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Abstract

In this report we show that classical Gauss quadrature is not adequate
for a large class of correlation and overlap integrals originating from
quantum mechanics. These integrals are usually highly oscillatory and
therefore special methods are necessary for accurate computations. We
develop and test a new, highly efficient method based on some recent
results about numerical steepest descent to solve the problem stated. Our
approach is built in principle to work for any number of space dimensions
but some care must be taken not to run into the curse of dimensionality.
Explicit formulae and algorithms are given in full generality.

1 Introduction

Consider smooth functions f(x) and g(x) with x ∈ R
N , we compute the integral:

I :=

∫ ∞

−∞
· · ·
∫ ∞

−∞
f(x) exp(iωg(x)) dx (1)

where ω > 0 is the frequency. This is an instance from a very large and important
class of highly oscillatory integrals. Usually one calls the function g the oscillator
and the function f the amplitude or envelope.
Computing the integral above by direct standard numerical quadrature schemes
would look like depicted in Figure 1 where we apply a suitable quadrature rule,
in our specific case Gauss-Hermite rules, directly to the integral I. Since our
interests stem from quantum mechanics, we anticipate the integrand in I being
composed of wavepackets φ and φ′, forming overlap integrals like 〈φ|φ′〉.

Original Problem
〈φ|φ′〉

Gauss Hermite
Quadrature

Figure 1: Overview of the integral computation.

Direct quadrature in general requires that the number of quadrature points
increases with ω, making it more and more expensive the larger the oscillation
frequency gets. In our case this growth continues up to a range that we can not
afford. It turns out that we need much better methods to efficiently deal with
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this kind of integrals and obtain mathematically correct results. The theory
of numerical steepest descent was developed about ten years ago exactly for
these integrals. For more details on the mathematical theory see the work by
Huybrechs, Vandewalle and others. The main technique is described in [15] for
the one-dimensional case and in [16] for multivariate integrands. Semi-finite
intervals appear in [17]. Other bits and pieces can be found in [7] and [2].
In this text we will concentrate on the application of this theory on the compu-
tation of some overlap integrals from quantum mechanics.

2 About semiclassical wavepackets

Semiclassical wavepackets in D dimensions are constructed from a groundstate:

φ0 (x) = (πε2)−
D
4 (detQ)−

1
2 exp

( ı

2ε2
〈
(x− q),PQ−1(x− q)

〉
+

ı

ε2

〈
p, (x− q)

〉)

by raising and lowering operators R and L and enumerated by a multi-index
vector k ∈ N

D
0 . There are the parameters for average position q ∈ R

D and

momentum p ∈ R
D. Additionally there are two invertible complex matrices

Q ∈ C
D×D and P ∈ C

D×D satisfying the Conditions:

QTP−PTQ = 0 (2)

QHP−PHQ = 2ıI . (3)

Implied by these constraints, the matrix PQ−1 is complex symmetric (but
not Hermitian) and has positive definite imaginary part. We collect all these
parameters in the set Π := {q, p,Q,P}. Further there is the semiclassical scaling
parameter 1 ≫ ε > 0. For many more details describing these wavepackets, see
[12] and [4]. What matters most here is, that each wavepacket φ is of the form:

φ[Π](x) ∼ p (x) exp
( ı

ε2
g (x)

)

(4)

with p(x) a multivariate polynomial. This form is sufficient for the steepest
descent technique to be applicable. Indeed, comparing to the integrand in (1),
we find that ω = 1

ε2
which means that the oscillator frequency increases very fast

for small scaling parameters ε. The steepest descent method which we will look
at in the next section becomes the better the smaller ε is. The actual oscillator
g is of the form:

g (x) :=
1

2

〈
x− q,PQ−1

(
x− q

)〉
+
〈
p, x− q

〉
(5)

We are interested in overlap integrals1 like 〈φk, φl〉. These integrals become even
more difficult in case the parameters sets Πk and Πl differ. In any case the

1For one-dimensional wavepackets there exists an exact formula which is very expensive to
evaluate numerically, see the original work [13] and [3] for compatible notation.
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integral is still of the same oscillatory structure like a single wavepacket:

〈φk, φl〉 =
∫ ∞

−∞
pk(x) exp

( ı

ε2
gk(x)

)

pl(x) exp
( ı

ε2
gl(x)

)

dx

=

∫ ∞

−∞
pk(x)pl(x) exp

(

− ı

ε2
gk(x) +

ı

ε2
gl(x)

)

dx

=

∫ ∞

−∞
pk(x)pl(x) exp

( ı

ε2

(

−gk(x) + gl(x)
))

dx .

(6)

The next step to take is to combine both oscillators gk and gl into a single
one such that we get back a formal expression like the one in (1) we started
with. But first we would like to show in Figure 2 a concrete example of how the
wavepackets involved and the integrand look like.
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(a) Wavepackets φ1 and φ2.
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(b) Integrand in case of φ1 and φ2.
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(c) Wavepackets φ8 and φ6.
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(d) Integrand in case of φ8 and φ6.

Figure 2: Examples of wavepackets φk and φl and the integrand φkφl. The
parameter sets are qk = 1

8 , pk = − 1
2 , Qk = 9

10 , Pk = 10
9 ı and ql = − 1

6 , pl =
2
5 ,

Ql = 1, Pl = ı. The scaling parameter is ε = 1√
10

≈ 0.316. Note that the indices

k and l typically range up to a few tens and this ε is not very small.

2.1 Combining different oscillators

Combining the two oscillators is actually a straight-forward computation, however
it is very error prone, big chances are that we miss a transpose or conjugate
somewhere. To simplify the notation we define the matrix:

Γi := PiQi
−1 (7)
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and start with computing gk:

gk =
1

2

〈
x− qk,Γk

(
x− qk

)〉
+
〈
pk, x− qk

〉

=
1

2

(

〈x,Γkx〉 −
〈
x,Γkqk

〉
−
〈
qk,Γkx

〉
+
〈
qk,Γkqk

〉)

+
〈
pk, x

〉
−
〈
pk, qk

〉

=
1

2

(
xHΓk

Hx− qk
HΓk

Hx− xHΓk
Hqk + qk

HΓk
Hqk
)
+ xHpk − qk

Hpk .

Next we add gl and simplify the following expression:

−gk + gl =− 1

2

(
xHΓk

Hx− qk
HΓk

Hx− xHΓk
Hqk + qk

HΓk
Hqk
)
−
(
xHpk − qk

Hpk
)

+
1

2

(
xHΓlx− xHΓlql − ql

HΓlx+ ql
HΓlql

)
+
(
pl

Hx− pl
Hql
)

=
1

2

(
xHΓlx− xHΓk

Hx
)
+

1

2

(
qk

HΓk
Hx+ xHΓk

Hqk − xHΓlql − ql
HΓlx

)

+
(
pl

Hx− xHpk
)
+

1

2

(
ql

HΓlql − qk
HΓk

Hqk
)
+
(
qk

Hpk − pl
Hql
)

=
1

2
xH
(
Γl − Γk

H
)
x+

1

2

(
qk

HΓk
Hx− ql

HΓlx+ qk
TΓkx− ql

TΓl
Tx
)

+
(
pl

Hx− pk
Tx
)
+

1

2

(
ql

HΓlql − qk
HΓk

Hqk
)
+
(
qk

Hpk − pl
Hql
)
.

In the end we find a general quadratic oscillator of the common expanded normal
form g(x) = xHAx+ bTx+ c where careful computation gives:

A =
1

2

(
Γl − Γk

H
)

b =

(
1

2

(
qk

HΓk
H − ql

HΓl + qk
TΓk − ql

TΓl
T
)
+
(
pl

H − pk
T
)
)

T

=
1

2

(
Γkqk − Γl

Tql + Γk
Hqk − Γlql

)
+
(
pl − pk

)

c =
1

2

(
ql

HΓlql − qk
HΓk

Hqk
)
+
(
qk

Hpk − pl
Hql
)

(8)

and we assumed that x is real. Be sure to pay attention to the fact that here
we have bT only instead of bH. The matrix A has a special property, both its
real and imaginary parts are symmetric while the matrix itself is in general not
Hermitian. This places the matrix right outside the convenient set of normal
matrices, which implies that it is not diagonalizable by unitary matrices, an
important consequence as we will see later.

3 Numerical steepest descent

3.1 Overview and summary of the ideas

A typical example of a highly oscillatory integral looks like:

I =

∫

Ω

f(x) exp(ıωg(x))dx (9)

4



where the non-oscillatory function g : RN → C is called the oscillator and the
also non-oscillatory function f : RN → C the envelope. The parameter ω ∈ R

+

is the frequency. Often one looks at the asymptotic behavior for ω → ∞. In our
setting this parameter ω has a fixed and finite value. Finally there is the domain
of integration denoted by Ω ⊂ R

N . In the theory shown so far this is a bounded
subset of RN . Figure 3 shows a particular example of such a nasty integrand.

Figure 3: Oscillatory integrand of the integral
∫ 3

−2

∫ 3

−2
e5ı(x

2
−xy−y2)

1+(x+y)2 dxdy with

envelope f(x, y) = 1
1+(x+y)2 and a quadratic oscillator g(x, y) = x2 − xy − y2 at

low frequency of ω = 5.

For our problem at hand, computing overlap integrals, we will need to integrate
over the whole space in N dimensions and hence set Ω = R

N in (1). There are
two essential observations to be made about the oscillatory part exp (iωg (x))
of any such integral. First, this expression does decay exponentially fast for
increasing ℑg(z) and second, it does not oscillate for constant ℜg(z). This can
easily be seen by expanding complex numbers:

eıωg(z) = eıω(ℜg(z)+ıℑg(z)) = eıωℜg(z)e−ωℑg(z) .

The main idea behind the numerical steepest descent method is therefore to
transform the integrand such that it is no longer oscillatory but rather exponen-
tially decaying. For this we need to find a coordinate transformation z = h(τ)
such that the real part of g(z) is constant. In a second step we then apply
Cauchy’s Theorem for contour integrals along the path h(τ).
Let us look again at the plot in Figure 3 and ask the question in which regions of
Ω the integrand contributes most to the value of the integral. By intuition one
would say, at least asymptotically for ω → ∞, that oscillations in the integrand
generally approximately cancel out and mainly places with locally no oscillations
contribute to the value. Regions showing no oscillations are stationary points

where ∇g(x) = 0 on one hand and so called resonance points defined by the
condition ∇g(x) ⊥ ∂Ω on the other. In the one-dimensional case one can forget
about the complications around resonance points and just take care of the
endpoints of the interval [a, b] = Ω. In our case there is no surface ∂Ω anyway
as we compute over the whole space R

N .
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ℜ

ℑ

x∗
0a

b

ha(τ)

hx∗

−

(τ)

hx∗

+
(τ)

hb(τ)

Figure 4: Example of an integral treated by the numerical steepest descent
method. The oscillator is g(x) = x2 and hence ∂xg(x) = 0 at x∗ = 0. Shown
are the contributing points a, b and x∗

0 and the paths ha(τ), hb(τ) and hx∗

0 ,±(τ)
attached to them. Instead of integrating directly from a to b along the real axis,
we follow the red path through the complex plane.

In the following we briefly consider the one-dimensional integral over the interval
[a, b] and walk through the major steps involved in the procedure. We can find
all stationary points {x∗

j}j from equating the gradient to zero (assuming the
equation is indeed solvable):

∇x g(x) = 0 . (10)

The set of contributing points is then:

Θ := {a, b} ∪ {x∗
j}j . (11)

Next, we set up the so called path equation to compute the coordinate transfor-
mation h(τ) or equivalently the path of integration. This has to be done locally
at all contributing points. Hence, for all ξ ∈ Θ:

g(hξ(τ)) = g(ξ) + ıτ . (12)

Solving these equations yields a bunch of paths hξ(τ). Each one is indexed by
the point ξ it starts at2 and parametrised by τ ∈ R

+
0 . Refer to Figure 4 for a

simple example having only a single stationary point.
In general, solving the path equation amounts to finding an inverse of g. In some
cases this inverse is multi-valued and the path not unique. At the endpoints we
can choose the correct path ha(τ) by requiring ha(0) = a which forces the path
chosen to be really attached to the point a. At the stationary points we have to
choose two paths, hx∗

j
,+ and hx∗

j
,−, one of which is considered incoming and the

2Note that this is not the full truth. In case of multi-valued inverses of g at the point ξ

it can happen that hξ(0) 6= ξ. With g(x) = x2 and ξ = 3 we find h3(τ) = ±
√
9 + ıτ and

h3(0) = ±3 6= 3.
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other outgoing (note that this is not reflected by the parametrisation in τ), such
that the integration contour passes through each stationary point once. Then
we have to make sure that the outgoing path of one stationary point and the
incoming of the next one will lead to the same valley. This guarantees that we
can concatenate all paths in the end and obtain a closed contour for integration.
We will not bother too much with these details as they are not relevant for our
problem. Many more details can be found in the original papers [15] and [16] by
Huybrechs and Vandewalle. If the path equation can not be solved analytically,
not all is lost as it is possible to work with numerical path approximations, see
[1]. By the formal structure of the semiclassical wavepackets, the path equation
in our case is always a multivariate quadratic form which we can solve explicitly.
Now it is time to assemble the parts. For each path attached at a point ξ ∈ Θ
we perform the transformation x 7→ hξ(τ). Doing this change of variable will
give a bunch of new integrals, one or two for each ξ:

J [ξ] := eıωg(ξ)

∫ ∞

0

f(hξ(τ))h
′
ξ(τ) e

−ωτ dτ

=
eıωg(ξ)

ω

∫ ∞

0

f
(

hξ

( τ

ω

))

h′
ξ

( τ

ω

)

e−τ dτ .

(13)

We continue by applying Cauchy’s theorem:

I = eıωg(a)J [a] +
∑

j

(
J [x∗

j,+]− J [x∗
j,−]
)
− eıωg(b)J [b] (14)

which is valid for the correct choice of paths. We glue together all the paths to
a single long path connecting the endpoints a and b while wandering around in
the complex plane and visiting each stationary point once. Obviously we have
to be very careful, avoid crossing branch cuts and be aware of all potential poles.
In our case there is no danger around because f is simply a polynomial.
Up to now we just transformed the problem, nothing more. The new task is
to compute by quadrature all the integrals (13) and there can be exponentially
many of these in higher dimensions. For this type of semi-finite integrals Gauss-
Laguerre quadrature with nodes {γk}k and weights {wk}k seems to be most
appropriate:

J [ξ] ≈ eıωg(ξ)

ω

∑

k

f
(

hξ

(γk

ω

))

h′
ξ

(γk

ω

)

wk . (15)

Depending on the oscillator and in turn the path hξ these integrals can be weakly
singular (to be precise, having roots in the denominator) which can in turn be
accounted for by the generalized Gauss-Laguerre quadrature. These singularities
originate from roots involved in the multi-valued inverses of g at some stationary
points.
For our problem we will find that we can always glue together the two opposite
straight line paths at the single stationary point, apply one further transformation
and finally use Gauss-Hermite quadrature. The whole process for computing (1)
then looks like shown in Figure 5. Performing these transformations on the first
two example wavepackets φk and φl from Figure 2 we can make the plot shown
in 6.
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〈φ|φ′〉

Numerical
Steepest Descent

Gauss Hermite
Quadrature

Figure 5: Steepest descent transformation and integral computation.

-2 -1 0 1 2
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0

Figure 6: Contour levels and zeros (blue) of |φlφk|, Gradient field and zeros of
|g| (yellow), Path of steepest descent with 9 Gauss Hermite quadrature nodes
(red), in complex plane.

3.2 Extensions and new concepts

In the last part we have walked through the very basic concepts of the numerical
steepest descent method. Under some broad assumptions this was proven to
work for finite intervals and an arbitrary number of real stationary points [15].
The extension into higher dimensions has been worked out [16]. However, the
state of the theory is too narrow for our setting. First we need to consider
complex stationary points too. If such a point is near to the real line, it will
influence the oscillator enough to become relevant. Figure 7 for example shows
the integrand of:

∫ 2

−2

(
2 + x2

)
e
50ı

(

δx+ x3

3

)

dx (16)

for different values of the parameter δ. One stationary point is located on the
imaginary axis at x∗ = ı

√
δ and comes close to the real line. The influence is
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Figure 7: Oscillatory integral on [−2, 2] with a stationary point x∗ at ı
√
δ shown

for several different decreasing values of δ ∈ {10, 5, 2, 1, 1
2 ,

1
5 ,

1
10 ,

1
100 , 0}.

clearly present for small values of δ and soon becomes negligible for larger values.
The general advise for complex stationary points is that the contour should pass
through this point as shown in Figure 8, see section 4.3 in [15]. This will then
give an exact decomposition in the sense of (14). It turns out this works very
well for our setting. Actually, the only thing we have is a single stationary point.
Another direction to extend the theory are infinite regions Ω. In our case we
will need Ω = R

N . Before we take this step, we look at semi-finite intervals. For
semi-finite intervals [a,∞[ we attach only one single path ha(τ) an the finite
endpoint a. Details are described by Majidian and can be found in [17]. If there
are stationary points, they can be split off into sub-problems over finite intervals.
As an example, we look at the following integral:

I =

∫ ∞

0

100

100 + x2
exp

(

ıωe
√
x
)

dx (17)

where we set ω = 2. The path is given by the expression:

ha(τ) = log(1 + ıτ)2 . (18)

After the change of variables the integral takes the following ugly form:

I = 200 eıω
∫ ∞

0

ı log(1 + ıτ)e−ωτ

(1 + ıτ)
(
100 + log4(1 + ıτ)

)dτ . (19)

Given all these parts, the extension to infinite intervals becomes simple. We just
split the overall interval ]−∞,∞[ into a union of three intervals: ]−∞, a], [a, b]

9



ℜ

ℑ

a b

x∗
0

ha(τ)
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(τ) hx∗

+
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Figure 8: Paths of the integral (16). The two additional paths hx∗,±(τ) go
through the complex stationary point x∗

0. The contribution stemming from these
two paths varies with δ. For δ = 1 it is O

(
10−16

)
and the whole integral has

a value of I = 0.0317496 while for δ = 1
5 it is 0.033533 which is not negligible

given that now I = 0.0253591.
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(a) Oscillatory integrand on [a,∞[.
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(b) Path of steepest descend.

Figure 9: Example of an oscillatory integrand on a semi-finite interval and the
corresponding path of steepest descend.

and [b,∞[. The reason to choose three instead of only two semi-finite intervals
is the stationary point which we know to exist in our specific case. With this
splitting we can put it into the finite interval and know that it gets handled
correctly. Of course the paths at the points a and b will be traversed two times
in reversed directions and hence cancel out. The only thing that remains is the
pair of paths attached to the single complex stationary point x∗. This works
the same in any number of dimensions where we resolve the nested integrals one
after the other. By gluing together the two paths of opposite direction we end
up with a cross of exactly N straight paths. Therefore the number and nesting
depth of integrals to perform does not grow compared to direct integration. This
is of course very fortunate.

4 A first exemplary computation

In this section we show a complete computation for a three dimensional example.
The purpose is to give the reader a rough feeling on how the overall process for
our specific overlap integral works. We will write down all the technical details
in the next section.
For the following computation we assume that the upper triangular matrix T is
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given:

T =





t1,1 t1,2 t1,3
0 t2,2 t2,3
0 0 t3,3



 (20)

and we study the oscillator g given by:

g (x) := xHTx , (21)

i.e.:

g (x1, x2, x3) = t1,1x
2
1 + t2,2x

2
2 + t3,3x

2
3 + t1,2x1x2 + t1,3x1x3 + t2,3x2x3 . (22)

The integral we want to compute is:

I =

∫∫∫ ∞

−∞
f (x) exp (iωg (x)) dx =

∫∫∫ ∞

−∞
i (x1, x2, x3) dx1dx2dx3 (23)

where we collapsed the internals into a single function i (x1, x2, x3) for reasons
of notation. By using the expanded form of g the integral can be written as:

I =

∫∫∫

f (x) exp
(
iω
(
t1,1x

2
1 + t1,2x1x2 + t1,3x1x3

))

exp
(
iω
(
t2,2x

2
2 + t2,3x2x3

))

exp
(
iω
(
t3,3x

2
3

))
dx

=

∫∫∫

f (x) exp
(
iω
(
t1,1x

2
1 + t1,2x1x2 + t1,3x1x3

))
dx1

exp
(
iω
(
t2,2x

2
2 + t2,3x2x3

))
dx2

exp
(
iω
(
t3,3x

2
3

))
dx3 .

(24)

We pulled out of each integral the parts of the oscillator independent of the
integration variable. Therefore we split the full oscillator g additively into N

parts gi:
g(x) = g1(x1, x2, x3) + g2(x2, x3) + g3(x3) . (25)

Beginning with the inner most one, we can resolve these onion-like nested
integrals one by one. From:

∫ ∞

−∞
f (x) exp

(
iω
(
t1,1x

2
1 + t1,2x1x2 + t1,3x1x3

))
dx1 (26)

we find the relevant oscillator g1(x1, x2, x3) to be:

g1 (x1) := t1,1x
2
1 + t1,2x1x2 + t1,3x1x3 . (27)

where we treat the variables x2 and x3 as parameters. Let x∗
1 denote the (perhaps

complex) stationary point3 of g1. The path equation then is:

g1 (h1(τ1)) = g1 (x
∗
1) + iτ1 (28)

3A stationary point x∗ is the solution to the equation ∇g(x) = 0, a point where the
derivative of the oscillator vanishes. Actually, x∗

i is not a point. It depends on xi+1 up to xN ,
so x∗

i is rather a N − i dimensional object.
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which, expanded out, is:

t1,1h
2
1 + t1,2h1x2 + t1,3h1x3 = k1(x2, x3) + iτ1 (29)

t1,1h
2
1 + t1,2h1x2 + t1,3h1x3 − k1(x2, x3)− iτ1 = 0 . (30)

Since the expression g1 (x
∗
1) depends parametrically on x2 and x3, we denote

the whole thing by k1 (x2, x3). As k1 does not depend on x1 we can pull it out
from the current integral. We will see later how to deal explicitly with all the ki
depending on all the variables (xi+1, . . . , xN ).
By solving the last equation we obtain the complex integration path h1 (τ1)
parametrised in the variable τ1 ∈ [0,∞[. Note that, at this point h1 still depends
on x2 and x3. Transforming the integrand of this first integral we find:

i1 (τ1, x2, x3) := f (h1(τ1, x2, x3), x2, x3) exp (iωk1 (x2, x3)) exp (−ωτ1)
∂h1 (τ1, x2, x3)

∂τ1

and for the integral itself:

I1 (x2, x3) =

∫ ∞

0

i1 (τ1, x2, x3) dτ1

= exp (iω k1(x2, x3))

∫ ∞

0

f (h1(τ1, x2, x3), x2, x3) exp (−ωτ1)
∂h1 (τ1, x2, x3)

∂τ1
dτ1 .

We pull out the prefactor exp (iω k1(x2, x3)) constant with respect to x1 and
call it p1 (x2, x3). Then we continue with the second integral where we have to
merge parts of p1 into g2 (we will show the details later):

∫ ∞

−∞
I1 (x2, x3) exp (iω k1(x2, x3)) exp

(
iω
(
t2,2x

2
2 + t2,3x2x3

))
dx2 . (31)

The oscillator is given now by:

g2(x2) = t2,2x
2
2 + t2,3x2x3 + k1(x2, x3) (32)

and depends parametrically on x3. For the path we have:

g2 (h2(τ2)) = g2 (x
∗
2) + iτ2 (33)

which in turn can be resolved to:

t2,2h
2
2 + t2,3h2x3 + k1(h2, x3) = k2(x3) + iτ2 (34)

and then:
t2,2h

2
2 + t2,3h2x3 + k1(h2, x3)− k2(x3)− iτ2 = 0 . (35)

Using this path h2 obtained from solving the quadratic path equation we get
the new integrand as:

i2 (τ2, x3) := I1 (h2(τ2, x3), x3) exp (iω k2(x3)) exp (−ωτ2)
∂h2 (τ2, x3)

∂τ2
. (36)

And then in turn we write for the integral:

I2 (x3) =

∫ ∞

0

i2 (τ2, x3) dτ2

= exp (iω k2(x3))

∫ ∞

0

I1 (h2(τ2, x3), x3) exp (−ωτ2)
∂h2 (τ2, x3)

∂τ2
dτ2 .
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where we pull out p2 := exp (iωk2 (x3)). For the third and outer-most integral
we can write:

∫ ∞

−∞
I2 (x3) exp (iωk2 (x3)) exp

(
iωt3,3x

2
3

)
dx3 . (37)

Once more, we first extract the oscillator expression:

g3 (x3) = t3,3x
2
3 + k2(x3) . (38)

The corresponding path equation is:

g3 (h3 (τ3)) = g3(x
∗
3) + iτ3

t3,3h
2
3 + k2(h3) = k3 + iτ3

t3,3h
2
3 + k2(h3)− k3 − iτ3 = 0 .

(39)

Note that the variable k3 does not depend on any xi anymore. With the solution
h3 our integrand reads:

i3 (τ3) := I2 (h3(τ3)) exp (iωk3) exp (−ωτ3)
∂h3 (τ3)

∂τ3
(40)

and the integral becomes:

I3 =

∫ ∞

0

i3 (τ3) dτ3

= exp (iωk3)

∫ ∞

0

I2 (h3(τ3)) exp (−ωτ3)
∂h3 (τ3)

∂τ3
dτ3 .

(41)

Finally we obtain the solution of the original integral:

I = I3 =

∫ ∞

0

I2 (h3(τ3)) . . . dτ3

=

∫ ∞

0

∫ ∞

0

I1 (h2(τ2, h3(τ3)), h3(τ3)) . . . dτ2 . . . dτ3

=

∫ ∞

0

∫ ∞

0

∫ ∞

0

f (h1(τ1, h2(τ2, h3(τ3)), h3(τ3)), h2(τ2, h3(τ3)), h3(τ3)) . . . dτ1 . . . dτ2 . . . dτ3

=

∫ ∞

0

∫ ∞

0

∫ ∞

0

f
(

h̃1(τ1, τ2, τ3), h̃2(τ2, τ3), h̃3(τ3)
)

. . . dτ1 . . . dτ2 . . . dτ3

This is the nasty return of the recursive scheme here. The final denested paths
h̃1 (τ1, τ2, τ3) and h̃2 (τ2, τ3) can be found from h1 (τ1, x2, x3) and h2 (τ2, x3) by
substituting h2 for x2 and h3 for x3.

5 Systematic approach

In this section we look at the general N dimensional case and follow a very
systematic approach. We will investigate all the technical details omitted during
the example from the last section.
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5.1 General triangular oscillators

Given a general, probably complex, upper triangular matrix T of dimension
N ×N we look at the oscillator given by:

g (x) = xHTx . (42)

The process of pulling out from each integral parts that do not depend on the
respective variable of integration yields the additive decomposition of g:

g (x) = g (x1, . . . , xN ) =

N∑

i=1

gi(xi, . . . , xN ) . (43)

At each shell i of the onion we exclusively work with the partial oscillator gi. In
general the coefficients of this oscillator are given by the i-th row of T:

gi (xi, xi+1, . . . , xN ) := ti,ix
2
i +

N∑

j=i+1

ti,jxixj . (44)

5.2 Computing stationary points

As we know from the theory of numerical steepest descent, we need to find the
stationary points of an oscillator gi. It is possible to do this by a straight forward
computation.
First we take the partial derivative of gi, in fact we have:

ġi :=
∂gi

∂xi

= 2ti,ixi +

N∑

j=i+1

ti,jxj (45)

The location of the stationary point is implicitly specified by:

ġi = 0 . (46)

Solving this equation for the stationary point x∗
i explicitly we get:

x∗
i := x∗

i (xi+1, . . . , xN ) = −
∑N

j=i+1 ti,jxj

2ti,i
. (47)

It is important to remember that at level i the point x∗
i is stationary with respect

to the coordinate xi but depends on the variables xi+1 through xN .
Plugging this solution x∗

i into gi from (44) we can compute the expressions ki
explicitly:

gi(x
∗
i , xi+1, . . . , xN ) = ti,i

(

−
∑N

j=i+1 ti,jxj

2ti,i

)2

+

N∑

j=i+1

ti,j

(

−
∑N

k=i+1 ti,kxk

2ti,i

)

xj

=
1

4ti,i





N∑

j=i+1

ti,jxj





2

− 1

2ti,i

(
N∑

j=i+1

ti,jxj

)(
N∑

k=i+1

ti,kxk

)
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and finally:

ki (xi+1, . . . , xN ) := gi (x
∗
i , xi+1, . . . , xN ) = − 1

4ti,i





N∑

j=i+1

ti,jxj





2

. (48)

5.3 Setting up and solving path equations

Central to this subsection is the path equation for gi and how to solve it. We
will use formula (44) in combination with (47) and (48) for this task. To begin
with, the full path equation including all dependencies for the oscillator gi and
the corresponding path hi reads:

gi (hi (pi, xi+1, . . . , xN ) , xi+1, . . . , xN ) = gi (x
∗
i (xi+1, . . . , xN ) , xi+1, . . . , xN )+ipi .

Keeping only the most important dependencies we drop the dependence of gi,
hi and x∗

i on xj for j > i and simply write:

gi (hi (pi)) = gi (x
∗
i ) + ipi . (49)

Expanding the left hand side by using (44) we find:

gi (hi) = ti,ih
2
i +

N∑

j=i+1

ti,jhixj = ti,ih
2
i + hi

N∑

j=i+1

ti,jxj . (50)

Using formula (48) for the right hand side and combining both sides one obtains:

ti,i
︸︷︷︸

A

h2
i + hi

N∑

j=i+1

ti,jxj

︸ ︷︷ ︸

B

+
1

4ti,i





N∑

j=i+1

ti,jxj





2

− ipi

︸ ︷︷ ︸

C

= 0 . (51)

What we got is a simple quadratic equation for the path hi. Its solution is given
by the well known explicit formula:

hi =
−B ±

√
∆

2A
where ∆ := B2 − 4AC . (52)

Now let’s actually carry out the computation. The discriminant seems to be
complicated at the first sight:

∆ = B2 − 4AC =





N∑

j=i+1

ti,jxj





2

− 4ti,i






1

4ti,i





N∑

j=i+1

ti,jxj





2

− ipi






=





N∑

j=i+1

ti,jxj





2

− 4ti,i
1

4ti,i





N∑

j=i+1

ti,jxj





2

+ 4ti,iipi

= 4ti,iipi

(53)

but actually it is surprisingly simple! For the complete path we then get:

hi =
−∑N

j=i+1 ti,jxj ±
√

4ti,iipi

2ti,i
(54)
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which transforms into a nicer version:

hi (pi, xi+1, . . . , xN ) = ±
√

ipi

ti,i
− 1

2ti,i

N∑

j=i+1

ti,jxj . (55)

It is important to note that the whole path depends only linearly on the remaining
higher ranked variables xj with j > i. As soon as ti,j = 0 for all j 6= i we get a
bunch of completely decoupled paths.
In a next step we can now easily compute the derivative of any path:

∂hi

∂pi
=

∂

∂pi



±
√

ipi

ti,i
− 1

2ti,i

N∑

j=i+1

ti,jxj





= ± ∂

∂pi

√

ipi

ti,i

(56)

and find this simple expression:

ḣi :=
∂hi (pi)

∂pi
= ±

√
ı

2
√
ti,i

√
pi

. (57)

It is obvious that for these formulae to be valid ti,i must never be zero. Formula
(55) allows us now to compute explicitly starting with hN all the paths hN−1,
hN−2 up to h1 in this reversed order. For later usage we denote the paths
resulting from this recursive resolution by h̃i. An explicit description becomes
very nasty soon:

h̃N (pN ) := hN (pN )

h̃N−1(pN−1, pN ) := hN−1(pN−1, hN (pN ))

h̃N−2(pN−2, pN−1, pN ) := hN−2(pN−2, hN−1(pN−1, hN (pN )), hN (pN ))

...

h̃1(p1, . . . , pN ) := h1(p1, h2(. . .), . . . , hN−1(pN−1, hN (pN )), hN (pN ))

We can collect all the paths into a single vector like:

h̃
(
p
)
:=










h̃1(p1, p2, . . . , pN )

h̃2(p2, . . . , pN )
...

h̃N−1(pN−1, pN )

h̃N (pN )










=










h̃1(p1)

h̃2(p2)
...

h̃N−1(pN−1)

h̃N (pN )










(58)

The last relation is of course a notational shortcut and not a mathematical
equality in general. For reasons which will become clear later we are in the end
only interested in the paths with positive sign. If not specified otherwise, this is
the implicit choice.
If we stack all the paths hi into a vector h, then this composition of all paths
can be done easily as shown in Algorithm 1. By employing some matrix algebra,
then the inner loop can even be avoided.
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Algorithm 1 Procedure for composing the path

for all i ∈ [N,N − 1, . . . , 1] do

hi =
√

ipi

ti,i

for all j ∈ [i+ 1, . . . , N ] do
hi = hi − ti,j

2ti,i
hj

end for

end for

5.4 Transforming the integrand

In the first step, we completely denest the integral from (1) as much as possible.
We start with the inner-most integrand (note that we already have split the
oscillator):

i1 (x1, . . . , xN ) := f (x) exp (iωg1 (x1, . . . , xN )) (59)

and compute its integral as:

I1 (x2, . . . , xN ) =

∫ ∞

−∞
i1 (x1, . . . , xN ) dx1 . (60)

Then we continue with the second shell:

i2 (x2, . . . , xN ) := I1 (x2, . . . , xN ) exp (iωg2 (x2, . . . , xN ))

I2 (x3, . . . , xN ) =

∫ ∞

−∞
i2 (x2, . . . , xN ) dx2 .

(61)

This process continues recursively until no more integration variables are left:

iN (xN ) := IN−1 (xN ) exp (iωgN (xN ))

IN () =

∫ ∞

−∞
iN (xN ) dxN .

(62)

and we obtain the final result I ≡ IN . Each of the integrals Ii involved in this
scheme is oscillatory with an oscillator gi.
The main goal of this whole effort is to find a suitable transformation of variables
x = (x1, . . . , xN ) into new variables τ = (τ1, . . . , τN ) and rewrite all the integrals
above in a way such that they are no longer oscillatory.
For that purpose we computed the paths hi which implement exactly this variable
transformation. By construction, the real part of gi (hi) is constant and for the
composition we have:

gi (hi (pi, xi+1, . . . , xN )) = ki (xi+1, . . . , xN ) + ipi . (63)

Plugging this into the exponential yields:

exp (iωgi (xi, . . . , xN )) = exp (iω (ki (xi+1, . . . , xN ) + ipi))

= exp (iωki (xi+1, . . . , xN )) exp (−ωpi)
(64)

where the first term is still oscillatory but does not depend on xi and the second
term became exponentially decaying. Next, at stage i, we transform the whole
integral Ii. Here we have to pay attention to the fact that formula (55) yields
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two paths h+
i and h−

i with different signs. From the general theory in [7] we
know, that we have to use both and that the transformed integral Ii consists of
two integrals, one for each path:

Ii[hi] = I
(1)
i [h+

i ]− I
(2)
i [h−

i ] (65)

Given the integrand ii(xi, . . . , xN ) we use the path hi to make a variable trans-

formation going from xi to pi. The first integral I
(1)
i [h+

i ] therefore reads:

I
(1)
i [h+

i ] (xi+1, . . . , xN ) = exp (iωki (xi+1, . . . , xN ))

·
∫ ∞

0

ii
(
h+
i (pi) , xi+1, . . . , xN

)
exp (−ωpi)

∂h+
i (pi)

∂pi
dpi (66)

and we should not forget that the path hi depends not only on pi but also on
xi+1, . . . , xN . We will see in the next section how to handle the factor in front
of the integral and therefore omit it in the following.
This integral above is singular for pi → 0 because of the square root of pi in the
denominator of the path derivative. We can fix this by the substitution q =

√
p,

hence p = q2 and dp = 2qdq. Applying this first to the path in (55) and the
path derivative in (57) we obtain:

hi (qi, xi+1, . . . , xN ) = ±
√

ı

ti,i
qi −

1

2ti,i

N∑

j=i+1

ti,jxj (67)

and

ḣi :=
∂hi (qi)

∂qi
= ±

√
ı

ti,i

1

2qi
. (68)

In the integral, the two factors of 2qi cancel and we are left with:

I
(1)
i [h+

i ] =

∫ ∞

0

ii
(
h+
i (qi) , xi+1, . . . , xN

)
√

ı

ti,i
exp

(
−ωq2i

)
dqi (69)

The combination of the exp(q2i ) factor and the integration range [0,∞[ is a bit
unfortunate for our goal of applying a quadrature. This combination corresponds
to none of the classical Gaussian quadratures and one would have to build a
custom rule for computing nodes and weights. Luckily, it turns out that, by
the help of another variable transformation the path h−

i can be transformed
into h+

i . The substitution is trivial and reads ri = −qi, therefore qi = −ri and

dqi = −dri. We apply it in the second integral I
(2)
i [h−

i ] only:

I
(2)
i [h−

i ] =

∫ ∞

0

ii
(
h−
i (qi) , xi+1, . . . , xN

)
(

−
√

ı

ti,i

)

exp
(
−ωq2i

)
dqi

= −
∫ −∞

0

ii
(
h+
i (ri) , xi+1, . . . , xN

)
(

−
√

ı

ti,i

)

exp
(
−ωr2i

)
dri

= −
∫ 0

−∞
ii
(
h+
i (ri) , xi+1, . . . , xN

)
√

ı

ti,i
exp

(
−ωr2i

)
dri

(70)
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At this point we can return to the complete integral Ii

Ii[hi] = I
(1)
i [h+

i ]− I
(2)
i [h−

i ] = I
(1)
i [h+

i ] + I
(2)
i [h+

i ]

=

∫ ∞

0

ii
(
h+
i (qi) , xi+1, . . . , xN

)
√

ı

ti,i
exp

(
−ωq2i

)
dqi

+

∫ 0

−∞
ii
(
h+
i (ri) , xi+1, . . . , xN

)
√

ı

ti,i
exp

(
−ωr2i

)
dri

(71)

and after gluing together the two parts, the final integral is:

Ii (xi+1, . . . , xN ) =

∫ ∞

−∞
ii
(
h+
i (τi) , xi+1, . . . , xN

)
√

ı

ti,i
exp

(
−ωτ2i

)
dτi . (72)

and we reached the goal. This transformed integral is no longer oscillatory and
well suited for Gauss-Hermite quadrature. Applying the corresponding path
transformation and variable substitutions to each of the Ii and putting together
the results we find at the end of the day:

I =

∫ ∞

−∞
· · ·
∫ ∞

−∞
f
(

h̃(τ)
) N∏

i=1

√
ı

ti,i
exp

(
−ωτ2i

)
dτ1 · · · dτN (73)

This integral posses a quadratic exponential decay in all variables and hence can
be computed easily by classical Gauss-Hermite quadrature rules.

5.5 Handling oscillatory prefactors

The prefactor term Pi := exp (iωki (xi+1, . . . , xN )) appearing in the integral
Ii is oscillatory. Hence the next enclosing integral is again of oscillatory type
and therefore we have to merge the factor Pi with the next-level oscillator
gi+1 (xi+1, . . . , xN ). Mathematically, this means we compute an update g̀i+1

such that:

g̀i+1 (xi+1, . . . , xN ) := gi+1 (xi+1, . . . , xN ) + ki (xi+1, . . . , xN ) . (74)

This seems to be easy, but it is not as straight forward as one might think.
Remembering the general form of ki shown in (48) we can start with:

ki(xi+1, . . . , xN ) = − 1

4ti,i





N∑

j=i+1

ti,jxj





2

= − 1

4ti,i





N∑

j=i+1

t2i,jx
2
j + 2

N∑

j=i+1

N∑

k=j+1

ti,jxjti,kxk



 .

(75)

The main question to answer next is which terms to keep and use for the updated
oscillator g̀i+1 replacing gi+1 and which ones to move one level up outside this
particular integral. The solution is pretty simple: we keep the x2

i+1 and all of
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xi+1xj . To achieve this we split the terms inside ki into two groups:

ki = − 1

4ti,i





N∑

j=i+1

t2i,jx
2
j + 2

N∑

j=i+1

N∑

k=j+1

ti,jxjti,kxk





= − 1

4ti,i









t2i,i+1x
2
i+1

︸ ︷︷ ︸

keep

+

N∑

j=i+2

t2i,jx
2
j

︸ ︷︷ ︸

move

+2

N∑

k=i+2

ti,i+1xi+1ti,kxk

︸ ︷︷ ︸

keep

+2

N∑

j=i+2

N∑

k=j+1

ti,jxjti,kxk

︸ ︷︷ ︸

move









.

Taking now formula (44) for gi+1 we can compute g̀i+1 from (74) as:

g̀i+1 = ti+1,i+1x
2
i+1 −

1

4ti,i
t2i,i+1x

2
i+1 +

N∑

j=i+2

ti+1,jxi+1xj −
1

2ti,i

N∑

j=i+2

ti,i+1xi+1ti,jxj + junk

=

(

ti+1,i+1 −
t2i,i+1

4ti,i

)

︸ ︷︷ ︸

t̀i+1,i+1

x2
i+1 +

N∑

j=i+2

(

ti+1,j −
ti,i+1ti,j

2ti,i

)

︸ ︷︷ ︸

t̀i+1,j

xi+1xj + junk .

All terms that we decided to move out are labeled as junk here and dealt with
below. On the last line we see that we can write the partial oscillator g̀i+1

again in the standard form from (44), just the entries in the i+ 1-th row of the
triangular matrix T have changed. We take into account the junk terms now.
First notice that it is possible to split them once more into terms to keep and
new junk terms:

− 1

4ti,i





N∑

j=i+2

t2i,jx
2
j + 2

N∑

j=i+2

N∑

k=j+1

ti,jxjti,kxk





=− 1

4ti,i



t2i,i+2x
2
i+2 +

N∑

j=i+3

t2i,jx
2
j + 2

N∑

k=i+3

ti,i+2xi+2ti,kxk + 2

N∑

j=i+3

N∑

k=j+1

ti,jxjti,kxk



 .

The first and third term are in turn added to the oscillator g̀i+2. All others are
handled recursively and added to g̀k with k ≥ i+ 3 until we reach k = N and
nothing is left. At that point we updated all rows of T below the i-th one.
The general formulae to accomplish this update for a fixed i and with j > i and
k > j read:

t̀j,j := tj,j −
t2i,j

4ti,i

t̀j,k := tj,k − ti,jti,k

2ti,i

(76)

and allow us to easily compute the new matrix Ti+1 from Ti given at step i.
We have to repeat the whole procedure on the next outer shell i+ 1, handling
the factor pi+1.
Starting from T1 ≡ T we compute one after the other T2, T3 until TN which
is the final oscillator matrix. The following Figures 10, 11 and 12 show the flow
of information during this step-wise updates for a schematic matrix.
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Figure 10: Oscillator matrix update going from T1 to T2
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T3 :
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Figure 11: Oscillator matrix update going from T2 to T3
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t1,1 t1,2 t1,3 t1,4

t2,2 t2,3 t2,4
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Figure 12: Oscillator matrix update going from T3 to T4

21



This whole procedure is written out in pseudo code in Algorithm 2 below. For this
to work the diagonal matrix elements Ti,i must never become zero. Otherwise we
would divide by zero. We can interpret this failure as a case where the oscillator
is not quadratic anymore but behaves as a conic degenerated along at least one
direction.

Algorithm 2 Procedure for updating the oscillator matrix T

for all i ∈ [2, 3, . . . , N ] do
⊲ Diagonal elements

for all j ∈ [i, i+ 1, . . . , N ] do

Tj,j := Tj,j −
T

2
i,j

4Ti,i

end for

⊲ Upper triangular elements
for all r ∈ [i, i+ 1, . . . , N ] do

for all c ∈ [r + 1, r + 2, . . . , N ] do

Tr,c := Tr,c − Ti,rTi,c

2Ti,i

end for

end for

end for

It is important to mention that we can do this transformation on T at the very
beginning and before doing any other computations shown in this chapter.

5.6 Quadrature and quadrature rules

The quadrature rules necessary for evaluating the integral in (73) are the well
known classical Gauss-Hermite rules. The Gauss-Hermite quadrature is built to
approximate integrals of the form:

∫ ∞

−∞
f (x) exp(−x2)dx ≈

n∑

k=1

f
(
γ
k

)
wk . (77)

In one dimension the quadrature nodes γ of a rule of order n are given by the
roots of the Hermite polynomial Hn(x) which is defined as:

Hn(x) :=

⌊n
2 ⌋
∑

i=0

(−1)in!

i!(n− 2i)!
(2x)n−2i (78)

The weights are given by the expression:

wk :=
2n−1n!

√
π

n2 (Hn−1(xi))
2 (79)

For multi-dimensional quadrature we can use a tensor product ansatz:

X =

N⊗

i=1

xi W =

N⊗

i=1

wi . (80)
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Another possibility would be to use sparse Smolyak grids. Looking again at the
full dimensional integral from (73):

I =

∫ ∞

−∞
· · ·
∫ ∞

−∞
f
(

h̃(τ)
) N∏

i=1

√
ı

ti,i
exp

(
−ωτ2i

)
dτ1 · · · dτN (81)

we first remove the ω from all the exponential functions:

I =
1

ω
N
2

∫ ∞

−∞
· · ·
∫ ∞

−∞
f

(

h̃1

(
τ1√
ω

)

, . . . , h̃N

(
τN√
ω

)) N∏

i=1

exp
(
−τ2i

)
· · · dτ1 · · · dτN

and then apply the standard rule to find Q ≈ I. At the end of the day, the
quadrature we will use to approximate I looks like:

Q :=

N∏

j=1

√
ı

ωtj,j

n∑

k1

· · ·
n∑

kN

f

(

h̃1

(
xk1√
ω

)

, . . . , h̃N

(
xkN√
ω

)) N∏

i=1

wki
. (82)

6 General quadratic oscillator

In this section we consider a more general oscillator term than the one from
equation (42). This time we try to solve the full quadratic problem:

g (x) := xHAx+ bHx+ c (83)

where we do not make any assumptions on A ∈ C
N×N . The general strategy we

follow is to reduce this problem back to the triangular oscillator we studied in
much detail and know how to solve.

6.1 Removing the linear term

First we want to get rid of the linear term bHx. This is done by a technique
similar to completion of the square. Starting from the above oscillator we want
to find a transformation χ that annihilates the linear term.
Assuming that this transformation is linear:

x′ = χ−1 (x) := x− u ↔ x = χ (x′) = x′ + u . (84)

we find that:

x′HAx′ = (x− u)HA (x− u)

= xHAx− xHAu− uHAx+ uHAu

= xHAx− uHAHx− uHAx+ uHAu .

(85)

If we match this against the definition of g we get the relations shown next. We
are interested in the linear terms only for finding u:

bHx = −uHAHx− uHAx

bH = −uH
(
A+AH

)

b = −
(
A+AH

)
u

(86)

23



and finally:
u = −

(
A+AH

)−1b . (87)

With the explicit value of u we can rewrite our χ in a final form:

x′ = χ−1 (x) := x+
(
A+AH

)−1b

↔ x = χ (x′) = x′ −
(
A+AH

)−1b .
(88)

Then we can start computing the new oscillator g′:

g (x) = g (χ (x′))

=
(
x′ −

(
A+AH

)−1b
)
HA

(
x′ −

(
A+AH

)−1b
)
+ bH

(
x′ −

(
A+AH

)−1b
)
+ c

we expand and simplify this step by step:

= x′HAx′ − x′HA
(
A+AH

)−1b−
((
A+AH

)−1b
)
HAx′

+
((
A+AH

)−1b
)
HA

(
A+AH

)−1b+ bH
(
x′ −

(
A+AH

)−1b
)
+ c

= x′HAx′ − x′HA
(
A+AH

)−1b− bH
(
A+AH

)
-HAx′

+ bH
(
A+AH

)
-HA

(
A+AH

)−1b+ bHx′ − bH
(
A+AH

)−1b+ c .

In a next step, try to unify the linear terms having only one x′:

− x′HA
(
A+AH

)−1b− bH
(
A+AH

)
-HAx′ + bHx′

=− bH
(
A+AH

)
-HAHx′ − bH

(
A+AH

)
-HAx′ + bHx′

=− bH
((
A+AH

)−1AH +
(
A+AH

)−1A
)
x′ + bHx′

=− bH
(
A+AH

)−1
(
A+AH

)
x′ + bHx′

=− bHx′ + bHx′ = 0 .

and indeed we find that they vanish. This confirms that the transformation is
correct. At the end of the day we obtain the new oscillator free of any linear
term:

g′ (x′) := x′HAx′+bH
(
A+AH

)
-HA

(
A+AH

)−1b−bH
(
A+AH

)−1b+c (89)

where we can pack all the constant terms into the definition of c′:

c′ := bH
(
A+AH

)
-HA

(
A+AH

)−1b− bH
(
A+AH

)−1b+ c

= −1

2
bH
(
A+AH

)−1b+ c .
(90)

Therefore:
g′ (x′) = x′HAx′ + c′ (91)

6.2 Triangularize the oscillator

Given an oscillator like (91) above with an arbitrary matrix A of full rank. We
seek a coordinate transformation ρ that makes the matrix A (upper) triagonal.
This is achieved by the Schur decomposition [11]:

A = UHTU (92)
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where:

T =






t1,1 . . . t1,N
. . .

...
0 tN,N




 (93)

and the matrix U is even unitary. (The decomposition is not necessarily unique
but this does not matter for our purpose.) The variable transformation is then
given by the following mapping:

x′′ = ρ−1 (x′) := Ux′ ↔ x′ = ρ (x′′) = U−1x′′ = UHx′′ . (94)

For the oscillator we compute:

g′ (x′) = g′ (ρ (x′′)) = g′
(
UHx′′)

=
(
UHx′′)HA

(
UHx′′)+ c′

= x′′HUAUHx′′ + c′

= x′′HTx′′ + c′

(95)

with T being upper triagonal. Finally we obtain the triangular oscillator:

g′′ (x′′) := x′′HTx′′ + c′ . (96)

Combining both transformations χ and ρ into a single one we get the following
pullback:

g (x) = g (χ (ρ (x′′))) = g (ζ (x′′)) (97)

The related transformation ζ is the explicit composition of χ and ρ:

x′′ = ζ−1 (x) = ρ−1
(
χ−1 (x)

)
= ρ−1

(
x+

(
A+AH

)−1b
)
= Ux+U

(
A+AH

)−1b

x = ζ (x′′) = χ (ρ (x′′)) = χ
(
UHx′′) = UHx′′ −

(
A+AH

)−1b .

With the help of ζ we can transform any oscillator of the form (83) into a
triangular one like shown in (42).
In this variable transformation we need also to include the Jacobi determinant.
Writing the first transformation as in (88) we have:

Jχ =
∂χ (x′)

∂x′ = 1 (98)

and hence det(Jχ) = 1. For the other transformation (94) it holds:

Jρ =
∂ρ (x′′)

∂x′′ = U−1 (99)

from which we find det(Jρ) = det(U−1) = 1
detU . Because U is unitary we finally

have | detU| = 1 and no additional factors appear in the integrals.

7 Some open issues

There are some yet unanswered questions in theory as well as in practical use.
In this section we will briefly review them, find the main difficulties in each one
and try to propose possible solutions.
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We did not give a proof for the methods proposed. In the case of 〈φk|φl〉 and
even 〈φk|V |φl〉 for some class of well-behaved, essentially polynomial, potential
V (x) there is nothing to prove. We rely on an intelligent change of variables to
obtain a tame non-oscillatory integral. Only the harder case for general V (x) is
still left open. Despite comprehensive numerical evidence, we would like a full
proof showing the validity of our extension to the theory of numerical steepest
descent to infinite intervals.4

The next question is about the correct handling of stationary points since our
single stationary point x∗ is in general complex. There are some comments on
that situation in the original reference [15]. The central observation made there
is that the integration path should pass through the stationary point even if
it is abroad in the complex plane. In our implementation we shift the whole
oscillator such that x∗ = 0. Having this point is essential for the reason that we
need to attach the paths of steepest descent there.
One serious issue arises when we try to compute the integral 〈φk|φl〉 for large
values of the indices k or l. These indices correspond directly to the degree of
the polynomial part of any wavepacket φ. The Hermite polynomials stay in
the envelope part f and are not treated by numerical steepest descent which
targets only the oscillator g explicitly. In case of high degrees, the polynomials
themselves become rapidly oscillatory and we end up with another oscillatory
integral, this time not of a form like (1) where a steepest descend transformation
is applicable. Figure 13 shows a typical example of such a polynomial oscillatory
integrand.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x

−0.5

0.0

0.5

1.0

1.5

2.0

φ
k
(x
)φ

l(
x
)

Figure 13: Integrand of the overlap of φ120 and φ122 with ε = 0.1. The parameter
set Π = {0, 0, 1, ı} is identical for both packets and hence the exponential parts

cancel to exp(−x2

ε2
). This example shows the oscillatory structure caused solely

by the high degree of the polynomials involved.

In the end, the values k and l set the lower bound on the number of Gauss-

4The idea was to use the work from [15] on finite intervals and from [17] on semi-finite
intervals to construct a solution for infinite intervals by gluing together three regions, one finite
and two semi-finite ones. It turned out that the proof given in the latter reference is flawed.
As is stands now we can not even assume the semi-finite part to be correct.
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Hermite quadrature nodes that we have to use for correct integration. This
is very unfortunate and can diminish the gain in number of nodes obtained
through the steepest descent transformation. However, with modern algorithms
it is easily possible to compute Gaussian quadrature with hundreds or even
thousands of quadrature points [10, 20]. This makes the problem accessible for
direct computation. Some work in this direction will be shown in a future report.
One might try to resolve these oscillations by another method on top of what
we did so far. Rewriting the Hermite polynomials into their integral formulation

Hn(x) =
exp

(
3πın
2

)
2n√

π

∫ ∞

−∞
tne−(t−ıx)2dt

does not solve the problem as there is still a troublesome factor tn. If we would
apply the steepest descent transformation to this integral, computing the n-th
power of the integration paths will again yield polynomials of high order.
The next open problem is about integrals 〈φ|ô|φ〉 including additional scalar
multiplicative or differential operators ô. An example of this kind is the com-
putation of expectation values of potential5 energies: 〈φ|V |φ〉. In this example
given, the same wavepacket φ appears in both, the bra and the ket part of the
integral. Therefore the integration is much easier, oscillations caused by the
exponential parts cancel out to a large degree. But let us consider the general
case where we have 〈φ|ô|φ′〉. The main issue here are the possible effects on
the oscillator g induced by ô. For example, assume that ô is a potential V (x).
Then, V becomes part of the envelope and there apply some growth limits on
the envelope f for |x| → ∞. If V contains exponential parts, they have to be
merged into the oscillator g and in turn change the integration paths. Further,
if there are any poles in f , we have to be very careful with integration too and
make sure to include all the relevant residuals. In the computations done so
far, the envelope f is assumed to have no poles in C

N . Altogether this poses
some challenges for non-polynomial potentials. Polynomial potentials are tame
enough to fit the framework shown.
Although there are some loose ends, we have constructed a method which works
better for larger ω hence for smaller semiclassical scaling ε. It gives excellent
results in the interesting and complicated case where Π ≈ Π′.

8 Numerical Examples

8.1 Motivation

The initial motivation for this research originates from the computation of
autocorrelations of wavepackets Ψ like:

I = 〈Ψ[Π] |Ψ[Π′]〉 =
∫

· · ·
∫

RD

Ψ[Π]Ψ[Π′]dx . (100)

This turns out to be very challenging. In some of the most interesting cases
where Π ≈ Π′ holds or where the semiclassical scaling parameter ε becomes

5Kinetic energy expectation 〈φ|T̂ |φ〉 is in our case no issue because the gradient of a
wavepacket can be expressed in a linear combination of new wavepackets again, hence we are
back at the case 〈φk|φl〉.
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Figure 14: Autocorrelation of the Mercury dynamics computed with classical
Gauss-Hermite quadrature and with the steepest descent method each with
several numbers of quadrature points. While Gauss-Hermite quadrature fails,
the numerical steepest descent transformation yields accurate results.

small, Gaussian quadrature introduces huge errors and hence we find spurious
non-physical correlations.
For example we studied the time-dependent Schrödinger equation with a wave-
packet Ψ propagating in a Morse potential V (x). The potential was fit to
experimental data which are taken from [19]. The semiclassical scaling parameter
ε = 0.048360 representing mass ratio between nuclei and electrons matches the
nuclear dynamics of the mercury compound Hg2.
Gauss-Hermite quadrature with any number of nodes shows high spurious
autocorrelation bumps, compare to Figure 14. Using the steepest descent
transformation before applying a quadrature scheme gives correct results for an
even smaller number of nodes.
In the following we will perform a number of different numerical simulations
and show the robustness as well as pleasant convergence properties of this new
technique. All simulations shown here were carried out by our implementation
in the WaveBlocks simulation code [6].

8.2 Two-Packet Experiment

In this section we show the insufficiency of the Gauss-Hermite quadrature for
computing the integral in (100). The setup of this experiment consists of two
wavepackets φ[Π] and φ[Π′]. Both are fixed in space at positions q and q′. Next
we direct the momenta p and p′ towards each other (p′ = −p) and start increasing
their magnitude |p|. (Note that for all figures below, the values of the p axis are
multiplicative factors on top of the wavepacket’ original values p and p′.) The
procedure is shown also in Figure 15.
The higher the momenta, the more oscillations appear in the product φ(x)φ′(x).
These oscillations are difficult for Gauss Hermite quadrature to catch and
accuracy will break down even for relatively small momenta. On the other hand,

28



q′

qp′

p

x

Figure 15: Setup of the first experiment. There are two wavepackets Ψ and
Ψ′ located next to each other at fixed positions q and q′. We set increasing
momenta p and p′ in opposite direction.

since the steepest descent transformation applies to arbitrary high oscillator
frequency, it perfectly handles arbitrary momenta and converges fast to the
correct overlap integral value.
For the one-dimensional case there exists an analytic formula for computing
the integral for any state φk. Evaluation is very expensive but can nevertheless
serve as exact reference solution. For examples in higher dimensions we can
take the formula for general Gaussian integrals in case we look at ground states
φ0 only. Otherwise we take the computation including the steepest descent
transformation using the largest number of quadrature nodes as reference.
The whole process of computing the integral works as shown in the Figure 5.
Especially in the multi-dimensional case we still need a full tensor product of
N Gauss-Hermite quadrature nodes in the end. This results in ND quadrature
nodes, which scales exponentially with the dimension D. The important bit is
however that the value of N is much smaller compared to direct application of
traditional quadrature schemes as done in 1. The only oscillations that remain
are caused by the degree of the polynomial part of the integrand for large state
index k. There, the order bounds of Gauss quadrature of course still apply.

8.2.1 Convergence in |p|
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Figure 16: Experiment with φ0 and φ′
0. The parameters are: q = −0.2, p = 1.5,

Q = 1.0, P = 1.0ı and q′ = 0.125, p′ = −1.5, Q′ = 0.8, P ′ = 1.25ı with ε = 0.3.
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(d) Absolute error of the steepest descent
method compared to the exact solution.
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(e) Relative error of the direct quadrature
method compared to the exact solution.
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(f) Relative error of the steepest descent
method compared to the exact solution.

Figure 17: Experiment with φ2 and φ′
1. The parameters are: q = −0.2, p = 1.5,

Q = 1.0, P = 1.0ı and q′ = 0.125, p′ = −1.5, Q′ = 0.8, P ′ = 1.25ı with ε = 0.3.
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(a) Direct Gauss-Hermite quadrature of size
N with a total of |Γ| nodes.
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(b) Steepest descent transformation and
Gauss-Hermite quadrature of size N with a
total of |Γ| nodes.
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(c) Absolute error of the direct quadrature
method compared to the exact solution.
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(d) Absolute error of the steepest descent
method compared to the exact solution.
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(e) Relative error of the direct quadrature
method compared to the exact solution.
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(f) Relative error of the steepest descent
method compared to the exact solution.

Figure 18: Experiment with φ11 and φ′
9. The parameters are: q = −0.2, p = 1.2,

Q = 1.0, P = 1.0ı and q′ = 0.2, p′ = −1.2, Q′ = 0.5, P ′ = 2.0ı with ε = 0.3.
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(a) Direct tensor product Gauss-Hermite
quadrature of linear size N with a total of
|Γ| nodes.
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(b) Steepest descent transformation and ten-
sor product Gauss-Hermite quadrature of
linear size N with a total of |Γ| nodes.
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(c) Absolute error of the direct quadrature
method compared to the exact solution.
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(e) Relative error of the direct quadrature
method compared to the exact solution.
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(f) Relative error of the steepest descent
method compared to the exact solution.

Figure 19: Experiment with φ0,0 and φ′
0,0. The parameters are: q = (−0.1, 0.1),

p = (1.0,−0.1), Q = 1, P = ı1 and q′ = (0.1, 0.1), p′ = (−1.0, 0.1), Q′ = 1,
P′ = ı1 with ε = 0.3.
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(a) Direct tensor product Gauss-Hermite
quadrature of linear size N with a total of
|Γ| nodes.
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(b) Steepest descent transformation and ten-
sor product Gauss-Hermite quadrature of
linear size N with a total of |Γ| nodes.
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(c) Absolute error of the direct quadrature
method compared to the exact solution.
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(e) Relative error of the direct quadrature
method compared to the exact solution.
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(f) Relative error of the steepest descent
method compared to the exact solution.

Figure 20: Experiment with φ1,0 and φ′
0,1. The parameters are: q = (−0.1, 0.1),

p = (1.0,−0.1), Q = 1, P = ı1 and q′ = (0.1, 0.1), p′ = (−1.0, 0.1), Q′ = 1,
P′ = ı1 with ε = 0.3.
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(a) Direct tensor product Gauss-Hermite
quadrature of linear size N with a total of
|Γ| nodes.
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(b) Steepest descent transformation and ten-
sor product Gauss-Hermite quadrature of
linear size N with a total of |Γ| nodes.
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(e) Relative error of the direct quadrature
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(f) Relative error of the steepest descent
method compared to the exact solution.

Figure 21: Experiment with φ8,8 and φ′
8,8. The parameters are: q = (−0.1, 0.1),

p = (1.0,−0.1), Q = (1.0, 0; 0, 1.0), P = (1.0ı, 0; 0, 1.0ı) and q′ = (0.1, 0.1),
p′ = (−1.0, 0.1), Q′ = (2.0, 0; 0, 0.5), P′ = (0.5ı, 0; 0, 2.0ı) with ε = 0.3.
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(a) Direct tensor product Gauss-Hermite
quadrature of linear size N with a total of
|Γ| nodes.
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(b) Steepest descent transformation and ten-
sor product Gauss-Hermite quadrature of
linear size N with a total of |Γ| nodes.
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(f) Relative error of the steepest descent
method compared to the exact solution.

Figure 22: Experiment with φ0,0,0,0 and φ′
0,0,0,0. The parameters are: q =

(−0.1,−0.1,−0.1,−0.1), p = (0.2,−0.2,−0.2, 0.2), Q = 1, P = ı1 and q′ =
(0.1, 0.1, 0.1, 0.1), p′ = (−0.2, 0.2, 0.2,−0.2), Q′ = 1, P′ = ı1 with ε = 0.1.
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(a) Direct tensor product Gauss-Hermite
quadrature of linear size N with a total of
|Γ| nodes.
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(b) Steepest descent transformation and ten-
sor product Gauss-Hermite quadrature of
linear size N with a total of |Γ| nodes.
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Figure 23: Experiment with φ1,1,1,1 and φ′
1,1,1,1. The parameters are: q =

(−0.1,−0.1,−0.1,−0.1), p = (0.2,−0.2,−0.2, 0.2), Q = 1, P = ı1 and q′ =
(0.1, 0.1, 0.1, 0.1), p′ = (−0.2, 0.2, 0.2,−0.2), Q′ = 1, P′ = ı1 with ε = 0.1.
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8.2.2 Convergence in ε
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(a) Direct Gauss-Hermite quadrature of size
N with a total of |Γ| nodes.
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(b) Steepest descent transformation and
Gauss-Hermite quadrature of size N with a
total of |Γ| nodes.
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(e) Relative error of the direct quadrature
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(f) Relative error of the steepest descent
method compared to the exact solution.

Figure 24: Experiment with φ0 and φ′
0. The parameters are: q = 1.0, p = 0.2,

Q = 0.5, P = 2.0ı and q′ = 1.0, p′ = −0.2, Q′ = 2.0, P ′ = 0.5ı.
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(a) Direct Gauss-Hermite quadrature of size
N with a total of |Γ| nodes.
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(b) Steepest descent transformation and
Gauss-Hermite quadrature of size N with a
total of |Γ| nodes.
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(c) Absolute error of the direct quadrature
method compared to the exact solution.
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(d) Absolute error of the steepest descent
method compared to the exact solution.
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(e) Relative error of the direct quadrature
method compared to the exact solution.
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(f) Relative error of the steepest descent
method compared to the exact solution.

Figure 25: Experiment with φ2 and φ′
1. The parameters are: q = 1.0, p = 0.2,

Q = 0.5, P = 2.0ı and q′ = 1.0, p′ = −0.2, Q′ = 2.0, P ′ = 0.5ı.
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(a) Direct Gauss-Hermite quadrature of size
N with a total of |Γ| nodes.
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(b) Steepest descent transformation and
Gauss-Hermite quadrature of size N with a
total of |Γ| nodes.
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(c) Absolute error of the direct quadrature
method compared to the exact solution.
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(d) Absolute error of the steepest descent
method compared to the exact solution.
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(e) Relative error of the direct quadrature
method compared to the exact solution.
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(f) Relative error of the steepest descent
method compared to the exact solution.

Figure 26: Experiment with φ8 and φ′
8. The parameters are: q = 1.0, p = 0.2,

Q = 0.5, P = 2.0ı and q′ = 1.0, p′ = −0.2, Q′ = 2.0, P ′ = 0.5ı.
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(a) Direct tensor product Gauss-Hermite
quadrature of linear size N with a total of
|Γ| nodes.
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(b) Steepest descent transformation and ten-
sor product Gauss-Hermite quadrature of
linear size N with a total of |Γ| nodes.
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method compared to the exact solution.
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(d) Absolute error of the steepest descent
method compared to the exact solution.
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(e) Relative error of the direct quadrature
method compared to the exact solution.
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(f) Relative error of the steepest descent
method compared to the exact solution.

Figure 27: Experiment with φ0,0 and φ′
0,0. The parameters are: q = (1, 1),

p = (−0.2,−0.2), Q = 1, P = ı1 and q′ = (1, 1), p′ = (0.2, 0.2), Q′ = 1, P′ = ı1.
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(a) Direct tensor product Gauss-Hermite
quadrature of linear size N with a total of
|Γ| nodes.
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(b) Steepest descent transformation and ten-
sor product Gauss-Hermite quadrature of
linear size N with a total of |Γ| nodes.
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(c) Absolute error of the direct quadrature
method compared to the exact solution.
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(e) Relative error of the direct quadrature
method compared to the exact solution.
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(f) Relative error of the steepest descent
method compared to the exact solution.

Figure 28: Experiment with φ0,1 and φ′
1,0. The parameters are: q = (1, 1),

p = (−0.2,−0.2), Q = 1, P = ı1 and q′ = (1, 1), p′ = (0.2, 0.2), Q′ = 1, P′ = ı1.
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(a) Direct tensor product Gauss-Hermite
quadrature of linear size N with a total of
|Γ| nodes.
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(b) Steepest descent transformation and ten-
sor product Gauss-Hermite quadrature of
linear size N with a total of |Γ| nodes.
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(c) Absolute error of the direct quadrature
method compared to the exact solution.
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(e) Relative error of the direct quadrature
method compared to the exact solution.
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(f) Relative error of the steepest descent
method compared to the exact solution.

Figure 29: Experiment with φ2,3 and φ′
2,2. The parameters are: q = (1, 1),

p = (−0.2,−0.2), Q = 1, P = ı1 and q′ = (1, 1), p′ = (0.2, 0.2), Q′ = 1, P′ = ı1.
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(a) Direct tensor product Gauss-Hermite
quadrature of linear size N with a total of
|Γ| nodes.
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(b) Steepest descent transformation and ten-
sor product Gauss-Hermite quadrature of
linear size N with a total of |Γ| nodes.
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(c) Absolute error of the direct quadrature
method compared to the exact solution.
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(d) Absolute error of the steepest descent
method compared to the exact solution.
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(e) Relative error of the direct quadrature
method compared to the exact solution.
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(f) Relative error of the steepest descent
method compared to the exact solution.

Figure 30: Experiment with φ0,0,0,0 and φ′
0,0,0,0. The parameters are: q =

(1, 1, 1, 1), p = (−0.5,−0.5,−0.5,−0.5), Q = 1, P = ı1 and q′ = (1, 1, 1, 1),
p′ = (0.5, 0.5, 0.5, 0.5), Q′ = 1, P′ = ı1.
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(a) Direct tensor product Gauss-Hermite
quadrature of linear size N with a total of
|Γ| nodes.
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(b) Steepest descent transformation and ten-
sor product Gauss-Hermite quadrature of
linear size N with a total of |Γ| nodes.
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method compared to the exact solution.
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(d) Absolute error of the steepest descent
method compared to the exact solution.
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(e) Relative error of the direct quadrature
method compared to the exact solution.
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(f) Relative error of the steepest descent
method compared to the exact solution.

Figure 31: Experiment with φ2,1,2,1 and φ′
1,1,1,1. The parameters are: q =

(1, 1, 1, 1), p = (−0.5,−0.5,−0.5,−0.5), Q = 1, P = ı1 and q′ = (1, 1, 1, 1),
p′ = (0.5, 0.5, 0.5, 0.5), Q′ = 1, P′ = ı1.
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8.3 Going to higher dimensions

As seen in the last section, after the steepest descent transformation we still
need a quadrature albeit with much less quadrature points. In the case of higher
dimensionality (at least D > 2) of the original problem this full tensor product in
general is very expensive. Therefore we seek for a replacement that is cheaper to
compute but still accurate. The Smolyak approach is an obvious candidate. If it
really is well-suited depends also on the multi-indices k and l of the wavepackets
φ and φ′ which have to be sparse enough. But we assume that this is the case
for now. Then we end up in a chain as shown in Figure 32, first performing
the steepest descent transformation to get rid of the oscillations then using the
Smolyak construction to lessen the curse of dimensionality.

Original Problem
〈φ|φ′〉

Numerical
Steepest Descent

Smolyak
Construction

Gauss Hermite
Quadrature

Figure 32: Overview of the computation seen as chain of transformations.

For this to work out we rewrite the Smolyak construction into a less well known
version such that in can act as a simple transformation of a set of Gauss-Hermite
quadrature nodes connecting to the numerical steepest descent step. The Smolyak
construction of level k ≥ 1 in D dimensions can be written as:

SD,k :=

k−1∑

q=k−D

(−1)k−1−q

(
D − 1

k − 1− q

)
∑

l∈N
D

‖l‖1=D+q

(Ql1 ⊗ · · · ⊗QlD )

which is known as the combination technique. The formula was first derived in
[21]. This version stresses that the Smolyak construction is nothing more than a
certain sum of specific smaller tensor products of one-dimensional quadrature
rules {Qi}i∈N. Our own implementation is based mainly on the details explained
in [14] and [9].
However, this setup as shown will not work too well and, even worse, yield a
much larger number of nodes compared to the simple full tensor product under
some circumstances. The reason is that the Gauss-Hermite quadrature points
are not nested while this is a central prerequisite for the Smolyak construction
to work and reduce complexity.
To resolve this issue, we look for sets of nested points that can be fed into the
Smolyak construction. Luckily there exist the so-called Genz-Keister quadrature
points which can be build for the case of a Gaussian integral, too. For further
details on the Genz-Keister construction, see the original paper [8] as well as
our own work [5] and references there in. Using these points instead of the
Gauss-Hermite nodes will result in a chain as shown in Figure 33.

Original Problem
〈φ|φ′〉

Numerical
Steepest Descent

Smolyak
Construction

Genz-Keister
Quadrature

Figure 33: Overview of the computation seen as chain of transformations.
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These Genz-Keister quadrature nodes can be constructed not only for the
one-dimensional case but in any number of dimensions with moderate effort.
Even better, one can prove [18] that the resulting multi-dimensional Genz-
Keister construction is equivalent to the Smolyak construction starting from
one-dimensional Genz-Keister nodes. Since there are much less Genz-Keister
nodes compared to the full tensor of Gauss-Hermite nodes, as shown in Figure
34, we can largely reduce the computational effort. Note however that for
D ≤ 2 they are unprofitable because they encompass more nodes that a simple
Gauss-Hermite tensor product.
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Figure 34: Heat map of the ratio |ΓG|
|ΓT | of number |ΓG| of Genz-Keister points

and number |ΓT | of Gauss-Hermite tensor product points for dimensions D up
to 8 and level K ≤ 12. White dots are D,K combinations where Genz-Keister
is advantageous, while for black dots Genz-Keister is worse and for gray dots
the ratio equals 1.

Inside the algorithm producing these nodes we can at the same time also explicitly
compute the necessary matching weights for quadrature. At the end of the day
we obtain the relatively simple chain shown in 35 where we plug the set of
multi-dimensional Genz-Keister nodes γi ∈ R

D directly into the steepest descent
transformation. However, we should keep in mind that this reduction is not
always applicable or profitable, depending on k and l.

Original Problem
〈φ|φ′〉

Numerical
Steepest Descent

Multidimensional
Genz-Keister
Quadrature

Figure 35: Overview of the computation seen as chain of transformations.

In the remainder of this section we will perform numerical experiments and
compare this approach based on Genz-Keister quadrature rules to the full tensor
ansatz using Gauss-Hermite node weight pairs. Again we study the convergence
of the quadrature error in the same setup as in the last section. First we measure
the error for oscillations caused by increasing momentum. The second setup
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fixes momentum and varies the semiclassical scaling parameter ε, also resulting
in oscillatory integrands.

8.3.1 Convergence in |p|
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(a) Tensor product of linear size N with a
total of |Γ| quadrature nodes.
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(b) Smolyak construction of level K with a
total of |Γ| quadrature nodes.
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(f) Relative error of the Smolyak construc-
tion compared to the exact solution.

Figure 36: Experiment with φ0,0,0 and φ′
0,0,0 in 3 dimensions. The parameters

are: q = (1.2, 1.2, 1.2), p = (1, 1, 1), Q = 1, P = ı1 and q′ = (0.8, 0.8, 0.8),
p′ = (−1,−1,−1), Q′ = 1, P′ = ı1 with ε = 0.3.
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tion compared to the exact solution.

Figure 37: Experiment with φ0,1,1 and φ′
1,1,0 in 3 dimensions. The parameters

are: q = 1.2(1, . . . , 1), p = (1, . . . , 1), Q = 1, P = ı1 and q′ = 0.8(1, . . . , 1),
p′ = −(1, . . . , 1), Q′ = 1, P′ = ı1 with ε = 0.3.
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total of |Γ| quadrature nodes.
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total of |Γ| quadrature nodes.
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Figure 38: Experiment with φ0,4,0 and φ′
4,0,0 in 3 dimensions. The parameters

are: q = 1.2(1, . . . , 1), p = (1, . . . , 1), Q = 1, P = ı1 and q′ = 0.8(1, . . . , 1),
p′ = −(1, . . . , 1), Q′ = 1, P′ = ı1 with ε = 0.3.
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total of |Γ| quadrature nodes.
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total of |Γ| quadrature nodes.
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Figure 39: Experiment with φ4,4,4 and φ′
4,4,4 in 3 dimensions. The parameters

are: q = 1.2(1, . . . , 1), p = (1, . . . , 1), Q = 1, P = ı1 and q′ = 0.8(1, . . . , 1),
p′ = −(1, . . . , 1), Q′ = 1, P′ = ı1 with ε = 0.3.
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tion compared to the exact solution.

Figure 40: Experiment with φ0,2,1,1 and φ′
1,2,1,0 in 4 dimensions. The parameters

are: q = 1.01(1, . . . , 1), p = (1, . . . , 1), Q = 1, P = ı1 and q′ = 0.99(1, . . . , 1),
p′ = −(1, . . . , 1), Q′ = 1, P′ = ı1 with ε = 0.3.
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(b) Smolyak construction of level K with a
total of |Γ| quadrature nodes.
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tion compared to the exact solution.

Figure 41: Experiment with φ0 and φ′
0 in 6 dimensions. The parameters are:

q = 1.01(1, . . . , 1), p = (1, . . . , 1), Q = 1, P = ı1 and q′ = 0.99(1, . . . , 1),
p′ = −(1, . . . , 1), Q′ = 1, P′ = ı1 with ε = 0.3.
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(a) Tensor product of linear size N with a
total of |Γ| quadrature nodes.
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(b) Smolyak construction of level K with a
total of |Γ| quadrature nodes.
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(f) Relative error of the Smolyak construc-
tion compared to the exact solution.

Figure 42: Experiment with φ1,0,1,0,0,0 and φ′
1,1,0,0,0,0 in 6 dimensions. The

parameters are: q = 1.01(1, . . . , 1), p = (1, . . . , 1), Q = 1, P = ı1 and q′ =
0.99(1, . . . , 1), p′ = −(1, . . . , 1), Q′ = 1, P′ = ı1 with ε = 0.3.
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Figure 43: Experiment with φ1,0,...,0 and φ′
1,0,...,0 in 12 dimensions. The pa-

rameters are: q = 1.0001(1, . . . , 1), p = (1, . . . , 1), Q = 1, P = ı1 and
q′ = 0.9999(1, . . . , 1), p′ = −(1, . . . , 1), Q′ = 1, P′ = ı1 with ε = 0.3.
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8.3.2 Convergence in ε
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Figure 44: Experiment with φ0,0,0 and φ′
0,0,0 in 3 dimensions. The parameters

are: q = (1, 1, 1), p = (−0.2,−0.2,−0.2), Q = 1, P = ı1 and q′ = (1, 1, 1),
p′ = (0.2, 0.2, 0.2), Q′ = 1, P′ = ı1.

56



10−2 10−1 100 101

ε

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

I n
sd
,t
p

N = 2 , |Γ| = 8

N = 3 , |Γ| = 27

N = 4 , |Γ| = 64

N = 5 , |Γ| = 125

N = 6 , |Γ| = 216

N = 8 , |Γ| = 512

N = 9 , |Γ| = 729

N = 10 , |Γ| = 1000

exact

(a) Tensor product of linear size N with a
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(b) Smolyak construction of level K with a
total of |Γ| quadrature nodes.
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Figure 45: Experiment with φ1,1,0 and φ′
0,1,1 in 3 dimensions. The parameters

are: q = (1, 1, 1), p = (−0.2,−0.2,−0.2), Q = 1, P = ı1 and q′ = (1, 1, 1),
p′ = (0.2, 0.2, 0.2), Q′ = 1, P′ = ı1.
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(a) Tensor product of linear size N with a
total of |Γ| quadrature nodes.
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(b) Smolyak construction of level K with a
total of |Γ| quadrature nodes.
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tion compared to the exact solution.

Figure 46: Experiment with φ4,0,0 and φ′
0,4,0 in 3 dimensions. The parameters

are: q = (1, 1, 1), p = (−0.2,−0.2,−0.2), Q = 1, P = ı1 and q′ = (1, 1, 1),
p′ = (0.2, 0.2, 0.2), Q′ = 1, P′ = ı1.
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(a) Tensor product of linear size N with a
total of |Γ| quadrature nodes.
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ansatz compared to the exact solution.
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Figure 47: Experiment with φ2,2,2 and φ′
2,2,2 in 3 dimensions. The parameters

are: q = (1, 1, 1), p = (−0.2,−0.2,−0.2), Q = 1, P = ı1 and q′ = (1, 1, 1),
p′ = (0.2, 0.2, 0.2), Q′ = 1, P′ = ı1.
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(b) Smolyak construction of level K with a
total of |Γ| quadrature nodes.
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(f) Relative error of the Smolyak construc-
tion compared to the exact solution.

Figure 48: Experiment with φ3,0,0,0 and φ′
3,0,0,0 in 4 dimensions. The parameters

are: q = (1, 1, 1, 1), p = (−0.2,−0.2,−0.2,−0.2), Q = 1, P = ı1 and q′ =
(1, 1, 1, 1), p′ = (0.2, 0.2, 0.2, 0.2), Q′ = 1, P′ = ı1.
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(f) Relative error of the Smolyak construc-
tion compared to the exact solution.

Figure 49: Experiment with φ8,0,1,0 and φ′
8,1,0,0 in 4 dimensions. The parameters

are: q = (1, 1, 1, 1), p = (−0.2,−0.2,−0.2,−0.2), Q = 1, P = ı1 and q′ =
(1, 1, 1, 1), p′ = (0.2, 0.2, 0.2, 0.2), Q′ = 1, P′ = ı1.

61



10−2 10−1 100 101

ε

0.0

0.2

0.4

0.6

0.8

1.0

I n
sd
,t
p

N = 2 , |Γ| = 64

N = 3 , |Γ| = 729

N = 4 , |Γ| = 4096

N = 5 , |Γ| = 15625

N = 6 , |Γ| = 46656

N = 7 , |Γ| = 117649

N = 8 , |Γ| = 262144

exact

(a) Tensor product of linear size N with a
total of |Γ| quadrature nodes.
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(b) Smolyak construction of level K with a
total of |Γ| quadrature nodes.
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(f) Relative error of the Smolyak construc-
tion compared to the exact solution.

Figure 50: Experiment with φ5,0,0,0,0,0 and φ′
5,0,0,0,0,0 in 6 dimensions. The

parameters are: q = (1, . . . , 1), p = (−0.2, . . . ,−0.2), Q = 1, P = ı1 and
q′ = (1, . . . , 1), p′ = (0.2, . . . , 0.2), Q′ = 1, P′ = ı1.
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(a) Tensor product of linear size N with a
total of |Γ| quadrature nodes.
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(b) Smolyak construction of level K with a
total of |Γ| quadrature nodes.
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(f) Relative error of the Smolyak construc-
tion compared to the exact solution.

Figure 51: Experiment with φ2,0,0,0,0,0,0,0 and φ′
2,0,0,0,0,0,0,0 in 8 dimensions.

The parameters are: q = (1, . . . , 1), p = (−0.2, . . . ,−0.2), Q = 1, P = ı1 and
q′ = (1, . . . , 1), p′ = (0.2, . . . , 0.2), Q′ = 1, P′ = ı1.
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9 Conclusion

For the problem of computing overlap integrals of semiclassical wavepackets
|φ〉 we showed that the common quadrature schemes are insufficient. This is
caused by the oscillatory nature of the integrands. Depending on the phase space
constellation of the wavepackets involved, Gaussian quadrature can introduce
large errors hence entirely destroying the numerical simulation results in the
worst case.
Based on recent developments in the area of highly oscillatory quadrature we
presented an improvement. This new method adapts the technique of numerical
steepest descent specially to the needs of overlap integrals 〈φ|φ′〉. To some
extend it is possible also to treat more general operator integrals 〈φ|ô|φ′〉 but
issues may arise from the complex behavior of ô.
The fundamental technique is not restricted to one-dimensional examples and
works well in any number of dimensions. There is still a quadrature involved,
having a much smaller number of nodes. Full tensor product quadrature becomes
expensive in higher dimensions. Therefore we applied the Smolyak construction
and used a specially crafted set of nested quadrature points to lessen the curse
of dimensionality.
In the future, more work can be done in different directions. Computation for
large wavepacket indices k poses an important problem limiting the application
of the steepest descent techniques. Being able to compute integrals like 〈φ|ô|φ′〉
becomes important for some new time-propagation methods currently in devel-
opment. Finally, we used the classical Smolyak construction while even more
sparse schemes like hyperbolic cuts could be beneficent. One might consider
adaptive versions too.
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