-restricted” regular decomposition operators

when needed.

4.5 Helmholtz cavity problem: Well-posedness

We first tackle the well-posedness of the simpler Helmholtz cavity variational prob-

lem (84). The key tool will be a Fredholm alternative argument [28, Theorem D.5],

[40, Sect. 2.2.4].

Theorem 13 (Fredholm alternative). Let X ,Y be Banach spaces, T : X → Y a bi-

jective bounded linear operator, and K : X →Y a compact linear operator. Then for

T+K it is equivalent

T+K injective ⇔ T+K bijective ⇔ T+K surjective .

In order to apply this theorem we split the bilinear form aH into

tH(
−→u ,−→u ′) :=

∫

Ω

grad−→u ·grad−→u ′+−→u −→u ′ dx ,

kH(
−→u ,−→u ′) := −

∫

Ω

(ω2 + 1)−→u −→u ′ dx+ ıω

∫

∂Ω

−→u −→u ′ dS ,

−→u ,−→u ′ ∈ H1(Ω) .

Obviously, aH = tH +kH and the operator TH : H1(Ω)→ (H1(Ω))′ associated with

tH clearly is an isomorphism. To see the compactness of the operatorKH : H1(Ω)→
(H1(Ω))′ induced by kH we appeal to (generalized) Rellich compactness theorems

[28, Section 5.7]:

Theorem 14 ((Generalized) Rellich compactness theorem). The following em-

beddings are compact: H1(Ω) ⊂ L2(Ω) and H
1
2 (∂Ω )⊂ L2(∂Ω).

Since the two parts of kH are continuous on L2(Ω) and L2(∂Ω ), respectively, and

the point trace H1(Ω) → H
1
2 (∂Ω ) is continuous, from Theorem 14 we conclude

the compactness of KH . Thus, the assumptions of the Fredholm alternative from

Theorem 13 are satisfied for TH +KH : H1(Ω)→ (H1(Ω))′.
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Lemma 7 (Injectivity of aH ). The operator AH : H1(Ω) → (H1(Ω))′ induced by

the bilinear form aH of the Helmholtz cavity problem is injective.

Proof. We have to show that AHu = 0 implies u = 0, or, equivalently

aH(
−→u ,−→u ′) = 0 ∀−→u ′ ∈ H1(Ω) ⇒ −→u = 0 .

If, for all −→u ′ ∈ H1(Ω),

∫

Ω

grad−→u ·grad−→u ′−ω2−→u −→u ′ dx+ ıω

∫

∂Ω

−→u −→u ′ dS = 0 ,

then we can infer

(i) −→u ∈ H1
0 (Ω), when choosing −→u ′ =−→u and considering the imaginary part,

(ii) −∆−→u −ω2−→u = 0 in the sense of distributions, by testing with −→u ′ ∈C∞
0 (Ω),

(iii) grad−→u ·n = 0 on ∂Ω from (ii) and testing with −→u ′ ∈C∞(Ω ).

Thus, since both −→u = 0 and grad−→u ·n = 0 on ∂Ω , extension by zero to R3 gives a

solution −̃→u ∈ H1(R3) of −∆−→u −ω2−→u = 0. It is known that such a function must

vanish everywhere, see [26, Sect. 3.2] for a discussion of the the uniqueness of

solutions of acoustic scattering problems.

Summing up, AH : H1(Ω) → (H1(Ω))′ is an isomorphism, which implies the

continuous dependence of the solution u ∈ H1(Ω) of (84) on the data f ∈ L2(Ω)
(even f ∈ (H1(Ω))′).

Remark 13. What we have established for aH is often stated as a so-called Gårding

inequality:

Corollary 2 (Gårding inequality). There is a compact operator KH : H1(Ω) →
(H1(Ω))′ such that

∃C > 0 : Re{aH(
−→u ,−→u )+

〈
KH

−→u ,−→u
〉
} ≥C‖−→u ‖

2
H1(Ω) ∀−→u ∈ H1(Ω) .

4.6 Maxwell cavity problem: Well-posedness

Contrasting the bilinear form aM from (81) for the Maxwell cavity problem with its

Helmholtz counterpart aH from (84), we find a striking difference. When separating

the three parts of aM

aC(
−→w ,−→w ′) :=

∫

Ω

curl−→w · curl−→w ′+−→w ·−→w ′ dx ,

aZ(
−→w ,−→w ′) :=−

∫

Ω

(ω2 + 1)−→w ·−→w ′ dx ,
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a∂ (
−→w ,−→w ′) := ıω

∫

∂Ω

−→w t ·
−→w ′

t dS

with aM = aC + aZ + a∂ , and writing C,Z,B : H∂Ω (curl,Ω) → H∂Ω (curl,Ω)′

(H∂Ω (curl,Ω) defined in (82)) for the associated operators, we discover that nei-

ther Z nor B are compact! The reason is that Ker(curl) has infinite dimension so

that H(curl,Ω) cannot be compactly embedded in (L2(Ω))3.

4.6.1 Generalized Gårding inequality

The first insight is that Ker(curl) requires a special treatment in the analysis of aM ,

because on Ker(curl) the “zero-order” aZ-part of the bilinear form will have to be

taken into account in the bijective operator T when applying the Fredholm alterna-

tive of Theorem 13. The most elementary criterion for invertibility in a variational

framework (in Banach spaces) is uniform positivity of (the real part) of a bilinear

form. Awkwardly, the reversed sign of aZ compared to the “second-order” aC-part

initially foils this simple argument. Sloppily speaking, on Ker(curl) the sign of aZ

has to be “corrected” first. This can be accomplished by the regular decomposition

from Theorem 11, because it can serve as a tool to separate Ker(curl)⊂ H(curl,Ω)
of a complement space, on which a bilinear form that is continuous on (L2(Ω))3

gives rise to a compact operator.

The details are as follows: recall that Theorem 11 together with Remark 12 pro-

vides bounded operators R : H∂Ω (curl,Ω) → (H1(Ω))3 and N : H∂Ω (curl,Ω) →
H∂Ω (curl,Ω)∩Ker(curl) such that R+N= Id. Based on these operators, we define

the sign-flip isomorphism

F := R−N= 2R− Id : H∂Ω (curl,Ω)→ H∂Ω (curl,Ω) . (91)

For the sake of brevity, we choose the following tags for the components of a regular

decomposition of
−→w ∈ H(curl,Ω):

−→w
∗

:= R
−→w , −→w

0
:= N

−→w ⇒ −→w =−→w
∗
+−→w

0
. (92)

In this notation we have — mind the −-sign! —

F
−→w = F(−→w

∗
+−→w

0
) =−→w

∗
−−→w

0
. (93)

Now, let us scrutinize the parts of aM under the lens of a regular decomposition after

the sign-flip isomorphism has been applied to the test function:

(C) From curlR(−→w ) = curl−→w and curl−→w
0
= 0 it is immediate that

aC(
−→w ,F−→q ) =

(
curl−→w

∗
,curl

−→
q

∗)
L2(Ω)

. (94)

(Z) By (93) and bilinearity
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aZ(
−→w ,F(−→q )) = ω2

(
−
(−→w ∗

,−→q
∗)

L2(Ω)
+
(
−→w

∗
,−→q

0
)

L2(Ω)
−

(
−→w

0
,−→q

∗
)

L2(Ω)
+
(
−→w

0
,−→q

0
)

L2(Ω)

)
. (95)

The key conclusion from the continuity of R : H∂Ω (curl,Ω) → (H1(Ω))3 and

the Rellich compactness theorem (Theorem 14) is that the bilinear form on

H∂Ω (curl,Ω), given by

(−→w ,−→q ) 7→ −
(−→w ∗

,−→q
∗)

L2(Ω)
+
(
−→w

∗
,−→q

0
)

L2(Ω)
−
(
−→w

0
,−→q

∗
)

L2(Ω)
, (96)

spawns a compact operator, because at least one of the arguments in the L2(Ω)
inner products belongs to (H1(Ω))3.

(B) Similarly, for the boundary part we obtain

a∂ (
−→w ,F(−→q )) = ıω

((−→w ∗
t ,
−→q

∗
t

)
L2(∂Ω)

−
(
−→w

∗
t ,
−→q

0
t

)
L2(∂Ω)

+

(
−→w

0
t ,
−→q

∗
t

)
L2(∂Ω)

−
(
−→w

0
t ,
−→q

0
t

)
L2(∂Ω)

)
. (97)

Observe that −→w
∗
t and

−→q
∗
t are tangential traces of vector fields in (H1(Ω))3.

They belong to a space of tangential vector fields on ∂Ω that is compactly em-

bedded in (L2(∂Ω ))3. Consequently, invoking Theorem 14 again, the operator

H∂Ω (curl,Ω)→ (H∂Ω (curl,Ω))′ induced by the bilinear form on H∂Ω (curl,Ω)

(−→w ,−→q ) 7→
(−→w ∗

t ,
−→
q

∗
t

)
L2(∂Ω)

−
(
−→w

∗
t ,
−→
q

0
t

)
L2(∂Ω)

+
(
−→w

0
t ,
−→
q

∗
t

)
L2(∂Ω)

(98)

will be compact.

Reassembling the parts, we find

aM(−→w ,F(−→q )) =
(
curl−→w

∗
,curl−→q

∗)
L2(Ω)

+ω2
(
−→w

0
,−→q

0
)

L2(Ω)
−

ıω
(
−→w

0
t ,
−→q

0
t

)
L2(∂Ω)

+ kM(−→w ,−→q ) , (99)

where kM collects the “compact remainders” from (96) and (98). This means

aM(−→w ,F(−→w )) =
∥∥curl−→w

∗∥∥
L2(Ω)

+ω2
∥∥∥−→w 0

∥∥∥
L2(Ω)

− ıω
∥∥∥−→w 0

∥∥∥
L2(∂Ω)

+ kM(−→w ,−→w ) ,

and, since from
∥∥R−→w

∥∥
L2(Ω)

≤C
∥∥curl−→w

∥∥
L2(Ω)

we can conclude that

∥∥curl−→w
∗∥∥

L2(Ω)
+
∥∥∥−→w 0

∥∥∥
L2(Ω)

≥C
∥∥−→w
∥∥

H(curl,Ω)
,

we have a more general version of Gårding’s inequality:
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Theorem 15 (Generalized Gårding inequality for Maxwell cavity problem).

There is a compact operator KM : H∂Ω (curl,Ω)→ (H∂Ω (curl,Ω))′ such that

∃C > 0 :
∣∣∣aM(−→w ,F(−→w ))+

〈
KM

−→w ,−→w
〉∣∣∣≥C

∥∥−→w
∥∥2

H∂ Ω (curl,Ω)

for all
−→w ∈ H∂Ω (curl,Ω), where F is the sign-flip isomorphism defined in (91) and

C > 0 depends on Ω only.

4.6.2 Existence and uniqueness of solutions

Together with the Lax-Milgram theorem about the invertibility of operators rising

from elliptic bilinear forms [40, Lemma 2.21], Theorem 15 tells us that F′ ◦AM +
KM : H∂Ω (curl,Ω)→ H∂Ω (curl,Ω)′ is bijective. Here, AM is the operator associ-

ated with aM and F′ : H∂Ω (curl,Ω)′ → H∂Ω (curl,Ω)′ is the adjoint of F. Hence,

AM +(F′)−1 ◦KM is bijective as well and, thus, AM has been identified as a com-

pact perturbation of an invertible operator; the Fredholm alternative of Theorem 13

applies!

Parallel to Section 4.5 we have to establish injectivity of aM.

Lemma 8 (Injectivity of aM [40, Thm. 4.12]). The operator AM : H∂Ω (curl,Ω)→
H∂Ω (curl,Ω)′ associated with the bilinear form aM of the Maxwell cavity problem

is injective.

Proof. Along the lines of proof of Lemma 7 we conclude from

(
curl−→w ,curl−→w ′

)
L2(Ω)

−ω2
(−→w ,−→w ′

)
L2(Ω)

+ ıω
(−→w t ,

−→w ′
t

)
L2(∂Ω)

= 0

for all
−→w ′ ∈ H∂Ω (curl,Ω) that

(i)
−→w t = 0 on ∂Ω (through testing with

−→w ′ =−→w ),

(ii) curlcurl−→w −ω2−→w = 0 (through testing with
−→w ∈ (C∞

0 (Ω))3),

(iii) curl−→w × n = 0 (through testing with −→w ∈ (C∞(Ω))3).

Then extending −→w by zero outside Ω gives an entire solution of Maxwell’s equa-

tions on R3 vanishing at ∞. Then necessarily
−→w = 0 thanks to uniqueness results for

electromagnetic scattering problems [26, Thm. 6.10].

Eventually, Lemma 8 together with a Fredholm alternative argument shows

that (81) has a unique solution, which depends continuously on the data
−→
j ∈

H∂Ω (curl,Ω)′.

4.7 Quasi-optimality of Whitney form Galerkin discretization

The Whitney form Galerkin discretization of the variational Maxwell cavity prob-

lem (81) seeks an edge element vectorfield
−→a h ∈ W 1(Th), Th a simplicial mesh of
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Ω ⊂ R3, such that

aM(−→a h,
−→a ′

h) = ıω

∫

Ω

−→
j ·−→a ′

h dx
−→a ′

h ∈ W
1(Th) . (100)

As we saw in Section 3.4.4 this is a conforming Galerkin method in the sense that

W 1(Th)⊂ H∂Ω (curl,Ω).
Our a priori convergence results will be asymptotic and be valid only on “suf-

ficiently fine” meshes. This forces us to examine the behavior of the discretization

error for some infinite family of meshes {Th}h∈H, where H is a sequence of mesh

widths tending to 0. A key assumption is the h-uniform shape regularity of {Th}h∈H,

which makes it possible for us to demand that below none of the constants may de-

pend on h ∈H.

4.7.1 Discrete inf-sup conditions

In Section 4.6.2 we learned that the continuous variational problem (81) is well

posed. As explained in [45, Sect. 2.1.6], this is equivalent to a continuous inf-

sup condition, namely the existence of a constant γ > 0 such that, for all
−→w ∈

H∂Ω (curl,Ω)

sup
−→w ′∈H∂ Ω (curl,Ω)

|aM(−→w ,−→w ′)|∥∥−→w ′
∥∥

H∂ Ω (curl,Ω)

≥ γ
∥∥−→w
∥∥

H∂ Ω (curl,Ω)
. (101)

On the other hand, existence, uniqueness, and quasi-optimality of Galerkin solutions

of (100) can be concluded from a discrete inf-sup condition that asserts the existence

of γh > 0 depending only on the shape regularity of the mesh Th such that for all
−→w h ∈ W 1(Th)

sup
−→w ′

h
∈W 1(Th)

|aM(−→w h,
−→w ′

h)|∥∥−→w ′
h

∥∥
H∂ Ω (curl,Ω)

≥ γh

∥∥−→w h

∥∥
H∂ Ω (curl,Ω)

. (102)

More precisely we have the result [45, Thm. 4.2.1]

Theorem 16 (Generalized Cea lemma). If (102) holds, a unique solution
−→a h ∈

W 1(Th) of (100) exists and is quasi-optimal:

∥∥−→a −−→
a h

∥∥
H∂ Ω (curl,Ω)

≤C inf
−→w h∈W 1(Th)

∥∥−→a −−→w
∥∥

H∂ Ω (curl,Ω)
,

where
−→a ∈ H(curl,Ω) is the solution of (81) and C > 0 depends only on the norm

of aM and γh.

The customary attack on (102) picks an arbitrary
−→w h ∈ W 1(Th) and looks for a

“candidate function” −→w ′
h =

−→w ′
h(
−→w h) ∈ W 1(Th) such that, with constants enjoying

the usual (in)dependencies,
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(i) |aM(−→w h,
−→w ′

h)| ≥C
∥∥−→w
∥∥2

H∂ Ω (curl,Ω)
, (103)

(ii)
∥∥−→w ′

h

∥∥
H∂ Ω (curl,Ω)

≤C
∥∥−→w h

∥∥
H∂ Ω (curl,Ω)

. (104)

The search for this discrete candidate function can be guided by finding an analo-

gous continuous candidate function for (101). It will be a gift of the Generalized

Gårding inequality from Theorem 15, because, given −→w ∈ H∂Ω (curl,Ω) we may

choose the complex conjugate of

−→w ′ := F
−→w +(A∗

M)−1(KM
−→w ) , (105)

whereA∗
M : H∂Ω (curl,Ω)→H∂Ω (curl,Ω)′ is the (invertible) formal adjoint of AM .

Since
∥∥−→w ′

∥∥
H∂ Ω (curl,Ω)

≤C
∥∥−→w
∥∥

H∂ Ω (curl,Ω)
we conclude (101) from Theorem 15 by

simply evaluating aM(−→w ,−→w
′
):

Re{aM(−→w ,−→w
′
)}= Re{aM(−→w ,F−→w +(A∗

M)−1(KM
−→w ))}

= Re{aM(−→w ,F−→w )+
〈
K
−→w ,−→w

〉
} ≥C

∥∥−→w
∥∥2

H∂ Ω (curl,Ω)
.

Now, the challenge is that

−→w ′(−→w h) will usually not belong to W 1(Th), even for −→w h ∈ W 1(Th).

4.7.2 Discrete Helmholtz cavity problem

Let us first elucidate the strategy for the Helmholtz cavity problem (84), for which

we can rely on the Gårding inequality from Corollary 2. Here, for a fixed −→u ∈
H1(Ω), the continuous candidate function is

−→u ′(−→u ) :=−→u +(A∗
H)

−1(KH
−→u ) . (106)

Please note the difference between (105) and (106); a counterpart of the sign-

flipping isomorphism F is conspicuously absent in (106). This makes it possible

to obtain a suitable discrete candidate function by plain projection.

For the Helmholtz cavity problem we have to employ discrete 0-forms for

Galerkin discretization, that is, the space W 0(Th) of piecewise linear Lagrangian

finite element functions. Let GH
h stand for the H1(Ω)-orthogonal projection GH

h :

H1(Ω) → W 0(Th). Asymptotic density of W 0(Th) in H1(Ω) for h → 0 implies

that GH
h → Id pointwise in H1(Ω) for h→ 0. This is an important observation thanks

to the following result [36, Lemma 7.1].

Lemma 9. Let
{
T j

}
j∈N

be a sequence of bounded operators X → Y, X ,Y Banach

spaces, with lim j→∞T jx = 0 for all x ∈ X (pointwise convergence). If, for another

Banach space Z, K : Z → X is compact, then

lim
j→∞

∥∥T j ◦K
∥∥

Z→Y
= 0 .
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This tells us that “compactness promotes pointwise convergence to uniform con-

vergence”. We apply this lemma with X =Y = Z =H1(Ω), K=(A∗
H)

−1◦KH , which

inherits compactness from KH , and T j ↔ Id−GH
h . Thus, we infer that

lim
h→0

sup
−→v ∈H1(Ω)

∥∥GH
h ((A

∗
H)

−1(KH
−→v ))

∥∥
H1(Ω)

‖−→v ‖H1(Ω)

= 0 . (107)

This makes it possible to pick as a discrete candidate function

−→u ′
h(
−→u h) :=−→u h +GH

h ((A
∗
H)

−1(KH
−→u h)) ∈ W

0(Th) , (108)

because

aH(
−→u h,

−→u ′
h) = aH(

−→u h,(A
∗
H)

−1(KH
−→u h)+ (GH

h − Id)(A∗
H)

−1(KH
−→u h)) , (109)

and limit (107) ensures that for any c > 0 there is a sufficiently small hc > 0 with

∥∥(Id−GH
h )((A

∗
H)

−1(KH
−→u h))

∥∥
H1(Ω)

≤ c‖−→u h‖H1(Ω) ∀−→u h ∈ W
0(Th), ∀h < hc .

(110)

Thus by picking h smaller than some threshold, we can make the constant c in

Re{aH(
−→u h,

−→u ′
h)} ≥C‖−→u h‖

2
H1(Ω)− c

∥∥A−1
H

∥∥‖KH‖‖
−→u h‖

2
H1(Ω) (111)

smaller than 1
2C/(

∥∥A−1
H

∥∥‖KH‖), C > 0 from Corollary 2. This yields an asymptotic

discrete inf-sup condition in the sense that it will hold on sufficiently fine meshes

only.

4.7.3 Discrete Maxwell cavity problem

As pointed out above, in contrast to (106), neither summand in (105) lies in the

finite element space W 1(Th). Hence, both terms have to be projected onto W 1(Th)
in order to obtain an admissible discrete candidate function. Reusing notations from

Section 4.7.1, let us opt for

−→w ′
h(
−→w h) := I1(F(

−→w h))+G
M
h

(
(A∗

M)−1(KM
−→w h)

)
, (112)

where GM
h : H∂Ω (curl,Ω) → W 1(Th) is the H∂Ω (curl,Ω)-orthogonal projection

onto W 1(Th). As all operators involved in (112) are continuous,
∥∥−→w ′

h

∥∥
H∂ Ω (curl,Ω)

can be bounded by
∥∥−→w h

∥∥
H∂ Ω (curl,Ω)

, thus satisfying (104).

In order to establish (103), we try to recover the continuous candidate function
−→w ′(−→w h) from (105) by “adding zero” in a clever way.
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aM(−→w h,
−→w ′

h(
−→w h)) = aM

(−→w h, I1(F(
−→w h))+G

M
h

(
(A∗

M)−1(KM
−→w h)

))

= aM(−→w h,
−→w ′(−→w h))+ aM

(−→w h,(I1 − Id)F(−→w h)+

(GM
h − Id)

(
(A∗

M)−1(KM
−→w h)

))
.

Since (A∗
M)−1 ◦KM : H∂Ω (curl,Ω)→ H∂Ω (curl,Ω) is compact and GM

h − Id→ 0

pointwise in H∂Ω (curl,Ω) for h→ 0, we can copy the approach of Section 4.7.2 for

the last term and appeal to Lemma 9. This confirms the existence of c : R+ → R+

with limh→0 c(h) = 0 such that

∥∥(GM
h − Id)

(
(A∗

M)−1(KM
−→w h)

)∥∥
H∂ Ω (curl,Ω)

≤ c(h)
∥∥−→w h

∥∥
H∂ Ω (curl,Ω)

. (113)

To deal with the other terms we use F= 2R− Id and the projector property of I1:

(I1 − Id)F(−→w h) = (I1 − Id)(2R(−→w h)−
−→w h) = 2(I1 − Id)R−→w h .

Since curlR−→w h = curl−→w h ∈ W 2(Th) and R maps into (H1(Ω))3, the assumptions

of Lemma 4 are fulfilled and we can use its interpolation error estimate:

∥∥(I1 − Id)F(−→w h)
∥∥

L2(Ω)
≤Ch

∥∥R−→w h

∥∥
H1(Ω)

≤Ch
∥∥curl−→w h

∥∥
L2(Ω)

. (114)

Moreover, by the commuting diagram property of I1 and the projector property of I2

curl(I1 − Id)F(−→w h) = 2(I2 − Id)(curlR(−→w h)) = 0 . (115)

The estimate for the boundary contribution to the H∂Ω (curl,Ω)-norm is more sub-

tle. Here we merely cite a consequence of [20, Lemma 16], which can be proved by

interpolation in Sobolev scales.

Lemma 10. If
−→w ∈ {−→u ∈ (H1(Ω))3 : curl−→u ∈ W 2(Th)} then

∥∥−→w − I1
−→w
∥∥

L2(∂Ω)
≤Ch

1
2

∣∣−→w
∣∣
H1(Ω)

,

with C > 0 depending only on Ω and the shape regularity of the mesh.

Applying this estimate and the same reasoning that led to (114), we end up with

∥∥(I1 − Id)F(−→w h)
∥∥

L2(∂Ω)
≤Ch

1
2

∥∥curl−→w h

∥∥
L2(Ω)

. (116)

Eventually, combining (114), (115), and (116), we conclude

∥∥(I1 − Id)F(−→w h)
∥∥

H∂ Ω (curl,Ω)
≤Ch

1
2

∥∥curl−→w h

∥∥
L2(Ω)

. (117)

This, together with (113) shows that existence of a function c′ : R+ →R+ such that

|aM(−→w h,
−→w ′

h(
−→w h)−

−→w ′(−→w h))| ≤ c′(h)
∥∥−→w h

∥∥2

H∂ Ω (curl,Ω)
,

and
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lim
h→0

c′(h) = 0 .

This, via (103), permits us to infer the discrete inf-sup condition (102) from the con-

tinuous inf-sup condition (101) for sufficiently small h. Thus we have verified the

assumptions of Theorem 16, whose concrete assertion for the Galerkin discretiza-

tion of the Maxwell cavity boundary value problem is given as a final result.

Theorem 17 (Asymptotic Quasi-optimality of Whitney form Galerkin discretiza-
tion of the Maxwell cavity problem). For any shape-regular family of meshes

{Th}h∈H there is a threshold h∗ > 0 and a constant C > 0 depending only on the

(material) coefficients in aM, ω , Ω , and shape-regularity, such that

∥∥−→a −−→a h

∥∥
H∂ Ω (curl,Ω)

≤C inf
−→w∈W 1(Th)

∥∥−→a −−→w
∥∥ ∀h ≤ h∗ ,

where
−→
a ∈ H∂Ω (curl,Ω) and

−→
a h ∈ W 1(Th) solve (81) and (100), respectively.
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