
Exhaustive search for higher-order

Kronrod-Patterson Extensions

R. Bourquin

Research Report No. 2015-11
April 2015

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland

__

Funding SNF: 140688

Exhaustive search for higher-order

Kronrod-Patterson Extensions

R. Bourquin

April 30, 2015

Abstract

Gauss points are not nested and for this reason one searches for quadra-
ture rules with nested points and similar efficiency. A well studied source
of candidates are the Kronrod-Patterson extensions. Under suitable con-
ditions it is possible to build towers of nested rules. We investigate this
topic further and give a detailed description of the algorithms used for
constructing such iterative extensions. Our new implementation combines
several important ideas spread out in theoretical research papers. We
apply the resulting algorithms to the classical orthogonal polynomials and
build sparse high-dimensional quadrature rules for each class.

1 Introduction

The Gauss quadrature rules are among the most important techniques for
numerical integration. Computation of their nodes and weights is an important
task and makes these rules available for actual computation. This problem is
by now solved at least for the classical orthogonal polynomials and quadrature
rules Qn are available for any number n of nodes even in the range up to several
thousand.
The Gauss rules have a major drawback, namely that for two rules Qn and
Qm with m > n, their sets of nodes Γn and Γm are in general different, except
for very special points like the origin. We say that these rules are not nested
because Γn 6⊂ Γm despite Γn being of smaller cardinality. This implies that
almost all function evaluations can not be reused. This is an issue for example
when one tries to recompute an integral with a higher order rule to obtain an
error estimation.
Therefore Kronrod proposed [16] to extend a given Gauss quadrature rule Qn

with n+ 1 new points yielding a new rule. This is done in such a way that now
the two rules are nested. A few years later Patterson showed [26] an optimal
and numerically stable way to compute these new nodes. The close relation
to the standard way of computing Gauss quadrature rules is shown in [17].
It is possible to iterate these constructions and build whole towers of nested
quadrature rules [18]. We review this construction and give a detailed description
of the algorithms for such iterated nested extensions to the Gauss quadrature
rules related to the five classical orthogonal polynomials. The algorithms are
implemented in an efficient code that is publicly available under the GPL license.

1

There are only few theoretical results on the existence of Kronrod-Patterson
extensions and they are usually restricted to one single extension level [4, 5,
20, 21, 28]. Most of these results are for Legendre Polynomials and the branch
stemming from specializations of Jacobi polynomials. For the case of Hermite
polynomials, which is most interesting for the application we originally had in
mind [9, 2], there is only a single result of limited use [14].
We take an algorithmic ansatz and explicitly find and enumerate extensions by
an exhaustive recursive search. This gives huge families of nested quadrature
rules for some cases. The evaluation of the best is not easy and partially left
open. In other cases the choice is more limited and if we require a certain number
of nested levels, there are only few possible rules left to try.
Quadrature rules that are not nested are a particularly bad starting point for the
classical Smolyak ansatz that is often used for quadrature in higher dimensions.
The set of quadrature point is then much larger than necessary and can be even
larger than a full tensor product.
However, a tower of Kronrod extensions and the Smolyak composition formula
yield efficient rules even for high dimensions and for more complex cases such
as the unbounded case of Gauss-Hermite integration. It was proven [25] that
this construction exactly yields the Genz-Keister quadrature rules [7]. Therefore
we have an efficient way to actually build all these rules avoiding the explicit
Smolyak formula. In the end we provide algorithms for the construction of
sparse quadrature rules for any of the classical orthogonal polynomials. The
rules are evaluated for accuracy as well as effectiveness. These algorithms are
also implemented in the above mentioned code. The actual implementation
follows closely the description given here in pseudo code.

2 Kronrod-Patterson Extensions

2.1 Mathematical principles

The n nodes {γi}ni=1 of any Gauss quadrature rule for a given density distribution
ω(t) can be found as the roots of a polynomial Pn of degree n. The existence of
corresponding weights {ωi}ni=1 is the ensured by the following theorem from [18]
originally stated by Kronrod in [16]:

Theorem 1. For every probability density function ω(t) and every set {γi}ni=1 ⊂
R of n nodes there exists a set of unique weights {ωi}ni=1 such that the quadrature
Formula for integration with respect to ω(t) has a polynomial degree of exactness
of at least n− 1. These weights are the unique solution of the linear system of
equations:

n
∑

i=1

ωiγ
k
i =

∫

Ω

tkω(t)dt (1)

for k = 0, . . . , n− 1.

Next we need another theorem giving the conditions under which we can extend
a given set of nodes by a bunch of new nodes.

Theorem 2. Let ω(t) be the probability density function of a distribution sup-
ported on Ω ⊆ R with finite moments. Let Pn(t) be a univariate polynomial of

2

degree n with n distinct real roots, and suppose that there exists a polynomial Ep

of degree p satisfying:
∫

Ω

Pn(t)Ep(t)t
iω(t)dt = 0 (2)

for all i = 0, . . . , p− 1. Assume further that the roots of Ep are all real and of
multiplicity one, and distinct from those of Pn. Then there exists a quadrature
formula supported on the roots of PnEp, whose degree of polynomial exactness is
at least n+ 2p− 1.

A simple proof of this theorem is given in the original article [18]. Some more
theoretical background on Kronrod extensions of Gauss quadrature rules can be
found in [6, 22] and in the survey article [23].

2.2 Algorithmic procedure

The main algorithm consists of three steps building upon each other.

• Given the polynomial Pn(t) of degree n defining the rule with nodes {γi}ni=1

and weights {ωi}ni=1.

• Choose p ≥ 1. Find a new polynomial Ep(t) with degEp = p such that:

∫

Ω

Pn(t)Ep(t) t
i ω(t) dt = 0 (3)

for all i = 0, . . . , p − 1, see theorem 2. We require that Ep is monic and
obtain a square linear system. If this system is solvable, then the extension
Ep exists. Otherwise we can not extend the given n point rule by adding
exactly p new nodes to a n+ p point rule.

• Compute the roots {γ′
i}pi=1 of Ep. If not all roots lie within the region Ω

then this extension does not construct a valid quadrature rule.

• Compute the weights {ω′
i}n+p

i=1 for the new quadrature rule. It is important
to note that the weights of the old unextended rule usually will change
too. Hence it is not possible to compute only new weights {ω′

i}pi=n+1 but
we must recompute all n+ p weights at once. For the unified final set of
nodes:

{γi}n+p
i=1 := {γi}ni=1 ∪ {γ′

i}pi=1 (4)

we compute the weights by formula (1):

n+p
∑

i=1

ω′
it
k
i =

∫

Ω

tkω(t)dt (5)

for all k = 0, . . . , n + p − 1. This is again a linear system of equations.
On the right hand side we have the moments of the distribution ω(t). It
can happen that some of the weights are negative. This might affect the
overall stability on the quadrature rule but is tolerated for now.

The steps for computing a single extension Ep of Pn are shown in pseudo-code in
Algorithm 1. Another version computing iteratively multiple nested extensions
is shown in 2.

3

2.3 Find extensions

The general degree p monic polynomial Ep with symbolic coefficients is written
as:

Ep(t) := tp +

p−1
∑

k=0

akt
k (6)

and we need to determine the set of coefficients {ai}p−1
i=0 . The theorem 2 from

above and the integral formulation (2) gives:

0 =

∫

Ω

Pn(t)Ep(t)t
iω(t) dt =

∫

Ω

Pn(t)

(

p−1
∑

k=0

akt
k + tp

)

tiω(t) dt

=

p−1
∑

k=0

ak

∫

Ω

Pn(t)t
ktiω(t) dt+

∫

Ω

Pn(t)t
ptiω(t) dt .

(7)

We find from the last line the following linear system Aa = r for the unknown
coefficients a := {ai}p−1

i=0 :

...
. . .

∫

Ω
Pn(t)t

ktiω(t) dt . . .
...

a0
...
ak
...

ap−1

=

...
−
∫

Ω
Pn(t)t

ptiω(t) dt
...

, (8)

where the first index i = 0, . . . , p− 1 runs along a column and the second index
k = 0, . . . , p− 1 runs along any row of the p× p matrix. On the right hand side
we have essentially a bunch of moments of the probability density distribution
ω(t). Provided a closed form for the moment generating function exists, this
vector can be computed very easily.

2.4 Rational moments

A limitation of our current implementation (see section 2.8) is that we can work
only with distributions ω(t) that have rational moments. However, in case of the
most important distributions used as weight functions (see Table 1) for defining
the Legendre, Chebyshev, Laguerre and Hermite orthogonal polynomials this is
a well known truth.
By explicit computation one can easily show that the following closed form
expressions for the moments hold:

1The Wigner semicircle distribution up to normalization.

4

Distribution ω(t) t ∈ Ω Polynomial Pn(t)
Uniform 1 [−1, 1] Legendre Pn

Chebyshev T 1√
1−x2

[−1, 1] Chebyshev Tn

Chebyshev U1
√
1− x2 [−1, 1] Chebyshev Un

Exponential exp(−t) [0,∞] Laguerre Ln

Normal exp(−t2) [−∞,∞] Hermite Hn

Normal exp
(

− t2

2

)

[−∞,∞] Hermite Hn

Table 1: Domain and weight function of classical orthogonal polynomials.

∫ 1

−1

tndt =
1 + (−1)n

n+ 1
=

{

2
n+1 n even

0 n odd
(9)

∫ 1

−1

tn
1√

1− t2
dt =

2
√
π

n

Γ(n+1

2)
Γ(n

2)
n even2

0 n odd
(10)

∫ 1

−1

tn
√

1− t2dt =

√
π

2

Γ(n+1

2)
Γ(2+n

2)
n even

0 n odd
(11)

∫ ∞

0

tn exp(−t)dt = Γ (n+ 1) (12)

∫ ∞

−∞
tn exp

(

− t2

2

)

dt =

{

2
n
2

√
2Γ
(

n+1
2

)

n even

0 n odd
(13)

∫ ∞

−∞
tn exp(−t2)dt =

{

Γ
(

n+1
2

)

n even

0 n odd
(14)

In the case of the Hermite polynomial we find that for even n:

Γ

(

n+ 1

2

)

=

√
π

2
n
2

n
2
∏

i=1

(2i− 1) (15)

The constant transcendental factor
√
π will luckily drop out in our final equations

because it is contained in every entry of the matrixA as well as the right hand side
r. This is a trick that allows us to omit any constant irrational or transcendental
factor.

2.5 Computing nodes

Computing the nodes amounts to find all roots of a possibly high degree poly-
nomial. In classical numerics there are various stability issues related to this
task and a general solution is often not possible. Using arbitrary precision ball
arithmetic as defined by van der Hoeven in [30, 29] we can avoid almost all of
these issues by just increasing the precision whenever necessary. By making use

2For n = 0 one takes the limes or replaces nΓ
(

n
2

)

by 2Γ
(

n
2
+ 1

)

5

Algorithm 1 Compute an extension Ep of degree p over Pn

procedure ComputeExtension(Pn(x), p)
A := BuildMatrix(Pn, p) ⊲ Construct the linear system as in (8)
r := BuildRHS(Pn, p)
{ai}p−1

i=0 := SolveLinear(A, r)
if ∃i : ai 6= 0 then ⊲ Check if system is solvable

Ep = tp +
∑p−1

i=0 ait
i

else

Ep ≡ 0
end if

return Ep

end procedure

Algorithm 2 Compute a tower of k extensions Pn ⊂ Ep1
⊂ Ep2

⊂ . . . ⊂ Epk

procedure ComputeExtensionTower(Pn(x), [p1, . . . , pk])
P0 := Pn

for i = 1, . . . , k do

Ei := ComputeExtension(Pi−1, pi)
Pi := Pi−1 · Ei

end for

return E :=
∏k

i=1 Ei

end procedure

of the rigorous error bounds inherent in any ball we can easily decide when we
have to increase precision to obtain fully accurate results in the end.
The following routine is shown here just for the sake of completeness. Internally
we pass on by calling a suitable function from the arb library introduced below.
The function called uses the Durand-Kerner method according to the library
documentation. An assumption required for the specific implementation of
this root-finding method to work is that the polynomial is square-free which is
necessary for all valid extensions anyway.

Algorithm 3 Compute the nodes up to a given precision bγ

procedure ComputeNodes(Pn(x), bγ)
{γi}ni=1 := FindAllRoots(Pn(x), bγ)

return {γi}ni=1

end procedure

2.6 Computing weights

Given a set of n nodes {γi}ni=1, γi ∈ R we want to find the corresponding weights
ω := {ωi}ni=1, ωi ∈ R. We start with the equation (1) shown above:

n
∑

i=1

ωiγ
k
i =

∫

Ω

tkω(t)dt k = 0, . . . , n− 1 (16)

This yields the following inhomogeneous linear system Aω = r:

6

γ0
1 . . . γ0

i . . . γ0
n

...
...

...
γk
1 . . . γk

i . . . γk
n

...
...

...
γn−1
1 . . . γn−1

i . . . γn−1
n

ω1

...
ωi

...
ωn

=

∫

Ω
t0ω(t) dt

...
∫

Ω
tkω(t) dt

...
∫

Ω
tn−1ω(t) dt

(17)

where k = 0, . . . , n− 1 is the row index and i = 1, . . . , n is the column index of
the matrix A. This system is square and of shape n × n. Theorem 1 ensures
that there is a unique solution. Given that the nodes are in general algebraic
numbers, we compute approximations by complex balls. Even in case we knew
the nodes in closed form, there is obviously no way to solve this system within the
rationals and we would have to resort to the algebraic number field. Therefore
we approximate the weights by complex balls in the same way. Computing the
solution vector ω to a target precision of bω bits is actually not straight forward,
because we know the nodes with a precision of bγ bits only which could be not
precise enough to solve the system and retrieve bω bits for the weights.
The way out of this dilemma consists of an iterative ansatz. First we try to
solve the system and then check the precision b′ω of the weights. If b′ω ≥ bω,
then the precision goal was met and we can stop. Otherwise, we double the
required precision b′γ := 2bγ and recompute the nodes first. After that we can
retry to solve this system and see if the precision goal is met. If not yet, we let
the algorithm iterate until the goal of bω bits is eventually fulfilled or an upper
bound on the number of bits is hit. The procedure is shown in pseudo-code in
listing 4.

Algorithm 4 Compute the weights up to a given precision bω

procedure ComputeWeights(Pn(x), ω(t), bω)
bγ := 1

2bω
repeat

bγ := 2bγ
{γi}ni=1 := ComputeNodes(Pn(x), bγ)
A := BuildMatrix({γi}ni=1)
r := BuildRHS(ω(t))
{ωi}ni=1 := SolveLinear(A, r)
b′ω := CheckAccuracy({ωi}ni=1)

until b′ω ≥ bω
return {ωi}ni=1

end procedure

2.7 Validation of nodes and weights

Validation of the extensions computed is necessary and happens in two separate
steps where the second one is optional. Even if we can solve equation (8) and
Algorithm 1 does return a non-vanishing polynomial Ep, this does not guarantee
we have found a suitable extension. As an example we look at possible extensions
Ep of the Gauss-Laguerre rule given by the polynomial L2 = 1

2 t
2− 2t+1, having

two quadrature points t = 2±
√
2. Searching for an extension E3 of degree 3 we

7

get the polynomial E3 = t3 − 9t2 + 9t− 33. Computing the roots and therewith
the quadrature nodes algebraically we get:

t = 3− 1

2

(

1± ı
√
3
)

3

√

30− 6
√
19− 1

2

(

1∓ ı
√
3
)

3

√

30 + 6
√
19

t = 3 +
3

√

30− 6
√
19 +

3

√

30 + 6
√
19 .

Numerical computation with at least 20 digits of precision by ball arithmetic
gives the following numbers (midpoint) and error bars (radius):

Midpoint Radius
8.39619697401− 5.58635992795 · 10−56ı ±(3.07 · 10−55, 3.07 · 10−55ı)
0.301901512994 + 1.95938927647ı ±(2.16 · 10−58, 2.16 · 10−58ı)
0.301901512994− 1.95938927647ı ±(8.96 · 10−63, 8.96 · 10−63ı)

Obviously two of the nodes are complex-valued. The balls that contain the roots
do not intersect with the real line, so this is not a valid extension. Looking for an
extension of order 4 we find E4 = t4 − 272

13 t3 + 1512
13 t2 − 1824

13 t+ 552
13 . Computing

the roots of E4 again up to at least 20 digits of precision gives:

Midpoint Radius
12.486507079 + 1.54779865518 · 10−135ı ±(2.26 · 10−61, 2.26 · 10−61ı)
6.92395654571− 9.45876955945 · 10−136ı ±(4.77 · 10−61, 4.77 · 10−61ı)
1.04067484064− 1.40662202686 · 10−176ı ±(1.16 · 10−61, 1.16 · 10−61ı)
0.471938457685 + 4.23901787652 · 10−155ı ±(1.04 · 10−61, 1.04 · 10−61ı)

The imaginary parts are tiny and we may safely assume that the roots are indeed
all real and positive. The balls do all intersect the real line but also extend
into the complex plane. We can recompute these numbers with higher precision
and obtain smaller radii up to a point where we are satisfied with the result.
The extension E4 has one drawback, namely there are negative weights for the
resulting quadrature rule. Numerical computation of the weights (ordered by
nodes) yields:

Midpoint Radius
2.72885335563 · 10−5 + 1.81693615677 · 10−140ı ±(4.59 · 10−31, 3.19 · 10−61ı)
0.00425721115051 + 2.50073034862 · 10−138ı ±(6.87 · 10−30, 4.77 · 10−60ı)
0.0923319982492− 9.18105623974 · 10−138ı ±(6.32 · 10−29, 4.38 · 10−59ı)
1.05270222681 + 8.51307944261 · 10−137ı ±(4.4 · 10−28, 3.03 · 10−58ı)
−3.25091510452− 2.96660678416 · 10−136ı ±(1.83 · 10−27, 1.24 · 10−57ı)
3.10159637977 + 2.1819204052 · 10−136ı ±(2.24 · 10−27, 1.53 · 10−57ı)

Turning our attention to the extension E5 = t5 − 1625
47 t4 + 55000

141 t3 − 76200
47 t2 +

87000
47 t− 8840

47 we will find that all its roots are on the positive real axis and all
weights are strictly positive.
To validate an extension Ep of Pn we first check that the roots {γi}pi=1 of this
polynomial Ep actually lie within the region Ω. The subset Ω of R is the
region where the original polynomials Pn are orthogonal and where we want the
quadrature to happen, see Table 1 for details. We require that:

{γi}pi=1 ⊂ Ω . (18)

8

The second step in the validation of an extension concerns the weights. While we
infer from (17) that the weights are all real, they can still be negative. Negative
weights can affect the stability of a quadrature rule. For that reason one usually
drops rules having negative weights. We filter out invalid extensions with the
condition:

ωi > 0 i = 1, . . . , p+ n . (19)

These steps apply in the same way also to nested towers Pn ⊂ Ep1
⊂ Ep2

⊂ . . . ⊂
Epk

of extensions. The nodes can be validated for each level k independently.
In contrast, the weights need to be computed and examined in the end for all
levels together.

2.8 Implementation aspects

The whole algorithm is implemented in C and relies heavily on the computational
number theory library flint [11, 10]. This library provides among many other
things highly efficient exact rational numbers with arbitrary large numerator
and denominator integers. Therefore we have the complete arithmetics of the
field Q available. It also implements the polynomial rings Z[x] and Q[x] and
hence we can compute and express the polynomials defining the nodes of our
nested extension tower. There are at least two reasons we require an efficient
implementation of Q[x]. First, we need to be able to do fast arithmetics with
polynomials, specifically multiplication and checking whether a given polynomial
is indeed square-free. Second, the coefficients grow exponentially large and we
must use arbitrary precision rational numbers for expressing them. Other things
we use from flint are matrices over Z and Q. The matrices module provides
us with means to solve linear systems by integral or rational arithmetic using a
specially adapted fraction free version of Gauss elimination.
Given all that, we can check whether an extension Ep to any given rule Pn exists
by using only exact rational arithmetic. The price we pay is that we can handle
only distributions ω(t) that have rational moments.
Johansson implemented arbitrary-precision floating point ball arithmetic in a
library called arb [13]. This library enables us to compute and refine the nodes
to any number of bits precision while always obtaining rigorous error radii for
each floating point ball computed. In detail, the library implements, among
some more things, real and complex floating point balls, polynomials having
ball-valued coefficients and matrices with balls as entries. Furthermore this
library plays very well together with flint making it the ideal choice for our
purpose. However it should not be neglected that all this comes at a higher cost
in computation time compared to normal hardware-accelerated floating point
arithmetic. The comparison has to be made against software based arbitrary
precision floating point arithmetic as for example implemented in the GNU
MPFR library [3]. In that case the ball arithmetic of arb is claimed to be usually
much less than a factor of 2 slower than the plain MPFR floating point numbers.
This is actually very good and a perfectly fair price to pay for the additional
confidence put into the computed numbers. Even though arb is highly optimized,
computing many roots to a high working precision can still take some time.

9

3 Direct Search for single Extensions

We consider now only single Kronrod extensions. Given a polynomial Pn of
either Legendre, Chebyshev, Laguerre or Hermite type and of degree n, we
compute the extension Ep of order p for some suitable choice of p. We make use
of Algorithm 1 to obtain the polynomial Ep defining the extension in the first
place. Next, we compute nodes and weights. If requested, validity checks are
performed to ensure that the nodes are within the region of integration and that
all the weights are positive.
Since the aim of this work is an exhaustive search for valid rules, we use this
algorithm for a series of increasing n and test all p up to some upper bound. We
obtain all extensions of some given Gauss type rule Pn up to extension order
pmax. To cover as much as possible the range of rules used in practice, we set
nmax = 100 and also pmax = 100. In the extreme case there is now a polynomial
of degree 200 defining a rule with the same number of node-weight pairs.

Algorithm 5 Exhaustive search up to nmax and pmax

procedure ExhaustiveSearch(nmax, pmax)
M ∈ {0, 1}n×p ⊲ Bitmap for storing the found rules
for n = 1, . . . , nmax do

Get Pn(t) ⊲ Suitable orthogonal polynomial of order n
for p = n+ 1, . . . , pmax do

Ep := ComputeExtension(Pn, p)
if Ep 6≡ 0 then

Mn,p := 1
else

Mn,p := 0
end if

end for

end for

end procedure

The output of this algorithm applied to the three polynomial classes mentioned
above is shown in the Figures 1a, 1d and 1e.

3.1 Existence and non-existence results

From the rather sparse theory on this subject we know only of very few rigorous
existence results for Kronrod-Patterson extensions.
In the Legendre case there is a proof that for each n there is always an extension
with p = n+1 [28]. This is recovered by our computation and shows up in Figure
1a as the first upper diagonal line. Additionally to their existence, these rules
also have positive weights in all cases as shown in [20]. The existence theorems
can be generalized to hold also for Chebyshev, Gegenbauer and ultimatively
Jacobi polynomials [4, 5, 24, 21].
For Laguerre polynomials there are no classical Kronrod extensions with p = n+1
at all. Higher order extensions are very sparse too, we could not find extensions
for any 12 < n ≤ 100 while keeping p ≤ 150. There is no strong reason to believe
this would change if allowing for even higher p. Apart from that, such rules
would probably be of no practical use anyway.

10

20 40 60 80 100

p

20

40

60

80

100

n

(a) Gauss-Legendre rules Pn.

20 40 60 80 100

p

20

40

60

80

100

n
(b) Gauss-Chebyshev rules Tn.

20 40 60 80 100

p

20

40

60

80

100

n

(c) Gauss-Chebyshev rules Un.

20 40 60 80 100

p

5

10

15

20

n

(d) Gauss-Laguerre rules Ln.

20 40 60 80 100

p

10

20

30

40

50

n

(e) Gauss-Hermite rules Hn.

Figure 1: Map of the extensions Ep of Gauss quadrature rules for n ≤ 100 and p
up to 100. The parts with n ≤ 100 not shown do not contain any single valid
extension. Red points represent rules with non-positive weights. Compare the
Laguerre case also to Table 1 in [15].

In the case of Hermite polynomials our computation indeed reveals the three
possible classical Kronrod rules for n = 1, p = 2 and n = 2, p = 3 and n = 4, p = 5.
This can be seen in the very top left corner of Figure 1e and is in perfect agreement
with the literature [19, 14, 31]. In fact if we examine the three rules more closely,
we will find that the case n = 4, p = 5 does not have positive weights and is in
turn ruled out by the authors of the aforementioned papers.

4 Recursive Enumeration of nested Extensions

In the last section we computed a single extensions Ep over a given rule Pn. This
is enough in case of adaptive quadrature where all one wants is to make an error

11

estimate of the Gaussian quadrature by evaluation of another quadrature rule
having higher order. In that case the property of nested nodes {γi}ni=1 ⊂ {γi}n+p

i=1

can reduce computation cost.
The construction of quadrature rules for higher dimensional integrals needs more
than that. For the number of dimensions in the range from 4 up to some ten such
quadrature rules can be done efficiently by the well known Smolyak construction.
Given an initial polynomial Pn of degree n, we want to find the set of all extension
towers3 Pn ≡ Ep0

⊂ Ep1
⊂ . . . ⊂ Epk

⊂ . . . ⊂ Epkmax
over Pn having finite

height kmax. Additionally, we truncate this potentially infinite set by requiring
that the degrees pk of all polynomials Epk

never exceed a fixed upper bound
pmax. This will in turn give a finite tree of nested extensions. In the end, we
denote a single extension from this set by K = (n, p1, . . . , pkmax

) ∈ Nkmax+1.

Given the polynomial Pk−1(x) :=
∏k−1

i=0 Epi
(x) that defines the lower part

Ep0
⊂ . . . ⊂ Epk−1

of this tower, we can call Algorithm 6 with Pk−1 to compute
recursively the remaining upper layers k, . . . , kmax as far as they exist. This
algorithm will perform a flat exhaustive search on layer k and then call itself
for the next layer k + 1. To get this process started, we make an initial call for
k = 1 with P0 := Pn ≡ Ep0

as shown in 7.
We denote by Q[p0, . . . , pk] the quadrature rule and explicitly the nodes and
weights that can be computed from the nested Kronrod extensionK = (p0, . . . , pk).
Of course Q[n] is simple the original quadrature rule we started with. In all
cases considered here this will be a Gauss rule of order n having n points.
If we run this algorithm for recursive enumeration, it finds a multitude of
higher order nested Kronrod extensions. Depending on the kind of orthogonal
polynomial we start with, there are large differences in the number and nesting
degree of the extensions. For polynomials which are specializations of the Jacobi
polynomials, we find the most regular structure which displays a vast number
of extensions. For other polynomials like the Laguerre polynomials there are
almost no extensions and the average nesting level is very low. From this large
zoo of possible K tuples, some of the more interesting ones are summarized in
the Tables 2, 3, 4, 5 and 6 in the appendix A.

3By abuse of notation, let Epk denote the polynomial of degree pk as well as the abstract

extension over Epk−1
defined by it.

12

Algorithm 6 Recursive search for extensions over Pk−1 on layer k

procedure RecursiveSearch(Pk−1, pmax, k, kmax)
⊲ Search for possible extensions of Pk−1 of order p ≤ pmax

for p = 1, . . . , pmax do

Ep := ComputeExtension(Pk−1, p)
if Ep 6≡ 0 then

valid := ValidateRoots(Ep)
else

valid := false
end if

if valid = true then

⊲ Valid extension Ep of order p found for Pk−1 on layer k
pk := p
K := (p0, . . . , pk−1, pk) ∈ Nk+1

R := R∪K
if k < kmax then

⊲ Follow the recursion down, descending to new layer k + 1
Pk := Pk−1Ep

RecursiveSearch(Pk, pmax, k + 1, kmax)
else

⊲ Maximum recursion depth reached, not descending
end if

else

⊲ No valid extension of order p found for Pk−1 on layer k
end if

end for

⊲ Maximal extension order pmax reached, ascending
end procedure

Algorithm 7 Exhaustive recursive search up to pmax and kmax

procedure ExhaustiveRecursiveSearch(P , pmax, kmax)
R := {} ⊲ Storage for all the rules K found
p0 := degP
RecursiveSearch(P, pmax, 1, kmax)

end procedure

13

Figure 2: Part of the tree of nested higher order Kronrod Extensions of the
single point Gauss-Hermite rule Q[1]. The new and for us most important rules
are in the top right corner.

14

5 Genz-Keister Multidimensional Construction

Genz and Keister found an explicit construction by which efficient special quadra-
ture rules for an arbitrary number of dimensions can be built. The resulting
rules are called fully-symmetric for reasons that will become clear later. In this
section we review this construction of Genz and Keister as given in [7, 8]. We
follow mostly their development but focus mainly on the computational aspects
and less the theoretical derivation. Additionally we extend the construction to
Gauss-Chebyshev quadrature (both kinds) and analyze the resulting rules.

5.1 The construction

The quadrature rule QD,K of level K ≥ 0 and for use in D dimensions is defined
as:

∫

Ω

f(x)dx =: I[f] ≈ QD,K [f] :=
∑

p∈P
f (Γp)ωp (20)

where P is the set of all integer partitions as defined below. The node sets Γ and
weights ω are indexed by partitions p ∈ P. Define the set P of all admissible
integer partitions p := (p1, . . . ,pD) ∈ ND

0 having D parts (some of which can
be zero) and |p| ≤ K with K ≥ 0 as:

P := {p |K ≥ p1 ≥ · · · ≥ pD ≥ 0 ∧ |p| ≤ K} . (21)

A method for computing that set P is shown in Algorithm 14. Before we look
deeper into the details of this construction, we need to introduce the set Λ of so
called generators:

Λ := {λ0, λ1, . . . , λJ} (22)

where we require that λ0 ≡ 0 and all λi be pair-wise distinct. There are obviously
J +1 real non-negative generators. A single quadrature point γ ∈ RD is then an
ordered multiset of size D of elements from Λ. Note that γ is not just a subset
because elements are allowed to appear multiple times. The specific items are
then selected by an integer vector k ∈ ND

0 , explicitly:

γk := Λk = (λk1
, . . . , λkD

) . (23)

We define δ as the number of components of γk that are 0. As we require that
only λ0 is zero, δ is equivalent to the number of zeros in k. Next we define the
set γk containing all possible sign flips:

γk := σγk = {(σ1γ1, . . . , σDλD)}σ∈{−1,0,1}D (24)

where σd ∈ {−1, 1} or σd = 0 if and only if γd = 0. The point γk gets mirrored
into all 2D orthants by σ. Clearly, this set γk is of size 2D−δ for the reason that
some points coincide with their own mirror images.
At this point we can go back and understand the notation of equation (20) where
Γp stands for a whole set of nodes given by:

Γp :=
⋃

q∈Sp

γq (25)

15

and Sp is the set of all permutations of the D elements of p ∈ P . An algorithm
for the enumeration of all permutations is given in 15. Finally we find:

f (Γp) :=
∑

q∈Sp

∑

γ∈γq

f (γ1, . . . , γD) . (26)

What remains is the explanation of ωp. The formula (2.4) given in [7] looks quite
simple but the efficient implementation needs some care. For every admissible
partition p ∈ P the corresponding weight can be computed by:

ωp := 2−(D−δ)
∑

|k|≤K−|p|

D
∏

d=1

akd+pd

P (kd,pd)
(27)

where we define the denominator:

P (kd,pd) :=

kd+pd
∏

i=0
i 6=pd

(

λ2
pd

− λ2
i

)

(28)

and use the multi-index k ∈ ND
0 . Note that the prefactor is exactly 1/|γk|.

Algorithm 16 implements a procedure for enumeration of all relevant multi-
indices. This formula above presents us with several parts we need to compute.
Some of these parts can even be tabulated once for a maximal and fixed J value
and independent of the dimension D. Let us start with the numerator. There
we need the value ai which is defined by:

ai :=

∫

Ω

pi(x)w(x)dx, i = 0, . . . , J + 1 , (29)

whereas the domain Ω and the weight function w(x) are chosen appropriately
(see below). The polynomials pi(x) are defined as:

p0(x) := 1

pi(x) :=

i−1
∏

j=0

(

x2 − λ2
j

) (30)

where the empty product equals 1. It holds that deg pi = 2i. Since all the
real numbers λj are known, we can indeed expand the product and write pi as
∑2i

j=0 cjx
j for some coefficients cj . This enables us to compute the integral in

equation (29) term-wise by using linearity:

ai =

2i
∑

j=0

cj

∫

Ω

xjw(x)dx =

2i
∑

j=0

cjMj (31)

where Mj is the j-th moment and chosen according to Table (1) and the explicit
formulae shown thereafter. For the Legendre, Chebyshev and Hermite case, the
explicit formulae are (9), (10), (10) and (14). Optionally, we can replace very
small values by zero. As we will see later, it is important to be able to decide
whether ai = 0. Because we compute with real numbers (either floating point

16

Algorithm 8 Compute table A of ai factors

procedure ComputeAValues(Λ, M)
A := 0 ∈ RJ+1

p := 1
for i = 0, . . . , J + 1 do

a := 0
for cj in

∑2i
j=0 cjx

j = p do

a := a+ cjM j

end for

Ai := a
p := p

(

x2 − λ2
i

)

end for

end procedure

numbers or real ball arithmetic) we can however never solve this problem exactly
like in rational arithmetic.
Computing the denominator as defined in (28) is straight forward. Since we
required the λi to be pairwise distinct this value never becomes zero and division
poses no issue.
We notice that the product in formula (27) only depends on pd =: ξ and the
sum pd + kd =: η. Therefore we can precompute a table of size J + 1× J + 1
indexed by (ξ, η) whose entries are given by:

Tξ,η :=
akd+pd

P (kd,pd)
. (32)

In the example below, the top left corner of T is shown and we only ever need
the upper right triangular part:

η = 0 η = 1 η = 2 η = 3
ξ = 0 a0

1
a1

(λ2
0
−λ2

1
)

a2

(λ2
0
−λ2

1
)(λ2

0
−λ2

2
)

a3

(λ2
0
−λ2

1
)(λ2

0
−λ2

2
)(λ2

0
−λ2

3
)

ξ = 1 0 a1

(λ2
1
−λ2

0
)

a2

(λ2
1
−λ2

0
)(λ2

1
−λ2

2
)

a3

(λ2
1
−λ2

0
)(λ2

1
−λ2

2
)(λ2

1
−λ2

3
)

ξ = 2 0 0 a2

(λ2
2
−λ2

0
)(λ2

2
−λ2

1
)

a3

(λ2
2
−λ2

0
)(λ2

2
−λ2

1
)(λ2

2
−λ2

3
)

ξ = 3 0 0 0 a3

(λ2
3
−λ2

0
)(λ2

3
−λ2

1
)(λ2

3
−λ2

2
)

Given the list Λ of generators and all the values ai collected into the list A,
we can compute the table T efficiently by Algorithm 9. By the use of this
table, the implementation of formula (27) transforms into a series of trivial
table look-up steps. However, precomputation of T is expensive for larger J ,
on the other hand it needs to be done only once for each Λ and w(x). The
numerator and denominator of the entries in T can become really large numbers
(remember that most moments include gamma functions), while their quotient
stays within reasonable range for floating point representation. For this reason
one can compute T to high precision with specialized software packages like
flint [11, 10] and afterwards use these tabulated values during usual floating
point computations.
At the end of the day we arrive at the following two Algorithms 10 and 11
for computing the node set Γp and weights ωp for an arbitrary given partition
p ∈ P.

17

Algorithm 9 Compute table Tξ,η of weight factors

procedure WeightFactors(Λ, A)
n := |Λ|
T ∈ Rn×n ⊲ Compute T row by row
for ξ = 0, . . . , n− 1 do

t := 1
for η = 0, . . . , n− 1 do

if ξ 6= η then

t := t
(

λ2
ξ − λ2

η

)

end if

if η ≥ ξ then

Tξ,η :=
aη

t

end if

end for

end for

end procedure

Algorithm 10 Compute nodes Γp for given p ∈ P ⊂ ND
0

procedure Nodes(p, Λ)
Γp := {}
δ := NumberOfZeros(p)
S := Permutations(D,p)
for q ∈ S do

for v = 0, . . . , 2(D−δ) − 1 do

u := 0
for d = 0, . . . , D − 1 do

γd := Λqd

if qd 6= 0 then ⊲ Compute sign flip
if ⌊ v

2u ⌋ mod 2 = 1 then

γd := −γd
end if

u := u+ 1
end if

end for

Γp := Γp ∪ γ
end for

end for

end procedure

The last ingredient we need is the integer sequence z = (z0, . . . , zJ) defined as:

z0 = 0

zi = l ⇔ ai+k = 0 ∀ k = 0, . . . , l − 1 .
(33)

The reasoning behind this sequence and the specific definition summarizes to the
fact that we like to get many summands with ωp = 0 in equation (20). Looking
at the definition of the weights in equation (27) we have a sum-product structure.
A single product becomes zero if the numerator akd+pd

= 0. This then must

18

Algorithm 11 Compute weight ωp for given p ∈ P ⊂ ND
0

procedure Weights(p, K, T)
δ := NumberOfZeros(p)
ωp := 0
L := EnumerateLatticePoints(D,K − |p|)
for k ∈ L do

w := 1
for d = 0, . . . , D − 1 do

w := wTpd,kd+pd

end for

ωp := ωp + w
end for

ωp := 2−(D−δ)ωp

end procedure

happen for all summands in the sum. A simple algorithm to find z is given in 12
below. It is limited in rigor because of the zero test on floating point numbers.

Algorithm 12 Compute the z sequence

procedure CompueZSequence(A)
z := 0 ∈ RJ+1

v := 0
for i = 0, . . . , J do

if v = 0 then

while Ai+v = 0 do

v := v + 1
end while

else

v := v − 1
end if

zi := v
end for

end procedure

Finally, we cite theorem 3.1 from [7] but omit the proof:

Theorem. A fully symmetric rule using a generator set Λ has weights ωp = 0
if |p|+ |z(p)| > K.

This theorem tells us which partitions p we can omit when assembling the
quadrature rule. The full algorithm for the construction of fully symmetric
quadrature rules in D dimensions and of level K is shown in 13. The whole
procedure is general in the sense that we can apply it to both the Legendre and
Hermite cases as it was already done in [7] and [8] respectively. Further we can
repeat the very same computations for both kinds of Gauss-Chebyshev quadrature
which is new. As we have seen in the last section, there exists a plethora of nested
higher order Kronrod extensions for some orthogonal polynomials. Each of these
can serve as the basis K for the generator set Λ. Genz and Keister used in the
Hermite case the Kronrod extensions K = (1, 2, 6, 10, 16) and K = (1, 2, 8, 20).

19

One should note that not all rules are equally well suited. A criterion on the
expected sparsity of the final rule is the number of zero elements in the z sequence.
The more non-zero elements the better, but unfortunately such sequences are
rare. Additionally there appears the question of stability which was discussed in
[7]. Novak and Ritter show in [25], section 6, that the Genz-Keister construction
produces quadrature rules which are of classical Smolyak form. This is convenient
for two reasons. First, we can construct D dimensional rules either by direct
full Genz-Keister construction or by Smolyak construction applied to the set of
one-dimensional Genz-Keister rules. Second, the convergence and error analysis
from Smolyak theory is also valid for this construction.

Algorithm 13 Genz-Keister construction

procedure GenzKeisterConstruction(D,K)
Γ := {} ⊲ Nodes and weights as ordered sets
Ω := {}

⊲ Precompute fundamental tables
Λ := ComputeGenerators(K)
M := ComputeMoments()
A := ComputeAValues(Λ,M)
T := WeightFactors(Λ, A)

⊲ Construct multi-dimensional rule
P := EnumeratePartitions(D,K)
for p ∈ P do

if |p|+ |z(p)| ≤ K then

Γp := Nodes(p,Λ)
ωp := Weights(p,K,T)
Γ := Γ ∪ Γp

Ω := Ω ∪ ωp ⊲ Add |Γp| times the weight ωp

end if

end for

end procedure

5.1.1 Combinatorial Algorithms

In this section we summarize the combinatorial algorithms that can be used
during the Genz-Keister construction. In the programming language python

they can be implemented very efficiently by the use of yield statements inside
so called generator expressions.
The Algorithm 14 can be used for enumeration of the set P defined in (21).
This works for any given value of D ≥ 1 and maximal element size K ≥ 0. The
elements p ∈ P will be generated by increasing value of |p| until the boundary
K is hit.
An algorithm to enumerate the set S of all entry-wise permutations of a given
vector p ∈ ND

0 is shown next in 15. This algorithm will generate the permutations
in reverse lexicographic order, starting with p.
In the definition of the weights in formula (27) we need to iterate over the set
L := {ki} of all lattice points k ∈ ND

0 up to some maximal value of the l1 norm.
The Algorithm 16 shows an efficient method for the enumeration of all such

20

Algorithm 14 Enumerate the set P of all integer partitions

procedure EnumeratePartitions(D, K)
P := {}
p := 0 ∈ ND

0

while |p| ≤ K do

τ := false
p := p0

for i = 1, . . . D-1 do

p := p+ pi

if p0 ≤ pi + 1 then

pi := 0
else

p0 := p− i(pi + 1)
for j = 1, . . . , i do

pj := pi + 1
end for

P := P ∪ p

τ := true
break

end if

end for

if τ = false then

p0 := p+ 1
if |p| ≤ K then

P := P ∪ p

end if

end if

end while

end procedure

points. It is well known that the cardinality of L is:

|L| =
(

K + 1

D

)(

D +K

K + 1

)

. (34)

For more details see for example [27].

21

Algorithm 15 Enumerate the set S of all permutations of the entries of p ∈ ND
0

procedure Permutations(D, p)
S := {p}
τ := true
while τ = true do

τ := false
for i = 1, . . . , D − 1 do

p := pi

if pi−1 > p then

I := i
if i > 1 then

J := I
for j = 0, . . . , ⌊ I

2⌋ − 1 do

q := pj

if q ≤ p then

I := I − 1
end if

pj := pi−j−1

pi−j−1 := q
if pj > p then

J := j + 1
end if

end for

if pI−1 ≤ p then

I := J
end if

end if

pi := pI−1

pI−1 := p
S := S ∪ p

τ := true
break

end if

end for

end while

end procedure

22

Algorithm 16 Enumerate lattice points in {ki} =: L ⊂ ND
0 with ‖ki‖1 ≤ N

procedure EnumerateLatticePoints(D, N)
L := {}
for n = 0, . . . , N do

k := 0 ∈ ND
0

k0 := n
L := L ∪ k

c := 1
while kD−1 < n do

if c = D then

for i = c− 1, . . . , 1 do

c := i
if ki−1 6= 0 then

break

end if

end for

kc−1 := kc−1 − 1
c := c+ 1
kc−1 := n
for i = 0, . . . , c− 2 do

kc−1 := kc−1 − ki

end for

if c < D then

for i = c, . . . , D − 1 do

ki := 0
end for

end if

L := L ∪ k

end if

end while

end for

end procedure

23

6 Nested Rules for Orthogonal Polynomials

In this section we present various results for the classical orthogonal polynomials
and related Gauss quadrature schemes. For each scheme we could find at least
one replacement having nested nodes based on the Genz-Keister construction.
The generator set Λ is in each case obtained by recursive higher order Kronrod
extensions K := (k1, . . . , kp). For each extension level ki we then get a subset of
nodes {λi1 , . . . , λiq} from the corresponding polynomial Eki

. The final rule now
depends on the ordering of these generators and different orderings can lead to a
non-negligible difference in overall stability. Permutation of the nodes λij within
each subset does not change the number of function evaluations required. The
original authors came up with the following heuristic for sorting the generators:
begin each subset with its largest generator and then alternate the remaining
generators always using extremal values. They claim that this procedure yields
rules with a good (but not necessarily optimal) stability factor. In our notation
this factor reads:

C :=
∑

p∈P
Np|ωp|

where for any partition p with n distinct parts pj each having multiplicity mj

the value Np is given by:

Np =
2|m|D!

(D − |m|)!m1! · · ·mn!
.

In principle one could test all permutations of the generators and search for one
minimizing this stability constant. We will choose this alternating ordering as
default. The order of a quadrature rule QK is given by theorem 2.1 in [7] and
shown to be:

2K + 1 . (35)

The K in this formula is, for each fixed quadrature rule, the maximal value of K
for which the Genz-Keister construction results in the given rule. For example
in the Hermite case K = 9, . . . , 14 all yield the same node-weight pairs. The
order os this rule is then 2 · 14 + 1 = 29.
Lemma 4.1 in [12] gives conditions on the one-dimensional rules such that the
Smolyak construction of level K from these rules has order at least 2K − 1. It
can be seen from Figures 11, 13, 15 and 17 that the rules discussed here fulfill
the required conditions as their orders are always large enough.

6.1 Legendre Quadrature

For the Legendre polynomials Pn we can find various Kronrod extensions. The
most suitable one seems to be K = (1, 2, 4, 8, 16, 32). The Genz-Keister construc-
tion built upon this set of generators has the following z sequence:

z = (0, 0, 1, 0, 2, 1, 0, 0, 4, 3, 2, 1, 0, 0, 0, 0, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 5, 4, 3, 2, 1)

where a large number of non-zero elements occur. Also we can in principle
arbitrarily extend K by doubling the degree. If we use this extension we get
the one-dimensional quadrature nodes with a constellation as in Figure 3 and
weights shown in Figure 7. For most values of the level K the weights behave

24

well but for some they start oscillating and even become negative. These special
values of K correlate with extra zeros in the z sequence. The number of nodes
relative to Gauss-Legendre Quadrature is shown in Figure 11 for one dimension
and compared across dimensions in Figure 12. Figure 19 shows the sparse node
distribution in the plane for two-dimensional quadrature rules.
Notice that for D < 3, using the Genz-Keister construction results in more
quadrature points than the full tensor product Ansatz. This fact is examined in
Figures 23a and 23b. The other Figure 23c displays the same comparison, this
time with respect to the Smolyak construction.
For testing the quadrature rules in D dimensions, the following integral over
multi-variate monomials with n ∈ ND

0 is used:

∫

· · ·
∫

x∈[−1,1]D

D
∏

d=1

xnd

d dx =

D
∏

d=1

1 + (−1)nd

1 + nd

(36)

where we know the exact solution in closed form. The results are shown in
Figure 27 for D = 1 and for 2 ≤ D ≤ 6 in Figures 28 and 29. Finally, the Figure
40 shows the minimal level K necessary to correctly integrate the term xmyn.

6.2 Chebyshev Quadrature of the first kind

As in the case of Legendre polynomials, both Chebyshev polynomials Tn and
Un possess many different Kronrod extensions. For the first kind Tn we choose
K = (1, 2, 4, 6, 12, 24) with the z sequence:

z = (0, 0, 1, 0, 2, 1, 0, 5, 4, 3, 2, 1, 0, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1) .

Again we can in principle extend K by doubling the degree. Using this extension
we get the one-dimensional quadrature nodes with a constellation as in Figure
4 and weights shown in Figure 8. The number of nodes relative to Gauss-
Chebyshev Quadrature is shown in Figure 13 for one dimension and compared
across dimensions in Figure 14.
Figure 20 shows the sparse node distribution in the plane for two-dimensional
quadrature rules. Notice that for D < 3, using the Genz-Keister construction
results in more quadrature points than the full tensor product Ansatz, however
there are some exceptions. This fact is examined in Figures 24a and 24b. The
other Figure 24c displays the same comparison, this time with respect to the
Smolyak construction.
For testing the quadrature rules in D dimensions, the following integral over
multi-variate monomials with n ∈ ND

0 is used:

∫

· · ·
∫

x∈[−1,1]D

D
∏

d=1

xnd

d

1
√

1− x2
d

dx =

(√
π

2

)D D
∏

d=1

(1 + (−1)nd)
Γ
(

nd

2 + 1
2

)

Γ
(

nd

2 + 1
) (37)

where we know the exact solution in closed form. The results are shown in
Figure 30 for D = 1 and for 2 ≤ D ≤ 6 in Figures 31 and 32. The last Figure 41
shows the minimal level K necessary to correctly integrate the term xmyn.

25

6.3 Chebyshev Quadrature of the second kind

For the second kind Un of Chebyshev polynomials we use K = (1, 2, 4, 8, 16, 32)
with the z sequence:

z = (0, 0, 1, 0, 3, 2, 1, 0, 7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1) .

Once more we could extend K by doubling the degree. Using this extension
we get the one-dimensional quadrature nodes with a constellation as in Figure
5 and weights shown in Figure 9. The number of nodes relative to Gauss-
Chebyshev Quadrature is shown in Figure 15 for one dimension and compared
across dimensions in Figure 16. Figure 21 shows the sparse node distribution in
the plane for two-dimensional quadrature rules.
For D = 2 there are levels where Genz-Keister is better than Gauss-Chebyshev
tensor products but there are also levels where it behaves the other way round.
The details are shown in Figures 25a and 25b. The third Figure 25c shows the
same comparison with respect to the Smolyak construction. Notice that although
some of the Gauss rules are already nested, this has (as expected) almost no
effect when applying the Smolyak construction. The only difference between
this figure and its siblings is the point D = 4 and K = 8 which here is white
instead of black. Also the boundary will reach D = 5 a few levels later. However
there is obviously still room for improvement.
For testing the quadrature rules in D dimensions, the following integral over
multi-variate monomials with n ∈ ND

0 is used:

∫

· · ·
∫

x∈[−1,1]D

D
∏

d=1

xnd

d

√

1− x2
ddx =

(√
π

4

)D D
∏

d=1

(1 + (−1)nd)
Γ
(

nd

2 + 1
2

)

Γ
(

nd

2 + 2
) (38)

where we know the exact solution in closed form. The results are shown in
Figure 33 for D = 1 and for 2 ≤ D ≤ 6 in Figures 34 and 35. Figure 42 shows
the minimal level K necessary to correctly integrate the term xmyn.

6.4 Hermite Quadrature

Figure 26c shows the comparison of a full tensor and a Smolyak construction
based on the usual Gauss-Hermite points. Obviously the region where Smolyak
is disadvantageous extends to higher dimensions and this at even relatively low
levels. This is clearly an issue and should give some motivation for studying the
Genz-Keister constructions. For Hermite polynomials Hn Kronrod extensions
are rare, especially extensions having a high nesting degree. One of the best
such extensions found so far is K = (1, 2, 6, 10, 16, 68) with the z sequence:

z = (0, 0, 1, 0, 0, 3, 2, 1, 0, 0, 5, 4, 3, 2, 1, 0, 0, 0, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0, 0, 0, . . .)

Using this extension we get the one-dimensional quadrature nodes with a con-
stellation as in Figure 6 and weights shown in Figure 10. The number of nodes
relative to Gauss-Hermite Quadrature is shown in Figure 17 for one dimension
and compared across dimensions in Figure 18. Figure 22 shows the sparse node
distribution in the plane for two-dimensional quadrature rules.
By comparing to Figure 36 we can confirm that the rules with K < 18 are stable.
The rule obtained with K = 17 has 35 nodes and is of order 51. In the range

26

18 < K ≤ 25 we get no new rules but rather the same nodes and weights as with
K = 17. Rules with even higher K > 25 were found to be highly unstable.
Notice that for D < 3, using the Genz-Keister construction results in more
quadrature points than the full tensor product Ansatz. This can be read off
from Figures 26a and 26b. The last Figure 26c displays the same comparison,
this time with respect to the Smolyak construction.
For testing the quadrature rules in D dimensions, the following integral over
multi-variate monomials with n ∈ ND

0 is used:

∫

· · ·
∫

x∈RD

D
∏

d=1

xnd

d exp
(

−x2
d

)

dx =
1

2D

D
∏

d=1

(1 + (−1)nd) Γ

(

nd + 1

2

)

(39)

where we know the exact solution in closed form. The results are shown for
2 ≤ D ≤ 6 in Figures 38 and 39. The Figure 43 shows the minimal level K
necessary to correctly integrate the term xmyn.

27

0.0 0.2 0.4 0.6 0.8 1.0

γ

0

5

10

15

20

25

30

K
+
1

0.0 0.2 0.4 0.6 0.8 1.0

γ

0

5

10

15

20

25

30

K
+
1

Figure 3: Comparison of Gauss-Legendre nodes (right) and nested Genz-Keister
nodes (left) based on the K = (1, 2, 4, 8, 16, 32) Kronrod extension. The points
are nicely nested and well suited for sparse grids.

0.0 0.2 0.4 0.6 0.8 1.0

γ

0

5

10

15

20

25

K
+
1

0.0 0.2 0.4 0.6 0.8 1.0

γ

0

5

10

15

20

25

K
+
1

Figure 4: Comparison of Gauss-Chebyshev-T nodes (right) and nested Genz-
Keister nodes (left) based on the K = (1, 2, 4, 6, 12, 24) Kronrod extension. The
points are nicely nested and well suited for sparse grids.

28

0.0 0.2 0.4 0.6 0.8 1.0

γ

0

5

10

15

20

25

30

K
+
1

0.0 0.2 0.4 0.6 0.8 1.0

γ

0

5

10

15

20

25

30

K
+
1

Figure 5: Comparison of Gauss-Chebyshev-U nodes (right) and nested Genz-
Keister nodes (left) based on the K = (1, 2, 4, 8, 16, 32) Kronrod extension. The
points are nicely nested and well suited for sparse grids.

0 1 2 3 4 5 6 7

γ

0

5

10

15

K
+
1

0 1 2 3 4 5 6 7

γ

0

5

10

15

K
+
1

Figure 6: Comparison of Gauss-Hermite nodes (right) and nested Genz-Keister
nodes (left) based on the K = (1, 2, 6, 10, 16, 68) Kronrod extension. The points
are nicely nested and well suited for sparse grids.

29

−1.0 −0.5 0.0 0.5 1.0
1.85

1.90

1.95

2.00

2.05

2.10

−1.0 −0.5 0.0 0.5 1.0
0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

−1.0 −0.5 0.0 0.5 1.0
0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

−1.0 −0.5 0.0 0.5 1.0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

−1.0 −0.5 0.0 0.5 1.0
0.1

0.2

0.3

0.4

0.5

0.6

−1.0 −0.5 0.0 0.5 1.0
0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

−1.0 −0.5 0.0 0.5 1.0
−0.1

0.0

0.1

0.2

0.3

0.4

0.5

−1.0 −0.5 0.0 0.5 1.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

−1.0 −0.5 0.0 0.5 1.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

−1.0 −0.5 0.0 0.5 1.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

−1.0 −0.5 0.0 0.5 1.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

−1.0 −0.5 0.0 0.5 1.0
0.00

0.05

0.10

0.15

0.20

0.25

−1.0 −0.5 0.0 0.5 1.0
−0.05

0.00

0.05

0.10

0.15

0.20

0.25

−1.0 −0.5 0.0 0.5 1.0
−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

−1.0 −0.5 0.0 0.5 1.0

−0.4

−0.2

0.0

0.2

0.4

−1.0 −0.5 0.0 0.5 1.0
0.00

0.05

0.10

0.15

0.20

−1.0 −0.5 0.0 0.5 1.0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

−1.0 −0.5 0.0 0.5 1.0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

−1.0 −0.5 0.0 0.5 1.0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

−1.0 −0.5 0.0 0.5 1.0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Figure 7: Gauss-Legendre (red) and Genz-Keister (blue) nodes versus corre-
sponding weights. The 1- and 3-point rules are identical. Note that a few rules
have oscillations in the weights, some of them are almost zero, others become
increasingly negative. This affects the stability of the corresponding rules.

30

−1.0 −0.5 0.0 0.5 1.0
2.95

3.00

3.05

3.10

3.15

3.20

3.25

3.30

−1.0 −0.5 0.0 0.5 1.0
1.0

1.1

1.2

1.3

1.4

1.5

1.6

−1.0 −0.5 0.0 0.5 1.0
0.98

1.00

1.02

1.04

1.06

1.08

1.10

−1.0 −0.5 0.0 0.5 1.0
0.2

0.3

0.4

0.5

0.6

0.7

0.8

−1.0 −0.5 0.0 0.5 1.0
0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

−1.0 −0.5 0.0 0.5 1.0
0.25

0.30

0.35

0.40

0.45

0.50

0.55

−1.0 −0.5 0.0 0.5 1.0
0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

−1.0 −0.5 0.0 0.5 1.0
0.10

0.15

0.20

0.25

0.30

0.35

0.40

−1.0 −0.5 0.0 0.5 1.0
0.10

0.15

0.20

0.25

0.30

0.35

−1.0 −0.5 0.0 0.5 1.0
0.10

0.15

0.20

0.25

0.30

0.35

−1.0 −0.5 0.0 0.5 1.0
0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

−1.0 −0.5 0.0 0.5 1.0
0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

−1.0 −0.5 0.0 0.5 1.0
0.05

0.10

0.15

0.20

0.25

−1.0 −0.5 0.0 0.5 1.0
0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

−1.0 −0.5 0.0 0.5 1.0
0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

−1.0 −0.5 0.0 0.5 1.0
0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Figure 8: Gauss-Chebyshev-T (red) and Genz-Keister (blue) nodes versus corre-
sponding weights. The 1- and 3-point rules are identical.

31

−1.0 −0.5 0.0 0.5 1.0
1.48

1.50

1.52

1.54

1.56

1.58

1.60

1.62

1.64

1.66

−1.0 −0.5 0.0 0.5 1.0
0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

−1.0 −0.5 0.0 0.5 1.0
0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

−1.0 −0.5 0.0 0.5 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

−1.0 −0.5 0.0 0.5 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

−1.0 −0.5 0.0 0.5 1.0
0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

−1.0 −0.5 0.0 0.5 1.0
0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

−1.0 −0.5 0.0 0.5 1.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

−1.0 −0.5 0.0 0.5 1.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

−1.0 −0.5 0.0 0.5 1.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

−1.0 −0.5 0.0 0.5 1.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

−1.0 −0.5 0.0 0.5 1.0
0.00

0.05

0.10

0.15

0.20

0.25

−1.0 −0.5 0.0 0.5 1.0
0.00

0.05

0.10

0.15

0.20

0.25

−1.0 −0.5 0.0 0.5 1.0
0.00

0.05

0.10

0.15

0.20

0.25

−1.0 −0.5 0.0 0.5 1.0
0.00

0.05

0.10

0.15

0.20

−1.0 −0.5 0.0 0.5 1.0
0.00

0.05

0.10

0.15

0.20

Figure 9: Gauss-Chebyshev-U (red) and Genz-Keister (blue) nodes versus corre-
sponding weights. All (2i − 1)-point rules are identical.

32

−0.06−0.04−0.02 0.00 0.02 0.04 0.06
1.65

1.70

1.75

1.80

1.85

1.90

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
0.2

0.4

0.6

0.8

1.0

1.2

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
0.2

0.4

0.6

0.8

1.0

1.2

−3 −2 −1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

−3 −2 −1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

−3 −2 −1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

−3 −2 −1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

−3 −2 −1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

−4 −2 0 2 4
−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

−4 −2 0 2 4
−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

−4 −2 0 2 4
−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

−4 −2 0 2 4
−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

−4 −2 0 2 4
−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

−4 −2 0 2 4
−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

−4 −2 0 2 4
−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

−8 −6 −4 −2 0 2 4 6 8
−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

−8 −6 −4 −2 0 2 4 6 8
−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

−8 −6 −4 −2 0 2 4 6 8
0.0

0.1

0.2

0.3

0.4

0.5

Figure 10: Gauss-Hermite (red) and Genz-Keister (blue) nodes versus corre-
sponding weights. The 1- and 3-point rules are identical.

33

0 10 20 30 40

Order n or level K + 1 respectively

0

20

40

60

80

100

|Γ
|

Gauss-Legendre

Genz-Keister

2n− 1

Figure 11: Number of nodes for the one-dimensional Gauss-Legendre and Genz-
Keister quadrature rules of order n or level K respectively.

1 2 3 4 5 6 7 8 9 10 11 12

Level K + 1

100

101

102

103

104

105

106

|Γ
|

D = 1

D = 2

D = 3

D = 4

D = 5

D = 6

D = 7

D = 8

Figure 12: Number |Γ| of Genz-Keister quadrature nodes for various levels K
and dimensions D in the Legendre case.

34

0 10 20 30 40

Order n or level K + 1 respectively

0

20

40

60

80

100

|Γ
|

Gauss-Chebyshev

Genz-Keister

2n− 1

Figure 13: Number of nodes for the one-dimensional Gauss-Chebyshev-T and
Genz-Keister quadrature rules of order n or level K respectively.

1 2 3 4 5 6 7 8 9 10 11 12

Level K + 1

100

101

102

103

104

105

106

|Γ
|

D = 1

D = 2

D = 3

D = 4

D = 5

D = 6

D = 7

D = 8

Figure 14: Number |Γ| of Genz-Keister quadrature nodes for various levels K
and dimensions D in the Chebyshev-T case.

35

0 10 20 30 40 50 60

Order n or level K + 1 respectively

0

20

40

60

80

100

120

140

|Γ
|

Gauss-Chebyshev

Genz-Keister

2n− 1

Figure 15: Number of nodes for the one-dimensional Gauss-Chebyshev-U and
Genz-Keister quadrature rules of order n or level K respectively.

1 2 3 4 5 6 7 8 9 10 11 12

Level K + 1

100

101

102

103

104

105

106

|Γ
|

D = 1

D = 2

D = 3

D = 4

D = 5

D = 6

D = 7

D = 8

Figure 16: Number |Γ| of Genz-Keister quadrature nodes for various levels K
and dimensions D in the Chebyshev-U case.

36

0 10 20 30 40 50

Order n or level K + 1 respectively

0

20

40

60

80

100

120

|Γ
|

Gauss-Hermite

Genz-Keister

2n− 1

Figure 17: Number of nodes for the one-dimensional Gauss-Hermite and Genz-
Keister quadrature rules of order n or level K respectively.

1 2 3 4 5 6 7 8 9 10 11 12

Level K + 1

100

101

102

103

104

105

106

|Γ
|

D = 1

D = 2

D = 3

D = 4

D = 5

D = 6

D = 7

D = 8

Figure 18: Number |Γ| of Genz-Keister quadrature nodes for various levels K
and dimensions D in the Hermite case.

37

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

Figure 19: Gauss-Legendre (red) and Genz-Keister (blue) nodes for two-
dimensional rules. The Gauss-Legendre points form a full tensor product.

38

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

Figure 20: Gauss-Chebyshev-T (red) and Genz-Keister (blue) nodes for two-
dimensional rules. The Gauss-Chebyshev points form a full tensor product.

39

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

Figure 21: Gauss-Chebyshev-U (red) and Genz-Keister (blue) nodes for two-
dimensional rules. The Gauss-Chebyshev points form a full tensor product.

40

−0.06−0.04−0.020.00 0.02 0.04 0.06
−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−4 −2 0 2 4

−4

−2

0

2

4

−4 −2 0 2 4

−4

−2

0

2

4

−4 −2 0 2 4

−4

−2

0

2

4

−4 −2 0 2 4

−4

−2

0

2

4

−4 −2 0 2 4

−4

−2

0

2

4

−4 −2 0 2 4

−4

−2

0

2

4

−4 −2 0 2 4

−4

−2

0

2

4

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

Figure 22: Gauss-Hermite (red) and Genz-Keister (blue) nodes for two-
dimensional rules. The Gauss-Hermite points form a full tensor product.

41

1 2 3 4 5 6 7 8

Dimension D

2

4

6

8

10

12

L
e
ve

l
K

+
1

|ΓG|
|ΓT |

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

(a) Dimension D ≤ 8 and Level K ≤ 12.

1 2 3 4

Dimension D

5

10

15

20

25

30

L
e
ve

l
K

+
1

|ΓG|
|ΓT |

0.26

0.44

0.62

0.80

0.98

1.16

1.34

1.52

1.70

1.88

(b) Dimension D ≤ 4 and Level K ≤ 32. Notice the tendency of the white boundary
to go to the right and eventually reach dimensions D ≥ 3.

1 2 3 4 5 6 7 8

Dimension D

2

4

6

8

10

12

L
e
ve

l
K

+
1

|ΓS|
|ΓT |

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

(c) Ratio comparing tensor product and classical Smolyak construction.

Figure 23: Ratio of the number of Genz-Keister and Gauss-Legendre tensor
product points for some dimensions and Levels. White dots are D,K combina-
tions where Genz-Keister is advantageous, while for black dots Genz-Keister is
worse and for gray dots the ratio equals 1.

42

1 2 3 4 5 6 7 8

Dimension D

2

4

6

8

10

12

L
e
ve

l
K

+
1

|ΓG|
|ΓT |

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

(a) Dimension D ≤ 8 and Level K ≤ 12.

1 2 3 4

Dimension D

5

10

15

20

L
e
ve

l
K

+
1

|ΓG|
|ΓT |

0.20

0.38

0.56

0.74

0.92

1.10

1.28

1.46

1.64

1.82

(b) Dimension D ≤ 4 and Level K ≤ 32.

1 2 3 4 5 6 7 8

Dimension D

2

4

6

8

10

12

L
e
ve

l
K

+
1

|ΓS|
|ΓT |

0.00

0.45

0.90

1.35

1.80

2.25

2.70

3.15

3.60

4.05

(c) Ratio comparing tensor product and classical Smolyak construction.

Figure 24: Ratio of the number of Genz-Keister and Gauss-Chebyshev-T tensor
product points for some dimensions and Levels. White dots are D,K combina-
tions where Genz-Keister is advantageous, while for black dots Genz-Keister is
worse and for gray dots the ratio equals 1.

43

1 2 3 4 5 6 7 8

Dimension D

2

4

6

8

10

12

L
e
ve

l
K

+
1

|ΓG|
|ΓT |

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

(a) Dimension D ≤ 8 and Level K ≤ 12.

1 2 3 4

Dimension D

5

10

15

20

25

30

L
e
ve

l
K

+
1

|ΓG|
|ΓT |

0.18

0.38

0.58

0.78

0.98

1.18

1.38

1.58

1.78

1.98

(b) Dimension D ≤ 4 and Level K ≤ 32.

1 2 3 4 5 6 7 8

Dimension D

2

4

6

8

10

12

L
e
ve

l
K

+
1

|ΓS|
|ΓT |

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

3.6

(c) Ratio comparing tensor product and classical Smolyak construction.

Figure 25: Ratio of the number of Genz-Keister and Gauss-Chebyshev-U tensor
product points for some dimensions and Levels. White dots are D,K combina-
tions where Genz-Keister is advantageous, while for black dots Genz-Keister is
worse and for gray dots the ratio equals 1.

44

1 2 3 4 5 6 7 8

Dimension D

2

4

6

8

10

12

L
e
ve

l
K

+
1

|ΓG|
|ΓT |

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

(a) Dimension D ≤ 8 and Level K ≤ 12.

1 2 3 4

Dimension D

2

4

6

8

10

12

14

16

18

L
e
ve

l
K

+
1

|ΓG|
|ΓT |

0.28

0.46

0.64

0.82

1.00

1.18

1.36

1.54

1.72

1.90

(b) Dimension D ≤ 4 and Level K ≤ 32. Even if not visible here, the white boundary
will go more to the right and reach dimension D = 3 at level K = 51.

1 2 3 4 5 6 7 8

Dimension D

2

4

6

8

10

12

L
e
ve

l
K

+
1

|ΓS|
|ΓT |

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

(c) Ratio comparing tensor product and classical Smolyak construction.

Figure 26: Ratio of the number of Genz-Keister and Gauss-Hermite tensor pro-
duct points for some dimensions and Levels. White dots are D,K combinations
where Genz-Keister is advantageous, while for black dots Genz-Keister is worse
and for gray dots the ratio equals 1.

45

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128

Monomial xn

10−17

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

R
e
la

ti
ve

E
rr

o
r

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128

Monomial xn

10−17

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

R
e
la

ti
ve

E
rr

o
r

Figure 27: Relative quadrature error for integration of single univariate monomi-
als xn of increasing degree n. Each line represents a quadrature rule and the
color indicates the number of nodes (colors wrap around once though). The
upper plot shows Gauss-Legendre rules as reference while the lower one shows
the Genz-Keister rules. The number of nodes for each of these rules is: 1, 3, 7,
13, 15, 25, 27, 29, 31, 49, 51, 53, 55, 57, 59, 61, 63 and the orders according
to (35) are: 1, 5, 11, 13, 23, 25, 27, 29, 47, 49, 51, 53, 55, 57, 59, 61, 95 which
perfectly agrees with the figure. Starting with the 31 point rule, the rules become
somewhat unstable and do not reach the machine epsilon error level. This can
be explained by growing oscillations in the weights for some of the rules. (Refer
to Figure 7 though the rules affected are beyond the range of that plot.) The
rule having 63 nodes is very stable again.

46

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Degree n

10−17

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

R
e
la

ti
ve

E
rr

o
r

Quadrature of monomial
∏D

d=1 x
n
d

K = 0

K = 1

K = 2

K = 3

K = 4

K = 5

K = 6

K = 7

K = 8

K = 9

K = 10

K = 11

K = 12

K = 13

K = 14

K = 15

K = 16

K = 17

K = 18

K = 19

K = 20

K = 21

K = 22

K = 23

(a) Dimension D = 2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Degree n

10−17

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

R
e
la

ti
ve

E
rr

o
r

Quadrature of monomial
∏D

d=1 x
n
d

K = 0

K = 1

K = 2

K = 3

K = 4

K = 5

K = 6

K = 7

K = 8

K = 9

K = 10

K = 11

K = 12

K = 13

K = 14

K = 15

K = 16

K = 17

K = 18

K = 19

K = 20

K = 21

K = 22

K = 23

(b) Dimension D = 3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Degree n

10−17

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

R
e
la

ti
ve

E
rr

o
r

Quadrature of monomial
∏D

d=1 x
n
d

K = 0

K = 1

K = 2

K = 3

K = 4

K = 5

K = 6

K = 7

K = 8

K = 9

K = 10

K = 11

K = 12

K = 13

K = 14

K = 15

K = 16

K = 17

K = 18

K = 19

K = 20

K = 21

K = 22

K = 23

(c) Dimension D = 4

Figure 28: Relative errors in the Legendre case for the integral (36) in different
dimensions. All variables xd share the same exponent n.

47

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Degree n

10−17

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

R
e
la

ti
ve

E
rr

o
r

Quadrature of monomial
∏D

d=1 x
n
d

K = 0

K = 1

K = 2

K = 3

K = 4

K = 5

K = 6

K = 7

K = 8

K = 9

K = 10

K = 11

K = 12

K = 13

K = 14

K = 15

K = 16

K = 17

K = 18

K = 19

K = 20

K = 21

K = 22

K = 23

(a) Dimension D = 5

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Degree n

10−17

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

R
e
la

ti
ve

E
rr

o
r

Quadrature of monomial
∏D

d=1 x
n
d

K = 0

K = 1

K = 2

K = 3

K = 4

K = 5

K = 6

K = 7

K = 8

K = 9

K = 10

K = 11

K = 12

K = 13

K = 14

K = 15

K = 16

K = 17

K = 18

K = 19

K = 20

K = 21

K = 22

K = 23

(b) Dimension D = 6

Figure 29: Relative errors in the Legendre case for the integral (36) in different
dimensions. All variables xd share the same exponent n.

48

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54

Monomial xn

10−17

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

R
e
la

ti
ve

E
rr

o
r

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54

Monomial xn

10−17

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

R
e
la

ti
ve

E
rr

o
r

Figure 30: Relative quadrature error for integration of single univariate monomi-
als xn of increasing degree n. Each line represents a quadrature rule and the
color indicates the number of nodes (colors wrap around once though). The
upper plot shows Gauss-Chebyshev-T rules as reference while the lower one
shows the Genz-Keister rules. The number of nodes for each of these rules is: 1,
3, 7, 13, 25 and the orders according to (35) are: 1, 5, 11, 23, 47 which perfectly
agrees with the figure. All rules examined here are very stable up to machine
precision.

49

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Degree n

10−17

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

R
e
la

ti
ve

E
rr

o
r

Quadrature of monomial
∏D

d=1 x
n
d

K = 0

K = 1

K = 2

K = 3

K = 4

K = 5

K = 6

K = 7

K = 8

K = 9

K = 10

K = 11

K = 12

K = 13

K = 14

K = 15

K = 16

K = 17

K = 18

K = 19

K = 20

K = 21

K = 22

K = 23

(a) Dimension D = 2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Degree n

10−17

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

R
e
la

ti
ve

E
rr

o
r

Quadrature of monomial
∏D

d=1 x
n
d

K = 0

K = 1

K = 2

K = 3

K = 4

K = 5

K = 6

K = 7

K = 8

K = 9

K = 10

K = 11

K = 12

K = 13

K = 14

K = 15

K = 16

K = 17

K = 18

K = 19

K = 20

K = 21

K = 22

K = 23

(b) Dimension D = 3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Degree n

10−17

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

R
e
la

ti
ve

E
rr

o
r

Quadrature of monomial
∏D

d=1 x
n
d

K = 0

K = 1

K = 2

K = 3

K = 4

K = 5

K = 6

K = 7

K = 8

K = 9

K = 10

K = 11

K = 12

K = 13

K = 14

K = 15

K = 16

K = 17

K = 18

K = 19

K = 20

K = 21

K = 22

K = 23

(c) Dimension D = 4

Figure 31: Relative errors in the Chebyshev-T case for the integral (37) in
different dimensions. All variables xd share the same exponent n.

50

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Degree n

10−17

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

R
e
la

ti
ve

E
rr

o
r

Quadrature of monomial
∏D

d=1 x
n
d

K = 0

K = 1

K = 2

K = 3

K = 4

K = 5

K = 6

K = 7

K = 8

K = 9

K = 10

K = 11

K = 12

K = 13

K = 14

K = 15

K = 16

K = 17

K = 18

K = 19

K = 20

K = 21

K = 22

K = 23

(a) Dimension D = 5

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Degree n

10−17

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

R
e
la

ti
ve

E
rr

o
r

Quadrature of monomial
∏D

d=1 x
n
d

K = 0

K = 1

K = 2

K = 3

K = 4

K = 5

K = 6

K = 7

K = 8

K = 9

K = 10

K = 11

K = 12

K = 13

K = 14

K = 15

K = 16

K = 17

K = 18

K = 19

K = 20

K = 21

K = 22

K = 23

(b) Dimension D = 6

Figure 32: Relative errors in the Chebyshev-T case for the integral (37) in
different dimensions. All variables xd share the same exponent n.

51

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96

Monomial xn

10−17

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

R
e
la

ti
ve

E
rr

o
r

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96

Monomial xn

10−17

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

R
e
la

ti
ve

E
rr

o
r

Figure 33: Relative quadrature error for integration of single univariate monomi-
als xn of increasing degree n. Each line represents a quadrature rule and the
color indicates the number of nodes (colors wrap around once though). The
upper plot shows Gauss-Chebyshev-U rules as reference while the lower one
shows the Genz-Keister rules. The number of nodes for each of these rules is:
1, 3, 7, 15, 31, 63 and the orders according to (35) are: 1, 5, 13, 29, 61, 125
which perfectly agrees with the figure. The error is in good agreement with
the Gauss-Chebyshev rules which is of course expected because the rules are
identical.

52

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Degree n

10−17

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

R
e
la

ti
ve

E
rr

o
r

Quadrature of monomial
∏D

d=1 x
n
d

K = 0

K = 1

K = 2

K = 3

K = 4

K = 5

K = 6

K = 7

K = 8

K = 9

K = 10

K = 11

K = 12

K = 13

K = 14

K = 15

K = 16

K = 17

K = 18

K = 19

K = 20

K = 21

K = 22

K = 23

K = 24

K = 25

K = 26

K = 27

K = 28

K = 29

K = 30

K = 31

(a) Dimension D = 2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Degree n

10−17

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

R
e
la

ti
ve

E
rr

o
r

Quadrature of monomial
∏D

d=1 x
n
d

K = 0

K = 1

K = 2

K = 3

K = 4

K = 5

K = 6

K = 7

K = 8

K = 9

K = 10

K = 11

K = 12

K = 13

K = 14

K = 15

K = 16

K = 17

K = 18

K = 19

K = 20

K = 21

K = 22

K = 23

K = 24

K = 25

K = 26

K = 27

K = 28

K = 29

K = 30

K = 31

(b) Dimension D = 3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Degree n

10−17

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

R
e
la

ti
ve

E
rr

o
r

Quadrature of monomial
∏D

d=1 x
n
d

K = 0

K = 1

K = 2

K = 3

K = 4

K = 5

K = 6

K = 7

K = 8

K = 9

K = 10

K = 11

K = 12

K = 13

K = 14

K = 15

K = 16

K = 17

K = 18

K = 19

K = 20

K = 21

K = 22

K = 23

K = 24

K = 25

K = 26

K = 27

K = 28

K = 29

K = 30

K = 31

(c) Dimension D = 4

Figure 34: Relative errors in the Chebyshev-U case for the integral (38) in
different dimensions. All variables xd share the same exponent n.

53

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Degree n

10−17

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

R
e
la

ti
ve

E
rr

o
r

Quadrature of monomial
∏D

d=1 x
n
d

K = 0

K = 1

K = 2

K = 3

K = 4

K = 5

K = 6

K = 7

K = 8

K = 9

K = 10

K = 11

K = 12

K = 13

K = 14

K = 15

K = 16

K = 17

K = 18

K = 19

K = 20

K = 21

K = 22

K = 23

K = 24

K = 25

K = 26

K = 27

K = 28

K = 29

K = 30

K = 31

(a) Dimension D = 5

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Degree n

10−17

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

R
e
la

ti
ve

E
rr

o
r

Quadrature of monomial
∏D

d=1 x
n
d

K = 0

K = 1

K = 2

K = 3

K = 4

K = 5

K = 6

K = 7

K = 8

K = 9

K = 10

K = 11

K = 12

K = 13

K = 14

K = 15

K = 16

K = 17

K = 18

K = 19

K = 20

K = 21

K = 22

K = 23

K = 24

K = 25

K = 26

K = 27

K = 28

K = 29

K = 30

K = 31

(b) Dimension D = 6

Figure 35: Relative errors in the Chebyshev-U case for the integral (38) in
different dimensions. All variables xd share the same exponent n.

54

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72

Monomial xn

10−17

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

R
e
la

ti
ve

E
rr

o
r

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72

Monomial xn

10−17

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

R
e
la

ti
ve

E
rr

o
r

Figure 36: Relative quadrature error for integration of single univariate monomi-
als xn of increasing degree n. Each line represents a quadrature rule and the
color indicates the number of nodes (colors wrap around once though). The
upper plot shows Gauss-Hermite rules as reference while the lower one shows
the Genz-Keister rules. The number of nodes for each of these rules is: 1, 3, 7,
9, 17, 19, 31, 33, 35 and the orders according to (35) are: 1, 5, 7, 15, 17, 29,
31, 33, 51 which perfectly agrees with the figure. Given that none of the higher
order rules agree with any Gauss-Hermite rule, the stability and error behavior
is excellent. On the other hand, the rule with 35 points integrates monomials
correctly only up to x51 with 51 = 2 · 25 + 1 instead of up to n = 2 · 35− 1 = 69.

55

0 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 204 216 228 240

Monomial xn

10−17

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

R
e
la

ti
ve

E
rr

o
r

Figure 37: Relative quadrature error for integration of single univariate monomi-
als xn of increasing degree n. Each line represents a quadrature rule and the
color indicates the number of nodes (colors wrap around once though). The
number of nodes for each of these rules is: 53, 55, 57, 59, 61, 63, 65, 67, 69,
71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103. The rules for
K > 25 become soon highly unstable. A notable exception is the last rule with
K = 51 having 103 nodes which shows good behavior and is of order 103. This
is obviously extremely inefficient for practical use.

56

0 2 4 6 8 10 12 14 16 18 20 22 24

Degree n

10−17

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

103

R
e
la

ti
ve

E
rr

o
r

Quadrature of monomial
∏D

d=1 x
n
d

K = 0

K = 1

K = 2

K = 3

K = 4

K = 5

K = 6

K = 7

K = 8

K = 9

K = 10

K = 11

K = 12

K = 13

K = 14

K = 15

K = 16

K = 17

K = 18

K = 19

K = 20

K = 21

K = 22

K = 23

K = 24

K = 25

(a) Dimension D = 2

0 2 4 6 8 10 12 14 16 18 20 22 24

Degree n

10−17

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

103

R
e
la

ti
ve

E
rr

o
r

Quadrature of monomial
∏D

d=1 x
n
d

K = 0

K = 1

K = 2

K = 3

K = 4

K = 5

K = 6

K = 7

K = 8

K = 9

K = 10

K = 11

K = 12

K = 13

K = 14

K = 15

K = 16

K = 17

K = 18

K = 19

K = 20

K = 21

K = 22

K = 23

K = 24

K = 25

(b) Dimension D = 3

0 2 4 6 8 10 12 14 16 18 20 22 24

Degree n

10−17

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

103

R
e
la

ti
ve

E
rr

o
r

Quadrature of monomial
∏D

d=1 x
n
d

K = 0

K = 1

K = 2

K = 3

K = 4

K = 5

K = 6

K = 7

K = 8

K = 9

K = 10

K = 11

K = 12

K = 13

K = 14

K = 15

K = 16

K = 17

K = 18

K = 19

K = 20

K = 21

K = 22

K = 23

K = 24

K = 25

(c) Dimension D = 4

Figure 38: Relative errors in the Hermite case for the integral (39) in different
dimensions. All variables xd share the same exponent n.

57

0 2 4 6 8 10 12 14 16 18 20 22 24

Degree n

10−17

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

103

R
e
la

ti
ve

E
rr

o
r

Quadrature of monomial
∏D

d=1 x
n
d

K = 0

K = 1

K = 2

K = 3

K = 4

K = 5

K = 6

K = 7

K = 8

K = 9

K = 10

K = 11

K = 12

K = 13

K = 14

K = 15

K = 16

K = 17

K = 18

K = 19

K = 20

K = 21

K = 22

K = 23

K = 24

K = 25

(a) Dimension D = 5

0 2 4 6 8 10 12 14 16 18 20 22 24

Degree n

10−17

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

103

R
e
la

ti
ve

E
rr

o
r

Quadrature of monomial
∏D

d=1 x
n
d

K = 0

K = 1

K = 2

K = 3

K = 4

K = 5

K = 6

K = 7

K = 8

K = 9

K = 10

K = 11

K = 12

K = 13

K = 14

K = 15

K = 16

K = 17

K = 18

K = 19

K = 20

K = 21

K = 22

K = 23

K = 24

K = 25

(b) Dimension D = 6

Figure 39: Relative errors in the Hermite case for the integral (39) in different
dimensions. All variables xd share the same exponent n.

58

0 10 20 30 40 50

Monomial exponent m

0

10

20

30

40

50

M
o
n
o
m

ia
l
e
x
p
o
n
e
n
t
n

Quadrature of xmyn

K = 23

K = 22

K = 21

K = 20

K = 19

K = 18

K = 17

K = 16

K = 15

K = 14

K = 13

K = 12

K = 11

K = 10

K = 9

K = 8

K = 7

K = 6

K = 5

K = 4

K = 3

K = 2

K = 1

K = 0

Figure 40: Quadrature of the bivariate monomials xmyn for 0 ≤ n,m ≤ 50 in the
Legendre case. Each pair (m,n) is color-coded by the lowest level K rule that
correctly integrates the monomial with a relative error not larger than 10−13.

59

0 10 20 30 40 50

Monomial exponent m

0

10

20

30

40

50

M
o
n
o
m

ia
l
e
x
p
o
n
e
n
t
n

Quadrature of xmyn

K = 23

K = 22

K = 21

K = 20

K = 19

K = 18

K = 17

K = 16

K = 15

K = 14

K = 13

K = 12

K = 11

K = 10

K = 9

K = 8

K = 7

K = 6

K = 5

K = 4

K = 3

K = 2

K = 1

K = 0

Figure 41: Quadrature of the bivariate monomials xmyn for 0 ≤ n,m ≤ 50 in
the Chebyshev-T case. Each pair (m,n) is color-coded by the lowest level K
rule that correctly integrates the monomial with a relative error not larger than
10−13.

60

0 10 20 30 40 50

Monomial exponent m

0

10

20

30

40

50

M
o
n
o
m

ia
l
e
x
p
o
n
e
n
t
n

Quadrature of xmyn

K = 31

K = 30

K = 29

K = 28

K = 27

K = 26

K = 25

K = 24

K = 23

K = 22

K = 21

K = 20

K = 19

K = 18

K = 17

K = 16

K = 15

K = 14

K = 13

K = 12

K = 11

K = 10

K = 9

K = 8

K = 7

K = 6

K = 5

K = 4

K = 3

K = 2

K = 1

K = 0

Figure 42: Quadrature of the bivariate monomials xmyn for 0 ≤ n,m ≤ 50 in
the Chebyshev-U case. Each pair (m,n) is color-coded by the lowest level K
rule that correctly integrates the monomial with a relative error not larger than
10−13.

61

0 10 20 30 40 50

Monomial exponent m

0

10

20

30

40

50

M
o
n
o
m

ia
l
e
x
p
o
n
e
n
t
n

Quadrature of xmyn

K = 25

K = 24

K = 23

K = 22

K = 21

K = 20

K = 19

K = 18

K = 17

K = 16

K = 15

K = 14

K = 13

K = 12

K = 11

K = 10

K = 9

K = 8

K = 7

K = 6

K = 5

K = 4

K = 3

K = 2

K = 1

K = 0

Figure 43: Quadrature of the bivariate monomials xmyn for 0 ≤ n,m ≤ 50 in
the Hermite case. Each pair (m,n) is color-coded by the lowest level K rule that
correctly integrates the monomial with a relative error not larger than 10−13.

62

7 Software

The complete software used for this project can be downloaded at:

https://github.com/raoulbq/kes.git

and is released as free software under the GNU General Public License.

8 Future work

A question is whether it would be computationally more efficient to compute
everything with arbitrary precision floating point ball arithmetic. By doing that
it might be possible to better handle the exponential growth of coefficients. On
the other hand, computing roots and solving for the weights seems to be the
most expensive part already.
By having efficient root isolation and counting algorithms in flint we would not
have to compute all roots of Ep numerically to high precision just for answering
the question if some of them are complex hence marking the whole extension
invalid 4.
Finally, this work is based on empirical studies on the outcome of algorithmic
searches. It would be desirable to have a rigorous mathematical foundation for
the claims made.
Some of the techniques presented here could theoretically be generalized to

Gegenbauer polynomials C
(α)
n (x) and ultimately Jacobi polynomials P

(α,β)
n (x).

The parametric nature of these polynomials makes the implementation more
complex. Also, results will depend on the explicit values of these parameters α
and β.
Similar techniques are actually applied in practical computations, for example
in the simulation of the Schrödinger equation [1].

4This solution is also not fully satisfying since we can only decide that a complex root is

really complex but not if a candidate is for sure real.

63

https://github.com/raoulbq/kes.git

A Tables of higher order Kronrod extensions K

Pn K = (p0, p1, . . . , pk)
P1

k ≥ 6
(1, 2, 4, 8, 16, 32, 64), (1, 2, 4, 8, 30, 46, 92), (1, 2, 4, 14, 22, 44, 88),
(1, 2, 4, 14, 22, 44, 90), (1, 4, 6, 12, 24, 48, 96)

P2

k ≥ 5
(2, 3, 6, 12, 44, 68), (2, 3, 6, 22, 34, 68), (2, 3, 10, 16, 32, 64),
(2, 3, 10, 16, 32, 66), (2, 3, 16, 22, 44, 88), (2, 3, 16, 22, 44, 90),
(2, 4, 6, 22, 35, 70), (2, 4, 6, 22, 36, 70), (2, 4, 6, 22, 36, 71),
(2, 4, 6, 22, 36, 72), (2, 4, 6, 29, 42, 84), (2, 4, 14, 20, 40, 82),
(2, 4, 15, 22, 44, 88), (2, 4, 15, 22, 44, 90), (2, 4, 16, 22, 44, 90),
(2, 4, 16, 22, 45, 92), (2, 6, 9, 32, 50, 100), (2, 6, 16, 25, 50, 100),
(2, 7, 10, 20, 40, 80)

P3

k ≥ 5
(3, 4, 8, 16, 32, 64), (3, 4, 8, 30, 46, 92), (3, 4, 14, 22, 44, 88),
(3, 4, 14, 22, 44, 90)

P4

k ≥ 5
(4, 5, 10, 20, 40, 80)

P5

k ≥ 4
(5, 6, 12, 24, 48, 96), (5, 6, 12, 24, 48), (5, 6, 12, 46, 70),
(5, 6, 22, 34, 68), (5, 6, 34, 46, 92)

P6

k ≥ 4
(6, 7, 14, 28, 56), (6, 7, 14, 30, 58), (6, 7, 14, 54, 82), (6, 7, 26, 40, 80),
(6, 8, 14, 29, 58), (6, 8, 14, 30, 58), (6, 8, 14, 30, 59), (6, 8, 14, 55, 84),
(6, 8, 14, 56, 84), (6, 8, 14, 56, 85), (6, 8, 15, 54, 84), (6, 8, 26, 40, 80),
(6, 8, 26, 40, 81), (6, 8, 26, 40, 82)

P7

k ≥ 4
(7, 8, 16, 32, 64), (7, 8, 16, 34, 66), (7, 8, 16, 62, 94), (7, 8, 16, 64, 96),
(7, 8, 30, 46, 92)

P8

k ≥ 4
(8, 9, 18, 36, 72), (8, 9, 18, 38, 74)

P9

k ≥ 4
(9, 10, 20, 40, 80), (9, 10, 20, 42, 82)

P10

k ≥ 4
(10, 11, 22, 44, 88), (10, 11, 22, 46, 90), (10, 12, 22, 45, 90),
(10, 12, 22, 45, 92), (10, 12, 24, 46, 93), (10, 12, 24, 47, 94),
(10, 12, 24, 47, 96), (10, 12, 24, 48, 94), (10, 12, 24, 48, 95),
(10, 12, 24, 48, 96)

Table 2: Nested higher order Kronrod extensions K of the Legendre polynomials
Pn. The table lists the most deeply nested extensions for n ≤ 10 which were
found. The maximal order pmax was set to 100 and the recursion limit kmax was
never reached. Notice that extensions and especially highly nested extensions
are very abundant in the case of Legendre polynomials.

64

Tn K = (p0, p1, . . . , pk)
T1

k ≥ 6
(1, 2, 4, 6, 12, 24, 48, 96), (1, 2, 4, 6, 12, 24, 48), (1, 2, 4, 6, 12, 24, 96),
(1, 2, 4, 6, 12, 48, 72), (1, 2, 4, 6, 12, 72, 96), (1, 2, 4, 6, 24, 36, 72),
(1, 2, 4, 6, 36, 48, 96), (1, 2, 4, 12, 18, 36, 72), (1, 2, 4, 18, 24, 48, 96),
(1, 2, 6, 10, 18, 36, 72), (1, 2, 10, 12, 24, 48, 96), (1, 4, 6, 10, 20, 40, 80)

T2

k ≥ 6
(2, 3, 4, 8, 16, 32, 64), (2, 3, 4, 8, 16, 64, 96), (2, 3, 4, 8, 32, 48, 96),
(2, 3, 4, 16, 24, 48, 96), (2, 3, 8, 12, 24, 48, 96), (2, 4, 7, 12, 24, 48, 96)

T3

k ≥ 5
(3, 4, 6, 12, 24, 48, 96), (3, 4, 6, 12, 24, 48), (3, 4, 6, 12, 24, 96),
(3, 4, 6, 12, 48, 72), (3, 4, 6, 12, 72, 96), (3, 4, 6, 24, 36, 72),
(3, 4, 6, 36, 48, 96), (3, 4, 12, 18, 36, 72), (3, 4, 18, 24, 48, 96),
(3, 6, 10, 18, 36, 72), (3, 10, 12, 24, 48, 96)

T4

k ≥ 5
(4, 5, 8, 16, 32, 64), (4, 5, 8, 16, 64, 96), (4, 5, 8, 32, 48, 96),
(4, 5, 16, 24, 48, 96), (4, 8, 13, 24, 48, 96)

T5

k ≥ 4
(5, 6, 10, 20, 40, 80), (5, 6, 10, 20, 40), (5, 6, 10, 20, 80),
(5, 6, 10, 40, 60), (5, 6, 10, 60, 80), (5, 6, 10, 80, 100),
(5, 6, 20, 30, 60), (5, 6, 20, 60, 90), (5, 6, 30, 40, 80),
(5, 6, 40, 50, 100), (5, 10, 16, 30, 60), (5, 10, 16, 60, 90),
(5, 10, 30, 46, 90), (5, 16, 20, 40, 80), (5, 20, 26, 50, 100)

T6

k ≥ 4
(6, 7, 12, 24, 48, 96), (6, 7, 12, 24, 48), (6, 7, 12, 24, 96),
(6, 7, 12, 48, 72), (6, 7, 12, 72, 96), (6, 7, 24, 36, 72), (6, 7, 36, 48, 96),
(6, 12, 19, 36, 72), (6, 19, 24, 48, 96)

T7

k ≥ 4
(7, 8, 14, 28, 56), (7, 8, 14, 56, 84), (7, 8, 28, 42, 84),
(7, 14, 22, 42, 84)

T8

k ≥ 4
(8, 9, 16, 32, 64), (8, 9, 16, 64, 96), (8, 9, 32, 48, 96),
(8, 16, 25, 48, 96)

T9

k ≥ 4
(9, 10, 18, 36, 72)

T10

k ≥ 4
(10, 11, 20, 40, 80)

Table 3: Nested higher order Kronrod extensions K of the Chebyshev polynomials
Tn. The table lists the most deeply nested extensions for n ≤ 10 which were
found. The maximal order pmax was set to 100 and the recursion limit kmax

was never reached. The Chebyshev polynomials also possess a rich structure of
deeply nested extensions.

65

Un K = (p0, p1, . . . , pk)
U1

k ≥ 6
(1, 2, 4, 8, 16, 32, 64), (1, 2, 4, 8, 16, 64, 96), (1, 2, 4, 8, 32, 48, 96),
(1, 2, 4, 16, 24, 48, 96), (1, 2, 8, 12, 24, 48, 96), (1, 4, 6, 12, 24, 48, 96)

U2

k ≥ 5
(2, 3, 6, 12, 24, 48, 96), (2, 3, 6, 12, 24, 48), (2, 3, 6, 12, 24, 96),
(2, 3, 6, 12, 48, 72), (2, 3, 6, 12, 72, 96), (2, 3, 6, 24, 36, 72),
(2, 3, 6, 36, 48, 96), (2, 3, 12, 18, 36, 72), (2, 3, 18, 24, 48, 96),
(2, 6, 9, 18, 36, 72), (2, 9, 12, 24, 48, 96)

U3

k ≥ 5
(3, 4, 8, 16, 32, 64), (3, 4, 8, 16, 64, 96), (3, 4, 8, 32, 48, 96),
(3, 4, 16, 24, 48, 96), (3, 8, 12, 24, 48, 96)

U4

k ≥ 4
(4, 5, 10, 20, 40, 80), (4, 5, 10, 20, 40), (4, 5, 10, 20, 80),
(4, 5, 10, 40, 60), (4, 5, 10, 60, 80), (4, 5, 10, 80, 100),
(4, 5, 20, 30, 60), (4, 5, 20, 60, 90), (4, 5, 30, 40, 80),
(4, 5, 40, 50, 100), (4, 10, 15, 30, 60), (4, 10, 15, 60, 90),
(4, 10, 30, 45, 90), (4, 15, 20, 40, 80), (4, 20, 25, 50, 100)

U5

k ≥ 4
(5, 6, 12, 24, 48, 96), (5, 6, 12, 24, 48), (5, 6, 12, 24, 96),
(5, 6, 12, 48, 72), (5, 6, 12, 72, 96), (5, 6, 24, 36, 72), (5, 6, 36, 48, 96),
(5, 12, 18, 36, 72), (5, 18, 24, 48, 96)

U6

k ≥ 4
(6, 7, 14, 28, 56), (6, 7, 14, 56, 84), (6, 7, 28, 42, 84),
(6, 14, 21, 42, 84)

U7

k ≥ 4
(7, 8, 16, 32, 64), (7, 8, 16, 64, 96), (7, 8, 32, 48, 96),
(7, 16, 24, 48, 96)

U8

k ≥ 3
(8, 9, 18, 36, 72), (8, 9, 18, 36), (8, 9, 18, 72), (8, 9, 36, 54),
(8, 9, 54, 72), (8, 9, 72, 90), (8, 18, 27, 54), (8, 18, 54, 81),
(8, 27, 36, 72), (8, 36, 45, 90)

U9

k ≥ 3
(9, 10, 20, 40, 80), (9, 10, 20, 40), (9, 10, 20, 80), (9, 10, 40, 60),
(9, 10, 60, 80), (9, 10, 80, 100), (9, 20, 30, 60), (9, 20, 60, 90),
(9, 30, 40, 80), (9, 40, 50, 100)

U10

k ≥ 3
(10, 11, 22, 44, 88), (10, 11, 22, 44), (10, 11, 22, 88), (10, 11, 44, 66),
(10, 11, 66, 88), (10, 22, 33, 66), (10, 22, 66, 99), (10, 33, 44, 88)

Table 4: Nested higher order Kronrod extensions K of the Chebyshev polynomials
Un. The table lists the most deeply nested extensions for n ≤ 10 which were
found. The maximal order pmax was set to 100 and the recursion limit kmax

was never reached. The Chebyshev polynomials also possess a rich structure of
deeply nested extensions.

66

Ln K = (p0, p1, . . . , pk)
L1

k ≥ 3
(1, 3, 5, 12, 24), (1, 3, 5, 12, 25), (1, 3, 5, 12, 26), (1, 3, 5, 9),
(1, 3, 5, 10), (1, 3, 5, 11), (1, 3, 5, 12), (1, 3, 5, 23), (1, 3, 5, 24),
(1, 3, 5, 25), (1, 3, 5, 28), (1, 3, 5, 29), (1, 3, 5, 45), (1, 3, 5, 46),
(1, 3, 5, 47), (1, 3, 5, 69), (1, 3, 5, 70), (1, 3, 5, 80), (1, 3, 6, 43),
(1, 3, 6, 91), (1, 3, 6, 92), (1, 3, 6, 93), (1, 3, 7, 90), (1, 3, 7, 91),
(1, 3, 8, 89), (1, 3, 8, 90), (1, 5, 11, 68)

L2

k ≥ 2
(2, 4, 7, 29), (2, 4, 8, 86), (2, 4, 9, 86), (2, 4, 7), (2, 4, 8), (2, 4, 9),
(2, 4, 10), (2, 4, 13), (2, 4, 21), (2, 4, 22), (2, 4, 23), (2, 4, 30),
(2, 4, 41), (2, 4, 42), (2, 4, 43), (2, 4, 44), (2, 4, 45), (2, 4, 47),
(2, 4, 53), (2, 4, 68), (2, 4, 69), (2, 4, 70), (2, 4, 71), (2, 4, 72),
(2, 4, 73), (2, 4, 74), (2, 4, 96), (2, 4, 97), (2, 5, 29), (2, 5, 30),
(2, 5, 38), (2, 5, 39), (2, 5, 48), (2, 6, 50), (2, 6, 51), (2, 6, 54),
(2, 6, 79), (2, 6, 80), (2, 7, 49), (2, 7, 77), (2, 9, 48), (2, 10, 58)

L3

k ≥ 2
(3, 6, 41), (3, 6, 42), (3, 6, 43), (3, 6, 44), (3, 6, 50), (3, 7, 57),
(3, 7, 58), (3, 7, 94)

L4

k ≥ 2
∅

L5

k ≥ 2
(5, 9, 39), (5, 9, 40)

L6

k ≥ 2
∅

L7

k ≥ 2
∅

L8

k ≥ 2
(8, 15, 26)

L9

k ≥ 2
∅

L10

k ≥ 2
∅

Table 5: Nested higher order Kronrod extensions K of the Laguerre polynomials
Ln. The table lists the most deeply nested extensions for n ≤ 20 which were
found. The maximal order pmax was set to 100 and the recursion limit kmax was
never reached. For this type of polynomial, deeply nested rules are extremely
rare.

67

Hn K = (p0, p1, . . . , pk)
H1

k ≥ 4
(1, 2, 6, 10, 16, 68), (1, 2, 6, 10, 18, 66), (1, 2, 6, 10, 18, 68),
(1, 2, 6, 10, 16), (1, 2, 6, 10, 18), (1, 2, 6, 10, 22), (1, 2, 6, 10, 24),
(1, 2, 6, 10, 96), (1, 2, 6, 12, 28), (1, 2, 6, 12, 34), (1, 2, 6, 12, 36),
(1, 2, 6, 12, 48), (1, 2, 6, 14, 22), (1, 2, 6, 14, 24), (1, 2, 6, 14, 28),
(1, 2, 6, 14, 32), (1, 2, 6, 14, 34), (1, 2, 6, 14, 78), (1, 2, 6, 14, 80),
(1, 2, 6, 14, 82), (1, 2, 6, 24, 36), (1, 2, 6, 24, 40), (1, 2, 6, 24, 44),
(1, 4, 8, 14, 96), (1, 8, 14, 22, 90)

H2

k ≥ 4
(2, 3, 4, 8, 24), (2, 3, 4, 8, 50), (2, 3, 4, 8, 52), (2, 3, 4, 8, 54),
(2, 3, 4, 8, 56), (2, 3, 4, 8, 78), (2, 3, 4, 8, 80), (2, 3, 4, 8, 82),
(2, 3, 4, 8, 84), (2, 3, 4, 16, 98), (2, 3, 4, 18, 98), (2, 3, 4, 20, 30),
(2, 3, 4, 20, 32), (2, 3, 4, 20, 34), (2, 3, 4, 20, 36), (2, 3, 4, 20, 38),
(2, 3, 4, 20, 40), (2, 3, 6, 16, 24), (2, 3, 6, 16, 26), (2, 3, 6, 16, 90),
(2, 3, 6, 16, 92), (2, 3, 6, 16, 98)

H3

k ≥ 3
(3, 6, 10, 16, 68), (3, 6, 10, 18, 66), (3, 6, 10, 18, 68), (3, 6, 10, 16),
(3, 6, 10, 18), (3, 6, 10, 22), (3, 6, 10, 24), (3, 6, 10, 96), (3, 6, 12, 28),
(3, 6, 12, 34), (3, 6, 12, 36), (3, 6, 12, 48), (3, 6, 14, 22), (3, 6, 14, 24),
(3, 6, 14, 28), (3, 6, 14, 32), (3, 6, 14, 34), (3, 6, 14, 78), (3, 6, 14, 80),
(3, 6, 14, 82), (3, 6, 24, 36), (3, 6, 24, 40), (3, 6, 24, 44)

H4

k ≥ 3
(4, 5, 10, 36, 56), (4, 5, 10, 36), (4, 5, 10, 38), (4, 5, 10, 46),
(4, 5, 10, 48), (4, 5, 10, 52), (4, 5, 10, 54), (4, 5, 22, 42), (4, 5, 30, 48)

H5

k ≥ 3
(5, 8, 14, 96)

H6

k ≥ 3
(6, 9, 14, 68), (6, 9, 16, 66), (6, 9, 16, 68)

H7

k ≥ 3
∅

H8

k ≥ 3
(8, 11, 18, 66)

H9

k ≥ 3
(9, 14, 22, 90)

H10

k ≥ 3
∅

Table 6: Nested higher order Kronrod extensions K of the Hermite polynomials
Hn. The table lists the most deeply nested extensions for n ≤ 20 which were
found. The maximal order pmax was set to 100 and the recursion limit kmax was
never reached.

68

B Computed Generators

The tables in this appendix contain the generator sets Λ for all default rules
examined in section 6. The generators are ordered in the above-mentioned
alternating order.

Generator Error
λ0 0 ±0
λ1 0.77459666924148337704 ±8.9398 · 10−128

λ2 0.96049126870802028342 ±2.9519 · 10−127

λ3 0.434243749346802558 ±1.9264 · 10−127

λ4 0.99383196321275502221 ±1.2033 · 10−125

λ5 0.22338668642896688163 ±2.9048 · 10−127

λ6 0.88845923287225699889 ±1.6417 · 10−125

λ7 0.62110294673722640294 ±3.1186 · 10−126

λ8 0.99909812496766759766 ±4.2615 · 10−122

λ9 0.11248894313318662575 ±2.0256 · 10−127

λ10 0.98153114955374010687 ±6.0247 · 10−122

λ11 0.33113539325797683309 ±5.1636 · 10−126

λ12 0.92965485742974005667 ±2.6398 · 10−122

λ13 0.53131974364437562397 ±1.0295 · 10−124

λ14 0.8367259381688687355 ±7.0227 · 10−123

λ15 0.70249620649152707861 ±9.7952 · 10−124

λ16 0.99987288812035761194 ±9.0618 · 10−115

λ17 0.056344313046592789972 ±2.4195 · 10−127

λ18 0.99720625937222195908 ±1.446 · 10−114

λ19 0.16823525155220746498 ±5.9532 · 10−126

λ20 0.98868475754742947994 ±8.3369 · 10−115

λ21 0.27774982202182431507 ±1.5333 · 10−124

λ22 0.97218287474858179658 ±3.0935 · 10−115

λ23 0.38335932419873034692 ±2.7813 · 10−123

λ24 0.94634285837340290515 ±9.2169 · 10−116

λ25 0.48361802694584102756 ±4.9013 · 10−122

λ26 0.9103711569570042925 ±2.6298 · 10−116

λ27 0.57719571005204581484 ±8.4648 · 10−121

λ28 0.86390793819369047715 ±4.8765 · 10−117

λ29 0.66290966002478059546 ±9.9356 · 10−120

λ30 0.80694053195021761186 ±8.102 · 10−118

λ31 0.73975604435269475868 ±1.0763 · 10−118

Table 7: Generators in the Legendre case K = (1, 2, 4, 8, 16, 32) computed to 20
decimal digits. Rigorous error bounds are provided by ball arithmetic.

69

Generator Error
λ0 0 ±0
λ1 0.86602540378443864676 ±1.8457 · 10−255

λ2 1 ±0
λ3 0.5 ±4.44 · 10−255

λ4 0.96592582628906828675 ±1.6752 · 10−254

λ5 0.25881904510252076235 ±2.5144 · 10−255

λ6 0.7071067811865475244 ±2.1372 · 10−254

λ7 0.99144486137381041114 ±1.9027 · 10−252

λ8 0.13052619222005159155 ±3.1477 · 10−255

λ9 0.92387953251128675613 ±3.8807 · 10−252

λ10 0.38268343236508977173 ±5.1667 · 10−254

λ11 0.79335334029123516458 ±1.531 · 10−252

λ12 0.60876142900872063942 ±3.995 · 10−253

λ13 0.99785892323860350674 ±4.8189 · 10−248

λ14 0.065403129230143066815 ±2.1204 · 10−255

λ15 0.98078528040323044913 ±1.0712 · 10−247

λ16 0.19509032201612826785 ±5.0556 · 10−254

λ17 0.94693012949510566426 ±1.0193 · 10−247

λ18 0.3214394653031615807 ±9.8952 · 10−253

λ19 0.89687274153268830389 ±5.1395 · 10−248

λ20 0.442288690219001282 ±1.0802 · 10−251

λ21 0.83146961230254523708 ±2.0304 · 10−248

λ22 0.55557023301960222474 ±1.4191 · 10−250

λ23 0.75183980747897739641 ±5.3441 · 10−249

λ24 0.65934581510006886843 ±9.1351 · 10−250

Table 8: Generators in the Chebyshev (first kind) case K = (1, 2, 4, 6, 12, 24)
computed to 20 decimal digits. Rigorous error bounds are provided by ball
arithmetic.

70

Generator Error
λ0 0 ±0
λ1 0.7071067811865475244 ±1.1302 · 10−255

λ2 0.92387953251128675613 ±3.4002 · 10−255

λ3 0.38268343236508977173 ±2.4588 · 10−255

λ4 0.98078528040323044913 ±1.0265 · 10−253

λ5 0.19509032201612826785 ±3.5259 · 10−255

λ6 0.83146961230254523708 ±1.0815 · 10−253

λ7 0.55557023301960222474 ±2.496 · 10−254

λ8 0.99518472667219688624 ±5.6869 · 10−251

λ9 0.098017140329560601994 ±3.0746 · 10−255

λ10 0.95694033573220886494 ±1.1254 · 10−250

λ11 0.29028467725446236764 ±4.1566 · 10−254

λ12 0.88192126434835502971 ±5.8436 · 10−251

λ13 0.47139673682599764856 ±5.9365 · 10−253

λ14 0.77301045336273696081 ±2.4054 · 10−251

λ15 0.63439328416364549822 ±6.3821 · 10−252

λ16 0.99879545620517239271 ±3.7653 · 10−245

λ17 0.049067674327418014255 ±3.1008 · 10−255

λ18 0.98917650996478097345 ±1.0269 · 10−244

λ19 0.14673047445536175166 ±5.0159 · 10−254

λ20 0.9700312531945439926 ±9.1895 · 10−245

λ21 0.24298017990326388995 ±1.0345 · 10−252

λ22 0.94154406518302077841 ±7.649 · 10−245

λ23 0.33688985339222005069 ±1.6499 · 10−251

λ24 0.90398929312344333159 ±3.3936 · 10−245

λ25 0.42755509343028209432 ±2.5664 · 10−250

λ26 0.8577286100002720699 ±1.4468 · 10−245

λ27 0.51410274419322172659 ±3.7758 · 10−249

λ28 0.80320753148064490981 ±4.3992 · 10−246

λ29 0.59569930449243334347 ±3.0138 · 10−248

λ30 0.74095112535495909118 ±1.1218 · 10−246

λ31 0.67155895484701840063 ±1.8774 · 10−247

Table 9: Generators in the Chebyshev (second kind) case K = (1, 2, 4, 8, 16, 32)
computed to 20 decimal digits. Rigorous error bounds are provided by ball
arithmetic.

71

Generator Error
λ0 0 ±0
λ1 1.2247448713915890491 ±2.6102 · 10−255

λ2 2.9592107790638377223 ±3.2633 · 10−254

λ3 0.52403354748695764515 ±8.0828 · 10−255

λ4 2.0232301911005156592 ±4.6195 · 10−254

λ5 4.4995993983103888029 ±7.1244 · 10−253

λ6 0.87004089535290290013 ±3.6256 · 10−254

λ7 3.66777421594633786 ±1.1448 · 10−252

λ8 1.8357079751751868738 ±4.852 · 10−253

λ9 2.2665132620567880275 ±8.9175 · 10−253

λ10 6.3759392709822359517 ±3.8855 · 10−251

λ11 0.17606414208200893503 ±6.8732 · 10−255

λ12 5.6432578578857450628 ±1.1977 · 10−250

λ13 1.5794121348467670857 ±3.6322 · 10−253

λ14 5.0360899444730939687 ±1.2618 · 10−250

λ15 2.5705583765842967091 ±5.1481 · 10−252

λ16 4.0292201405043713648 ±6.5727 · 10−251

λ17 3.3491639537131949774 ±2.7947 · 10−251

Table 10: Generators in the Hermite case K = (1, 2, 6, 10, 16) computed to 20
decimal digits. Rigorous error bounds are provided by ball arithmetic. We can
confirm the claim made in [8] for their Table 4 (both columns) and assure that
all digits shown are indeed correct.

72

Generator Error
λ18 12.371183263294440156 ±6.2996 · 10−242

λ19 0.36668252574926773363 ±1.7765 · 10−253

λ20 11.773315693849850411 ±2.3346 · 10−240

λ21 0.66761453794663251987 ±1.6969 · 10−252

λ22 11.279571841264790728 ±2.642 · 10−239

λ23 1.0853772883690724485 ±3.7943 · 10−251

λ24 10.839884501585234819 ±2.0142 · 10−238

λ25 1.3554874833640409297 ±2.0233 · 10−250

λ26 10.435144794449726187 ±9.2267 · 10−238

λ27 1.8804002593778771426 ±3.9786 · 10−249

λ28 10.055514590896118546 ±3.4517 · 10−237

λ29 2.4894835291142853745 ±5.0127 · 10−247

λ30 9.6950986498409657256 ±9.4588 · 10−237

λ31 2.7429887276487330543 ±3.9256 · 10−246

λ32 9.3500178360366242267 ±1.9321 · 10−236

λ33 3.1578423043107310587 ±6.5944 · 10−245

λ34 9.0175517361800331664 ±3.4879 · 10−236

λ35 3.5581744596318809581 ±1.268 · 10−243

λ36 8.6957029638952971694 ±5.2545 · 10−236

λ37 3.7936922531585261377 ±5.3856 · 10−243

λ38 8.3829544155838454626 ±5.7185 · 10−236

λ39 4.2688636547893383582 ±7.0628 · 10−242

λ40 8.0781250284796943353 ±5.6882 · 10−236

λ41 4.6477303329076984149 ±1.4317 · 10−240

λ42 7.7802807323602445651 ±4.7409 · 10−236

λ43 4.8019262436547872092 ±3.184 · 10−240

λ44 7.4886797763487223782 ±3.3395 · 10−236

λ45 5.2754516328221667421 ±2.5212 · 10−239

λ46 7.2027436504485393396 ±1.7826 · 10−236

λ47 5.4830796220220625119 ±6.2053 · 10−239

λ48 6.9220548983808420548 ±7.4588 · 10−237

λ49 5.8591159720395398957 ±1.8806 · 10−238

λ50 6.6464009334963516572 ±2.1116 · 10−237

λ51 6.1118124629258834825 ±3.619 · 10−238

Table 11: Higher generators in the Hermite case K = (1, 2, 6, 10, 16, 68) computed
to 20 decimal digits. Rigorous error bounds are provided by ball arithmetic.

73

References

[1] Gustavo Avila and Tucker Carrington. Nonproduct quadrature grids for
solving the vibrational schrödinger equation. The Journal of Chemical
Physics, 131(17), 2009. 63

[2] Erwan Faou, Vasile Gradinaru, and Christian Lubich. Computing semi-
classical quantum dynamics with hagedorn wavepackets, 2009. 2

[3] Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier, and
Paul Zimmermann. Mpfr: A multiple-precision binary floating-point library
with correct rounding. ACM Trans. Math. Softw., 33(2), June 2007. 9

[4] Walter Gautschi and Sotorios E. Notaris. An algebraic study of Gauss-
Kronrod quadrature formulae for Jacobi weight functions. Math. Comp.,
51(183):231–248, 1988. 2, 10

[5] Walter Gautschi and Sotorios E. Notaris. Gauss–kronrod quadrature formu-
lae for weight functions of bernstein–szegő type. Journal of Computational
and Applied Mathematics, 25(2):199 – 224, 1989. 2, 10

[6] Walter Gautschi and Theodore J. Rivlin. A family of Gauss-Kronrod
quadrature formulae. Math. Comp., 51(184):749–754, 1988. 3

[7] Alan Genz. Fully symmetric interpolatory rules for multiple integrals. SIAM
Journal on Numerical Analysis, 23(6):1273–1283, 1986. 2, 15, 16, 19, 20, 24

[8] Alan Genz and Bradley D. Keister. Fully symmetric interpolatory rules
for multiple integrals over infinite regions with gaussian weight. Journal of
Computational and Applied Mathematics, 71(2):299 – 309, 1996. 15, 19, 72

[9] George A. Hagedorn. Raising and lowering operators for semiclassical wave
packets. Annals of Physics, 269(1):77–104, 1998. 2

[10] William Hart. Fast Library for Number Theory: An Introduction. In
Proceedings of the Third International Congress on Mathematical Software,
ICMS’10, pages 88–91, Berlin, Heidelberg, 2010. Springer-Verlag. 9, 17

[11] William Hart, Fredrik Johansson, and Sebastian Pancratz. FLINT: Fast
Library for Number Theory, 2014. http://flintlib.org. 9, 17

[12] Markus Holtz. Sparse Grid Quadrature in High Dimensions with Applica-
tions in Finance and Insurance. Lecture Notes in Computational Science
and Engineering. Springer, 2011. 24

[13] Fredrik Johansson. Arb: C library for arbitrary-precision floating-point ball
arithmetic, 2014. http://fredrikj.net/arb/. 9

[14] David K. Kahaner and Giovanni Monegato. Nonexistence of extended
gauss-laguerre and gauss-hermite quadrature rules with positive weights.
Zeitschrift für angewandte Mathematik und Physik ZAMP, 29(6):983–986,
1978. 2, 11

[15] David K. Kahaner, Jörg Waldvogel, and L. W. Fullerton. Addition of points
to gauss–laguerre quadrature formulas. SIAM Journal on Scientific and
Statistical Computing, 5(1):42–55, 1984. 11

74

http://flintlib.org
http://fredrikj.net/arb/

[16] Aleksandr Semenovich Kronrod. Nodes and weights of quadrature formulas.
Sixteen-place tables. Authorized translation from the Russian. Consultants
Bureau, New York, 1965. 1, 2

[17] Dirk P. Laurie. Calculation of gauss–kronrod quadrature rules. Mathematics
of Computation, pages 1133–1145, 1997. 1

[18] Sanjay Mehrotra and Dávid Papp. Generating nested quadrature formulas
for general weight functions with known moments. ArXiv e-prints, March
2012. http://arxiv.org/abs/1203.1554. 1, 2, 3

[19] Giovanni Monegato. A note on extended gaussian quadrature rule. Mathe-
matics of Computation, 30(136):pp. 812–817, 1976. 11

[20] Giovanni Monegato. Positivity of the weights of extended Gauss-Legendre
quadrature rules. Math. Comp., 32(141):243–245, 1978. 2, 10

[21] Giovanni Monegato. Some remarks on the construction of extended gaussian
quadrature rules. Mathematics of Computation, 32(141):pp. 247–252, 1978.
2, 10

[22] Giovanni Monegato. An overview of results and questions related to kronrod
schemes. In G. Hämmerlin, editor, Numerische Integration, volume 45 of In-
ternational Series of Numerical Mathematics / Internationale Schriftenreihe
zur Numerischen Mathematik / Série Internationale D’Analyse Numérique,
pages 231–240. Birkhäuser Basel, 1979. 3

[23] Giovanni Monegato. Stieltjes polynomials and related quadrature rules.
SIAM Review, 24(2):137–158, 1982. 3

[24] Sotorios E. Notaris. Gauss-kronrod quadrature formulae for weight func-
tions of bernstein-szegő type, ii. Journal of Computational and Applied
Mathematics, 29(2):161 – 169, 1990. 10

[25] Erich Novak and Klaus Ritter. Simple cubature formulas with high poly-
nomial exactness. Constructive Approximation, 15(4):499–522, 1999. 2,
20

[26] T. N. L. Patterson. The optimum addition of points to quadrature formulae.
Mathematics of Computation, 22(104):pp. 847–856+s21–s31, 1968. 1

[27] Joan Serra-Sagristà. Enumeration of lattice points in l1 norm. Inf. Process.
Lett., 76(1-2):39–44, November 2000. 21

[28] Gábor Szegő. Über gewisse orthogonale polynome, die zu einer oszillierenden
belegungsfunktion gehören. Mathematische Annalen, 110(1):501–513, 1935.
2, 10

[29] Joris van der Hoeven. Ball arithmetic. Technical report, HAL, 2009.
http://hal.archives-ouvertes.fr/hal-00432152/fr/. 5

[30] Joris van der Hoeven. Ball arithmetic. In Logical approaches to Barriers in
Computing and Complexity, number 6 in Preprint-Reihe Mathematik, pages
179–208, February 2010. 5

[31] Daniel Vladislav. Construction of gauss-kronrod-hermite quadrature and
cubature formulas. 2004. 11

75

http://arxiv.org/abs/1203.1554
http://hal.archives-ouvertes.fr/hal-00432152/fr/

Recent Research Reports

Nr. Authors/Title

2015-01 X. Claeys and R. Hiptmair
Integral Equations for Electromagnetic Scattering at Multi-Screens

2015-02 R. Hiptmair and S. Sargheini
Scatterers on the substrate: Far field formulas

2015-03 P. Chen and A. Quarteroni and G. Rozza
Reduced order methods for uncertainty quantification problems

2015-04 S. Larsson and Ch. Schwab
Compressive Space-Time Galerkin Discretizations of Parabolic Partial

Differential Equations

2015-05 S. May
New spacetime discontinuous Galerkin methods for solving convection-diffusion
systems

2015-06 H. Heumann and R. Hiptmair and C. Pagliantini
Stabilized Galerkin for Transient Advection of Differential Forms

2015-07 J. Dick and F.Y. Kuo and Q.T. Le Gia and Ch. Schwab
Fast QMC matrix-vector multiplication

2015-08 P. Chen and Ch. Schwab
Adaptive Sparse Grid Model Order Reduction for Fast Bayesian Estimation and
Inversion

2015-09 J.-L. Bouchot and B. Bykowski and H. Rauhut and Ch. Schwab
Compressed Sensing Petrov-Galerkin Approximations for Parametric PDEs

	Introduction
	Kronrod-Patterson Extensions
	Mathematical principles
	Algorithmic procedure
	Find extensions
	Rational moments
	Computing nodes
	Computing weights
	Validation of nodes and weights
	Implementation aspects

	Direct Search for single Extensions
	Existence and non-existence results

	Recursive Enumeration of nested Extensions
	Genz-Keister Multidimensional Construction
	The construction
	Combinatorial Algorithms

	Nested Rules for Orthogonal Polynomials
	Legendre Quadrature
	Chebyshev Quadrature of the first kind
	Chebyshev Quadrature of the second kind
	Hermite Quadrature

	Software
	Future work
	Tables of higher order Kronrod extensions K
	Computed Generators

