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Adaptive Sparse Grid Model Order Reduction

for fast Bayesian Estimation and Inversion ∗

Peng Chen and Christoph Schwab

Abstract We present new sparse-grid based algorithms for fast Bayesian estima-

tion and inversion of parametric operator equations. We propose Reduced Basis

(RB) acceleration of numerical integration based on Smolyak sparse grid quadrature.

To tackle the curse-of-dimensionality in high-dimensional Bayesian inversion, we

exploit sparsity of the parametric forward solution map as well as of the Bayesian

posterior density with respect to the random parameters. We employ an dimension

adaptive Sparse Grid method (aSG) for both, offline-training the reduced basis as

well as for deterministic quadrature of the conditional expectations which arise in

Bayesian estimates. For the forward problem with nonaffine dependence on the

random variables, we perform further affine approximation based on the Empirical

Interpolation Method (EIM) proposed in [1]. A combined algorithm to adaptively

refine the sparse grid quadrature, reduced basis approximation and empirical inter-

polation is proposed and its computational efficiency is demonstrated in numerical

experiments for nonaffine-parametric, stationary, elliptic diffusion problems, in two

spacial and in parameter space dimensions up to 1024.

1 Introduction

Bayesian estimation, ie. the “most likely” prediction of responses of ordinary and

partial differential differential equations (ODEs and PDEs, for short), subject to

uncertain input data, given noisy observation data, is a key topic in computational
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Switzerland. e-mail: christoph.schwab@sam.math.ethz.ch

1



2 Peng Chen and Christoph Schwab

statistics and in computational science. We refer to [28, 16] and the references there

for a survey.

As a rule, Monte-Carlo (MC) based sampling methods are used. Then, the methods

are computationally intensive due to the slow convergence of MC methods (implying

a rather large number of samples) and due to the high cost of forward solves per

“sample” (which, in PDE models, amounts to one numerical PDE solve per sample).

Distributed uncertain inputs such as, for example, uncertain diffusion coefficients,

require forward solves of infinite-dimensional, parametrized PDEs.

Recent mathematical results [14, 20, 18, 12, 19, 13] indicate that the parameter-to-

solution maps of these parametric operator equations exhibit sparsity in the sense that

their n-widths are small, independent of the number of parameters which are activated

in the approximation. This has lead to the proposal of sparse, dimension-adaptive

interpolation schemes for the exploitation of this sparsity in the solution map, see, e.g.

[11], and to deterministic sparse, adaptive quadrature methods in Bayesian inversion

[25]. Small n-widths of parametric PDE solution maps can, in principle, be exploited

by greedy approximation strategies, due to recent mathematical results [2, 29]. This

observation was used in recent works by one of the authors [5, 6, 3, 4, 8] to accelerate

forward solves of PDEs. One way to accelerate MCMC methods is via gpc-based

surrogates of the parametric forward maps analyzed in [21].

Other acceleration via model order reduction approaches [23, 17, 15] have also

been investigated. Here, we consider acceleration via reduced basis methods (RB)

relying on adaptive sparse grid (aSG) scheme for both interpolation and integration.

At each sparse grid node generated in the adaptive algorithm, we evaluate the RB

surrogate density of the Bayesian posterior or some other Quantity of Interest (QoI

for short) for inference. If the surrogate is not determined to sufficient accuracy,

as certified by some reliable and efficient goal-oriented error estimator, then a full

forward problem is solved numerically to evaluate the posterior density and the RB

approximation is refined by the full solution at this grid node. The efficient online

evaluation of the RB surrogate and the error estimator introduced in [9] depends on an

affine-parametric structure of the underlying PDEs that enables efficient offline-online

decomposition. For more general nonaffine problems, we propose in the present paper

to compute their affine approximations by empirical interpolation methods [1, 7]

in combination with aSG. To this end, a combined adaptive sparse grid, empirical

interpolation and reduced basis methods (aSG-EIM-RB) are developed to reliably

and efficiently accelerate the Bayesian estimation and inversion. In this paper, we

present the first detailed description of the corresponding algorithm, and the first

numerical experiments performed with the proposed numerical inversion strategy.

Dimension-independent convergence rates are demonstrated with parameter space

dimensions up to 1024.

This paper is organized as follows: the formulation of parametric Bayesian inver-

sion in function space is presented in section 2. The admissible forward maps are

countably-parametric operator equations. Section 3 presents a constructive algorithm

based on adaptive sparse grid interpolation for gpc approximation of the parametric

solution, of the posterior density and of the related QoI. Section 4 is devoted to the

development of reduced basis acceleration for the Bayesian inversion, where a com-
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bined aSG-EIM-RB algorithm is presented. Numerical experiments in demonstrating

the dimension-independent convergence rates and computational efficiency of the

proposed algorithm are provided in section 5, followed by conclusions in section 6.

2 Bayesian Inversion

We review the mathematical setting of Bayesian inversion of partial differential

equations with distributed uncertainty, in the mathematical framework of [16].

By uncertainty parametrization together with a Bayesian prior on the (generally

infinite-dimensional) parameter space, the problem of Bayesian estimation is con-

verted to a problem of quadrature of the parametric, deterministic posterior density.

Sparsity of the parametric forward solution map and of the Bayesian posterior

density as well as its integration with respect to the infinite-dimensional parameter

sequence will be presented. Dimension-independent convergence rates of sparsity-

exploiting Smolyak quadratures are stated and verified in numerical experiments.

2.1 Formulation of Bayesian Inversion

We consider Bayesian inversion problems that consist of: given observation data

subject to additive, centered gaussian observation noise of some system output, and

given a prior distribution of the uncertain, distributed system input, Bayes’ theorem

yields the posterior distribution and an estimate of the “most likely” system response

for some quantity of interest (QoI), that depends on the system state [16]. More

precisely, we consider a system with state variable q belonging to a separable Hilbert

space X (with (anti-)dual X ′), which is determined through the system forward map

G : X → X by an uncertain system input variable u that takes values in a separable

Banach space X . The observation data δ ∈ Y = RK , K ∈ N, is determined by the

system output O(·) = (o1, . . . ,oK) ∈ (X ′)K which is assumed to be corrupted with

additive Gaussian noise η ∼ N (0,Γ ) with symmetric positive definite correlation

matrix Γ ∈ RK×K , i.e.

δ = O(G(u))+η . (1)

We assume that a prior probability distribution π0 : X → R is prescribed for the

uncertain system input u with π0(X) = 1. Under appropriate continuity conditions on

the uncertainty-to-observation map G :=O ◦G(·) : X →Y , Bayes’ rule guarantees the

existence of a posterior distribution πδ that is absolutely continuous with density Θ :

X → R with respect to the prior distribution. Various concrete, sufficient conditions

for absolute posterior continuity are provided in the surveys [28, 16]. We parametrize

the uncertain input u taking values in the separable Banach space X by postulating

a countable basis (φ j) j∈J ∈ X , where J = {1, . . . ,J} with J ∈ N or J = N. We

assume that the uncertain input u can be represented by these bases: there is an
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affine parametrization, i.e. u = u(y) with the parameter (after possible rescaling and

shifting) y = (y j) j∈J ∈ U , being U = [−1,1]J a reference parameter space. Under

appropriate re-scaling of the basis φ j, we may reparametrize the distributed, uncertain

input data u as

u(y) = ū+ ∑
j∈J

y jφ j, y ∈U , (2)

where ū ∈ X is the “nominal” value of the uncertain data u and u− ū entails possible

fluctuations of u through y ∈ U . An example of the expression (2) is Karhunen–

Loève expansion of a random field u with mean field ū and (rescaled) eigenfunctions

(φ j) j∈J. In practice, the parametrization may also be a nonlinear transformation of an

affine input, i.e. the parameters can not be separated from the bases. For instance in

describing a positive permeability field κ , we may assume that κ = eu with u defined

in (2), so that κ is positive at each parameter value y ∈U but nonaffine with respect to

y. An example for a “non-affine” uncertainty parameterization is a Karhunen–Loève

expansion of log(κ), which typically arises in log-gaussian models for u, in which

case the Bayesian prior is a Gaussian measure on X . Under the parametrization, for

prescribing a prior distribution of the uncertain input data u we only need to prescribe

a prior measure for the parameters, i.e.

π0 =
⊗

j∈J

1

2
λ 1 or dπ0(y) =

⊗

j∈J

1

2
dy j , (3)

where λ 1 denotes the Lebesgue measure on [−1,1]. By Bayes’ theorem, there exists

a posterior measure which is absolutely continuous with respect to the prior. For the

corresponding Radon–Nikodym derivative holds

dπδ

dπ0
(y) =

1

Z
Θ(y) , (4)

where the (rescaled) posterior density Θ is given by

Θ(y) = exp

(

−1

2
(δ −O(G(u(y))))⊤Γ −1(δ −O(G(u(y))))

)

, (5)

and the renormalization constant Z is defined as

Z := E
π0 [Θ ] =

∫

U
Θ(y)dπ0(y) . (6)

Under the posterior distribution, we can evaluate some quantity of interest (QoI) Ψ
that depends on the system input u, e.g. the system input itself Ψ(u) = u or the system

response Ψ(u) = G(u), as well as some statistics of the QoI, e.g. the expectation

E
πδ
[Ψ(u)] = E

π0 [Ψ(u)Θ ] =
∫

U
Ψ(u(y))Θ(y)dπ0(y) . (7)
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2.2 Parametric Operator Equations

Under the above parametrization of the system input, we consider a class of para-

metric operator equations for the modelling of the system, which read as: for any

parameter value y ∈U , find the solution q(y) ∈ X such that

A(y)q(y) = f (y) in Y
′ , (8)

where Y is a separable Hilbert space with anti-dual Y ′, A(y) is a parametric op-

erator and f (y) is a parametric right hand side, both depending on the parameter y

through the uncertain system input u(y). In particular, we consider linear systems

modelled by countably-parametric, linear operator families A(y) ∈ L (X ,Y ′). We

associate the parametric operator A(y) and f (y) with sesquilinear and antilinear

forms, respectively, in the Hilbert spaces X and Y over C as

a(y;w,v) =Y 〈v,A(y)w〉Y ′ and f (y;v) :=Y 〈v, f (y)〉Y ′ ∀w ∈ X ,v ∈ Y . (9)

The weak formulation of the parametric operator equation (8) reads: for any parameter

value y ∈U , find the solution q(y) ∈ X such that

a(y;q(y),v) = f (y;v) ∀v ∈ Y . (10)

For the well-posedness of problem (10) and for the approximation of its solution, the

Bayesian posterior density, and some QoI, we make the following assumptions.

Assumption 1 A1 For ε > 0 and 0 < p < 1, there exists a positive sequence

(b j) j∈J ∈ ℓp(J) such that for any sequence ρ := (ρ j) j∈J with ρ j > 1 for all j ∈ J and

∑
j∈J

(ρ j −1)b j ≤ ε, (11)

the parametric maps a and f in (10) admit holomorphic extensions to certain cylin-

drical sets Oρ =⊗ j∈JOρ j
, where Oρ j

⊂ C is an open set containing the Bernstein

ellipse Eρ j
with semi axes of length (ρ j +ρ−1

j )/2 and (ρ j −ρ−1
j )/2 > 1.

A2 There exist constants 0 < β < γ < ∞ and θ > 0 such that these extensions

satisfy for all z ∈ Oρ the uniform continuity conditions

sup
v∈Y

f (z;v)

||v||Y
≤ θ and sup

w∈X

sup
v∈Y

a(z;w,v)

||w||X ||v||Y
≤ γ (12)

and the uniform inf-sup conditions

inf
06=w∈X

sup
0 6=v∈Y

|a(z;w,v)|
||w||X ||v||Y

≥ β and inf
06=v∈Y

sup
0 6=w∈X

|a(z;w,v)|
||w||X ||v||Y

≥ β . (13)

The following results are key to dimension-robust convergence rate of the model

order reduction methods; we refer to [12], [27] and [25] for proofs.
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Theorem 1. Under Assumption 1, there exists a positive constant C < ∞ depending

on θ ,γ,β , p,ε and ρ , such that the operator equation (8) admits a unique uniformly

bounded solution satisfying a generalized polynomial chaos expansion (gPC)

sup
z∈Oρ

||q(z)||X ≤C and q(y) = ∑
ν∈F

qν Pν(y) (14)

where Pν(y) := ∏ j∈J Pν j
(y j), with Pn denoting the univariate Legendre polynomial

of degree n for the interval [−1,1] normalized such that ||Pn||L∞([−1,1]) = 1 and F

denotes the countable set of all finitely supported sequences ν ∈ N
J

0. Moreover, there

exists a downward closed index set ΛM ⊂ F (“dc set”, for short)2 with at most M

indices such that the dimension-independent convergence rate holds

sup
y∈U

‖q(y)− ∑
ν∈ΛM

qν Pν(y)‖X ≤CqM−s, s =
1

p
−1 . (15)

Here the constant Cq neither depends on M nor on the number of active coordinates,

ie. max{#{ j ∈N : ν j 6= 0} : ν ∈ΛM}. The same convergence rate (15) also holds for

the approximation of the posterior density Θ(y) as well as for the QoI Ψ(y).

3 Adaptive Sparse Grid Approximation

Theorem 1 in the last section guarantees the existence of sparse generalized poly-

nomial approximations of the forward solution map and of the posterior density

which approximate these quantities with dimension-independent convergence rate.

We exploit this sparsity in two ways: first, in the choice of sparse parameter samples

during the offline-training phase of model order reductions, and, as already proposed

in [26], for adaptive, Smolyak-based numerical integration for the evaluation of the

Bayesian estimate. Both are based on constructive algorithms for the computation

of such sparse polynomial approximations, To this end, we first introduce adaptive

univariate interpolation and integration, and then present the corresponding adaptive

sparse grid approximation.

3.1 Adaptive Univariate Approximation

In the univariate case U = [−1,1], given a set of interpolation nodes −1 ≤ y1 < · · ·<
ym ≤ 1, we define the interpolation operator I : C(U ;Z )→ Pm−1(U)⊗Z as

I g(y) =
m

∑
k=1

g(yk)ℓk(y), (16)

2 A subset Λ ⊂ F is a dc set if for every ν ∈ ΛM also µ ∈ ΛM for any µ � ν (µ j ≤ ν j for all j ∈ J)
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where the function g ∈C(U ;Z ), representing e.g. the parametric forward solution

map q with Z =X or the posterior density Θ with Z =R; ℓk(y), 1≤ k ≤m, are the

associated Lagrange polynomials in Pm−1(U), the space of polynomials of degree

at most m−1. To define the sparse collocation, as usual the interpolation operator

defined in (16) is recast as telescopic sum, ie.,

ILg(y) =
L

∑
l=1

△lg(y) , (17)

where L represents the level of interpolation grid; △l := Il −Il−1 with I0g ≡ 0.

Let Ξ l denote the set of all interpolation nodes in the grid of level l, such that the grid

is nested, i.e. Ξ l ⊂ Ξ l+1, l = 0, . . . ,L−1, with Ξ 0 = /0 and Ξ L = {y1, . . . ,ym}. As

Il−1g(y) = g(y) for any y ∈ Ξ l−1, we have Il−1 = Il ◦Il−1 and, with the notation

Ξ l
△ = Ξ l \Ξ l−1, the interpolation operator (17) can be written in the form

ILg(y) =
L

∑
l=1

∑
yl

k
∈Ξ l

△

(Il −Il ◦Il−1)g(y) =
L

∑
l=1

∑
yl

k
∈Ξ l

△

(g(yl
k)−Il−1g(yl

k))
︸ ︷︷ ︸

sl
k

ℓl
k(y) ,

(18)

where sl
k represents the interpolation error of Il−lg evaluated at the node yl

k ∈ Ξ l
△,

k = 1, . . . , |Ξ l
△|, so that we can use it as a posteriori error estimator for adaptive

construction of the interpolation (18). More precisely, we start from the root level L =
1 with the root interpolation node y = 0, whenever the interpolation error estimator

Ei := max
yL

k
∈ΞL

△
|sL

k | (19)

is larger than a given tolerance, we refine the interpolation to the next level L+1 by

taking new interpolation node, for instance one Leja node

yL+1
1 = argmax

y∈U

L

∏
l=1

|y− yl | , (20)

or Clenshaw–Curtis nodes

yL+1
k = cos

(
k

2L−1
π

)

, k = 0,1 for L = 1;k = 1,3, . . . ,2L−1 −1 for L ≥ 2 . (21)

Based on the adaptive interpolation, an associated quadrature formula is given by

E[g]≈ E[ILg] =
L

∑
l=1

∑
yl

k
∈Ξ l

△

sl
kwl

k, being wl
k = E[ℓl

k] , (22)

for which the integration error estimator can be taken as
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Ee :=

∣
∣
∣
∣
∣
∣

∑
yL

k
∈ΞL

△

sL
k wL

k

∣
∣
∣
∣
∣
∣

. (23)

3.2 Adaptive Sparse Grid Approximation

In multiple dimensions y ∈U = [−1,1]J , we construct an adaptive sparse grid (aSG)

interpolation by tensorizing the univariate interpolation formula (17)

SΛM
g(y) = ∑

ν∈ΛM

(
△ν1

1 ⊗·· ·⊗△νJ
J

)
g(y) , (24)

where ΛM is a downward closed index set defined in Theorem 1. As Λ1 ⊂ ·· · ⊂ ΛM

and the interpolation nodes are nested, the aSG formula (24) can be rewritten as

SΛM
g(y) =

M

∑
m=1

∑
yνm

k ∈Ξνm

△

(

g(yνm

k )−SΛm−1
g(yνm

k )
)

︸ ︷︷ ︸

sνm

k

ℓνm

k (y) , (25)

where Ξ νm

△ is the set of added nodes corresponding to the index νm = (νm
1 , . . . ,ν

m
J ) =

Λm \Λm−1; ℓνm

k (y) = ℓν1
k1
(y1)⊗·· ·⊗ ℓνJ

kJ
(yJ), is the multidimensional Lagrange poly-

nomial; sνm

k denotes the interpolation error of SΛm−1
g evaluated at yνm

k , which can

be used as an interpolation error estimator for the construction of the aSG.

More explicitly, we start from the initial index ν = 1 = (1, . . . ,1), thus Λ1 = {1},

with root node y = 0 = (0, . . . ,0). We then look for the maximal active index set Λ a
M

such that ΛM ∪{ν} remains downward closed for any ν ∈ Λ a
M , e.g. for ΛM = {1}

when M = 1, we have Λ a
M = {1+e j, j = 1, . . . ,J}, being e j = (0, . . . , j, . . . ,0) whose

j-th entry is one and all other entries are zeros. For each ν ∈ Λ a
M , we evaluate

the errors of the interpolation SΛM
g at the nodes Ξ ν

△, and enrich the index set

ΛM+1 = ΛM ∪{νM+1} with the new index

νM+1 := argmax
ν∈Λ a

M

max
yν

k∈Ξν
△

1

|Ξ ν
△|

|sν
k | , (26)

where the error is balanced by the work measured in the number of new nodes |Ξ ν
△|.

An adaptive sparse grid quadrature can be constructed similar to (24) as

E[g]≈ E[SΛM
g] =

M

∑
m=1

∑
yνm

k ∈Ξνm

△

sνm

k wνm

k , being wνm

k = E[ℓνm

k ] , (27)

for which can enrich the index set with the new index
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νM+1 := argmax
ν∈Λ a

M

1

|Ξ ν
△|

∣
∣
∣
∣
∣
∣

∑
yν

k∈Ξν
△

sν
kwν

k

∣
∣
∣
∣
∣
∣

. (28)

To terminate the aSG algorithm for either interpolation or quadrature, we monitor

the following error estimators compared to some prescribed tolerances, respectively:

Ei := max
ν∈Λ a

M

max
yν

k∈Ξν
△
|sν

k | and Ee :=

∣
∣
∣
∣
∣
∣

∑
ν∈Λ a

M

∑
yν

k∈Ξν
△

sν
kwν

k

∣
∣
∣
∣
∣
∣

. (29)

The following convergence results can be obtained for the aSG interpolation and

integration errors based on that for gPC approximation in Theorem 1, see [12, 25].

Theorem 2. Under Assumption 1, there exists a downward closed set ΛM such that

the interpolation error

sup
y∈U

||q(y)−SΛM
q(y)||X ≤CiM

−s, s =
1

p
−1 , (30)

where Ci is independent of M. Analogously, there exists a dc set ΛM such that the

integration error

||Eπ0 [q]−E
π0 [SΛM

q]||X ≤CeM−s, s =
1

p
−1; , (31)

where Ce is independent of M. The same convergence rate holds also for the aSG

interpolation and integration errors of the posterior density Θ and the QoI Ψ .

4 Model Order Reduction

The evaluation of the posterior density Θ , the renormalization constant Z, the QoI Ψ

as well as its statistics, e.g. Eπδ
[Ψ ], requires the solutions of the forward parametric

equation (10) at many interpolation or integration nodes y ∈U by the aSG algorithms.

This section is devoted to the development of model order reduction techniques to

effectively reduce the computational cost for the forward solutions.

4.1 High-Fidelity Petrov-Galerkin Approximation

For the solution of the forward parametric problem (10) at any given parameter y, we

introduce the finite-dimensional trial space Xh and test space Yh, with dim(Xh) =
dim(Yh) = N , N ∈ N. Here h denotes a discretization parameter, such as the

mesh width of finite element discretization or the reciprocal of polynomial degree
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for spectral discretization. The Petrov–Galerkin (PG), high-fidelity (HiFi for short)

approximation of problem (10) reads: for any y ∈U , find qh(y) ∈ Xh such that

a(y;qh(y),vh) = f (y;vh) ∀vh ∈ Yh (32)

We proceed under the hypothesis that Assumption 1 holds also in the finite-

dimensional spaces Xh and Yh, in particular the inf-sup condition (13) is satisfied

with constant βh > 0 uniformly w.r. to y. The parametric Bayesian posterior density

Θ(y) in (5) can then be approximated by

Θh(y) = exp

(

−1

2
(δ −Oh(qh(y)))

⊤Γ −1(δ −Oh(qh(y)))

)

, (33)

where Oh represents the finite-dimensional approximation of the observation func-

tional O . Similarly, the QoI Ψ can be approximated by the corresponding quantity

Ψh. Under Assumption 1 in Xh and Yh, the well-posedness and gPC as well as the

aSG approximation properties in Theorem 1 and Theorem 2 hold with the same

convergence rates. In order to compute an approximation subject to a prescribed error

tolerances for the quantities q, Θ and Ψ , the dimension N of the finite-dimensional

spaces used in the PG approximation problem (32) is, typically, large. Thus, the nu-

merical solution of the HiFi problem (32) is generally expensive, rendering the aSG

approximation that requires one solution at each of many interpolation/integration

nodes computationally unfeasible in many cases. To reduce it, we propose a model or-

der reduction technique based on reduced basis (RB) approximations constructed by a

greedy algorithm with goal-oriented a-posteriori error estimation and Offline-Online

decomposition [22, 24, 3, 9].

4.2 Reduced Basis Approximation

4.2.1 Reduced Basis Construction

Analogous to the HiFi -PG approximation, we look for a RB trial space XN ⊂ Xh

and a RB test space YN ⊂ Yh with dim(XN) = dim(YN) = N, N ∈ N, N << N .

Then we approximate the forward solution map by solving a PG-RB problem: for

any y ∈U , find qN(y) ∈ XN such that

a(y;qN(y),vN) = f (y;vN) ∀vN ∈ YN . (34)

For accurate and efficient approximation of the solution manifold Mh = {qh(y),y ∈
U}, RB takes the HiFi solutions qh(y) at N carefully chosen parameter values y = yn,

1 ≤ n ≤ N, called snapshots, as the basis functions of the trial space, i.e.

XN = span{qh(y
n),1 ≤ n ≤ N} . (35)
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In order to select “most representative snapshots” for the approximation of the

posterior density Θ (or the QoI Ψ , which can be approximated in the same way),

ΘN(y) = exp

(

−1

2
(δ −Oh(qN(y)))

⊤Γ −1(δ −Oh(qN(y)))

)

, (36)

which is nonlinear with respect to the solution qN , we propose a greedy algorithm

based on a goal-oriented a-posteriori error estimator △Θ
N (y) for the RB approximation

error of the posterior density, |Θh(y)−ΘN(y)| for any y ∈U . We start with the first

parameter value y1, e.g. the center of U or a random sample, and construct the

initial RB trial space as X1 = span{qh(y
1)}. Then, for N = 1,2, . . . , we pick the next

parameter value by

yN+1 := argmax
y∈U

△Θ
N (y) , (37)

and enrich the RB space as XN+1 = XN ⊕ span{qh(y
N+1)}. In practice, instead of

solving a high-dimensional optimization problem (37), we can replace the parameter

domain U by a suitable training set Ξtrain, e.g. the sparse grid nodes. The basis

functions for the test space YN are chosen such that the PG-RB approximation is

stable. In the case that the bilinear form a(y; ·, ·) is coercive in Xh ×Yh for Yh =Xh,

the choice YN = XN satisfies the stability condition for the PG-RB approximation.

For noncoercive problems, we construct the RB test space through the supremizer

operator T y : Xh → Yh defined as

(T ywh,vh)Y = a(y;wh,vh) ∀vh ∈ Yh . (38)

Then T ywh ∈ Yh is the supremizer for the element wh ∈ Xh with respect to the

functional a(y;wh, ·) : Yh → R, i.e.

T ywh = argsup
vh∈Yh

a(y;wh,vh)

||wh||X ||vh||Y
. (39)

For any y ∈U , the y-dependent RB test space Y
y

N is defined as

Y
y

N := span{T yqh(y
n),1 ≤ n ≤ N} . (40)

It can be shown (see [9]) that

βN(y) := inf
06=wN∈XN

sup
vN∈Y

y
N

|a(y;wN ,vN)|
||wN ||X ||vN ||Y

≥ βh > 0 , (41)

ie., the PG-RB approximation problem (34) is uniformly well-posed w.r.to y ∈U .
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4.2.2 A-Posteriori Error Estimator

The goal-oriented a-posteriori error estimator △Θ
N plays a key role in constructing

the RB spaces, which should be reliable and efficient, i.e. there exist two constants

0 < c△ ≤C△ < ∞ such that

c△|Θh(y)−ΘN(y)| ≤ △Θ
N (y)≤C△|Θh(y)−ΘN(y)| . (42)

As we can view the function Θh : U → R as a functional Θh(·) : Xh → R through

Θ(y) =Θh(qh(y)), following the derivation in [9], smooth dependence of the pos-

terior on the parameters in the forward map implies a formal Taylor expansion of

Θh(qh(y)) about qN(y):

Θh(qh(y)) =Θh(qN(y))+
∂Θh

∂qh

∣
∣
∣
qN(y)

(qh(y)−qN(y))+O(||qh(y)−qN(y)||2X ) ,

(43)

where the second term of the right hand side is the Fréchet derivative of Θh at qN(y)
with respect to qh, evaluated at the error eh

N(y) = qh(y)− qN(y). As the first term

Θh(qN(y)) =ΘN(y), as long as the last term is dominated by the second term, we

can define the error estimator for |Θh(y)−ΘN(y)| as the second term in (43),i.e.

△Θ
N,h(y) :=

∂Θh

∂qh

∣
∣
∣
qN(y)

(eh
N(y)) . (44)

In order to evaluate △Θ
N,h(y) more efficiently, we propose a dual HiFi PG approxima-

tion [22, 9]: for any y ∈U , find the dual solution ϕh(y) ∈ Yh such that

a(y;wh,ϕh(y)) =
∂Θh

∂qh

∣
∣
∣
qN(y)

(wh) ∀wh ∈ Xh . (45)

Then, with the definition of the residual for the primal HiFi problem (32) evaluated

at the RB solution of (34), i.e.

r(y;vh): = f (y;vh)−a(y;qN(y),vn) ∀vh ∈ Yh , (46)

we obtain, as the primal HiFi equation (32) holds for ϕh ∈ Yh,

r(y;ϕh(y)) = f (y;ϕh(y))−a(y;qN(y),ϕh(y)) = a(y;eh
N(y),ϕh(y)) , (47)

which, together with definition (44) and (45), imply

△Θ
N,h(y) = r(y;ϕh(y)) . (48)

As it is computationally expensive to obtain the solution ϕh(y), we propose to use RB

approximation for the HiFi -PG approximation of the dual problem (45) following

the same development as for the primal HiFi problem in the last section. With the

dual RB solution ϕN(y) (where number N of degrees of freedom of the dual problem



aSG-EIM-RB for Bayesian Estimation and Inversion 13

could be different from N which was used in the RB-PG approximation of the primal

problem), we define the a-posteriori error estimator for the error |Θh(y)−ΘN(y)| as

△Θ
N (y) = r(y;ϕN(y)) , (49)

whose difference from △Θ
h (y) can be bounded by

|△Θ
h (y)−△Θ

N (y)|= r(y;εh
N(y)) = a(y;eh

N(y),ε
h
N(y))≤ γ||eh

N(y)||X ||εh
N(y)||Y ,

(50)

where εh
N(y) = ϕh(y)−ϕN(y) and γ represents the continuity constant of the bilinear

form a. In general, the primal and dual RB errors eh
N(y) and εh

N(y) tend to zero

so that, asymptotically, (50) and the second order term in (43) are both dominated

by the first order term of (43), we can expect to obtain a reliable and efficient,

computable a-posteriori error estimator △Θ
N (y) for the error |Θh(y)−ΘN(y)|, with

the corresponding constants c△ and C△ in (42) close to one uniformly w.r. to y.

4.2.3 Offline-Online Computation

To this end, we make a crucial assumption that the HiFi PG discretization of the

parametric problem, (32) is affine, i.e. ∀wh ∈ Xh,vh ∈ Yh, the bilinear and linear

forms can be written as

a(y;wh,vh) =
Ma

∑
m=1

λ a
m(y)am(wh,vh) and f (y;vh) =

M f

∑
m=1

λ f
m(y) fm(vh) . (51)

For instance, for a diffusion problem with affine-parametric diffusion coefficient (2),

we have λ a
m(y) = ym and am(wh,vh) = (φm∇wh,∇vh), 1 ≤ m ≤ Ma = J. We defer

the discussion of linearization in parameter space, ie., the approximation of the

non-affine parametric problem by an affine parametric model in (51).

For the sake of algebraic stability of the PG-RB approximation (34), we compute

the orthonormal bases (wn
N)

N
n=1 of XN obtained by Gram–Schmidt orthonormaliza-

tion algorithm for the bases (qh(y
n))N

n=1. Then the RB solution of problem (34) at

any y ∈U can be represented by

qN(y) =
N

∑
n=1

qn
N(y)w

n
N , (52)

where qN(y) = (q1
N(y), . . . ,q

N
N(y))

⊤ ∈ RN , denoting the coefficient of qN(y). In the

coercive case where YN = XN with basis vn
N = wn

N , 1 ≤ n ≤ N, the algebraic system

of the PG-RB problem (34) becomes

(
Ma

∑
m=1

λ a
m(y)Am

)

qN(y) =

M f

∑
m=1

λ f
m(y)fm , (53)
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where the RB matrix Am, 1 ≤ m ≤ Ma, and the RB vector fm, 1 ≤ m ≤ M f , are given

respectively by

(Am)n′,n = am(w
n
N ,v

n′
N ) and (fm)n = fm(v

n
N) n,n′ = 1, . . . ,N , (54)

which do not depend on the parameter y ∈U and can therefore be assembled and

stored once and for all in the Offline stage. Given any y∈U , the algebraic system (53)

can be assembled and solved Online with O(MaN2 +M f N) and O(N3) operations,

respectively, which do not depend on the number N of high-fidelity degrees of

freedom. In the noncoercive case, for any y ∈ U , the test basis vn
N , 1 ≤ n ≤ N, is

given by

vn
N = T ywn

N =
Ma

∑
m=1

λ a
m(y)Tmwn

N , (55)

where Tmwn
N , 1 ≤ m ≤ Ma, 1 ≤ n ≤ N, is the solution of

(Tmwn
N ,vh)Y = am(w

n
N ,vh) ∀vh ∈ Yh , (56)

which does not depend on y ∈U and which can be computed and stored once and

for all during the Offline stage. The corresponding algebraic system of the PG-RB

problem (34) is given by

(
Ma

∑
m

Ma

∑
m′

λ a
m(y)λ

a
m′(y)Am,m′

)

qN(y) =

M f

∑
m=1

λ f
m(y)fm , (57)

where the (densely populated) RB matrix Am,m′ , 1 ≤ m,m′ ≤ Ma, is given by

(Am,m′)n′,n = am(w
n
N ,Tm′wn′

N ) 1 ≤ n,n′ ≤ N . (58)

This matrix does not depend on y and can be computed and stored once and for all

during the Office stage. Given any y ∈U , the algebraic system (57) can be assembled

and solved Online in O(M2
a N2 +M f N) and O(N3) operations.

The dual RB solution ϕN(y) can be computed by the same Offline-Online proce-

dure. The a-posteriori error estimator (49) takes the explicit form

△Θ
N (y) =

M f

∑
m=1

N

∑
n=1

λ f
m(y) fm(v

n,du
N )ϕn

N(y)

−
Ma

∑
m=1

N

∑
n=1

N

∑
n′=1

λ a
m(y)q

n
N(y)am(w

n
N ,v

n,du
N )ϕn′

N (y) ,

(59)

where ϕn′
N (y) is the coefficient of the dual RB solution ϕN(y) on the trial RB basis

v
n′,du
N ∈Y du

N , 1 ≤ n′ ≤ N. As fm(v
n,du
N ), 1 ≤ m ≤ M f and am(w

n
N ,v

n,du
N ), 1 ≤ m ≤ Ma,

1 ≤ n,n′ ≤ N, are independent of y, they can be computed and stored once during
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the Offline stage and the error estimator (59) can be assembled during the Online

stage for any given y ∈U with O(M f N +MaN2) operations.

Finally, the RB posterior density ΘN(y) can be computed by

ΘN(y) = exp

(

−1

2

(
δ −O

N
K qN(y)

)⊤
Γ −1

(
δ −O

N
K qN(y)

)
)

, (60)

where the observation matrix ON
K ∈RK×N with elements (ON

K )k,n = ok(w
n
N), 1 ≤ k ≤

K, 1 ≤ n ≤ N, is computed and stored for once during Offline stage and ΘN(y) is

assembled for any y ∈U during the Online stage in O(NK2) operations.

As the error estimator △Θ
N (y) is an approximation of the second term in the Taylor

expansion (43) for Θh(y), we correct the RB approximation ΘN(y) by

Θ
△
N (y) =ΘN(y)+△Θ

N (y) , (61)

which is generally more accurate than ΘN(y).

Theorem 3. ([9]) Under Assumption 1, the RB error for the posterior density satisfies

sup
y∈U

|Θh(y)−Θ
△
N (y)| ≤C

△
Θ N−2s, s =

1

p
−1, (62)

where the constant C
△
Θ is independent of the number of RB bases N and the active

dimension J. The same convergence rate holds for RB approximation of the QoI Ψ .

4.3 Empirical Interpolation Method (EIM)

As the computational reduction due to the N -independent Online RB evaluation

crucially depends on the assumption (51), which is however not necessarily valid in

practice: we mention only diffusion problems with lognormal diffusion coefficient

given by κ = eu. We outline the Empirical Interpolation Method (EIM) for affine-

parametric approximation of problems with nonaffine parameter dependence. More

precisely, suppose Xh is defined in the domain D ⊂ Rd , d ∈ N, with the finite set of

discretization nodes Dh ∈ D, we seek to approximate an arbitrary, non-affine function

g : Dh ×U → R in the bilinear and linear forms by

g(x,y)≈ IM[g](x,y) =
M

∑
m

λm(y)gm(x) , (63)

which results in an approximation of the problem (32) with affine representation (51).

For instance, when g is the diffusion coefficient of a diffusion problem, we obtain

(51) with λ a
m(y) = λm(y) and am(wh,vh) = (gm∇wh,∇vh), 1 ≤ m ≤ Ma = M.

One choice for the approximation (63) is by the aSG interpolation based on some

structured interpolation nodes, e.g. Leja nodes or Clenshaw-Curtis nodes, presented
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in Section 3. As the work for each Online RB evaluation is proportional to the number

M of affine terms, it is important to keep M as small as possible. To this end, we

propose an adaptive construction of a sparse interpolation set by the following greedy

algorithm. We start by searching for the first parameter value y1 ∈U and the first

discretization node x1 ∈ Dh such that

y1 = argsup
y∈U

max
x∈Dh

|g(x,y)| and x1 = argmax
x∈Dh

|g(x,y1)| . (64)

The first basis g1 is taken as g1(x) = g(x,y1)/g(x1,y1), x ∈ Dh. We define the EIM

node set S1 = {x1}. For M = 1,2, . . . , for any y ∈U , the coefficient λm(y), 1 ≤ m ≤
M, of the interpolation (63) is obtained by Lagrange interpolation at the selected

discretization nodes, ie.

M

∑
m=1

λm(y)gm(x) = g(x,y) ∀x ∈ SM . (65)

Then we define the empirical interpolation residual as

rM+1(x,y) = g(x,y)−
M

∑
m=1

λm(y)gm(x) . (66)

The next parameter sample yM+1 and discretization node xM+1 are chosen as

yM+1 = argsup
y∈U

max
x∈Dh

|rM+1(y)| and xM+1 = argmax
x∈Dh

|rM+1(x,y
M+1)| . (67)

We define SM+1 = SM ∪{xM+1} and take the next basis function gM+1 as

gM+1(x) =
rM+1(x,y

M+1)

rM+1(xM+1,yM+1)
x ∈ Dh . (68)

We remark that in practice the parameter domain U is replaced with a finite training

set Ξtrain to avoid directly solving a maximization problem (67), which is very

expensive in a high-dimensional parameter domain. Details and error bounds will be

available in [10].

4.4 Adaptive aSG-EIM-RB Algorithm

In this section, we propose an adaptive algorithm for the evaluations of the posterior

density Θ as well as its expectation Z for Bayesian inversion with nonaffine forward

map by incorporation of approximations of aSG, EIM and RB in order to reduce

the total computational cost. The same algorithm applies for the evaluation of the

QoI Ψ and its statistical moments as well. The basic idea is that at each step of the

construction of aSG with new interpolation or integration nodes, we refine the EIM
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approximation of the nonaffine parametric function and refine the RB approximation

of Θ when their approximation errors are larger than prescribed tolerances at the

new nodes. In the end, instead of solving a large number of HiFi problems for the

evaluation of Θh(y) at all aSG nodes, we approximate Θh(y) by the ΘN(y) resp.

by Θ
△
N (y), which only requires inexpensive RB solutions. The main procedure of

simultaneous aSG-EIM-RB construction and evaluation is provided in Algorithm 1.

Algorithm 1: Adaptive aSG-EIM-RB Algorithm

1. Specify the tolerances εaSG, εEIM and εRB and the maximum numbers of nodes Mmax
aSG , Mmax

EIM

for aSG, EIM and bases Nmax for RB approximations, respectively, set EaSG = 2εaSG;

2. Initialize the aSG, EIM and RB approximation with MaSG = MEIM = N = 1:

a. solve the primal and dual HiFi problems (32) and (45) at the root node y1 = 0 ∈U ;

b. initialize the index set Λ1 = {1}, and construct the aSG approximation, either the

interpolation as SΛ1
Θh(y) =Θh(y

1) or the integration as E[SΛ1
Θh] =Θh(y

1);
c. set the first EIM basis as I1[g](y) = g(y1), set x1 ∈ argmaxx∈Dh

|g(x,y1)|;
d. construct the first RB primal trial space X1 = span{qh(y

1)} and dual trial space

Y du
1 = span{ϕh(y

1)}, compute and store all quantities in Offline stage.

3. While MaSG < Mmax
aSG and EaSG > εaSG

a. compute the active index set Λ a
MaSG

for the aSG approximation;

b. For each ν ∈ Λ a
MaSG

i. compute the set of added nodes Ξ ν
△ associated to ν ;

ii. For each y ∈ Ξ ν
△

A. compute EIM interpolation of g at y and the interpolation error EEIM(y);
B. If MEIM < Mmax

EIM and EEIM(y)> εEIM

• refine the EIM interpolation with the new basis g(y), select xMEIM+1;

• set MEIM = MEIM +1;

EndIf

C. compute the RB solution and Θ△
N (y) and the error estimator ERB(y) =△Θ

N (y);
D. If N < Nmax and ERB(y)> εRB

• enrich the RB trial spaces XN with qh(y) and Y du
N with ϕh(y);

• compute and save the all Offline quantities;

• set N = N +1;

EndIf

EndFor

EndFor

c. compute the aSG error estimator EaSG as one of (29) with the RB approximation Θ
△
N ;

d. enrich ΛMaSG
by νMaSG+1 according to (26) for interpolation or (28) for integration;

e. set MaSG = MaSG +1;

EndWhile

In the adaptive refinement of EIM interpolation, we may replace the set of dis-

cretization nodes Dh in (67), which depends on the HiFi degree of freedom N , by

(i) a smaller number of randomly selected discretization nodes in Dh \SM; or (ii) the

last s (e.g. s = 1,2, . . . ) selected nodes {xM,xM−1,xM−s+1} and use the first M − s

EIM bases to evaluate the error estimator EEIM(y).
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5 Numerical Experiments

We consider a diffusion problem in the physical domain D = (0,1)2: for y ∈U , find

the solution q(y) ∈ H1
0 (D) such that

−div(κ(y)∇q(y)) = f , (69)

where we set f = 1 and prescribe homogeneous Dirichlet boundary condition q(y) =
0 on ∂D; the diffusion coefficient is given by

κ(y) = eu(y) with u(y) = 1+
J

∑
j=1

y j

1

j3
sin(( j1 +1)πx1)sin(( j2 +1)πx2) , (70)

where j1, j2 = 1, . . . ,
√

J such that j = j1 + j2
√

J for a square J; x = (x1,x2) ∈ D.

Note that u(y) is nonaffine with respect to y. We perform interpolation for an affine

decomposition of κ(y) by applying both aSG and EIM. We first investigate the

convergence of the aSG interpolation error with respect to the number of dimensions

J. For simplicity, we only consider the interpolation for the function κ(y) at a sample

node x = (0.3,0.6) (interpolation at any other node (or set of nodes) or the worst case

scenario measured in L∞(D)-norm can be performed in the same way, but with much

more computational cost for the latter case). We test the cases of J = 16,64,256, and

1024, and construct the aSG using Clenshaw–Curtis nodes defined in (21) with the

maximum number of interpolation nodes set to 105. Fig. 1 displays the convergence

of the interpolation error estimator defined in (29) with respect to the number of

interpolation nodes. We can see that the convergence rate converges to the one

close to M−2 when the number of dimensions increases from 16 to 1024, which

demonstrates the theoretical prediction of the error convergence rate in Theorem 2

for high-(infinite-)dimensional sparse interpolation.

In the numerical convergence study of the empirical interpolation error, we con-

sider the J = 64 dimensional case for uniform, triangular meshes with mesh widths

h= 1/16,1/32,1/64, and 1/128. The tolerance is chosen as 10−8 and the same 1000

random samples as the training samples for the construction of EIM are selected.

M = 161,179,179, and 179 EIM bases are constructed for h = 1/16,1/32,1/64 and

1/128, respectively. This shows that at a given level of accuracy, the number of EIM

bases is independent of HiFi mesh width, provided it is sufficiently fine. We use

h = 1/32, i.e. with Finite Element nodes x = (i1/32, i2/32), i1, i2 = 0, . . . ,32, and

1000 random training samples to evaluate the convergence of EIM error with respect

to the number of dimensions J = 16,64,256, and 1024, which is shown in Fig. 2. We

observe that as J increases, the convergence rate tends to M−2, as could be expected

from the results in the affine-parametric setting in [9]. However, as the number of

EIM bases increases beyond the dimension J of the set of active parameters, the

convergence for EIM error exceeds the rate M−2 and becomes much faster (in fact,

exponential) than the aSG error that still converges with a rate close to M−2. This is

further demonstrated in the case J = 64 in Fig. 3, where the aSG is constructed for

interpolation only at the sample node x = (0.3,0.6) and at the Finite Element nodes
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Fig. 1 Decay of the aSG interpolation error with respect to the number of interpolation nodes M for

κ(y) in J = 16,64,256 and 1024 dimensions at a sample node x = (0.3,0.6).
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Fig. 2 Decay of the EIM interpolation error with respect to the number of interpolation nodes M

for κ(y) in J = 16,64,256 and 1024 dimensions uniformly at all Finite Elment nodes.

x = (i1/32, i2/32), i1, i2 = 0, . . . ,32, respectively. The EIM bases are constructed

with all previously computed aSG nodes (5×104) as training samples.
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Fig. 3 Decay of interpolation error with respect to the number of interpolation nodes M for κ(y) in

J = 64 dimensions by aSG at the sample node x = (0.3,0.6) (aSG at x=(0.3,0.6)) and at the Finite

Element nodes (aSG worst error), and by EIM at the Finite Element nodes.

From Fig. 3 we see that the worst aSG interpolation error over all mesh nodes

decays at a lower rate (with rate about M−1.2) than the theoretical prediction M−2

in Theorem 2 and that of aSG at only one sample node. This indicates that the

aSG constructed to minimize the maximal interpolation error over all mesh nodes

can produce approximations which do not converge at the rate afforded by the

N-approximation results.

We also see that, in order to achieve the same interpolation accuracy, a much

smaller number of EIM bases is needed compared to that of aSG nodes. For example,

only 50 EIM bases are needed in order to achieve the same accuracy 3.7×10−4 as for

the worst case scenario aSG that requires 1248 interpolation nodes, while 289 EIM

bases are needed to attain the interpolation accuracy 4.5× 10−9, for which about

1.3×107 interpolation nodes are expected (according to the estimated convergence

rate M−1.2) for the worst case scenario aSG, even only 15748 nodes are needed for

aSG interpolation at a single mesh sample point x = (0.3,0.6). Therefore, in the

affine approximation of the nonaffine function κ(y) for this example with J = 64

parameters, EIM is much more efficient than aSG. For the higher dimensional case,

e.g. for J = 1024, the same conclusion can be drawn as the worst aSG interpolation

error converges at a lower rate (about M−1.2) than EIM, which converges at a rate of

about M−2 when the number of EIM bases is smaller than J and much faster than

M−2 when the number of EIM bases becomes larger than J.

To study the convergence of the RB errors and the error estimator as well as its

effectivity for the approximation of the posterior density Θ in different dimensions,
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Fig. 4 Decay of the RB approximation errors eN(ymax), e∆
N(ymax), and the RB error estimator

△Θ
N (ymax) with respect to the number of RB bases N in J = 16,64,256 and 1024 dimensions. The

training set consists of 1000 random samples for the construction of RB approximation with EIM

and RB tolerances set as 10−8. The test set Ξtest consists of another 100 random samples.

here in particular J = 16,64,256 and 1024, we first construct the EIM approximation

of the nonaffine random field using 1000 random samples with tolerance 10−8

(selected so small that EIM interpolation error is dominated by the RB error). We next

construct the RB approximation for the posterior density using the same 1000 samples

with tolerance 10−8. Then, the RB approximation errors of the posterior density,

defined as eN = |Θh(ymax)−ΘN(ymax)|, where ymax = argmaxy∈Ξtest
|Θh(y)−ΘN(y)|,

e∆
N = |Θh(ymax)−Θ

△
N (ymax)|, and the RB error estimator △Θ

N (ymax) defined in (49),

are computed in a test set Ξtest with 100 random samples that are independent of

the 1000 training samples. Fig. 4 displays the convergence of the RB errors and the

error estimator with respect to the number of RB bases in different dimensions. We

can see that the RB error eN can hardly be distinguished from the error estimator

△Θ
N , which implies that the error estimator is very effective. As parameter space

dimension J increases, the approximation error becomes larger. The corrected density

Θ
△
N is more accurate than ΘN in all cases, especially when N is relatively small. In

fact, a convergence rate N−2 can be observed for eN compared to N−4 for e∆
N when

N is small. When N and J become larger, both errors converge with a dimension-

independent, asymptotic convergence rate N−4, which is in complete agreement with

Theorem 3.

In the last experiment, we consider the influence of the tolerance for RB training

to the accuracy of the RB approximation of the posterior density Θ and its integration

Z using the aSG-EIM-RB Algorithm 1, where we set the maximum number of the
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Fig. 5 Decay of aSG interpolation and integration errors with respect to the number of aSG nodes

in J = 64 dimensions; RB is trained adaptively at the aSG nodes with different tolerances.

sparse grid nodes as 104 and 2×103 for the interpolation of Θ and the integration

of Z, respectively, and set the tolerance for RB training as 10−4, 10−6 and 10−8 for

the construction of aSG interpolation, and 10−5, 10−7 and 10−9 for the construction

of aSG integration. Fig. 5 shows the convergence rates of the aSG interpolation and

integration error estimators defined in (29), which are close to M−2 (the same as

theoretical prediction in Theorem 2) and M−3 (faster than the theoretical prediction

M−2). Fig. 5 also displays the number of RB and its approximation accuracy with

different tolerances. We see that in order to achieve the same approximation accuracy

for Θ , the number of RB required is considerably smaller than the number of aSG

nodes, e.g. 74 RB bases compared to 3476 aSG nodes. This entails the need to solve

a smaller number of high-fidelity problems by RB. The same observation holds for

the approximation of Z, where 96 RB bases are constructed out of 2× 103 aSG

nodes, which preserves the same integration accuracy as aSG with 584 nodes. Note

that in this test, we set the tolerance of EIM as 10−9 for the interpolation of Θ
and as 10−10 for the integration of Z, both of which are negligible compared to the

accuracy/tolerance of RB and aSG. When the tolerances for the EIM were selected

smaller, the number of EIM bases, whose cost of construction depends linearly on

N , are relatively large. In order to balance the errors from aSG, EIM and RB to

reach a prescribed numerical accuracy at minimum computational cost, an algorithm

will be presented in [10].
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6 Conclusion

We investigated acceleration of computational Bayesian inversion for PDEs with dis-

tributed parameter uncertainty. Upon reformulation, forward models which are given

in terms of PDEs with random input data take the form of countably-parametric, deter-

ministic operator equations. Sparsity of the parameter-to-solution maps is exploited

computationally by the reduced basis approach. Sparse grids enter the proposed

numerical methods in several ways: first, sparse dimension-adaptive quadratures are

used to evaluate conditional expectations in Bayesian estimates and second, sparse

grids are used in the offline stage of the reduced basis algorithms (in particular, the

empirical interpolation method) to “train” the greedy algorithms and to facilitate the

greedy searches over the high-dimensional parameter spaces. For a model diffusion

problem, we present detailed numerical experiments of the proposed algorithms,

indicating their essentially dimension-independent performance and convergence

rates which are only limited by the sparsity in the data-to-solution map.

In the present paper, we considered only a model problem with uniform Bayesian

prior on the parameter space U . The proposed approach is, however, also applicable

directly to priors with separable densities w.r. to uniform priors. Generalizations to

nonseparable prior densities will be provided in the forthcoming work [10], where

nonlinear parametric problems will also be addressed.
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