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Abstract

In d dimensions, first-order tensor-product finite-element (FE) approximations of the solu-
tions of second-order elliptic problems are well known to converge algebraically, with rate at
most 1/d in the energy norm and with respect to the number of degrees of freedom. On the
other hand, FE methods of higher regularity may achieve exponential convergence, e.g. global
spectral methods for analytic solutions and hp methods for solutions from certain countably
normed spaces, which may exhibit singularities.

In this note, we revisit, in one dimension, the tensor-structured approach to the h-FE ap-
proximation of singular functions. We outline a proof of the exponential convergence of such
approximations represented in the quantized-tensor-train (QTT) format. Compared to special
approximation techniques, such as hp, that approach is fully adaptive in the sense that it finds
suitable approximation spaces algorithmically. The convergence is measured with respect to the
number of parameters used to represent the solution, which is not the dimension of the first-
order FE space, but depends only polylogarithmically on that. We demonstrate the convergence
numerically for a simple model problem and find the rate to be approximately the same as for
hp approximations.

Keywords: Numerical analysis, singular solution, analytic regularity, finite-element method,
tensor decomposition, low rank, tensor rank, multilinear algebra, tensor train .
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1 Tensor train (TT) quantized tensor train (QTT) representations

By tensors we mean multidimensional arrays, of which vectors and matrices are examples.
The tensor-train (TT for short) decomposition is a non-linear low-parametric representation of mul-
tidimensional arrays, based on the separation of variables and developed in [1, 2]. A l-dimensional
n1 × . . . × nl-vector v is said to be represented in the TT decomposition in terms of two- and
three-dimensional arrays V1, V2, . . . , Vl, which are called core tensors, if

v i1,...,id =

r1
∑

α1=1

. . .

rl−1
∑

αl−1=1

V1(i1, α1) · V2(α1, i2, α2) · · ·Vl−1(αl−2, il−1, αl−1) · Vl(αl−1, il) (1)

is satisfied for ik = 0, . . . , nk − 1 with k = 1, . . . , l. The summation indices α1, . . . , αl−1 and limits
r1, . . . , rl−1 on the right-hand side of (1) are called, respectively, rank indices and ranks of the
representation. A tensor-train decomposition with l cores, exact or approximate, can be constructed
via the low-rank representation of each of l− 1 matrices; for example, using the SVD. In particular,
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for every k = 1, . . . , l − 1 the representation (1) implies a rank-rk factorization of an unfolding
matrix V k with the entries V k

i1,...,ik, ik+1,...,il
= v i1,...,ik,ik+1,...,il . Here, the overscore denotes the

unfolding of a multi-index into a long scalar index: i1, . . . , ik =
∑k

κ=1 iκ
∏k

k′=κ+1 nk′ for the row

index, and similarly for the column index, so that V k is a usual matrix with two “long” indices. The
converse statement is also valid: if a vector v is such that the unfolding matrices V 1,V 2, . . . ,V l−1

are of ranks r1, . . . , rl−1 respectively, then a decomposition with cores V1, . . . , Vl of corresponding
ranks does exist, see [2, theorem 2.1]. Further, the TT format admits efficient approximation and
rank-truncation algorithms, which are quasi-optimal with respect to the ℓ2 norm, see theorem 2.2
with corollaries and algorithms 1 and 2 in [2].

The quantization of a dimension of a given tensor consists in folding it into a few modes
representing different levels, or scales, of the former. Consider an n-component vector, where
n = 2l with l ∈ N, whose components are indexed by i running from 0 to n − 1. The index can
be equivalently represented in the binary form, i.e. by l indices i1, . . . , il taking values in {0, 1}:
(i1, . . . , il) ↔ i = i1, . . . , il =

∑l
q=1 2

l−q iq. Here, the overscore denotes such vectorizations of multi-
indices, in which the scale of the indices refines from left to right. Thus, i1 and il are the major
and minor indices representing the coarsest and finest scales of the vector. The value of i1 selects
between the “left” and “right” halves of {0, 1, . . . , 2l − 1}, and the value of il, between odd and
even elements of the same index set. We refer to the original dimension and index as “physical”, in
contrast to the “virtual” dimensions and indices produced by quantization. Transformations of this
type are quite common: matrices are unfolded from representations with linear indexing, arrays are
reshaped in MATLAB, and the positional notation for numerals relies on a similar bijection.

The idea of applying low-rank tensor decompositions to separate “virtual” dimensions traces
back at least to [3], where it appeared in the context of the canonical polyadic decomposition of
tensors. It has since been widely used with the tensor-train (TT) decomposition, which separates
indices in a given ordering. Assume that an l-dimensional 2 × · · · × 2-vector v is obtained from
a 2l-component vector u of one physical dimension, so that v i1,...,il = ui1,...,il

. Then equation (1)
with n1 = . . . = nl = 2 provides a quantized-tensor-train representation [4, 5, 6] of u with cores
V1, . . . , Vl−1 and ranks r1, . . . , rl−1. The number of parameters involved in such a representation
reads Nl = 2(r1 +

∑l−1
k=2 rk−1rk + rl−1) ≤ 2lR2

l , where Rl = max{r1, . . . , rl−1}.
We note that the hierarchical tensor representation [7, 8], a comprehensive exposition of which

is given in [9], alone and combined with tensorization [10], provide counterparts of the TT and QTT
formats respectively. The TT and HT representations have been known in other fields for decades:
as matrix product states (MPS), see [11] and references therein, and as the hierarchical or multi-layer
MCTDH method, see [12, 13].

So far, there has been mostly experimental evidence that many applications admit approx-
imations in the TT or related formats with moderate ranks, e.g. O(lθ) with a small θ ≥ 1.
This property is crucial for the applicability of tensor-structured methods; we refer to the pa-
pers [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24], to the literature survey [25] and more recent
works [26, 27, 28].

2 Weighted Sobolev spaces. Analytic regularity of singular func-
tions

In this section, following [29], we recapitulate weighted Sobolev spaces of functions defined
in Ω = (0, 1) that may admit singularities at the origin and the corresponding analyticity classes.
Analogous constructions in two dimensions are given, for example, in [30, 29, 31].

By β ∈ [0, 1) we denote the order of singularities. Assume that m, ℓ ∈ N ∪ {0} are such
that m ≥ ℓ. For every k ∈ N ∪ {0}, we define weight functions Φβ+k(x) = xβ+k for all x ∈ Ω,

k ∈ N ∪ {0}. These weight functions induce weighted Sobolev spaces H
m,ℓ
β (Ω): H

m,0
β (Ω) =

{

u :
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Ω → R : Φβ+k u
(k) ∈ L2(Ω) for 0 ≤ k ≤ m

}

and H
m,ℓ
β (Ω) =

{

u ∈ Hℓ−1(Ω) : Φβ+k−ℓ u
(k) ∈

L2(Ω) for 0 ≤ k ≤ m
}

for ℓ ∈ N, where the differentiation is understood in the weak sense.

We consider the seminorms |·|
H

m,ℓ

β
(Ω)

given by |u|2
H

m,ℓ

β
(Ω)

= ‖Φβ+m−ℓ u
(k)‖2

L2(Ω) for all u ∈ H
m,ℓ
β (Ω)

and the norms, by ‖u‖2
H

m,0

β
(Ω)

=
∑m

k=0|u|2Hk,0

β
(Ω)

for all u ∈ H
m,0
β (Ω) when m ∈ N ∪ {0} and

‖u‖2
H

m,ℓ

β
(Ω)

= ‖u‖2
Hℓ−1(Ω)

+
∑m

k=ℓ|u|2Hk,ℓ

β
(Ω)

for all u ∈ H
m,ℓ
β (Ω) when m, ℓ ∈ N are such that m ≥ ℓ.

We note, in particular, that there holds a continuous embedding H
2,2
β (Ω) ⊂ C(Ω) [29]. We consider

the following class of analytic functions.

Definition 2.1. We say that u ∈ B
ℓ
β(Ω) with ℓ ∈ N ∪ {0} and β ∈ [0, 1) if u ∈ H

m,ℓ
β (Ω) for all

integral m ≥ ℓ and if there exist constants Cu > 0 and δu ≥ 1 such that |u|
H

m,ℓ

β
(Ω)

≤ Cuδ
m−ℓ
u (m−ℓ)!

for all m ≥ ℓ.

The functions that belong to B
ℓ
β(Ω) are analytic in an open domain containing (0, 1] with

possibly an algebraic singularity at the origin. The embedding B
ℓ
β(Ω) ⊂ Hℓ−1(Ω) follows from the

definition for all β ∈ [0, 1) and ℓ ∈ N.
For non smooth domains in two dimensions, the standard regularity-shift results for second-

order elliptic boundary-value problems, given in terms of standard Sobolev norms, may not hold:
the regularity or analyticity of the data does not guarantee that of the solution. However, for the
two-dimensional analogues of the spaces H

m,ℓ
β (Ω) with m ≥ l ≥ 0 and B

ℓ
β(Ω) with ℓ ≥ 0, there

hold regularity and analyticity shifts, see [30, 29, 31]. The solutions of the aforementioned problems
belong to B

2
β(Ω) if the data are analytic in the sense of Bℓ

β(Ω) with appropriate ℓ.
For such solutions, first-order h-FE approximations constructed on uniform meshes are known

to converge only algebraically with respect to the number of mesh nodes. However, the analytic
regularity of those solutions may be recovered by hp-approximations, which achieve exponential
convergence [29, 31, 32]. In this note we report, using the hp approximation as auxiliary, that the
h-FE approximations also achieve exponential convergence when the coefficient vector is represented
in the QTT format and with respect to the number of QTT parameters, see Nl in section 1

3 Approximation in h- and hp-spaces

For l ∈ N, we set nl = 2l and hl = (nl + 1)−1. First, we consider a uniform partition Tl

of Ω = (0, 1) with the nodes tli = ihl, i = 0, . . . , nl + 1, and define the corresponding first-order
Courant finite-element space S1(Ω,Tl) as the space of the functions that are linear in each [tli, t

l
i+1],

i = 0, . . . , nl. Second, we consider a geometrically graded partition Gl of Ω = (0, 1) with the nodes
xl0 = 0, xlj = 2j−1hl, j = 1, . . . , l, and xll+1 = 1. For every j = 1, . . . , l, we have xlj = tli with

i = 2j−1. For every p ∈ N, we define the corresponding hp finite-element space Sp(Ω,Gl) as the
space of the functions that are linear in [tl0, t

l
1] and polynomials of degree at most p in each [xlj , t

l
j+1],

j = 1, . . . , l.
For every l ∈ N, we use the spaces Sp(Ω,Gl) with p ∼ l as auxiliary: we first approximate

u ∈ B
2
β(Ω) with an hp-function vl ∈ Sp(Ω,Gl) and then interpolate vl by ul ∈ S1(Ω,Tl). The

benefit of using the hp approximation is that, in fact, it performs low-rank QTT approximation of
u: the coefficient of ul interpolating vl can be represented in the QTT format exactly with ranks
bounded by p+ 1.

In [33], the QTT-structured h-FE approximation is shown to converge exponentially with
respect to the number of QTT parameters for functions defined on curvilinear polygons and having
B

2
β-type singularities at some of the vertices. The basic approach remains the same, as in the

one-dimensional setting of the present paper. We outline the key ingredients of the proof below.
First, standard results on the accuracy of hp approximation (see, e.g. [32]) and the analysis

of its stability in the H2-norm yield the following.
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Lemma 3.1. Let β ∈ [0, 1) and u ∈ B
2
β(Ω). Then there exist positive constants C1, C2 and b such

that, for every l ∈ N, there exists vl ∈ Sp(Ω,Gl) with p = ⌈b l⌉ satisfying the interpolation condition
(u− vl)(0) = 0 = (u− vl)(1) and the bounds ‖u− vl‖H1(Ω) ≤ C12

−(1−β)l and |vl|
H2(tl

1
,1) ≤ C2 l 2

βl.

Similarly to as in [10, corollary 13], which bounds the QTT ranks of the coefficient of a poly-
nomial in S1(Ω,Tl), one shows the following QTT-rank bound for piecewise-polynomial functions
corresponding to partitions Gl ⊂ Tl with l ∈ N.

Lemma 3.2. Let l, p ∈ N and vl ∈ Sp(Ω,Gl). Then the 2l-component vector vl with vl
i = vl(tli),

i = 1, . . . , 2l, admits a QTT representation with ranks bounded from above by p+ 2.

Finally, the nodal reinterpolation of hp approximations results in the following.

Theorem 3.3. Let β ∈ [0, 1) and u ∈ B
2
β(Ω). Then there exist positive constants C and b such

that, for every l ∈ N, there exists ul ∈ S1(Ω,Tl) satisfying the interpolation condition (u− vl)(0) =
0 = (u − vl)(1) and the bound ‖u − ul‖H1(Ω) ≤ C 2−(1−β)l and such that the 2l-component vector

ul with ul
i = ul(tli), i = 1, . . . , 2l, admits a QTT representation with ranks bounded from above by

⌈b l⌉.

Theorem 3.3 means that the functions from B
2
β(Ω) can be approximated, for every l ∈ N, by

functions from S1(Ω,Tl) determined by Nl parameters with accuracy ε ≤ C exp(−cN
1/κ
l ) in the

H1-norm, where κ = 3 and C and c are positive constants independent of l. Numerically, the same
convergence with κ ≈ 2 is achieved, which matches the convergence of hp approximations with
appropriate p ∈ N with respect to dimSp(Ω,Gl) [32].

4 Numerical experiment

As an illustration, we consider the function u ∈ H1
0(Ω) given by u(x) = xα+

1

2 − x for all
x ∈ Ω, with α = 1/4, 2/3 and 3/4. Our numerical experiments are based on the public-domain
TT Toolbox1 [34].

First, we consider the direct approximation of the nodal interpolant in the QTT format. We
define a 2l-component vector ul

nod by setting ul
nod i = u(tli) for i = 1, . . . , 2l and approximate it in

the QTT format with relative accuracy εl = 2−(2−β)l in the ℓ2-norm using the TT Toolbox after
quantization: ul

appr = tt_tensor(ul
nod,εl). This approximation preserves the convergence to u in

the L2- and H1-norms and reveals the low-rank structure of the nodal interpolants.
Second, we consider a model elliptic second-order boundary-value problem in Ω. For every α,

the function u solves the boundary-value problem

− u′′ + u = f in Ω and u(0) = 0 = u(1) (2)

with f = u − u′′ ∈ H−1(Ω) given by f(x) = xα+
1

2 − x −
(

α2 − 1
4

)

xα−
3

2 for all x ∈ Ω. For every
α, we have f /∈ L2(Ω) and both the solution and the right-hand side exhibit singularities at the
origin. These singularities may, however, be quantified as follows: u ∈ B

2
β(Ω) and f ∈ B

0
β(Ω)

for all real β such that 1 − α < β < 1, i.e. 0 < 1 − β < α. By the Galerkin projection
onto S1

0(Ω,Tl) = S1(Ω,Tl) ∩ H1
0(Ω), the problem (2) reduces to a linear system Alul

sol = f l
appr

for a 2l-component vector of coefficients ul
sol i = ulsol(t

l
i), i = 1, . . . , 2l, of the Galerkin solu-

tion usol ∈ S1
0(Ω,Tl). Here, f l

appr is a QTT approximation to the exact load vector assem-

bled by analytical integration, which we obtain with relative accuracy 2−l in the ℓ2-norm using
the TT Toolbox after quantization. That results in Nl = O(lκ) with κ ≈ 2. The matrix is

1We use the master branch of the GitHub version 2.2+ of July 24, 2014 (git tag http://github.com/oseledets/

TT-Toolbox/tree/v2.3-4-ge1a3f2c).
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Toeplitz tridiagonal and can be represented in the QTT format with ranks bounded by 3, see [35,
Lemma 3.1]. We solve the linear system using the AMEn method for the TT-structured solution
of linear systems, developed in [36] and available via function amen_solve2 of the TT Toolbox:
ul
sol = tt_tensor(amen_solve2(Al,f l

appr,1e-10,...),εl). Here, the solution is truncated with

relative accuracy εl = 2−(2−β)l in the ℓ2-norm.

The results are shown in Figures 1–2. Both ul
appr and ul

sol achieve Nl = O(lκ) and the

accuracy εl ≤ C exp(−cN
1/κ
l ) in the H1-norm, where C and c are positive constants independent of

l and κ ≈ 2. That convergence rate is superior to the theoretical estimate with κ = 3 of Theorem 3.3
and matches the convergence rate of hp approximations in one dimension [32].

4 8 12 16 20 24
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Figure 1: Convergence w.r.t. l. The refer-
ence lines correspond to the exponential con-
vergence εl = 2−αl.
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Figures 1–2. QTT-FEM for α = 1

4 (red), α = 2
3 (green) and α = 3

4 (blue): truncated QTT-FE
solutions ulsol (large empty markers) and QTT-FE approximations ulappr of the nodal interpolants
(small solid markers) of u. Convergence to u with respect to the number l of levels and to the
number Nl of QTT parameters. The error is εl = |· − u|H1(Ω) / |u|H1(Ω).
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