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New spacetime discontinuous Galerkin

methods for solving convection-diffusion

systems∗

Sandra May†

In this paper, we present two new methods for solving systems of hyperbolic
conservation laws with correct physical viscosity and heat conduction terms. In
particular we are interested in solving the compressible Navier-Stokes equations.
Both methods are extensions of the spacetime discontinuous Galerkin method for
hyperbolic conservation laws developed by Hiltebrand and Mishra [17]. Following
this work, we use entropy variables as degrees of freedom and entropy stable finite
volume fluxes. For the discretization of the diffusion term, we consider two different
approaches: the interior penalty approach and a variant of the local discontinuous
Galerkin method. For both approaches we show an entropy stability estimate. We
also present numerical results in one dimension comparing both methods.

1. Introduction

Over the past decade, discontinuous Galerkin (DG) methods have become increasingly popular
for solving nonlinear partial differential equations (PDEs) such as systems of conservation laws.
One reason for this development is the fact that DG methods, as compared to finite volume
methods, are more suitable for deducing theoretical stability or convergence results. Another
reason is that DG methods operate very locally, even for high-order methods. This makes
them a good fit for modern supercomputers. However, many theoretical stability results for
DG methods only exist for the case of scalar equations. For systems of conservation laws, like
the compressible Euler equations, there are significantly fewer results available, especially for
the case of a fully discrete method.

In [17], Hiltebrand and Mishra developed a spacetime DG method for solving systems of
conservation laws based on using entropy variables instead of the standard conservative vari-
ables. The scheme uses entropy stable fluxes and features a streamline diffusion and a shock
capturing term to handle the shocks and discontinuities occurring in the solution of the system.
The scheme has several desirable features: it is (arbitrarily) high order, unconditionally stable,
it works in multiple dimensions on unstructured grids, it is fully discrete, and one can show a
priori entropy stability estimates for the fully discrete scheme for systems of conservation laws.

∗This work was supported by ERC STG. N 306279, SPARCCLE
†Seminar for Applied Mathematics, ETH Zurich, Rämistrasse 101, 8092 Zurich, Switzerland
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Therefore, the scheme combines theoretical stability properties for systems of conservation laws
with good performance properties in the actual computation of the numerical solutions.

The goal of this work is to extend the scheme developed in [17] from systems of conservation
laws to convection-diffusion systems while preserving these desirable properties. In particular,
we are interested in solving the compressible Navier-Stokes equations where physical viscosity
and heat conduction are added to the compressible Euler equations.

In our extension of the original scheme, we consider two approaches for incorporating the
viscous terms:

1. an approach based on the interior penalty (IP) method introduced by Arnold [1] resulting
in the ST-IP-DG method;

2. an approach in the spirit of the local discontinuous Galerkin (LDG) method introduced
by Cockburn and Shu [7] resulting in the ST-LDG method.

For both methods, we will deduce an entropy stability estimate for convection-diffusion systems
under suitable assumptions.

In the literature, there are various DG methods for solving the compressible Navier-Stokes
equations, all of them based on discretizing the conserved variables of the system. One of the
first successful attempts was made by Bassi and Rebay [4, 5]. The authors solved the equations
numerically but do not provide any theoretical considerations for their scheme. In [7], Cockburn
and Shu developed the LDG method for convection-diffusion systems. The authors extended
Bassis and Rebay’s approach of writing the equations as a first-order system to general systems
of convection-diffusion equations and provide stability estimates for the case of the diffusion
term being elliptic. However, only numerical results for the linear advection-diffusion equation
are contained in this work.

In the following, several authors have developed versions of the LDG method that are more
compact in multiple space dimensions [22, 6] and have applied these versions successfully to
solve the compressible Navier-Stokes equations [23, 6]. However, to the best of our knowledge,
there are no stability results for a fully discrete method for approximating the Navier-Stokes
equations. Existing stability results are typically limited to the case of an elliptic diffusion
operator.

Another approach for solving the compressible Navier-Stokes equations is based on the IP
method. Recent work includes the work by Hartmann and Houston [14, 15]. However, like
for the LDG approaches, stability results are only available for the case of elliptic diffusion
operators. A unified comparison of the various methods mentioned above for the case of
elliptic operators can be found in [2].

Though significantly less extensive, there is also some literature for solving the compressible
Navier-Stokes equations using entropy variables as degrees of freedom. Early work has been
done by Shakib et al. [25]. The authors use a finite element formulation and show theoretical
stability estimates as well as numerical results. Different to our method, the authors use
continuous elements in space and a discontinuous approach in time. Tadmor and Zhong [27]
have developed a difference scheme based on entropy variables. The scheme uses entropy
conservative fluxes for the non-linear term and centered differences for the discretization of
the dissipation term. The authors show entropy stability for the semi-discrete form as well as
numerical results. Even though both works have some features in common with the methods
presented here, there are also significant differences.
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This paper is structured as follows: we start with a review of the original method for
conservation laws [17] in Section 2. Then, in Section 3, we discuss the effect of switching to
entropy variables on the diffusion matrix. In Sections 4 and 5, we present our two different
extensions, the ST-IP-DG and the ST-LDG method, and prove an entropy stability estimate
for both methods under suitable assumptions. In Section 6, we show numerical results in one
space dimension for both methods. In particular, we solve the compressible Navier-Stokes
equations. We conclude this work with a comparison of both methods in Section 7.

2. Review of the spacetime DG method for hyperbolic systems

In this section, we review the spacetime DG method developed for hyperbolic conservation laws
[17] that our method is based on. We focus on systems of conservation laws in one dimension
given by

Ut + F(U)x = 0. (1)

Here, U : Ω ⊂ R → R
m,m ∈ N, is the vector of conserved variables and F is the flux

vector. Assuming a strictly convex entropy function S, the map U → V is one-to-one, where
V = SU(U) denotes the entropy variables. Therefore, we can equivalently write the system as

U(V)t + F(V)x = 0 (2)

with F(V) = F(U(V)) for simplicity. To discretize, we consider a spacetime grid with each
spacetime element being a tensor-product of a spatial grid cell Ki = [xi−1/2, xi+1/2] ⊂ Ω and

a time segment In = [tn, tn+1] ⊂ [0, T ]. Then, approximations V∆x = (v∆x
1 , . . . , v∆x

m )T to the
solution V are sought in the space

V∆x ∈ Vk =

{
Φ∆x ∈ (L1(Ω× [0, T ]))m :

Φ∆x
∣∣
Ki×In

is a polynomial

of degree k in each component

}
.

Multiplying (2) with test functionsΦ∆x, integrating in space and time, and doing integration
by parts with using numerical fluxes where appropriate results in

BDG(V
∆x,Φ∆x) =

−
∑

n,i

∫

In

∫

Ki

(
〈U(V∆x),Φ∆x

t 〉+ 〈F(V∆x),Φ∆x
x 〉
)
dx dt

+
∑

n,i

∫

Ki

(
〈U(V∆x

n+1,−,V
∆x
n+1,+),Φ

∆x
n+1,−〉 − 〈U(V∆x

n,−,V
∆x
n,+),Φ

∆x
n,+〉

)
dx

+
∑

n,i

∫

In

(
〈F(V∆x

i+1/2,L,V
∆x
i+1/2,R),Φ

∆x
i+1/2,L〉 − 〈F(V∆x

i−1/2,L,V
∆x
i−1/2,R),Φ

∆x
i−1/2,R〉

)
dt.

(3)

Here, 〈·, ·〉 denotes the standard scalar product 〈V∆x,Φ∆x〉 = ∑m
j=1 v

∆x
j Φ∆x

j and the indices
+/− and L/R denote the following limits

v∆x
n+1,±(x) = lim

h→0
v∆x(x, tn+1 ± h), v∆x

i+1/2,R/L(t) = lim
h→0

v∆x(xi+1/2 ± h, t).

Furthermore, U and F denote the fluxes in time and space. In order to enable proper time
marching, the upwind flux is chosen in time, i.e.,

U(V∆x
n+1,−,V

∆x
n+1,+) = U(V∆x

n+1,−).
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For the numerical flux in space either an entropy conservative flux or an entropy stable flux is
used. Entropy conservative fluxes F∗ have been examined in [26] and satisfy

〈b− a,F∗(a, b)〉 = ψ(b)− ψ(a) (4)

with ψ = 〈V,F〉 − Q being the entropy potential and Q being the entropy flux function
corresponding to S. (We will specify the entropy conservative fluxes that we use for numerical
tests in the corresponding parts of Section 6.)

Entropy stable fluxes are created out of entropy conservative fluxes by adding a diffusion
term

F(V∆x
a ,V∆x

b ) = F
∗(V∆x

a ,V∆x
b )− 1

2
D(V∆x

a ,V∆x
b )(V∆x

b −V∆x
a ) (5)

with
D(a,b) = RP(Λ;a,b)RT .

Here Λ, R are the (real) eigenvalue and eigenvector matrices of the Jacobian ∂UF. In this
work, we use the Rusanov diffusion operator given by

P(Λ;a,b) = max {λmax(a), λmax(b)} Im

with λmax(U) denoting the maximum wave speed. Several other choices are possible, see
[26, 8, 9, 17]. In the following we will refer by F both to entropy stable and entropy conservative
fluxes.

In the simplest form of the scheme, the discrete numerical solution V∆x ∈ Vk to (2) is then
found as the solution of the system

BDG(V
∆x,Φ∆x) = 0 ∀Φ∆x ∈ Vk. (6)

For problems involving shocks or discontinuities, however, this scheme exhibits oscillations and
overshoot. Therefore, in the scheme developed in [17], streamline diffusion and shock capturing
operators in the form of quasilinear forms BSD and BSC are added. We refer to the original
method for details concerning these operators. Then, the discrete solution V∆x ∈ Vk is found
as the solution to the system

B(V∆x,Φ∆x) = BDG(V
∆x,Φ∆x) + BSD(V

∆x,Φ∆x) + BSC(V
∆x,Φ∆x) = 0 (7)

for all Φ∆x ∈ Vk.

Remark 2.1. In our extension of the original scheme from conservation laws to convection-
diffusion systems, we do not use the streamline diffusion and shock capturing operators BSD

and BSC. Instead we base our extension on the system (6). We expect the natural viscosity
introduced by the additional diffusion term to take over the role of the streamline diffusion and
shock capturing operators in terms of avoiding overshoot. Numerical tests show that this is the
case if the grid size is chosen fine enough to resolve the additional viscosity in the system.

Among other properties, one can show that the method described in (7) (as well as the
method in (6)) results in entropy stable discrete solutions.

Theorem 2.1 (Part of Theorem 3.1. in [17]). Consider the system of conservation laws (1)
with strictly convex entropy function S and entropy flux function Q. For simplicity, assume
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that the exact and approximate solutions have compact support inside the spatial domain Ω.
Let the final time be denoted by tN− . Then the approximate solutions produced by (7) satisfy

∫

Ω

S(U(V∆x(x, tN− ))) dx ≤
∫

Ω

S(U(V∆x(x, t0−))) dx.

This concludes our summary of the method for hyperbolic conservation laws and of the
features that are relevant for our new methods. We will present the details of our extensions
ST-IP-DG and ST-LDG in Sections 4 and 5. First, however, we will examine the effect of
switching to entropy variables on the convection-diffusion systems that we consider.

3. Convection-diffusion systems written in entropy variables

We consider a system of conservation laws

Ut + F(U)x = 0

and add a diffusion matrix D : Rm → R
m, to be thought of as, e.g., physical viscosity and heat

conduction terms resulting in

Ut + F(U)x = (D(U)Ux)x.

We assume that we are given a strictly convex entropy function S with corresponding entropy
flux Q. Using entropy variables V = SU(U) as degrees of freedom results in

U(V)t + F(V)x = (A(V)Vx)x (8)

with A(V) = D(U(V))UV(V). It is well-known that such a change to entropy variables
symmetrizes a hyperbolic system of conservation laws [11, 10, 20, 13]. Additionally, this change
of variable can have a positive effect on the properties of the matrix A.

3.1. The compressible Navier-Stokes equations

In this section we shortly describe the situation for the compressible Navier-Stokes equations,
our main application. We focus on introducing the entropy S that we use and on discussing
the properties of A. Further information for using compressible Navier-Stokes equations with
entropy variables can be found in the literature [12, 18, 25, 27].

The compressible Navier-Stokes equations in one space dimension are given by

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p)x = νuxx,

Et + ((E + p)u)x = ν

(
u2

2

)

xx

+ κθxx,

(9)

with ρ = ρ(x, t) denoting the density, u = u(x, t) the velocity, p = p(x, t) the pressure, and
E = p

γ−1
+ 1

2
ρu2 being the total energy. We will also use m = m(x, t) = ρ(x, t)u(x, t) for the

momentum. Additionally, θ = p
Rρ refers to the temperature. We assume the viscosity ν and
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the conductivity κ to be constant. We further assume the relation between ν and κ/R to be
given by the Prandtl number Pr = 4γ/(9γ − 5) via

κ

R
=
γCv

RPr
ν =

9γ − 5

4(γ − 1)
ν.

Writing the right hand side of (9) in the form (D(U)Ux)x with U = (ρ,m,E)T results in

D(U) =




0 0 0
−ν m

ρ2
ν
ρ 0

−νm2

ρ3
+ κ

R (γ − 1)
(
m2

ρ3
− E

ρ2

)
ν m
ρ2

− κ
R (γ − 1)m

ρ2
κ
R

γ−1

ρ


 .

We note that the matrix D(U) is not symmetric.
For the transformation to entropy variables, we use the physical entropy and the correspond-

ing entropy flux given by

S =
−ρs
γ − 1

, Q =
−ρus
γ − 1

, s = log(p)− γ log(ρ).

This results in the entropy variables (written in terms of primitive variables and s for simplicity)

V =

(
γ − s

γ − 1
− ρu2

2p
,

ρu

p
, −ρ

p

)T

.

The matrix A(V) is then given by

A(V) =



0 0 0
0 −ν 1

v3
ν v2
v2
3

0 ν v2
v2
3

−ν v2
2

v3
3

+ κ
R

1

v2
3


 . (10)

For ρ, p > 0, this matrix is symmetric positive semi-definite. Furthermore, the reduced matrix

Ã(V) =

(−ν 1
v3

ν v2
v2
3

ν v2
v2
3

−ν v2
2

v3
3

+ κ
R

1

v2
3

)
(11)

is symmetric positive definite with eigenvalues

λ1,2 =
1

2

(
−b∓

√
b2 + 4ν

κ

R

1

v33

)
> 0, b = ν

v22
v33

− κ

R

1

v23
+
ν

v3
, (12)

if ν, κ > 0 and ρ, p > 0.

4. The ST-IP-DG method

In this section, we present our extension that is based on the IP approach by Arnold [1] as well
as on earlier work by Nitsche [21]. For simplicity, we focus on the description of the scheme
in the interior of the domain. Necessary modifications for boundary edges will be discussed in
Appendix A.
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In the ST-IP-DG method, in order to numerically solve the system (8) with homogeneous
Dirichlet boundary conditions, we solve the quasilinear form

BDG(V
∆x,Φ∆x) + BIP(V

∆x,Φ∆x) = 0 ∀Φ∆x ∈ Vk. (13)

Here, BIP(V
∆x,Φ∆x) represents the IP-discretization of the diffusion term (A(V)Vx)x and is

given by

BIP(V
∆x,Φ∆x) =

∑

n,i

∫

In

∫

Ki

〈A(V∆x)V∆x
x ,Φ∆x

x 〉 dx dt

+
∑

n,i

∫

In

〈A({V∆x})
{
V∆x

x

}
i+1/2

, [Φ∆x]i+1/2〉 dt

+
∑

n,i

∫

In

〈A({V∆x})[V∆x]i+1/2,
{
Φ∆x

x

}
i+1/2

〉 dt

+
∑

n,i

∫

In

γ

∆x
〈A({V∆x})[V∆x]i+1/2, [Φ

∆x]i+1/2〉dt

(14)

for interior edges i± 1/2. We use the standard notation for average and jump given by

{
v∆x

}
i+1/2

=
1

2

(
v∆x
i+1/2,R + v∆x

i+1/2,L

)
, [v∆x]i+1/2 = v∆x

i+1/2,R − v∆x
i+1/2,L.

We note that the edge terms in the second line result from integration by parts using central
fluxes. The edge terms in the third line are added to make the form symmetric. Finally, the
jump terms in the fourth line are stabilization terms that enforce coercivity of the form BIP

with the parameter γ being the penalty parameter.
In order to show entropy stability of the described method, we need to make the following

assumption.

Assumption 4.1. We assume that the matrix A(V) : Rm → R
m in (8) is symmetric positive

definite. We further assume that there are lower and upper bounds (λ,Λ) on the eigenvalues
of A such that 0 < λ ≤ λ1 ≤ λ2 ≤ . . . ≤ λm ≤ Λ.

Then, we can show the following statement.

Theorem 4.1. Consider the system (8) and let Assumption 4.1 hold true. Further assume
that S is strictly convex. For simplicity, also assume that the exact and approximate solutions
have compact support inside the spatial domain. Let the final time be denoted by tN− . Then,
the approximate solutions generated by the scheme (13) satisfy

∫

Ω

S(U(V∆x(x, tN− ))) dx ≤
∫

Ω

S(U(V∆x(x, t0−))) dx,

provided γ is chosen sufficiently large such that

min

(
λ− cinvδΛ, γ − 1

δ

)
> 0, (15)

where λ,Λ are defined in Assumption 4.1, cinv will be specified later in Lemma 4.2, and δ > 0
can be chosen freely to balance both conditions.
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To prove the theorem, we will need the following lemma, which generalizes Young’s inequality
to matrices.

Lemma 4.1. Let the matrix C : Rm → R
m be symmetric positive definite. Then there holds

for arbitrary vectors v,w ∈ R
m and δ > 0

2wTCv ≤ δwTCw +
1

δ
vTCv.

We also need the following inverse estimate.

Lemma 4.2. For the discrete spacetime polynomials there holds

∫

In
(v∆x

x,B)
2 dt ≤ cinv

∆x

∫

In

∫

Ki

(v∆x
x )2 dx dt

with v∆x
x,B = v∆x

x,i+1/2,L or v∆x
x,B = v∆x

x,i−1/2,R.

With these prerequisites, we can prove Theorem 4.1.

Proof of Theorem 4.1. We set Φ∆x = V∆x resulting in

BDG(V
∆x,V∆x) + BIP(V

∆x,V∆x) = 0.

The proof consists of two parts: in Part 1, we show

BDG(V
∆x,V∆x) ≥

∫

Ω

S(U(V∆x(x, tN− ))) dx−
∫

Ω

S(U(V∆x(x, t0−))) dx. (16)

In Part 2, we show that for γ sufficiently large, there holds BIP(V
∆x,V∆x) ≥ 0. The two

parts together imply the claim.
Part 1: The proof of (16) can be transferred from the proof of the entropy stability of the
original scheme. Therefore, we do not give all details here. The full proof can be found in [17,
Thm 3.1].
Step 1: Define the spatial part

Bs
DG(V

∆x,Φ∆x) = −
∑

n,i

∫

In

∫

Ki

〈F(V∆x),Φ∆x
x 〉 dx dt

+
∑

n,i

∫

In

(
〈F(V∆x

i+1/2,L,V
∆x
i+1/2,R),Φ

∆x
i+1/2,L〉 − 〈F(V∆x

i−1/2,L,V
∆x
i−1/2,R),Φ

∆x
i−1/2,R〉

)
dt.

One can show that Bs
DG(V

∆x,V∆x) ≥ 0 : Due to the definition of the entropy flux function Q,
there holds for the entropy potential ψx = 〈Vx,F〉. This implies

Bs
DG(V

∆x,V∆x) = −
∑

n,i

∫

In

∫

Ki

ψ(V∆x)x dx dt

+
∑

n,i

∫

In

(
〈F(V∆x

i+1/2,L,V
∆x
i+1/2,R),V

∆x
i+1/2,L〉 − 〈F(V∆x

i−1/2,L,V
∆x
i−1/2,R),V

∆x
i−1/2,R〉

)
dt.
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Evaluating the (spatial) integral over ψx and using the definition of the flux F from (5) give

Bs
DG(V

∆x,V∆x) =
∑

n,i

∫

In

(
〈F∗(V∆x

i+1/2,L,V
∆x
i+1/2,R),V

∆x
i+1/2,L〉 − ψ(V∆x

i+1/2,L)
)
dt

−
∑

n,i

∫

In

(
〈F∗(V∆x

i−1/2,L,V
∆x
i−1/2,R),V

∆x
i−1/2,R〉 − ψ(V∆x

i−1/2,R)
)
dt

− 1

2

∑

n,i

∫

In
〈V∆x

i+1/2,L,D(V
∆x
i+1/2,R −V∆x

i+1/2,L)〉 dt

+
1

2

∑

n,i

∫

In
〈V∆x

i−1/2,R,D(V
∆x
i−1/2,R −V∆x

i−1/2,L)〉 dt.

Reordering the sum and exploiting the compact support of the approximate solutions result in

Bs
DG(V

∆x,V∆x) = −
∑

n,i

∫

In

(
〈F∗(V∆x

i+1/2,L,V
∆x
i+1/2,R),V

∆x
i+1/2,R −V∆x

i+1/2,L〉

− (ψ(V∆x
i+1/2,R)− ψ(V∆x

i+1/2,L))
)
dt

+
1

2

∑

n,i

∫

In
〈V∆x

i+1/2,R −V∆x
i+1/2,L,D(V

∆x
i+1/2,R −V∆x

i+1/2,L)〉 dt.

The terms in the first sum cancel due to (4), the terms in the second sum are non-negative
due to the definition of the diffusion operator D.
Step 2: Define the temporal part

Bt
DG(V

∆x,Φ∆x) = −
∑

n,i

∫

In

∫

Ki

〈U(V∆x),Φ∆x
t 〉 dx dt

+
∑

n,i

∫

Ki

(
〈U(V∆x

n+1,−),Φ
∆x
n+1,−〉 − 〈U(V∆x

n,−),Φ
∆x
n,+〉

)
dx.

Set Φ∆x = V∆x and use integration by parts with respect to time. The boundary terms
evaluated at tn+1

− cancel resulting in

Bt
DG(V

∆x,V∆x) =
∑

n,i

∫

In

∫

Ki

〈U(V∆x)t,V
∆x〉 dx dt

+
∑

n,i

∫

Ki

(
〈U(V∆x

n,+),V
∆x
n,+〉 − 〈U(V∆x

n,−),V
∆x
n,+〉

)
dx.

By the definition of the entropy function, 〈U(V∆x)t,V
∆x〉 = S(U(V∆x))t. Evaluating the

time integral and adding a zero-sum involving S(U(V∆x
n,−)), this implies

Bt
DG(V

∆x,V∆x) =
∑

n,i

∫

Ki

(
S(U(V∆x

n+1,−))− S(U(V∆x
n,−))

)
dx

+
∑

n,i

∫

Ki

(
S(U(V∆x

n,−))− S(U(V∆x
n,+))

)
dx+

∑

n,i

∫

Ki

〈U(V∆x
n,+)−U(V∆x

n,−),V
∆x
n,+〉 dx.

9



The first sum corresponds to a telescope sum. For the second and third sum, the change of
variables V(θ) = θVn,− + (1− θ)Vn,+ is used. This results in

Bt
DG(V

∆x,V∆x) =

∫

Ω

(
S(U(V∆x(x, tN− ))) − S(U(V∆x(x, t0−)))

)
dx

+
∑

n,i

∫

Ki

∫ 1

0

θ 〈Vn,− −Vn,+,UV(θ)(Vn,− −Vn,+)〉dθ dx.

Due to S being strictly convex, the terms in the second line are positive, implying

Bt
DG(V

∆x,V∆x) ≥
∫

Ω

S
(
U(V∆x(x, tN− ))

)
dx−

∫

Ω

S
(
U(V∆x(x, t0−))

)
dx.

This concludes the proof of Part 1.
Part 2: We now need to show BIP(V

∆x,V∆x) ≥ 0. Due to the solutions having compact
support, there holds

BIP(V
∆x,V∆x) =

∑

n,i

∫

In

∫

Ki

〈A(V∆x)V∆x
x ,V∆x

x 〉︸ ︷︷ ︸
Γ1

dx dt

+ 2
∑

n,i

∫

In

〈A({V∆x})
{
V∆x

x

}
i+1/2

, [V∆x]i+1/2〉 dt

+
∑

n,i

∫

In

γ

∆x
〈A({V∆x})[V∆x]i+1/2, [V

∆x]i+1/2〉
︸ ︷︷ ︸

Γ2

dt.

Based on Assumption 4.1, the matrix A is positive definite. This implies that both Γ1 and Γ2

are positive unless V∆x
x ≡ 0 or V∆x is continuous. Applying Lemma 4.1 with arbitrary δ > 0

to the potentially negative term results in

2〈A({V∆x})
{
V∆x

x

}
i+1/2

, [V∆x]i+1/2〉

≤ δ∆x〈A({V∆x})
{
V∆x

x

}
i+1/2

,
{
V∆x

x

}
i+1/2

〉
︸ ︷︷ ︸

Π1

+
1

δ∆x
〈A({V∆x})[V∆x]i+1/2, [V

∆x]i+1/2〉
︸ ︷︷ ︸

Π2

.

Choosing γ > 1
δ , the term Π2 can be compensated by Γ2

−
∑

n,i

∫

In

Π2 dt +
∑

n,i

∫

In

Γ2 dt =
γ − 1

δ

∆x

∑

n,i

∫

In

〈A({V∆x})[V∆x]i+1/2, [V
∆x]i+1/2〉 dt.

In the following we determine a value δ0 such that for δ ≤ δ0 the term Γ1 dominates the term
Π1. Then choosing γ > 1/δ0 implies the claim. By assumption, the eigenvalues of the matrix
A are uniformly bounded in the following way

0 < λ ≤ λ1 ≤ . . . ≤ λm ≤ Λ.

This implies

∑

n,i

∫

In

∫

Ki

Γ1 dx dt−
∑

n,i

∫

In

Π1 dt ≥

∑

n,i

∫

In

∫

Ki

λ〈V∆x
x ,V∆x

x 〉 dx dt−
∑

n,i

∫

In

δ∆xΛ〈
{
V∆x

x

}
i+1/2

,
{
V∆x

x

}
i+1/2

〉 dt.
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As

〈
{
V∆x

x

}
i+1/2

,
{
V∆x

x

}
i+1/2

〉 =
m∑

j=1

({
(v∆x

j )x
}
i+1/2

)2
,

we can apply an inverse estimate to each component. Using

({
v∆x
x

}
i+1/2

)2
=

(
1

2
(v∆x

x,i+1/2,L + v∆x
x,i+1/2,R)

)2

≤ 1

2
(v∆x

x,i+1/2,L)
2 +

1

2
(v∆x

x,i+1/2,R)
2

and Lemma 4.2, we get

∑

n,i

∫

In

δ∆xΛ〈
{
V∆x

x

}
i+1/2

,
{
V∆x

x

}
i+1/2

〉 dt ≤
∑

n,i

∫

In

∫

Ki

cinvδΛ〈V∆x
x ,V∆x

x 〉 dx dt.

This implies

∑

n,i

∫

In

∫

Ki

Γ1 dx dt−
∑

n,i

∫

In

Π1 dt ≥ (λ− cinvδΛ)
∑

n,i

∫

In

∫

Ki

〈V∆x
x ,V∆x

x 〉 dx dt.

Summarizing all results, there holds

BIP(V
∆x,V∆x) ≥ (λ− cinvδΛ)

∑

n,i

∫

In

∫

Ki

〈V∆x
x ,V∆x

x 〉 dx dt

+
γ − 1

δ

h

∑

n,i

∫

In

〈A({V∆x})[V∆x]i+1/2, [V
∆x]i+1/2〉 dt,

which implies the claim.

Remark 4.1. 1. We note that only the parameter γ appears in the actual method. The
parameter δ only exists for theoretical considerations.

2. For solving the scalar equation ut + f(u)x = (aux)x with 0 < a ≤ a ≤ a and bounds
m ≤ Suu ≤M the condition (15) on γ reduces to

min

(
a

M
− a δ cinv

m
,γ − 1

δ

)
> 0. (17)

3. When using a non-symmetric IP (NIPG) approach, compare [24], the sum in the third
line of the definition of BIP in (14) has a negative sign. Therefore, the possibly negative
terms

〈A({V∆x})
{
V∆x

x

}
i+1/2

, [Φ∆x]i+1/2〉 and 〈A({V∆x})[V∆x]i+1/2,
{
Φ∆x

x

}
i+1/2

〉

cancel each other in the stability estimate. As a result, the method is stable for any value
γ ≥ 0. However, the NIPG method is known to lead to a decay in convergence order. We
also observed this decay for even polynomial degrees in our tests. Therefore, we currently
prefer the symmetric version of the IP method but might consider the NIPG version for
our extension to higher space dimensions due to its better stability properties.
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4.1. The ST-IP-DG method applied to the compressible Navier-Stokes equations

We now examine in how far Assumption 4.1, which is needed for proving entropy stability of
the ST-IP-DG method, is satisfied for our main application, the compressible Navier-Stokes
equations.

As noted in Section 3.1, the matrix A corresponding to the compressible Navier-Stokes
equations with our choice of entropy variables is symmetric positive semi-definite, not positive
definite. However, A has the structure

A =

[
0 0

0 Ã

]
.

Therefore, defining Ṽ∆x = (v∆x
2 , v∆x

3 ) and Φ̃∆x = (Φ∆x
2 ,Φ∆x

3 ), there holds

BIP(V
∆x,Φ∆x) = B̃IP(Ṽ

∆x, Φ̃∆x) ∀V∆x,Φ∆x ∈ Vk,

with B̃IP defined as BIP (compare (14)) but with A replaced by Ã and the scalar product
being taken only over 2 components. Due to this equivalence, it is sufficient to implement the
shortened form B̃IP. For entropy stability, one now needs to show

B̃IP(Ṽ
∆x, Ṽ∆x) ≥ 0.

In order to apply the proof of Theorem 4.1, Assumption 4.1 needs to be satisfied for the
matrix Ã. As discussed in Section 3.1, the matrix Ã is symmetric positive definite. Addi-
tionally, one needs to show uniform bounds λ,Λ on the eigenvalues of Ã given by (12). We
do not know of general, problem-independent uniform bounds of this form. However, under
the following assumptions, one can deduce such bounds and therefore satisfy all assumptions
made in Assumption 4.1. Then, the proof of entropy stability is applicable to the compressible
Navier-Stokes equations.

Assumption 4.2. We assume that there are uniform lower bounds ρ0, p0 > 0 such that ρ ≥ ρ0
and p ≥ p0. We further assume that there are uniform upper bounds ρM , uM , pM > 0 such that
ρ ≤ ρM , |u| ≤ uM , and p ≤ pM .

Lemma 4.3. Under Assumption 4.2, there exist λ(ρM , uM , p0) and Λ(ρ0, uM , pM ) such that
0 < λ ≤ λ1 < λ2 ≤ Λ for the eigenvalues of Ã.

Proof. The eigenvalues λ1,2 of Ã are given by (12) with λ2 corresponding to the ‘+’ sign. We
can bound λ2 from above by λ2 ≤ |b|. Then, we can bound |b| using Assumption 4.2 in terms
of ρ0, uM , and pM . For the lower bound, we write

λ1 =
1

2
|b|
(
1−

√
1− ε

)
, ε = −

4ν κ
R

1

v3
3

b2
.

We note that 0 < ε < 1. We use the Taylor expansion of the square root function to bound

√
1− ε ≤ 1− 1

2
ε.

This implies λ1 ≥ 1

4
|b| ε, which in turn can be bounded using Assumption 4.2 in terms of ρM ,

uM , and p0.
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5. The ST-LDG method

Our second approach for extending the original spacetime DG method is a variant of the LDG
method introduced by Cockburn and Shu [7]. We will shortly describe the situation for scalar
equations in order to motivate why just following the original LDG method does not do the
trick. Then we will describe our new ST-LDG method for convection-diffusion systems.

5.1. Motivation: The situation for scalar equations

Let us consider the scalar equation u(v)t + f(v)x = (auv(v)vx)x, already expressed in entropy
variables. We introduce the auxiliary variable

p =
√
auv(v)vx

and rewrite the original equation as a system of two first-order equations,

u(v)t + f(v)x = (
√
auv(v)p)x,

p− g(v)x = 0,

with the auxiliary function

g(v) =

∫ v√
auv(s)ds.

The function g has been introduced to write the system in conservation form. For a spacetime
DG approach this formulation requires to evaluate jumps and averages of g at cell edges as
well as spacetime integrals over g. While this is trivial for a and uv being constant, and one
can easily modify the method to result in an entropy stable spacetime DG method, this is not
the case for the systems that we are interested in: here, UV(V) is typically a non-constant
matrix depending non-linearly on V. Therefore, our ST-LDG method uses a non-conservative
formulation in the equation for the auxiliary variable.

5.2. The ST-LDG method

We consider the convection-diffusion system

U(V)t + F(V)x = (A(V)Vx)x.

In order to define the ST-LDG method for systems, we need to make the following assumption.

Assumption 5.1. We assume that the matrix A(V) : Rm → R
m in (8) is symmetric positive

semi-definite.

Assumption 5.1 implies that there exists a symmetric positive semi-definite matrix B(V)
such that B2 = A.

Remark 5.1. We note that Assumption 5.1 is satisfied for the compressible Navier-Stokes
equations with our choice of entropy variables as discussed in Section 3.1. We will describe
the matrix B that we use in our numerical algorithm in Appendix B.

13



Therefore, the system above is equivalent to

Ut +F(U(V))x = (B2(V)Vx)x.

We define P = B(V)Vx and rewrite the second-order system as

Ut + F(U(V))x = (B(V)P)x,

P = B(V)Vx.

We note that the first set of equations, which contains the conserved quantity U, is written in
conservation form, while the second set of equations uses a non-conservative formulation.

Let the discrete solution be given by the pair W∆x = (V∆x,P∆x). To deduce the variational
formulation, we multiply the first set of equations with a test function Φ∆x, integrate over
spacetime elements, and do integration by parts using central fluxes for the diffusion terms.
This results in

B1(W∆x,Φ∆x) = BDG(V
∆x,Φ∆x)

+
∑

n,i

∫

In

∫

Ki

〈B(V∆x)P∆x,Φ∆x
x 〉 dx dt

−
∑

n,i

∫

In

〈
B(V∆x

i+1/2,L) +B(V∆x
i+1/2,R)

2

{
P∆x

}
i+1/2

,Φ∆x
i+1/2,L

〉
dt

+
∑

n,i

∫

In

〈
B(V∆x

i−1/2,L) +B(V∆x
i−1/2,R)

2

{
P∆x

}
i−1/2

,Φ∆x
i−1/2,R

〉
dt.

(18)

For the discretization of the non-conservative equations P = B(V)Vx, we multiply both sides
with a test function Ψ∆x, integrate over spacetime elements, and then add stability terms
resulting in

B2(W∆x,Ψ∆x) =
∑

n,i

∫

In

∫

Ki

〈P∆x,Ψ∆x〉 dx dt

−
∑

n,i

∫

In

∫

Ki

〈B(V∆x)V∆x
x ,Ψ∆x〉 dx dt

− 1

2

∑

n,i

∫

In

〈
B(V∆x

i+1/2,L) +B(V∆x
i+1/2,R)

2
[V∆x]i+1/2,Ψ

∆x
i+1/2,L

〉
dt

− 1

2

∑

n,i

∫

In

〈
B(V∆x

i−1/2,L) +B(V∆x
i−1/2,R)

2
[V∆x]i−1/2,Ψ

∆x
i−1/2,R

〉
dt.

(19)

The method then reads: find W∆x = (V∆x,P∆x) ∈ Vk × Vk such that

BST−LDG(W
∆x,Σ∆x) = B1(W∆x,Φ∆x) + B2(W∆x,Ψ∆x) = 0 (20)

for all Σ∆x = (Φ∆x,Ψ∆x) ∈ Vk × Vk.

Remark 5.2. The method (20) is consistent for solving equation (8) if the true solution V is
continuous and if B(V) depends continuously on V.
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We can show the following result concerning entropy stability.

Theorem 5.1. Consider the system (8) and let Assumption 5.1 hold true. Further assume
that S is strictly convex. For simplicity, also assume that the exact and approximate solutions
have compact support inside the spatial domain. Let the final time be denoted by tN− . Then,
the approximate solutions generated by the scheme (20) satisfy

∫

Ω

S(U(V∆x(x, tN− ))) dx+

∫ tN

t0

∫

Ω

(P∆x)2 dx dt ≤
∫

Ω

S(U(V∆x(x, t0−))) dx.

Proof. We set (Φ∆x,Ψ∆x) = (V∆x,P∆x) to get

0 = BST−LDG(W
∆x,W∆x) =

BDG(V
∆x,V∆x) +

∑

n,i

∫

In

∫

Ki

〈P∆x,P∆x〉 dx dt

+
∑

n,i

∫

In

∫

Ki

(
〈B(V∆x)P∆x,V∆x

x 〉 − 〈B(V∆x)V∆x
x ,P∆x〉

)
dx dt

−
∑

n,i

∫

In

〈
B(V∆x

i+1/2,L) +B(V∆x
i+1/2,R)

2

{
P∆x

}
i+1/2

,V∆x
i+1/2,L

〉
dt

+
∑

n,i

∫

In

〈
B(V∆x

i−1/2,L) +B(V∆x
i−1/2,R)

2

{
P∆x

}
i−1/2

,V∆x
i−1/2,R

〉
dt

− 1

2

∑

n,i

∫

In

〈
B(V∆x

i+1/2,L) +B(V∆x
i+1/2,R)

2
[V∆x]i+1/2,P

∆x
i+1/2,L

〉
dt

− 1

2

∑

n,i

∫

In

〈
B(V∆x

i−1/2,L) +B(V∆x
i−1/2,R)

2
[V∆x]i−1/2,P

∆x
i−1/2,R

〉
dt.

We examine the single terms, starting from below. Taking the symmetry of B and the compact
support of the discrete solution into account, the boundary terms in the last four lines cancel
each other. Also, the domain terms in the line above the boundary terms cancel each other.
Let us now consider the terms in the first line. According to the proof of the entropy stability
of the original scheme (compare also the proof of Theorem 4.1), there holds

BDG(V
∆x,V∆x) ≥

∫

Ω

S(U(V∆x(x, tN− ))) dx−
∫

Ω

S(U(V∆x(x, t0−))) dx.

This then directly implies the claim

∫

Ω

S(U(V∆x(x, tN− ))) dx+

∫ tN

t0

∫

Ω

(P∆x)2 dx dt ≤
∫

Ω

S(U(V∆x(x, t0−))) dx.

This concludes the description of the ST-LDG method. As a remark, in our method,
we implement Dirichlet boundary conditions U = g on ∂Ω in the weak sense by setting
V∆x

N+1/2,R = ĝ(xN+1/2) and V∆x
1/2,L = ĝ(x1/2), using appropriate boundary conditions V = ĝ

on ∂Ω. Appropriate Dirichlet boundary conditions for P∆x are deduced from the relation
P = B(V)Vx.
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6. Numerical results

In this section we present various numerical results, comparing the ST-IP-DG and the ST-
LDG method. For the ST-IP-DG method, we will also examine its dependence on the penalty
parameter γ. In all our tests, the choice of the time step is purely based on the convection
term, i.e., it does not take the presence of a diffusion term into account. We note that for
stability reasons it is not necessary to restrict the time step due to the spacetime DG approach.
But for accuracy reasons, we typically use the CFL condition

∆tn ≤ CCFLmin
x∈Ω

∆x

λmax(U∆x(x, tn))

with ∆tn denoting the time step from tn to tn+1 and CCFL = 0.5. We also use equidistant grid
cells in our tests, but this is not necessary.

Our code is an extension of the one-dimensional version of SPARCCLE - the software package
developed for the original scheme for hyperbolic conservation laws [17]. We refer to [17, 16]
for more detailed information concerning the implementation and only give a short summary
here.

The approximate solution V∆x = (v∆x
1 , . . . , v∆x

m )T is sought in Vk with each component v∆x
j

being of the form

v∆x
j =

∑

n,i,l

v̂ni,j,lφ
n
i,l

with n indicating the time segment, i the spatial cell, and 1 ≤ l ≤ nf the degree of freedom
depending on the choice of Vk. Further, φni,l are basis functions with finite support given by

φni,l
∣∣
Ki×In

=

(
t− tn+1

∆tn

)kt,l (x− xi
∆x

)kx,l

with xi denoting the centroid of the spatial cell i, and kt,l+kx,l ≤ k. All spacetime and bound-
ary integrals appearing in the numerical methods are evaluated using Gaussian quadrature
formulae of the appropriate order.

While the form BDG is non-linear in the discrete solution, it is linear in the test function.
Therefore, it is sufficient to satisfy (3), the equation for conservation laws, for all basis functions
of Vk. Due to the choice of the upwind flux in time, one can solve each time step separately. All
in all, in each time step, one needs to solve a non-linear system with Nc×nf×m unknowns, Nc

denoting the number of spatial cells. Newton method with an analytically computed Jacobian
is used for this purpose. For test problems in one dimension, it is typically sufficient to use a
sparse LU decomposition in order to solve the linear problem in each Newton iteration. For the
two-dimensional version of the code, suitable preconditioners have been developed to efficiently
solve these subproblems [16].

In order to extend the code for conservation laws to convection-diffusion systems, only minor
changes were necessary. Like for the original method, it is sufficient to satisfy equations (13)
and (20) for all basis functions of Vk. For the ST-IP-DG method, additional terms needed to
be added in the evaluation of the residual and of the Jacobian of the non-linear system. For
the ST-LDG method, we doubled the number of variables, and also adjusted the evaluation
of the residual and of the Jacobian of the corresponding non-linear system. We have not yet
examined whether it is possible to eliminate the auxiliary variables in the implementation,
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which would result in a system corresponding to the size of the original variables (compare
also the discussion in Section 7).

In the following, we will first show results for the scalar linear advection-diffusion equation.
Then, in Section 6.2, we will present results for the compressible Navier-Stokes equations.

6.1. Numerical results for the linear advection-diffusion equation

We start with the linear advection-diffusion equation

∂tu+ c∂xu = a∂2xu

with c and a constant (compare [7]). The initial data are chosen as

u(t = 0, x) = sin(x)

on the domain [0,2π] with periodic boundary conditions. The exact solution is u(t, x) =
e−at sin(x− ct). We compute the solution up to T = 2 with parameters a = 0.1 and c = 1.

We use the quadratic entropy function S(u) = 1
2
u2 and central flux for the entropy conserva-

tive flux F
∗, i.e., F∗(a, b) = 1

2
(a+ b). We add Rusanov diffusion, which results in the numerical

flux F corresponding to standard upwind flux.
Figure 1 shows the results for both the ST-IP-DG method, using γ = 10, and the ST-LDG

for varying spaces Vk, k = 0, 1, 2, 3. We note that the ST-IP-DG method does not converge
for V0. This is consistent with the fact that for piecewise constant polynomials, most terms
in the BIP form drop out and only the penalty term is left. The ST-LDG method converges
with first order for V0. For Vk, k = 1, 2, 3, the results for both methods are very comparable.
In particular, both methods show the expected convergence order of O(∆xk+1).

Table 1: Lin. adv.-diff. eqn.: Influence of
γ on the stability of the ST-IP-
DG method. ‘×’ denotes an un-
stable test, ‘

√
’ a stable one.

V1 V2 V3

γ = 0.1 × × ×
γ = 1

√ × ×
γ = 10

√ √ √

Next, we examine the dependence of the ST-
IP-DG method on the penalty parameter γ. The
stability condition for scalar equations is given by
(17). In this fairly simple test, there holds a =
a = a and m = M = 1. Therefore, the stability
condition requires that 1 − cinvδ > 0 and γ > 1

δ ,
i.e., that

γ > cinv.

Numerically, we observe the results shown in Ta-
ble 6.1. This is consistent with our theoretical stability considerations that for V1 polynomials
the inverse estimate holds for our polynomials with cinv = 1, whereas for V2 and V3 the
constant cinv cannot be smaller than 3.

Figure 2 shows the influence of the parameter γ on the accuracy of the method. In the
case of the space V1, there is a significant difference in accuracy between choosing γ = 10 and
γ = 1000. For V2, all results are very similar. The results for V1 are quite untypical. In most
of our tests there was only a small dependence of the accuracy on the parameter γ. Overall,
choosing γ = 10 seemed to be a good default choice.

6.2. Numerical results for the compressible Navier-Stokes equations

In this section, we solve the compressible Navier-Stokes equations in one dimension given by
(9) with Dirichlet boundary conditions and γ = 1.4. (Here, γ refers to the adiabatic exponent
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Figure 1: Lin. adv.-diff. eqn.: Comparison of the ST-IP-DG method with γ = 10 (dashed
lines) and the ST-LDG method (solid lines). (For V2, the results for ST-IP-DG and
ST-LDG almost coincide.)

10
−2

10
−1

10
−10

10
−5

10
0

∆ x

L1  e
rr

or

 

 

γ=1
γ=10
γ=100
γ=1000

(a) V
1

10
−2

10
−1

10
−10

10
−5

10
0

∆ x

L1  e
rr

or

 

 

γ=10
γ=100
γ=1000

(b) V
2

Figure 2: Lin. adv.-diff. eqn.: Influence of γ on the accuracy of the ST-IP-DG method. (The
choice γ = 1 was not stable for V2.)

in the compressible Navier-Stokes equations.) We follow [19] for the entropy conservative flux
F
∗ for the convection terms. Entropy stable flux is attained by adding the Rusanov diffusion

operator.

Remark 6.1. In the following we will show several comparisons for the ST-IP-DG and the
ST-LDG method for various polynomials degrees. Since the ST-IP-DG method is not consistent
for V0, we do not include these results in the plots in this section. However, we do show results
for the ST-LDG method for using V0. All tests for the ST-IP-DG method use γ = 10.
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Figure 3: Manufactured solution: Comparison of the ST-IP-DG method (dashed lines) and the
ST-LDG method (solid lines) using entropy stable flux. (For V1, V2, and V3, the
results for ST-IP-DG and ST-LDG are almost identical.)

6.2.1. Manufactured solution

We start with a test that has a manufactured solution. To assess the accuracy of our methods,
we like the solution to be given by the smooth functions

ρ(x, t) = sin(x2 + 5t) + 1.5,

u(x, t) = 2
[
sin(x2 + 5t) + 0.1

]
,

e(x, t) = 3
[
cos(x2 + 5t) + 1.5

]
.

We insert this solution into the compressible Navier-Stokes equations and compute the corre-
sponding source terms that need to be added on the right hand side of the equations to render
the above triple (ρ, u, e) a solution of the resulting equations. We use the viscosity coefficient
ν = 2 · 10−5 and entropy stable flux. The test domain is given by Ω = [−0.1; 0.9] and the final
time is T = 0.05.

Figure 3 shows the error in density for both the ST-IP-DG and the ST-LDG method. The
results are almost identical for V1, V2, and V3. For all tested polynomial degrees we observe
the expected convergence order of O(∆xk+1) for Vk, confirming the arbitrarily high order of
our methods for smooth solutions. The results for momentum and energy are qualitatively the
same.

Next, we consider the situation for entropy conservative flux. Figure 4 shows the comparison
of the two methods for the error in density. We observe a decay in accuracy for both methods
for using polynomial spaces of odd degrees. A similar behavior has been observed by other
authors [7, 3]. Overall both methods are very comparable.

6.2.2. Modified Sod test

Our next test is a modified Sod problem, similar to the test in [27]. We consider initial data

(ρ,m,E) =

{
(1.0, 0.0, 2.5) if x < 0,

(0.125, 0.0, 0.25) if x > 0,

on the domain Ω = [−0.5, 0.5]. The viscosity ν = 2.5 · 10−5 is fairly small.
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Figure 4: Manufactured solution: Comparison of the ST-IP-DG method (dashed lines) and the
ST-LDG method (solid lines) using entropy conservative flux. (For V2, the results
for ST-IP-DG and ST-LDG are very similar.)
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Figure 5: Modified Sod test: Comparison of the ST-IP-DG and the ST-LDG method using en-
tropy stable flux and V1. (The solutions for ST-IP-DG and ST-LDG almost coincide.)
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Figure 6: Modified Sod test: Comparison of the ST-IP-DG and the ST-LDG method using
entropy conservative flux and V1.
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Figure 7: Modified Sod test: Comparison of the behavior of
∫
Ω
S dx over time. The dashed

lines correspond to coarse grid solutions with ∆x = 1.0 · 10−2 and the solid lines to
fine grid solutions with ∆x = 2.5 · 10−4. (For entropy stable flux, the results for the
ST-IP-DG method and the ST-LDG method are very similar.)
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Figure 5 shows the results for V1 using entropy stable flux with final time T = 0.20. The
results for the ST-IP-DG and the ST-LDG method are almost identical. For both methods,
we observe oscillations in the solution around the contact discontinuity and the shock for the
coarse mesh with ∆x = 1.0 ·10−2. For this mesh size, the physical viscosity of the compressible
Navier-Stokes equations cannot be resolved. In the original method [17], streamline diffusion
and shock capturing operators BSD and BSC are employed to avoid these oscillations. On the
finer grid with ∆x = 2.5 · 10−4, however, the oscillations have vanished: if the mesh width is
chosen fine enough, there is no need to add operators like BSD and BSC.

Next, we consider the same test with entropy conservative flux and with final time T = 0.10.
The results for V1 for both methods are shown in Figure 6. In this case, we observe significant
oscillations and different behavior of the ST-IP-DG and the ST-LDG method. The latter one
leads to bigger oscillations in the solution, indicating that the method may be less diffusive.

To follow up on this suspicion, we evaluate
∫
Ω
Sdx at the end of each time step for both

methods on the coarse grid and on the fine grid. The result is shown in Figure 7. We make
the following observations.

• For entropy stable flux, the behavior of the entropy over time is the same for the ST-IP-
DG as for the ST-LDG method. This is consistent with the solution plots in Figure 5
in the sense that the solutions for both methods are very similar. Apparently, potential
differences are annihilated by adding the Rusanov diffusion.

• For entropy conservative flux, we observe less entropy decay when using the ST-LDG
method than when using the ST-IP-DG method, especially for the coarse grid. This
is consistent with the ST-LDG method resulting in more excessive oscillations in the
solutions as shown in Figure 6.

Remark 6.2. We note that we do not expect conservation of entropy when using entropy
conservative flux due to the viscosity and heat conduction terms present in the equations. This
is also a likely explanation for why the ST-LDG method leads to less entropy decay on the
coarse grid than on the fine grid: the coarse grid cannot sufficiently resolve the viscosity in the
system.

6.2.3. Modified Shu-Osher test

Finally, to test the robustness of our scheme, we use a modified Shu-Osher test. We consider
initial data

(ρ, u, p) =

{
(3.857143, 2.629369, 10.33333) if x < −4.0,

(1 + 0.2 sin(5.0x), 0.0, 1.0) if x > −4.0,

on the domain Ω = [−5, 5] with final time T = 1.8. The viscosity is chosen as ν = 4.0 · 10−3

and we use entropy stable flux.
Figure 8 shows the solution for V2 for both methods for two different grid sizes. Again,

we observe that the results for the ST-IP-DG method and the ST-LDG method are almost
identical. For both methods, the viscosity ν = 4.0 ·10−3 cannot fully be resolved for the coarse
grid size ∆x = 1.0 · 10−2, resulting in overshoot in the solution. This is not the case for the
fine grid size with ∆x = 4.0 · 10−3.

This completes the presentation of our numerical results. We conclude this work with a
direct comparison of the ST-IP-DG and the ST-LDG method.
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Figure 8: Modified Shu-Osher test: Comparison of the ST-IP-DG and the ST-LDG method
using entropy stable flux and V2. (The solutions for both methods are similar.)
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7. Comparison of the ST-IP-DG and the ST-LDG method

Both methods satisfy the main features we were looking for: both schemes are fully discrete,
unconditionally stable, and (arbitrarily) high order as confirmed by the numerical results.
Furthermore, we have shown entropy stability for both the ST-IP-DG method and the ST-
LDG method in Theorems 4.1 and 5.1, even though stronger assumptions are needed for the
ST-IP-DG method. Therefore, both methods are suitable candidates for the extension to two
dimensions. Which one is more suitable?

In a direct comparison of the schemes we make the following observations:

• Accuracy: Overall, both schemes lead to very similar numerical results, especially when
entropy stable flux is used.

• Penalty parameter: The ST-IP-DG method involves the penalty parameter γ. Based
on the stability analysis, the size of the parameter depends on the actual problem, making
its choice difficult. However, in our numerical tests, the default choice γ = 10 worked
very well.

• Cost/Implementation: For the ST-IP-DG method, additional terms need to be added
to the original scheme for hyperbolic conservation laws. For the ST-LDG method, one
needs to introduce additional variables P. In the case of the compressible Navier-Stokes
equations in one dimension, this increases the number of variables from 3 to 5 (due to
the special structure of the matrix A). In each iteration of the Newton method, a linear
system of the size (m× nf ×Nc)

2 must be solved. Depending on the solver used in this
step, the increase in number of variables will result in a multiplied increase in cost. Also,
a suitable matrix B needs to be found for the method to work.

Overall, the ST-LDGmethod has better theoretical properties as it does not involve a penalty
parameter and uses a weaker assumption in the entropy stability theorem. Computationally,
however, the method is only competitive to the ST-IP-DG method if it is possible to eliminate
the additional variables by using, e.g., lift operators, which is common practice for the LDG
method. Also, it will be relevant whether the lift operator will lead to a coupling of cells that are
not direct neighbors. The CDG method [22] was developed as a response to the original LDG
method having that issue. If good solutions for these two problems for the ST-LDG method
can be developed in two and three dimensions, then the ST-LDG method is preferable.
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A. Boundary terms for the ST-IP-DG method

We now describe the ST-IP-DG method for solving the system (8) with non-homogeneous
Dirichlet boundary conditions U = g on ∂Ω. Instead of (13), one needs to solve the system

BDG(V
∆x,Φ∆x) + BIP(V

∆x,Φ∆x) = BRHS(Φ
∆x). (21)
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The definition of BIP for interior edges is given by (14). For boundary edges, some terms need
to be modified. Also, because some terms in the definition of BIP do not arise naturally by,
e.g., integration by parts but are added to the form, these terms need to be compensated for
on the right hand side of the equation in form of BRHS.

Let us focus on the left domain boundary with the spatial cells being numbered from 1 to
N . Then, the left-most cell has edges located at x1/2 and x3/2. By our standard change of
variables, the Dirichlet boundary conditions U = g on ∂Ω correspond to V = ĝ on ∂Ω. Then
the edge terms in the form BIP(V

∆x,Φ∆x) need to be adjusted in the following way at the left
domain boundary (using ĝ = ĝ(x1/2))

∫

In

〈A({V∆x})
{
V∆x

x

}
1/2

, [Φ∆x]1/2〉 dt →
∫

In

〈A(ĝ)(V∆x
x )1/2,R,Φ

∆x
1/2,R〉 dt,

∫

In

〈A({V∆x})[V∆x]1/2,
{
Φ∆x

x

}
1/2

〉 dt →
∫

In

〈A(ĝ)V∆x
1/2,R, (Φ

∆x
x )1/2,R〉 dt,

∫

In

γ

∆x
〈A({V∆x})[V∆x]1/2, [Φ

∆x]1/2〉dt →
∫

In

γ

∆x
〈A(ĝ)V∆x

1/2,R,Φ
∆x
1/2,R〉dt.

Similar modifications, using Φ∆x
N+1/2,L and (Φ∆x

x )N+1/2,L, are necessary at the right domain
boundary. Additionally, one needs to compensate for the additional terms in the form BIP

that did not arise by integration by parts on the right hand side of equation (21) by means of

BRHS = B1/2
RHS

+ BN+1/2
RHS

with

B1/2
RHS

(Φ∆x) =

∫

In

〈A(ĝ)ĝ, (Φ∆x
x )1/2,R〉 dt+

∫

In

γ

∆x
〈A(ĝ)ĝ,Φ∆x

1/2,R〉dt.

B. Using the ST-LDG method for solving the compressible

Navier-Stokes equations

The ST-LDG method is based on the existence of a positive semi-definite matrix B(V) such
that B2 = A with A given by (8). In the following we describe the matrix B that we use in
our numerical tests for the compressible Navier-Stokes equations.

Instead of decomposing the matrix A we decompose the reduced matrix Ã given by (11). We
can write Ã = CΛC−1 with the matrix Λ = diag(λ1, λ2) containing the positive eigenvalues
of Ã and the columns of C containing the corresponding eigenvectors. We use this to define
B = CΛ1/2C−1. In our tests we use

C =




1
N1

(
λ1 + ν

v2
2

v3
3

− κ
R

1

v2
3

)
1
N2

· ν v2
v2
3

1
N1

· ν v2
v2
3

1
N2

(
λ2 +

ν
v3

)



with N1 and N2 representing the appropriate normalization factors given by

N1 =

√(
λ1 + ν

v22
v33

− κ

R

1

v23

)2

+

(
ν
v2
v23

)2

and N2 =

√(
ν
v2
v23

)2

+

(
λ2 +

ν

v3

)2

.
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