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Integral Equations for Electromagnetic Scattering

at Multi-Screens

X.Claeys R.Hiptmair

Abstract. In [X. Claeys and R. Hiptmair, Integral equations on multi-screens. Integral
Equations and Operator Theory, 77(2):167–197, 2013] we developed a framework for the
analysis of boundary integral equations for acoustic scattering at so-called multi-screens,
which are arbitrary arrangements of thin panels made of impenetrable material. In this
article we extend these considerations to boundary integral equations for electromagnetic
scattering.

We view tangential multi-traces of vector fields from the perspective of quotient spaces
and introduce the notion of single-traces and spaces of jumps. We also derive representation
formulas and establish key properties of the involved potentials and related boundary oper-
ators. Their coercivity will be proved using a splitting of jump fields. Another new aspect
emerges in the form of surface differential operators linking various trace spaces.
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1 Introduction

In this article we examine first-kind boundary integral equations (BIEs) related to the homo-
geneous Maxwell equations in frequency domain

curl curlu − κ2u = 0 , (1)

with wave number κ ∈ C ∖ (−∞,0], in the exterior of rather general two-dimensional sur-
faces (with boundary) that we have dubbed complex screens or multi-screens, see Section 2.
This generalises the well established theory for Lipschitz screens as presented by Buffa and
Christiansen in [4]. Interest in this generalisation is motivated by the ubiquity of complex
screen geometries in engineering applications and by the widespread use of boundary integral
equation techniques for numerical simulation, see [22, 26, 25, 8, 11] among others.

This article can be viewed as a companion to [9], where we focused on BIEs associated
with the scalar Helmholtz equation and developed their theory on complex screens. The defi-
nition of suitable trace spaces and, in particular, of spaces of jumps turned out to be a major
mathematical challenge in that work. We mastered it by consistently resorting to Green’s
formulas in the volume, following the modern paradigm for the analysis of BIEs [12]. Our
current bid to generalise the theory of [4] to (1) and the underlying function spaces encoun-
ters further mathematical challenges related to the peculiarities of the Maxwell equations
compared to the Helmholtz equation. In particular, to prove stability of boundary integral
operators, we have to deal with Hodge type decompositions of vector fields in non-Lipschitz
domains, which is outside the scope of traditional results for this kind of decomposition.

Let us briefly review the plan of the paper. In Section 2 we recapitulate the definition of
multi-screens already introduced in [9]. Section 3 recalls the scalar trace spaces defined in [9,
Sections 5 & 6]. In the core Section 4 we follow the reasonings of [9] to develop a clear idea of
tangential traces of vector fields with curl in L2. Next, Section 5 examines surface differential
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operators linking scalar and vector multi-trace, single-trace, and jump spaces. In Section 6,
we examine the well-posedness of the electromagnetic scattering problem with perfectly con-
ducting boundary conditions at a multi-screen. To guarantee existence and uniqueness of
the solution, we introduce an additional geometrical assumption so as to guarantee that this
boundary value problem enters the standard Riesz-Schauder theory. Aiming for boundary
integral operators, Section 7 provides a representation formula for solutions of (1). Applying
the trace operators introduced earlier to the representation formula yields boundary integral
equations. In Section 8 we give an alternative definition of our new tangential jump trace
spaces, which establishes a link to existing theory. In the final and crucial Section 9 we
prove coercivity of the Maxwell single layer boundary integral operator on a multi-screen, see
Theorem 9.7. To accomplish this, we have to resort to a novel variant of the usual splitting
technique based on a Hodge-type decomposition of the jump traces.

Notations

Γ Multi-screen with boundary ∂Γ
Ωj Finite collection of Lipschitz domains adjacent to Γ, see Definition 2.3

H1(R3 ∖ Γ) Sobolev space of functions R3 ∖ Γ→ C, see (3)

H(div,R3 ∖ Γ) Sobolev space of vector fields R
3 ∖ Γ → C

3 with square integrable
divergence

H
± 1

2 (Γ) Scalar values multi-trace spaces, see Definition 3.1

πd Dirichlet trace (point trace) H1(R3 ∖ Γ)→ H
1/2(Γ)

πn Normal component trace H(div,R3 ∖ Γ)→ H
−1/2(Γ)

⟨⟨⋅, ⋅⟩⟩ Bilinear duality pairing for scalar functions on Γ, see (5)

H±
1

2 ([Γ]) Scalar-valued single traces spaces, see Definition 3.2

H(curl,R3
∖ Γ) Sobolev space of vector fields R3

∖Γ→ C
3 with square integrable curl

γt Standard tangential trace operator, see (9), (34)

H
− 1

2 (curlΓ,Γ) Tangential multi-trace space, see Definition 11
πt tangential multi-trace operator; canonical projection onto

H
− 1

2 (curlΓ,Γ), see (12)

⟪u̇, v̇⟫× Skew-symmetric duality pairing in H
− 1

2 (curlΓ,Γ), see (13), (15)

H−
1

2 (curlΓ, [Γ]) Tangential single-trace space, see Definition 19

H̃−1/2(curlΓ, [Γ]) Tangential jump space, see Definition 20
[ ] Jump operator, see (7) and Definitions 4.8
∇Γ surface gradient, see (23)
curlΓ surface rotation, see (25)
γr tangential trace of curl, see (34)
Gκ Helmholtz fundamental solution with wave number κ
DLκ,SLκ Vector single and double layer potentials, see (39)
ı imaginary unit

H
1

2

× (Γ) tangential trace space for (H1(R3))3, see (??)
Et Dirichlet harmonic vector fields, see (54)
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2 Geometrical Setting: Definition of Multi-Screens

Since the treatment of particular geometries is the main focus of the present contribution, we
start with a precise description of the geometries we consider, closely following [9, Section 2].
To begin with, we recall what is an orientable Lipschitz screen, a notion that was introduced
by Buffa and Christiansen [4]. Here and in the sequel, we will only consider three dimensional
situations, since we are interested in the study of Maxwell’s equations.

Definition 2.1 (Lipschitz screen).
A Lipschitz screen (in the sense of Buffa-Christiansen) is a subset Γ ⊂ R3 that satisfies the
following properties:

● the set Γ is a compact Lipschitz two-dimensional sub-manifold with boundary,

● denoting ∂Γ the boundary of Γ, we have Γ = Γ ∖ ∂Γ,
● there exists a finite covering of Γ with cubes such that, for each such cube C, denoting
by h the length of its sides, we have

* if C contains a point of ∂Γ, there exists an orthonormal basis of R3 in which C can
be identified with (0, h)3 and there are Lipschitz continuous functions ψ ∶ R → R

and φ ∶ R2
→ R with values in (0, h) such that

Γ ∩C = { (x, y, z) ∈ C ∣ y < ψ(x), z = φ(x, y) } ,
∂Γ ∩C = { (x, y, z) ∈ C ∣ y = ψ(x), z = φ(x, y) } ,

(2)

* if C contains no boundary point, there exists a Lipschitz open set Ω ⊂ R3 such that
we have Γ ∩C = ∂Ω ∩C.

In the sequel, we will refer to orientable screens as “screens in the sense of Buffa and Chris-
tiansen”. Multi-screens are generalisations of such objects that allow the presence of several
“panels” or “fins”.

Definition 2.2 (Lipschitz partition).
A Lipschitz partition of R3 is a finite collection of Lipschitz open sets (Ωj)j=0...n such that
R
3 = ∪nj=0Ωj and Ωj ∩Ωk = ∅, if j ≠ k.

Definition 2.3 (Multi-screen).
A multi-screen is a subset Γ ⊂ R3 such that there exists a Lipschitz partition of R3 denoted
(Ωj)j=0...n satisfying Γ ⊂ ∪nj=0∂Ωj and such that, for each j = 0 . . . n, we have Γ ∩ ∂Ωj = Γj

where Γj ⊂ ∂Ωj is some Lipschitz screen (in the sense of Buffa-Christiansen).

Remark 2.4. Since the definition above allows the presence of several branches, multi-screens
are not globally orientable a priori, although they are locally orientable away from junction
points, i.e. points where several branches meet. Although such surfaces commonly occur
in applications, beside our article [9], we could not find any literature on integral equations
considering such objects, especially in the context of electromagnetics.

Remark 2.5. Concerning variational formulations of Maxwell’s equations, however, there
already exist references dealing with possibly non-Lipschitz geometries. In this direction, we
would like to point out [21] that considers a geometrical setting (see in particular Theorem
3.6) that covers the situations considered in the present article.
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3 Scalar Valued Function Spaces on Multi-Screens

To prepare the ground for treating traces of vector fields, we give a brief review of the
functional framework that was developed in [9] for analysing scalar scattering by multi-screen
objects. We shall provide no proofs of the results contained in this section, and refer the
reader to [9, Sections 5 & 6].

3.1 Domain based function spaces

The trace spaces adapted to multi-screens that we introduced in [9] are built upon two domain
based functional spaces. The first one, denoted H1(R3∖Γ), is defined as the space of functions
u ∈ L2(R3) such that there exists p ∈ L2(R3) satisfying∗

∫
R3∖Γ

udiv(q)dx = −∫
R3∖Γ

p ⋅ qdx ∀q ∈ (D(R3
∖ Γ))3

and we set ∥u∥2
H1(R3∖Γ)

∶= ∥u∥2
L2(R3) + ∥p∥2L2(R3) .

(3)

Naturally, this norm is well defined since, if such a p as above exists, it is unique. The Sobolev
space H1(R3

∖ Γ) equipped with the norm defined in (3) is a Hilbert space. We also define
H1

0,Γ(R3) the closure of D(R3
∖ Γ) in H1(R3

∖ Γ) with respect to this norm. The second

domain based space that we introduced in [9, Section 4], denoted by H(div,R3
∖ Γ), is the

space of fields p ∈ L2(R3)3 such that there exists u ∈ L2(R3) satisfying

∫
R3∖Γ

p ⋅ ∇v dx = −∫
R3∖Γ

uv dx ∀v ∈ D(R3
∖ Γ) ,

and we set ∥p∥2
H(div,R3∖Γ)

∶= ∥u∥2
L2(R3) + ∥p∥2L2(R3) .

(4)

Once again, if such a u as above exists, it is unique, so that the norm ∥ ∥
H(div,R3∖Γ) is well

defined. The space H(div,R3
∖Γ) equipped with this norm is a Hilbert space. We also define

H0,Γ(div,R3) as the closure of D(R3
∖ Γ)3 with respect to this norm.

3.2 Multi-trace spaces

These trace spaces are defined in an abstract manner as factor spaces, see [9, Section 5].

Definition 3.1 (Scalar valued multi-trace spaces).
Scalar valued Dirichlet and Neumann multi-trace spaces, respectively, are defined as

H
+ 1

2 (Γ) ∶= H1(R3
∖ Γ)/H1

0,Γ(R3)

H
− 1

2 (Γ) ∶= H(div,R3
∖ Γ)/H0,Γ(div,R3).

These spaces are equipped with their respective canonical quotient norms ∥ ∥
H±1/2(Γ).

∗Given any open subset ω ⊂ R
3, D(ω) denotes the set of elements of C

∞(R3) that vanish in R
3 ∖ ω, and

D
′(ω) designates its dual i.e., the space of distributions in ω.
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We also consider trace operators πd ∶ H1(R3 ∖ Γ) → H
1/2(Γ) and πn ∶ H(div,R3 ∖ Γ) →

H
−1/2(Γ) simply as the canonical projections for these quotient spaces. The multi-trace spaces

H
±1/2(Γ) are dual to each other via the bilinear pairing ⟨⟨⋅, ⋅⟩⟩ defined by the formula

⟨⟨πd(u), πn(p)⟩⟩ ∶= ∫
R3∖Γ

p ⋅ ∇u + div(p)udx , (5)

for all u ∈ H1(R3
∖ Γ) and all p ∈ H(div,R3

∖ Γ). Identity (5) should be understood as a
generalised Green formula where Γ plays the role of the ”boundary” of R3

∖ Γ.

3.3 Single-trace spaces and jumps

The elements of H±1/2(Γ) may be regarded as double-valued functions defined on Γ (each
value being associated to a different face of Γ). We also consider subspaces of the multi-trace
spaces that correspond to single valued functions.

Definition 3.2 (Scalar-valued single trace spaces).
Scalar valued single traces spaces for Dirichlet and Neumann data, respectively, are defined
as

H+
1

2 ([Γ]) ∶= H1(R3)/H1

0,Γ(R3) = πd(H1(R3) )

H−
1

2 ([Γ]) ∶= H(div,R3)/H1

0,Γ(div,R3) = πn(H(div,R3) )
These are closed subspaces of H±1/2(Γ) and, as such, inherit the norms ∥ ∥

H±1/2(Γ).

The single trace spaces H±1/2([Γ]) are polar to each other under the duality pairing (5).
In particular we have ⟨⟨u̇, ṗ⟩⟩ = 0 for every u̇ ∈ H1/2([Γ]), ṗ ∈ H−1/2([Γ]). We also define jump
spaces as duals of the single trace spaces

H̃+
1

2 ([Γ]) = H−
1

2 ([Γ])′ and H̃−
1

2 ([Γ]) = H+
1

2 ([Γ])′ (6)

We equip the jump spaces (6) with the dual norms. Note that any element of H
±1/2(Γ)

naturally induces an element of H̃±1/2([Γ]) via the pairing ⟨⟨⋅, ⋅⟩⟩. This allows to consider a
continuous and surjective “jump” operator [ ⋅ ] ∶ H+1/2(Γ)→ H̃+1/2([Γ]) defined by the formula

⟨[u̇], q̇⟩ ∶= ⟨⟨u̇, q̇⟩⟩ ∀q̇ ∈ H− 1

2 ([Γ]) (7)

where this holds for any u̇ ∈ H+1/2(Γ). In a completely analogous manner we can define a
jump operator [ ⋅ ] ∶ H−1/2(Γ)→ H̃−1/2([Γ]) that is continuous and surjective as well.

4 Tangential Traces on Multi-Screens

Now we study tangential traces of curl-conforming vector fields featuring jumps across the
multi-screen Γ. Our considerations run parallel to those [9] for scalar Dirichlet and Neumann
multi-traces. Let us also point out that our treatment of traces is in the spirit of [2, 17].
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4.1 Function spaces for vector fields in the volume

First of all, we define spaces of vector fields on the unbounded domain R
3 ∖ Γ. As usual, the

space H(curl,R3 ∖Γ) will designate the set of u ∈ L2(R3)3 such that there exists p ∈ L2(R3)3
satisfying

∫
R3∖Γ

u ⋅ curl(v)dx = ∫
R3∖Γ

p ⋅ v dx ∀v ∈ D(R3
∖ Γ)3 . (8)

Of course, according to this definition, we have p = curl(u)∣
R3∖Γ in the sense of distribution

in R
3
∖Γ. However, in general p ≠ curl(u) in the sense of distributions in R

3, as there may be
tangential jumps of u across Γ. We equip the space H(curl,R3

∖ Γ) with the scalar product

(u,v)
H(curl,R3∖Γ) ∶= ∫

R3∖Γ
uv dx +∫

R3∖Γ
(curl u∣

R3∖Γ) ⋅ (curl v∣R3∖Γ)dx .

It is well known that H(curl,R3
∖ Γ) is a Hilbert space when equipped with this scalar

product. We denote by ∥ ∥
H(curl,R3∖Γ) the induced norm.

We also define H0,Γ(curl,R3) to be the closure of D(R3
∖ Γ)3 with respect to the norm∥ ∥

H(curl,R3∖Γ). It is clear that both H0,Γ(curl,R3) and H(curl,R3) are closed subspaces of

H(curl,R3
∖ Γ).

4.2 Tangential trace spaces on boundaries of Lipschitz domains

Of course, the treatment of multi-screens is founded on established results concerning traces
of vector fields on the boundary of non-smooth domains. All results presented in this section
are covered in [6]; see also [7, 3] for surveys.

In this section, we consider a generic Lipschitz domain Ω ⊂ R3. According to Rademacher’s
theorem, the normal vector field n at Γ ∶= ∂Ω is a well defined function of (L∞(Γ))3. Let
H(curl,Ω) denote the space of vector fields u ∈ (L2(Ω))3 such that curl(u) ∈ (L2(Ω))3. We
define the tangential trace γt as the operator that satisfies

γt(u) = n × (u × n) ∀u ∈ (D(R3))3 . (9)

This operator induces a surjective continuous trace operator γt ∶H(curl,Ω)→H−1/2(curlΓ,Γ),
see [6, Thm.4.1]. In addition, the following is a straightforward consequence of [6, Thm.5.1],

H0(curl,Ω) = ker(γt ) ,
where H0(curl,Ω) is the completion of (D(Ω))3 in H(curl,Ω). As a consequence, there is
an isomorphism between H(curl,Ω)/H0(curl,Ω) and H−1/2(curlΓ,Γ) which makes possible
the identification

H−1/2(curlΓ,Γ) = H(curl,Ω)/H0(curl,Ω) . (10)

The trace γt can thus be read as canonical projection onto a factor space.

4.3 Tangential vector multi-traces

Now we introduce spaces obtained as tangential traces of vector fields belonging toH(curl,R3
∖

Γ). The geometry of the multi-screen may be very complex, and this makes this trace space
difficult to define. To overcome this geometrical difficulty, we take the cue from (10) and,
in analogy to Definition 3.1 and [9, Section 5], use an abstract definition based on quotient
spaces:
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Definition 4.1 (Tangential multi-trace space).
The tangential multi-trace space on the multi-screen Γ is defined as

H
− 1

2 (curlΓ,Γ) ∶= H(curl,R3 ∖ Γ)/H0,Γ(curl,R3) . (11)

Of course, the chosen notation contains ”−1

2
” as a superscript, as well as ”curlΓ” in

order to suggest as explicitly as possible that this new space is a generalisation of the space
H−1/2(curlΓ,Γ) for Γ = ∂Ω. In other words, Definition (11) is consistent with (10).

The space (11) will be equipped with the quotient norm, see the Appendix in [9] for
example, and the trace operator is given by the canonical projection

πt ∶H(curl,R3 ∖ Γ)→ H
− 1

2 (curlΓ,Γ) . (12)

Now observe that, using elementary density arguments, for u,v ∈ H(curl,R3 ∖ Γ) we have

∫R3∖Γ curl(u) ⋅ v − u ⋅ curl(v)dx = 0 whenever u ∈ H0,Γ(curl,R3) or v ∈ H0,Γ(curl,R3). As

a consequence, for any u̇, v̇ ∈ H−1/2(curlΓ,Γ), we can define

⟪u̇, v̇⟫× ∶= ∫
R3∖Γ

curl(u) ⋅ v − u ⋅ curl(v) dx , (13)

where u,v ∈H(curl,R3
∖Γ) are such that πt(u) = u̇ and πt(v) = v̇. The bilinear form ⟪⋅, ⋅⟫×

is clearly skew-symmetric and continuous on H(curl,R3
∖ Γ) ×H(curl,R3

∖ Γ). It actually
puts H−1/2(curlΓ,Γ) into duality with itself, cf. [9, Section 5.1].

Proposition 4.2 (Self-duality of H−
1

2 (curlΓ,Γ), cf. [9, Proposition 4.1], [7, Theorem 2]).
For any continuous linear form ϕ ∶ H−1/2(curlΓ,Γ)→ C, there exists a unique u̇ ∈ H−1/2(curlΓ,Γ)
such that ϕ(v̇) = ⟨⟨u̇, v̇⟩⟩× for all v̇ ∈ H−1/2(curlΓ,Γ) and ∥ϕ∥(H−1/2(curlΓ,Γ))′ = ∥u̇∥H− 1

2 (curlΓ,Γ)
.

Proof. For any u̇ ∈ H−1/2(curlΓ,Γ), consider the unique minimal norm representative
u ∈H(curl,R3

∖Γ), that is πt(u) = u̇. We have ∥u∥
H(curl,R3∖Γ) = ∥u̇∥H−1/2(curlΓ,Γ) by definition

of the quotient norm and u satisfies the orthogonality condition

∫
R3∖Γ

curl(u) ⋅ curl(v) + u ⋅ v dx = 0 ∀v ∈H0,Γ(curl,R3) . (14)

Set p = curl(u) ∈H(curl,R3
∖Γ), so that curl(p) = −u since curl(curl(u))+u = 0 in R

3
∖Γ,

which is a direct consequence of (14). Since both p and u linearly and continuously depend on
u̇, we can set Φ(u̇) = πt(p), where Φ ∶ H−1/2(curlΓ,Γ) → H

−1/2(curlΓ,Γ) is a linear isometry.
Then we have

⟨⟨ u̇,Φ(u̇) ⟩⟩× = ∫
R3∖Γ

∣curl(u)∣2 + ∣u∣2 dx = ∥u̇∥2
H
− 1
2 (curlΓ,Γ)

.

This clearly shows that the bilinear form ⟪⋅, ⋅⟫× induces an isometric isomorphism and con-
cludes the proof. ◻

A consequence of the duality proved in Proposition 4.2 is the following characterisation
of the space H0,Γ(curl,R3) as kernel of the bilinear form ⟪⋅, ⋅⟫×.
Lemma 4.3 (Characterization of H0,Γ(curl,R3), cf. [9, Corollary 5.2]).
For any u ∈H(curl,R3

∖ Γ), we have u ∈H0,Γ(curl,R3), if and only if

∫
R3∖Γ

curl(u) ⋅ v − u ⋅ curl(v)dx = 0 ∀v ∈H(curl,R3
∖ Γ) .
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4.4 Tangential multi-trace spaces in particular situations

In this subsection we will examine two particular situations where it is easy to give explicit
descriptions of H−1/2(curlΓ,Γ) in terms of more standard trace spaces. For scalar multi-trace
spaces these considerations have been elaborated in [9, Section 5.2].

4.4.1 Skeleton of a Lipschitz partition

We first consider the case where Γ = ∪nj=0∂Ωj , where (Ωj)j=0...n is a Lipschitz partition of

R
3, see Definition 2.2. Denote Γj ∶= ∂Ωj . In this situation, the operator Loc(u) = (u∣Ωj

)nj=0
provides an isometric isomorphism

Loc ∶H(curl,R3 ∖ Γ)→H(curl,Ω0) ×⋯×H(curl,Ωn) .

For each subdomain Ωj , let Extj ∶H
−1/2(curlΓ, ∂Ωj) →H(curl,Ωj) be a right inverse of the

tangential trace operator local to Ωj . As a consequence πt ⋅ Loc
−1
⋅ (Ext0 × ⋅ × Extn) is an

isometric isomorphism, so that we can identify

H
− 1

2 (curlΓ,Γ) ≅H−
1

2 (curlΓ,Γ0) ×⋯×H−
1

2 (curlΓ,Γn) .

Let nj stand for the exterior unit normal vector to ∂Ωj . Let u̇, v̇ be two elements of

H
− 1

2 (curlΓ,Γ) that we identify with (u̇j)nj=0, (v̇j)nj=0 according to the isomorphism exhibited
above. Standard Green’s formula applied in each Ωj , along with (13) and (14) yield

⟪u̇, v̇⟫× =
n

∑
j=0
∫
Γj

nj × u̇j ⋅ v̇jdσ , (15)

which agrees with the skew-symmetric duality pairing defined in [7, Formula (10)]. Formula
(15) provides further motivation for the notation “⟪⋅, ⋅⟫×”. In the general case where Γ is
not necessarily the skeleton of a Lipschitz partition, the above discussion shows that (i)

H
− 1

2 (curlΓ,Γ) can at least be embedded into Πn
j=0H

− 1

2 (curlΓj
,Γj), although this embedding

is not an isomorphism anymore, and that (ii) Expression (15) still holds for smooth u̇, v̇.

4.4.2 Standard Lipschitz screens

Next, we consider the situation of a Lipschitz partition with two domains, R3 = Ω0∪Ω1, where
Ω1 is a bounded Lipschitz domain, and Γ ⊂ ∂Ω0∩∂Ω1. Once again, let us denote Γj ∶= Γ∩∂Ωj

for j = 0,1. The injection H(curl,R3
∖ Γ) ⊂H(curl,R3

∖ ∂Ω0) induces a natural embedding

H
− 1

2 (curlΓ,Γ) ∶=H(curl,R3
∖ Γ)/H0,Γ(curl,R3)↪

H(curl,R3
∖ ∂Ω0)/H0,Γ(curl,R3)

From the isometric isomorphism H(curl,R3
∖ ∂Ω0) ≅ H(curl,Ω0) × H(curl,Ω1) and the

definition of trace spaces as quotient spaces in (10), we conclude that there is a natural
embedding,

H
− 1

2 (curlΓ,Γ)↪H−
1

2 (curlΓ,Γ) ×H−
1

2 (curlΓ,Γ). (16)

Unless Γ = ∂Ω0 = ∂Ω1, this is a strict embedding (and not an isomorphism). Among all pairs

(u,v) ∈ (H− 1

2 (curlΓ,Γ))2, let us describe those belonging H
− 1

2 (curlΓ,Γ). Consider an element
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of u̇ ∈ H− 1

2 (curlΓ,Γ) and let u ∈ H(curl,R3 ∖ Γ) satisfy πt(u) = u̇ and denote uj ∶= u∣Ωj
. In

accordance with the discussion above, we make the identification u̇ = (π0
t
(u0), π1t(u1)) where

π
j
t
(uj) ∶= (nj ×uj ∣Γ)×nj with uj = u∣Ωj

. Since tangential traces of u0,u1 coincide on ∂Ω0 ∖Γ
i.e. (n0 × u0) × n0 = (n1 × u1) × n1 on ∂Ω0 ∖ Γ, we have

π1
t
(u1) − π0t(u0) ∈ H̃−

1

2 (curlΓ,Γ) ∶= {v̇ ∈H−
1

2 (curlΓ, ∂Ω0) ∣ v̇ = 0 on ∂Ω0 ∖ Γ} .

Using appropriate liftings of traces local to each subdomain, one shows that the condition

above actually yields a characterisation of H−
1

2 (curlΓ,Γ),

H
− 1

2 (curlΓ,Γ) = {(v̇1, v̇2) ∈H−
1

2 (curlΓ,Γ) ∣ v̇1 − v̇2 ∈ H̃−
1

2 (curlΓ,Γ) } . (17)

Next, let us provide explicit formula for the duality pairing ⟪⋅, ⋅⟫×. Take two traces u̇, v̇ ∈
H
− 1

2 (curlΓ,Γ) and assume that u,v ∈ H(curl,R3
∖ Γ) satisfy πt(u) = u̇, πt(v) = v̇. Let us

identify u̇ = (u̇0, u̇1) and v̇ = (v̇0, v̇1) in accordance with the discussion above, and denote
uj = u∣Ωj

, vj = v∣Ωj
. Then we have

⟪u̇, v̇⟫× = ∫
R3∖Γ

curl(u) ⋅ v − curl(v) ⋅ udx

= ∑
j=0,1
∫
Ωj

curl(uj) ⋅ vj − curl(vj) ⋅ uj dx

= ∑
j=0,1
∫
∂Ωj

(nj × u̇j) ⋅ v̇j dσ = ∫
Γ

(n0 × u̇0) ⋅ v̇0 + (n1 × u̇1) ⋅ v̇1 dσ .

(18)

4.5 Single-trace spaces and jump spaces

Now we introduce a vector counterpart of single-trace spaces that correspond to tangential
traces matching on both side of each panel of multi-screens. This space, and its dual, will
play a pivotal role in the theoretical study of integral equations posed on Γ.

Definition 4.4 (Tangential single-trace space, cf. [9, Definition 6.1]).
The tangential single-trace space is defined as the quotient space

H−
1

2 (curlΓ, [Γ]) ∶= H(curl,R3)/H0,Γ(curl,R3) . (19)

Note that this definition differs from (11) in that H(curl,R3) is considered instead of
H(curl,R3

∖Γ), which induces transmission conditions across the panels of Γ. Obviously, we

have H−
1

2 (curlΓ, [Γ]) ⊂ H− 1

2 (curlΓ,Γ) and the quotient norm on H−1/2(curlΓ, [Γ]) agrees with
the norm inherited from the multi-trace space H

−1/2(curlΓ,Γ).
The single-trace space H−

1

2 (curlΓ, [Γ]) is actually polar (and not dual!) to itself with
respect to the pairing ⟪⋅, ⋅⟫×, which yields a variational characterisation.

Proposition 4.5 (Characterization of tangential single-trace space, cf. [9, Proposition 6.3]).
For u̇ ∈ H−1/2(curlΓ,Γ), we have

u̇ ∈H−1/2(curlΓ, [Γ]) ⇐⇒ ⟨⟨u̇, v̇⟩⟩× = 0 ∀v̇ ∈H−1/2(curlΓ, [Γ]) .
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Proof. Take an arbitrary u̇ ∈ H
−1/2(curlΓ,Γ) and consider any u ∈ H(curl,R3 ∖ Γ)

that satisfies πt(u) = u̇. Assume first that u̇ ∈ H−1/2(curlΓ, [Γ]) so that u ∈ H(curl,R3).
Thus, according to the very definition of ⟪⋅, ⋅⟫× given by (13) and Green’s formula, for any
v̇ ∈H−1/2(curlΓ, [Γ]) there exists v ∈H(curl,R3) such that πt(v) = v̇ which implies

⟪u̇, v̇⟫× = ∫
R3∖Γ

curl(u) ⋅ v − u ⋅ curl(v)dx = ∫
R3

curl(u) ⋅ v − u ⋅ curl(v)dx = 0 .
This proves the “only if” part of the proposition.

Now assume that ⟪u̇, v̇⟫× = 0 for all v̇ ∈ H−1/2(curlΓ, [Γ]), and let us show that u ∈
H(curl,R3). Set p = curl(u)∣

R3∖Γ. For any v ∈ D(R3)3, we have πt(v) = v̇ ∈H−1/2(curlΓ, [Γ]),
which implies

∫
R3

u ⋅ curl(v)dx = ∫
R3∖Γ

u ⋅ curl(v)dx
= ⟪v̇, u̇⟫× +∫

R3

v ⋅ pdx = ∫
R3

v ⋅ pdx, ∀v ∈ (D(R3))3 .
This shows that u ∈ H(curl,R3) with curl(u) = p in R

3, not just in R
3
∖ Γ. Hence u̇ =

πt(u) ∈H−1/2(curlΓ, [Γ]). ◻

As we pointed out above, the space H−1/2(curlΓ, [Γ]) is not dual to itself. As in [9,
Section 6.2], this observation motivates the introduction to another type of trace spaces.

Definition 4.6 (Tangential jump space, cf. [9, Definition 6.4]).
The tangential jump space on the multi-screen Γ is defined as the dual space

H̃−1/2(curlΓ, [Γ]) ∶= H−1/2(curlΓ, [Γ])′ . (20)

We equip the space H̃−1/2(curlΓ, [Γ]) with the dual norm

∥u̇∥
H̃
− 1
2 (curlΓ,[Γ])

∶= sup

v̇∈H−
1
2 (curlΓ,[Γ])

∣ ⟪u̇, v̇⟫× ∣∥v̇∥
H
− 1
2 (curlΓ,Γ)

. (21)

Since H−1/2(curlΓ, [Γ]) is a closed subspace of H
−1/2(curlΓ,Γ), a direct application of the

Hahn-Banach Theorem (see [23, Thm.3.6]) shows that for any ϕ ∈ H̃−1/2(curlΓ, [Γ]), there
exists u̇ ∈ H−1/2(curlΓ,Γ) such that ⟪u̇, v̇⟫× = ϕ(v̇). This is a motivation for adopting ⟪⋅, ⋅⟫× as
notation for the (self-)duality pairing between H̃−1/2(curlΓ, [Γ]) and H−1/2(curlΓ, [Γ]). Now,
combining Proposition 4.2 and Proposition 4.5, we easily arrive at the following conclusion.

Lemma 4.7 (Quotient space H̃−1/2(curlΓ, [Γ])).
The tangential jump space H̃−1/2(curlΓ, [Γ]) is isometrically isomorphic to the quotient space
H
−1/2(curlΓ,Γ)/H−1/2(curlΓ, [Γ]).
Clearly, an element of H−1/2(curlΓ,Γ) induces an element of this space via the duality

pairing ⟪⋅, ⋅⟫×.
Definition 4.8 (Jump operator, cf. [9, Definition 6.5]).
We define the jump operator [ ] ∶ H−1/2(curlΓ,Γ)→ H̃−1/2(curlΓ,Γ) through

⟪[u̇], v̇⟫× ∶= ⟪u̇, v̇⟫× , ∀v̇ ∈H− 1

2 (curlΓ, [Γ]) .
It was shown above that the jump operator is surjective. It can also can be used to

characterise single trace spaces. The following lemma is a direct consequence of Proposition
4.5.

Lemma 4.9 (Single-trace space as kernel of jump operator, cf. [9, Corollary 6.6]).
A trace u̇ ∈ H−1/2(curlΓ,Γ) belongs H−1/2(curlΓ,Γ), if and only if [u̇] = 0.
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4.6 Single-trace spaces and jump spaces in special situations

Again, we wish to comment on simple situations where it is possible to give rather explicit de-
scription of the single trace spaceH−1/2(curlΓ, [Γ]), and the jump trace space H̃−1/2(curlΓ, [Γ]).
4.6.1 Skeleton of a Lipschitz partition

As in Section 4.4.1, in this situation the screen Γ = ∪nj=0∂Ωj is the union of the boundaries

of a Lipschitz partition R
3 = ∪nj=0Ωj . Write Γj = ∂Ωj . Take any u̇ ∈ H−1/2(curlΓ, [Γ]) and

consider u ∈ H(curl,R3) that satisfies πt(u) = u̇. Let uj = u∣Ωj
and u̇j = (nj × uj ∣Γj

) × nj .
Following the arguments presented in §4.4, we can identify u̇ with (u̇j)nj=0. The condition

u ∈H(curl,R3) amounts to nj × uj + nk × uk = 0 on ∂Ωj ∩ ∂Ωk. In other words,

H−
1

2 (curlΓ, [Γ]) ≅ { (u̇j)nj=0 ∈ Πn
j=0H

− 1

2 (curlΓj
,Γj) ∣

nj × u̇j + nk × u̇k = 0 on ∂Ωj ∩ ∂Ωk ∀j, k }

Unfortunately, a similarly explicit description of the space of jumps in the case of a Lipschitz
skeleton remains elusive.

4.6.2 Standard Lipschitz screen

As in Section 4.4.2, we now examine the case where Γ ⊂ ∂Ω1 for some bounded Lipschitz open
set Ω1. For the complement we write Ω0 = R3 ∖Ω1. Take any element u̇ ∈H−1/2(curlΓ, [Γ]),
and consider u ∈ H(curl,R3) such that πt(u) = u̇. Denoting uj = u∣Ωj

and u̇j ∶= (nj ×
uj ∣Γ) × nj , according to the discussion of Section 4.4, we can identify u̇ with (u̇0, u̇1). Since
u ∈H(curl,R3), the tangential traces of u0 and u1 must coincide on ∂Ω0, and in particular
on Γ. We conclude that u̇0 = u̇1 on Γ, and this turns out to be a characterisation,

H−
1

2 (curlΓ, [Γ]) = { (v̇0, v̇0) ∣ v̇0 ∈H−
1

2 (curlΓ,Γ) } ⊂ H− 1

2 (curlΓ,Γ) .

Now take any element u̇ ∈ H̃−
1

2 (curlΓ, [Γ]). There exists ṗ ∈ H
−1/2(curlΓ,Γ) such that

⟪v̇, u̇⟫× = ⟪v̇, ṗ⟫× for all v̇ ∈ H− 1

2 (curlΓ, [Γ]). The trace ṗ can be identified with a pair(ṗ0, ṗ1) ∈ H−1/2(curlΓ,Γ) such that ṗ0 − ṗ1 ∈ H̃−1/2(curlΓ,Γ), see Section 4.4. Now for any

v̇ ∈ H− 1

2 (curlΓ, [Γ]) that we identify with (v̇0, v̇0), v̇0 ∈ H−
1

2 (curlΓ,Γ), according to (18), we
have ⟪v̇, u̇⟫× = ⟪v̇, ṗ⟫× = ∫

Γ

n0 × v̇0 ⋅ ṗ0 + n1 × v̇0 ⋅ ṗ1 dσ

= ∫
Γ

n0 × v̇0 ⋅ (ṗ0 − ṗ1) dσ
= ∫

Γ

n0 × v̇0 ⋅ ( ṗ0 − ṗ1

2
) − n1 × v̇0 ⋅ ( ṗ0 − ṗ1

2
) dσ

Set q̇ ∶= (ṗ0 − ṗ1)/2 ∈ H̃−1/2(curlΓ,Γ). The calculus above shows that the pair (q̇,−q̇) can
also be chosen as representative of u̇. A careful inspection of the previous calculus actually

shows that for any u̇ ∈ H̃− 1

2 (curlΓ, [Γ]) there exists one and only one q̇ ∈ H̃−1/2(curlΓ,Γ) such
that (q̇,−q̇) represents u̇. This proves that we can make the following identification,

H̃−
1

2 (curlΓ, [Γ]) = { (q̇,−q̇) ∣ q̇ ∈ H̃− 1

2 (curlΓ,Γ) } .
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5 Surface Differential Operators

Compared to the developments in [9] for scalar valued functions a completely new aspect for
vector valued functions is the definition of the classical surface differential operators such as
surface gradient, curl, and divergence. These operators will give rise to a De Rham diagram
relating the scalar and tangential trace spaces. We also show that these operators map single
trace spaces into single trace spaces, and jump traces to jump traces.

5.1 Surface gradient

Consider any function p ∈ H1(R3 ∖ Γ). We clearly have curl(∇p) = 0 in R
3 ∖ Γ so that

∇p ∈ H(curl,R3 ∖ Γ). Thus, the tangential trace πt(∇p) is well defined and, according to
(13), for all u ∈H(curl,R3 ∖ Γ) and p ∈ H1(R3 ∖ Γ) we have

∫
R3∖Γ

curl(u) ⋅ ∇pdx = ⟪πt(u), πt(∇p)⟫× . (22)

Since the left-hand side above does not change when replacing p by p+ q where q ∈ H1

0,Γ(R3),
this formula allows to define the surface gradient ∇Γ ∶ H

1/2(Γ)→ H
−1/2(curlΓ,Γ) according to

the formula

∇Γ(πd(p) ) ∶= πt(∇p ) ∀p ∈ H1(R3
∖ Γ) . (23)

From this definition of the surface gradient we conclude that, if p ∈ H1(R3), we have ∇p ∈
H(curl,R3), so that ∇Γṗ ∈ H−1/2(curlΓ, [Γ]) whenever ṗ ∈ H1/2([Γ]). In other words, the
surface gradient maps single traces to single traces.

5.2 Surface curl operator

For any u ∈ H(curl,R3
∖ Γ), we clearly have div(curl(u)) = 0 in R

3
∖ Γ, so that curl(u) ∈

H(div,R3
∖ Γ). As a consequence, by definition of the pairing (5) between H

+1/2(Γ) and
H
−1/2(Γ), for all u ∈H(curl,R3

∖ Γ) and p ∈ H1(R3
∖ Γ) we have

∫
R3∖Γ

curl(u) ⋅ ∇pdx = ⟨⟨πd(p), πn(curl(u)) ⟩⟩ . (24)

Examining the left-hand side of this identity, it is clear that πn(curl(u)) only depends on
πt(u) (the equivalence class modulo an element of H0,Γ(curl,R3)), so that it actually defines
a continuous mapping curlΓ ∶ H

−1/2(curlΓ,Γ)→ H
−1/2(Γ), the surface curl, by the formula

curlΓ(πt(u) ) ∶= πn(curl(u) ) ∀u ∈H(curl,R3
∖ Γ) . (25)

In addition observe that, if πt(u) = ∇Γ(ṗ) for some ṗ = πd(p) ∈ H
1/2(Γ), then we have

curlΓ(∇Γṗ) = curlΓ(πt(∇p)) = πn(curl(∇p) ) = 0. In other words curlΓ ⋅ ∇Γ = 0, which is a
well known property of classical surface curl and grad operators on the boundary of a Lipschitz
open set.

Moreover, if u ∈ H(curl,R3), we clearly have curl(u) ∈ H(div,R3), so that curlΓ(u̇) ∈
H−1/2([Γ]) whenever u̇ ∈ H−1/2(curlΓ, [Γ]). In other words, the surface curl operator maps
single traces to single traces.
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5.3 Surface Green’s formula

Recall that the trace operators πd ∶ H1(R3 ∖ Γ) → H
1/2(Γ), and πt ∶ H(curl,R3 ∖ Γ) →

H
−1/2(curlΓ,Γ) are onto by construction. An immediate consequence of (22) and (24) is the

following formula:

⟨⟨ṗ, curlΓ(v̇)⟩⟩ = ⟪v̇,∇Γ(ṗ)⟫× ∀ṗ ∈ H 1

2 (Γ) , ∀v̇ ∈ H− 1

2 (curlΓ,Γ) . (26)

This formula allows to extend the definition of surface differential operators to jump trace
spaces easily. Indeed we define ∇Γ ∶ H̃1/2(Γ) → H̃−1/2(curlΓ, [Γ]) as adjoint to curlΓ by the
formula

⟪v̇,∇Γu̇⟫× ∶= ⟨⟨u̇, curlΓv̇⟩⟩ ∀v̇ ∈H− 1

2 (curlΓ, [Γ]) , (27)

for all u̇ ∈ H̃1/2(Γ). This definition is valid because surface gradient maps single traces
to single traces, as proved above. In a similar manner we define a continuous operator
curlΓ ∶ H̃−1/2(curlΓ, [Γ]) → H̃−1/2([Γ]).
5.4 Summary: Commuting diagrams for trace spaces

The previous definitions and results allow to do vector calculus on the surface of multi-screens
in a way very similar to standard calculus on the surface of 2D manifolds. In particular, the
definitions and relationships of various trace spaces and trace operators may be summarised
by means of commutative diagrams.

Lemma 5.1 (Commuting diagram for volume and surface differential operators: multi-trace
case).
The volume and surface differential operators commute with the traces in the sense of the
following commuting diagram

H1(R3 ∖ Γ) ∇
Ð→ H(curl,R3 ∖ Γ) curl

Ð→ H(div,R3 ∖ Γ)
×××Öπd

×××Öπt
×××Öπn

H
+ 1

2 (Γ) ∇Γ

Ð→ H
− 1

2 (curlΓ,Γ) curlΓ
Ð→ H

− 1

2 (Γ)
Obviously, if ṗ ∈ H1/2([Γ]), there exists p ∈ H1(R3) such that πd(p) = ṗ. Then we have

∇p ∈ H(curl,R3), so that πt(∇p) = ∇Γ(ṗ) ∈ H−1/2(curlΓ, [Γ]). We prove in a completely
similar manner that, if u̇ ∈ H−1/2(curlΓ, [Γ]), then curlΓ(u̇) ∈ H−1/2([Γ]). The following
result summarises these two properties

Lemma 5.2 (Commuting diagram for volume and surface differential operators: single-trace
case).
The following diagram connecting traces and differential operators commutes:

H1(R3) ∇
Ð→ H(curl,R3) curl

Ð→ H(div,R3)
×××Öπd

×××Öπt
×××Öπn

H+
1

2 ([Γ]) ∇Γ

Ð→ H−
1

2 (curlΓ, [Γ]) curlΓ
Ð→ H−

1

2 ([Γ])
14



In addition, note that the jump operators introduced in (7) and (4.8) commute with the
surface differential operators defined above for jump trace spaces. This, along with Lemma
4.9 and [9, Corollary 6.6] proves the following lemma.

Lemma 5.3 (Commuting diagram for surface differential operators and jump operators).
Let ι denote canonical injections. Then the following diagram commutes, and the vertical
sequences are exact.

0 0 0

×××Ö
×××Ö

×××Ö
H+

1

2 ([Γ]) ∇ΓÐ→ H−
1

2 (curlΓ, [Γ]) curlΓ
Ð→ H−

1

2 ([Γ])
×××Ö ι

×××Ö ι
×××Ö ι

H
+ 1

2 (Γ) ∇Γ

Ð→ H
− 1

2 (curlΓ,Γ) curlΓ
Ð→ H

− 1

2 (Γ)
×××Ö[ ⋅ ]

×××Ö[ ⋅ ]
×××Ö[ ⋅ ]

H̃+
1

2 ([Γ]) ∇Γ

Ð→ H̃−
1

2 (curlΓ, [Γ]) curlΓ
Ð→ H̃−

1

2 ([Γ])
×××Ö

×××Ö
×××Ö

0 0 0

6 Boundary Value Problem

Now, we consider a classical electromagnetic scattering problem in R
3
∖ Γ namely the homo-

geneous Maxwell’s equations (1) with perfect conductor (PEC) boundary conditions, which
amounts to an exterior Dirichlet problem: Given some tangential multi-trace g ∈ H−1/2(curlΓ,Γ),
we wish to find a vector field u ∈Hloc(curl,R3

∖ Γ) that satisfies
curl curlu − κ2u = 0 in R

3
∖ Γ, πt(u) = g on Γ , (28)

and the Silver-Müller radiation conditions

lim
r→∞
∫
∂Br

∣curl(u) × nr − iκu∣2dσr = 0 . (29)

Although this is a fairly standard problem, existence and uniqueness of its solution is not
trivial due to the possibly highly irregular (non-Lipschitz) geometry under consideration here.
Fredholm’s alternative and Riesz-Schauder theory, that are key tools in the analysis of such
boundary value problems (see e.g. [17]), heavily rely on compact embedding results.

6.1 Restriction on the geometry

Unfortunately generic multi-screens can be very rugged and may thwart key technical argu-
ments linked with compact embeddings. Hence, we need to introduce slight restrictions on the
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geometries under consideration. In order to formulate this properly, we need an intermediate
definition borrowed from [21, Def.3.3].

Definition 6.1 (Cone with a tame base).
An open subset D of the unit sphere S

2 is said to be tame, if for every s ∈ D there exists an
open neighbourhood U ⊂ S2 of s such that U ∩D has only finitely many connected components,
which are simply connected and enjoy the Rellich compactness property (that is, the compact
embedding of H1 in L2). In this case, the set C (D) ∶= {τs ∣ τ ∈ (0,1) and s ∈ D} is called a
cone with a tame base D.

Guided by Theorem 3.6 of [21] that provides sufficient geometric conditions for the so-
called Maxwell compactness property, see Theorem 6.5 below, we shall make the following
hypothesis in the remainder of this section.

Assumption 6.2.

For every x ∈ Γ there exists an open neighbourhood Ux centred at x such that Ux ∖Γ has only
finitely many connected components that are Lipschitz diffeomorphic to some cone C (D) with
a tame base D.

This assumption begs for explanation. Let us show why it is mild and introduces only a
slight restriction in the present geometric setting. The interior of a multi-screen Γ, denoted
int(Γ), consists of those points x ∈ Γ such that Bx∩(R3∖Γ) has several connected components
for any ball Bx with sufficiently small radius centered at x. Resorting to the Lipschitz
partition R

3 = ∪nj=0Ωj from Definition 2.3, each connected component of Bx ∩ (R3 ∖ Γ) is
composed of intersections Bx ∩ Ωj . Since each Bx ∩ Ωj is Lipschitz diffeomorphic to the
intersection of Bx with a straight half-space, Assumption 6.2 is clear for interior points of a
multi-screen.

Next, denote by ∂rΓ the set of regular points of the boundary defined as those points
x ∈ ∂Γ ∶= Γ ∖ int(Γ) such that Bx ∩ Γ = Bx ∩ Σ for some ball Bx centred at x and some
standard Lipschitz screen Σ as defined in Definition 2.1. For such points Assumption 6.2
holds, as is detailed in Example 4.1 in [21].

From the previous discussion, we conclude that Assumption 6.2 induces restrictions on
the geometry only in the neighbourhood of non-regular points of the boundary, i.e., at points
in ∂sΓ ∶= ∂Γ ∖ ∂rΓ. In most relevant geometries, ∂sΓ merely is a finite set of points. To give
examples, we have marked these points in the geometries of Figure 1.

Fortunately, a rigorous justification of Assumption 6.2 is possible for an important class
of multi-screens.

Definition 6.3 (Piecewise smooth multi-screen).
We call a multi-screen piecewise smooth, if the adjacent Lipschitz domains Ωj, j = 0, . . . , n,
stipulated by Definition 2.3, are curved Lipschitz polyhedra and Γ∩∂Ωj is the union of smooth
faces of Ωj.

Usually, only piecewise smooth multi-screens are faced in engineering applications, where
computer aided design is used to create geometries. Examples are smooth sheets with piece-
wise smooth boundaries glued together at some edges, see Figure 1.

Recall that boundaries of curved Lipschitz polyhedra can locally be mapped to boundaries
of polyhedra by means of C∞-diffeomorphisms, see [13, p. 244]. Hence, if Γ is a piecewise
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irregular

apoints

Figure 1: Irregular points of several multi-screens. For the Möbius strip represented on the
right, the boundary does not have any irregular point so that Assumption 6.2 is satisfied.
Each of the other two geometries in the left have two irregular points.

smooth multi-screen, then for each x ∈ Γ there is a ball Bx centred at x and a Lipschitz
diffeomorphism Φ ∶ Bx → Φ(Bx) ⊂ R3 such that Φ(Γ∩Bx) is the union of finitely many (cut)
hyperplanes intersected with Φ(Bx): piecewise smooth multi-screens allow local flattening.
The next result then shows that piecewise smooth multi-screens accommodate Assumption
6.2 above.

Lemma 6.4.

If Γ is a piecewise smooth multi-screen, then it satisfies Assumption 6.2.

Proof. Take a x ∈ Γ, and write Bx for a small ball around x and Bj,x ∶= Bx ∩Ωj , where
the domains Ωj , j = 0, . . . , n, are those Lipschitz domains occurring in the Definition 2.3 of
a multi-screen. Thanks to the possibility of local flattening discussed above, we can take for
granted without loss of generality that every Ωj is a genuine polyhedron. Thus, Bj,x is a cone:
Bj,x = {s ⋅ τ,where s ∈ [0, r), τ ∈ U} for some small radius r > 0 and some subset U ⊂ S2. Now
we have to show that U is tame. Assume that Bx has been chosen small enough so that, in
a suitable local coordinate system with origin x, we have

rU = ∂Bx ∩Ωj = {y = (y1, y2, y3)T ∣ (y1, y2)T ∈ U2

x
, y3 < f(y1, y2) , ∥y∥ = r} ,

where f is a uniformly Lipschitz continuous function f ∶ U2
x
→ R, and U2

x
⊂ R

2 a suitable
neighbourhood of 0. This representation demonstrates that U is a Lipschitz subdomain of
S
2. For it the Rellich compactness property as introduced in Definition 6.1 is satisfied. ◻

6.2 Well posedness of the scattering problem

Now we recall and use a sophisticated compact embedding result by Picard, Weck and Witsch
[21, Thm. 3.6] adapted to possibly highly irregular geometries. Its statement relies on the
two Hilbert spaces

Et(Ω) ∶= ( closure of D(Ω)3 in H(curl,Ω) ) ∩ H(div,Ω) ,
En(Ω) ∶= H(curl,Ω) ∩ ( closure of D(Ω)3 in H(div,Ω) ) . (30)

for a bounded open set Ω ⊂ R
3. Both spaces above are closed in H(curl,Ω) ∩H(div,Ω)

equipped with the norm ∥ ⋅ ∥H(curl,Ω) + ∥ ⋅ ∥H(div,Ω).

17



Theorem 6.5 (Maxwell compactness property).
Let Ω ⊂ R3 be a bounded open set. If Assumption 6.2 holds, then both En(Ω) and Et(Ω) are
compactly embedded in L2(Ω)3.

Now we take Assumption 6.2 for granted, so that the theorem above is applicable with
Ω = B ∖Γ where B is any ball with sufficiently large radius. As a direct consequence we have
the well posedness of the scattering problem (28)-(29).

Proposition 6.6 (Existence and uniqueness of solutions of the exterior Dirichlet problem).
Assume that R3∖Γ is connected and that Assumption 6.2 holds. For any tangential multi-trace
g ∈ H−1/2(curlΓ,Γ) there exists a unique vector field u ∈Hloc(curl,R3 ∖ Γ) that satisfies

curl curlu − κ2u = 0 in R
3 ∖ Γ, πt(u) = g on Γ . (31)

and Silver-Müller radiation condition. Moreover, u depends continuously on g.

Proof. Using a lifting function provided by Lemma 7.1, the problem above is equivalent
to finding v ∈H(curl,R3∖Γ) such that πt(v) = 0 on Γ, v satisfies the Silver-Müller radiation
condition, and curl2 v−κ2v = f in R

3∖Γ for some suitable compactly supported f ∈ L2(R3)3.
According to [21, Theorem 2.10], uniqueness of the solution also implies existence and con-
tinuous dependency. Hence, the proposition will be established, if we can prove that there is
uniqueness of the solution.

Assume that u is solution of Problem (31) with g = 0. To prove that u = 0 we simply
reproduce a very classical argument of scattering theory [10, Thm. 6.11]. For sufficiently large
r > 0, let Br refer to the open ball of radius r, and Ωr = Br ∖ Γ. Applying Green’s formula
(13) and using that curl2 u − κ2u = 0 in Ωr, we obtain

∫
Ωr

∣curl(u)∣2 − κ2∣u∣2 dx = ∫
∂Br

u × curl(u) ⋅ nr dσr +∫
Ωr

u ⋅ (curl2 u − κ2u)dx

= ∫
∂Br

curl(u) × nr ⋅ udσr

Ô⇒ Im{∫
∂Br

curl(u) × nr ⋅ udσr} = 0

(32)

In the calculus above nr and σr respectively are the outgoing normal to Br, and the surface
Lebesgue measure of ∂Br. Besides we have

∫
∂Br

∣curl(u) × nr − iκu∣2dσr = ∫
∂Br

∣curl(u) × nr ∣2 + κ2∣u∣2dσr

+ 2κIm{∫
∂Br

curl(u) × nr ⋅ udσr}
(33)

Plugging the results of (32) into (33), and using Silver-Müller’s radiation condition, we deduce
that limr→∞ ∫∂Br

∣u∣2dσr = 0. This in turn implies that u = 0 in R
3
∖ Γ according to Rellich’s

Lemma [10, Lemma 2.12]. ◻

Remark 6.7. We emphasise that Theorem 6.5, and hence Assumption 6.2, is not required in
Section 7 and 8 below that establish various results on layer potentials (such as representation
formula, jump formula) associated to Maxwell’s equations. It will be essential in Section 9,
though.
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7 Boundary Integral Equation

In the remaining of this article we will focus on boundary integral formulations of the scatter-
ing problem (28)-(29). Since representation formulas are a key stepping stone in the derivation
of boundary integral equations, we start by deriving them for solutions of the homogeneous
Maxwell equations (1) in the exterior of the multi-screen Γ. Our approach employs distribu-
tional calculus and takes the cue from [7, Section 4] and [4, Section 3.2]. A key ingredient
are traces associated with the 2nd-order Maxwell operator, corresponding to Dirichlet and
Neumann traces for scalar 2nd-order operators: for sufficiently smooth vector fields they are
defined as

γt(u) ∶= πt(u) and γr(u) ∶= πt(curl(u) ) . (34)

Next, we write curl2 ∶= curl curl, and introduce the Hilbert space H(curl2,R3 ∖ Γ) ∶= {v ∈
H(curl,R3∖Γ) ∣ curl2(v) ∈ L2(Γ)3}, equipped with the natural norm ∑2

j=0 ∥curlj v∥L2(R3∖Γ).

Then γt, γr ∶ H(curl2,R3 ∖ Γ) → H
−1/2(curlΓ,Γ) are clearly continuous. Moreover, they are

surjective:

Lemma 7.1.

The operators γt, γr ∶ H(curl2,R3 ∖ Γ) → H
−1/2(curlΓ,Γ) both admit a continuous right-

inverse.

Proof. We provide the proof for γr, since the proof for γt may follow the sames lines
and is actually slightly simpler. For any given u̇ ∈ H−1/2(curlΓ,Γ), let Ψ(u̇) refer to the
minimal-norm representative of u̇ (see the proof of Proposition 4.2). Then u̇ ↦ −curl ⋅Ψ(u̇)
is the right inverse we are looking for. ◻

7.1 Representation formulas

Next, we establish a representation formula for radiating solutions of the homogeneous Maxwell
equations (1) in the exterior of a multi-screen Γ. By “radiating” we mean that the Silver-
Müller radiation conditions at∞ are satisfied [10, Definition 6.6]. Pick any radiating function
u ∈ H(curl2,R3

∖ Γ) that satisfies curl curlu − κ2u = 0 in R
3
∖ Γ. In this case, for any

v ∈Hloc(curl2,R3
∖ Γ), we find the following Green’s formula

∫
R3∖Γ

curl(curl(u)) ⋅ v − u ⋅ curl(curl(v))dx= ⟨⟨γr(u), γt(v) ⟩⟩× − ⟨⟨γr(v), γt(u) ⟩⟩× (35)

On the other hand, since curl curlu−κ2u = 0 in R
3
∖Γ, we deduce that div(u) = 0 in R

3
∖Γ.

As a consequence, for any v ∈ H1(R3
∖ Γ), we have

∫
R3∖Γ

u ⋅ ∇v dx= ⟨⟨πd(v), πn(u)⟩⟩= 1

κ2
⟨⟨πd(v), πn(curl2 u)⟩⟩

= 1

κ2
⟨⟨γd(v), curlΓ(γr(u))⟩⟩ .

(36)

Now recall that the vector Laplace operator is given by −∆ = curl(curl) − ∇(div). Using
this formula as well as (35)-(36), we conclude that for any u ∈ H(curl2,R3

∖ Γ) satisfying
curl(curl u) − κ2u = 0 in R

3
∖Γ, the following holds in the sense of distributions in R

3 (and
not just R3

∖ Γ!)

−∆u − κ2u = −γ′
r
(γt(u)) − γ′t(γr(u)) + κ−2∇(γ′d ⋅ curlΓ(γr(u)) ) . (37)
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In the equation above the operators γ′
d
∶ H−1/2(Γ)→ H1

loc
(R3 ∖Γ)′, and γ′

t
∶ H−1/2(curlΓ,Γ)→

Hloc(curl,R3 ∖ Γ)′ and γ′
r
∶ H−1/2(curlΓ,Γ) → Hloc(curl2,R3 ∖ Γ)′ are defined as formal

adjoints of the trace operators γd, γt and γr:

⟨γ′
d
ṗ, ϕ⟩ = ⟨⟨ṗ, γdϕ⟩⟩ ∀ϕ ∈ D(R3) ,

⟨γ′∗u̇,ϕ⟩ = ⟪u̇, γ∗ϕ⟫× ∀ϕ ∈ (D(R3))3 ,∗ = t,r .

Here ⟨⋅, ⋅⟩ designates the L2(R3) duality pairing between D(R3) and D
′(R3) (or their vector-

valued counterparts). Note that the spaces H1

loc
(R3
∖Γ)′,Hloc(curl,R3

∖Γ)′ andHloc(curl2,R3
∖

Γ)′ are naturally embedded in the spaces of distributions D
′(R3) and (D ′(R3))3, respectively.

Thus, the right hand-side of Expression (37), and in particular the ∇ operator, can be under-
stood in the sense of distributions D

′(R3). As the multi-screen Γ is assumed to be bounded,
this right-hand side is clearly a distribution with bounded support.

Remark 7.2. Let us comment on how to read γ′
t
(γr(u)). Similar comments will also apply

to γ′
r
(γt(u)). Consider an arbitrary element u̇ ∈ H−1/2(curlΓ, [Γ]). For any ϕ ∈ H1(R3

∖ Γ)
and any constant vector v ∈ C3, we have ϕv ∈H(curl,R3

∖ Γ), so that

(ϕ,v)↦ ⟪u̇, γt(ϕv)⟫× (38)

is a continuous bilinear form over H1(R3
∖Γ)×C3. In addition, we obviously have ⟪u̇, γt(ϕv)⟫× =

0 whenever ϕ ∈ H1

0,Γ(R3), so that (38) actually induces a bilinear form defined over H1/2(Γ)×
C
3, since by Definition 3.1 H

1/2(Γ) ∶= H1(R3
∖Γ)/H1

0,Γ(R3). From this discussion, we conclude

that γ′
t
(γr(u)) is a distribution with values in C

3 i.e. an element of (D ′(R3))3. As such, it
can legitimately be considered as a (distributional) vector field.

Let Gκ(x) denote the radiating fundamental solution for the Helmholtz equation with wave
number κ, i.e. the unique distribution over R3 satisfying −∆Gκ − κ

2
Gκ = δ0 and Sommerfeld

radiation conditions at ∞ (δ0 is the Dirac distribution centred at 0). Since the right-hand
side in (37) could be identified as a distributional vector field supported on Γ, the convolution
of Gκ with each term of this right-hand side makes sense, see [23, Def. 6.36], and this leads
to an explicit expression for u, the multi-screen version of the Stratton-Chu representation
formula [10, Theorem 6.2], [7, Formula (24)].

Proposition 7.3 (Representation formula, cf. [9, Proposition 8.2]).
Assume that u ∈ H(curl,R3

∖ Γ) is a radiating vector field satisfying curl2 u − κ2u = 0 in
R
3
∖ Γ. Then it can be represented as

u(x) = DLκ(γt(u) )(x) + SLκ(γr(u) )(x) ∀x ∈ R3
∖ Γ

with DLκ(u̇) ∶= −Gκ ∗ γ
′
r
(u̇) (39a)

SLκ(u̇) ∶= −Gκ ∗ γ
′
t
(u̇) + κ−2∇(Gκ ∗ γ

′
d
⋅ curlΓ(u̇) ) . (39b)

In the sequel, the two potential operators DLκ and SLκ will be called double and single layer
potentials, respectively [7, Formulas (27) & (28)].

7.2 Continuity and jump formula for layer potentials

In this paragraph we will establish continuity properties for layer potentials, and study their
behaviour across the multi-screen.
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Lemma 7.4 (Continuity of the single layer potential, cf. [9, Proposition 8.3]).
The single layer potential SLκ maps continuously H

−1/2(curlΓ, [Γ]) into Hloc(curl,R3).
Proof. According to the discussion above the distributions γ′

t
(u̇) and γ′

d
⋅ curlΓ(u̇),

respectively, belong to (H1

loc
(R3)′)3 and H1

loc
(R3)′. Besides Gκ∗ is pseudo-differential operator

of order -2 on R
3 mapping continuously H1

loc
(R3)′ → H1

loc
(R3) [24, Theorem 3.1.2]. Thus we

conclude that Gκ ∗ γ
′
t
(u̇) ∈ (H1

loc
(R3))3 ⊂ Hloc(curl,R3). We also deduce that Gκ ∗ γ

′
d
⋅

curlΓ(u̇) ∈ H1

loc
(R3) so that ∇(Gκ ∗γ

′
d
⋅ curlΓ(u̇) ) ∈Hloc(curl,R3), which concludes the proof.

. ◻

An immediate consequence of the previous result is that [γt] ⋅ SLκ(u̇) = 0 for any u̇. Now let
us establish a technical lemma that will help handle differential and trace operators.

Lemma 7.5. For any u̇ ∈ H−1/2(curlΓ, [Γ]) we have div(γ′
t
(u̇)) = −γ′

d
⋅ curlΓ(u̇), where the

operator div should be understood in the sense of distributions on R
3.

Proof. Take any element ϕ ∈ D(R3). The very definition of the divergence operator in the
distributional sense shows that ⟨ϕ,div(γ′

t
(u̇) )⟩ ∶= −⟨∇ϕ, γ′

t
(u̇)⟩, where the pairing ⟨⋅, ⋅⟩ refers

to the duality between D(R3) and D
′(R3). Now, according to the definition of ∇Γ = γt ⋅ ∇,

and the surface Green’s formula (26), we have

⟨ϕ,div(γ′
t
( u̇ ) )⟩ = −⟪u̇, γt(∇ϕ)⟫× = −⟪u̇,∇Γγd(ϕ)⟫×

= −⟨⟨γd(ϕ), curlΓ(u̇) ⟩⟩ = −⟨ϕ, γ′d ⋅ curlΓ(u̇) ⟩ ∀ϕ ∈ D(R3) .
◻

The next lemma exhibits useful identities linking both potential operators SLκ and DLκ from
(39).

Lemma 7.6.

For any u̇ ∈ H−1/2(curlΓ, [Γ]), we have divDLκ(u̇) = 0 and div SLκ(u̇) = −κ−2γ′d ⋅ curlΓ(u̇), as
well as curl SLκ(u̇) = DLκ(u̇) and curl DLκ(u̇) = −γ′t(u̇) + κ2SLκ(u̇), where the operators
div and curl are to be understood in the sense of distributions on R

3.

Proof. For anyϕ ∈ (D(R3))3, and any u̇ = γt(u) ∈ H−1/2(curlΓ, [Γ]), we have ⟨ϕ, γ′r(γt(u))⟩ =⟪γt(u), γr(ϕ)⟫× = ⟪γt(u), γt(curlϕ)⟫×, which shows that

γ′
r
(u̇) = curl γ′

t
(u̇) (40)

in the sense of D
′(R3). From this, and standard properties of convolution (see [23, Thm.

6.37] for example), we obtain

DLκ(u̇) = −curl (Gκ ∗ γ
′
t
(u̇) ) (41)

in the sense of distributions on R
3. Further, (40) directly implies div γ′

r
(γt(u)) = 0, and also

curl SLκ(u̇) = DLκ(u̇). Making use of Lemma 7.5, and standard properties of convolution,
we obtain

div SLκ(u̇) = −Gκ ∗ (div γ′t(u̇) ) + κ−2∆(Gκ ∗ γ
′
d
⋅ curlΓ(u̇) )

= Gκ ∗ γ
′
d
⋅ curlΓ(u̇) + κ−2∆(Gκ ∗ γ

′
d
⋅ curlΓ(u̇) )

= κ−2(∆ + κ2)(Gκ ∗ γ
′
d
⋅ curlΓ(u̇) ) = −κ−2γ′d ⋅ curlΓ(u̇)
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To prove the last identity, we take the curl of Identity (41), standard properties of convolution
and Lemma 7.5, which yields

curl DLκ(u̇) = −curl curl (Gκ ∗ γ′t(u̇) ) = (∆ −∇div)(Gκ ∗ γ′t(u̇) )
= −γ′

t
(u̇) − κ2Gκ ∗ γ′t(u̇) − ∇(Gκ ∗ div γ′t(u̇) ) = −γ′t(u̇) + κ2SLκ(u̇) .

◻
These results show in particular that the potential operators naturally yield radiating

solutions of the homogeneous Maxwell equations (1) in R
3 ∖ Γ, cf. [7, Formula (29)].

Corollary 7.7 (Potentials solve homogeneous Maxwell’s equations).
The double layer potential DLκ maps continuously H

−1/2(curlΓ, [Γ]) into Hloc(curl,R3 ∖
Γ). Moreover we have curl2 SLκ(u̇) − κ2SLκ(u̇) = −γ′t(u̇) and curl2 DLκ(u̇) − κ2DLκ(u̇) =
−curl(γ′

t
(u̇) ) in the sense of distributions in R

3. In addition DLκ(u̇),SLκ(u̇) both satisfy
the Silver-Müller radiation conditions at ∞ for any u̇ ∈ H−1/2(curlΓ,Γ).

From this we learn that DLκ(u̇) and SLκ(u̇) are continuous mappings from H
−1/2(curlΓ,Γ)

into H(curl2,R3 ∖Γ). Now we will derive jump formulas for potential operators across Γ. cf.
[7, Theorem 7]. Lemma 7.4 already establishes that SLκ(u̇) does not admit any tangential
jump. The next proposition provides sharper results.

Proposition 7.8 (Jump relations, cf. [9, Proposition 8.4]).

For all u̇ ∈ H− 1

2 (curlΓ,Γ) we have

[γt] ⋅DLκ(u̇) = [u̇] , [γt] ⋅ SLκ(u̇) = 0 ,
[γr] ⋅DLκ(u̇) = 0 , [γr] ⋅ SLκ(u̇) = [u̇] .

Proof. As mentioned above, Lemma 7.4 directly implies [γt] ⋅ SLκ(u̇) = 0. In addition
Proposition 7.6 shows that curl DLκ(u̇) = κ2SLκ(u̇) in R

3
∖ Γ, so we conclude in particular

that [γr] ⋅DLκ(u̇) = κ2[γt] ⋅SLκ(u̇) = 0. Now there only remains to prove that [γr] ⋅SLκ(u̇) =[u̇] since this will automatically imply [γt] ⋅DLκ(u̇) = [u̇] according to Proposition 7.6.
Set ψ ∶= SLκ(u̇) and pick an arbitrary smooth test function ϕ ∈ (D(R3))3. Since curl2ψ−

κ2ψ = 0 in R
3
∖ Γ, see Corollary 7.7 above, we can apply (35), which yields

⟨curl curlψ − κ2ψ,ϕ⟩ = ⟪γr(ϕ), γt(ψ)⟫× + ⟪γt(ϕ), γr(ψ)⟫×
= ⟪γt(ϕ), γr(ψ)⟫× .

In the calculus above, ⟨⋅, ⋅⟩ is the duality pairing between D(R3)3 and (D ′(R3))3. We have also
used the fact that [γt(ψ)] = 0, as γr(ϕ) ∈ H−1/2(curlΓ, [Γ]). In addition, applying directly
the result of Corollary 7.7 yields ⟨curl2ψ−κ2ψ,ϕ⟩ = −⟪u̇, γt(ϕ)⟫×. Hence, we conclude that

⟪(u̇ − γr(ψ)), γt(ϕ)⟫× = 0 ∀ϕ ∈ (D(R3))3 .
It remains to show that any vector single trace v̇ ∈H−1/2(curlΓ, [Γ]) is the limit (in the sense
of H−1/2(curlΓ, [Γ])) of a sequence of traces of the form γt(ϕ),ϕ ∈ D(R3)3. In light of the
continuity of the trace operator γt, it is sufficient to prove density of D(R3)3 in H(curl,R3),
which is a classical result (see for example [19, Chap.3]). ◻

The jump relations above admit the same form as in [9, Prop. 8.5]. The next result shows
that vector single traces do not radiate when taken as arguments of the potential operators.
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Lemma 7.9 (Kernels of potentials, cf. [9, Lemma 8.6]).

Ker(DLκ) = Ker(SLκ) =H−1/2(curlΓ, [Γ]) .
Proof. We will prove the result for SLκ, since the same arguments will confirm the result

for DLκ. Take any u̇ ∈ H−1/2(curlΓ,Γ) such that SLκ(u̇) = 0. Applying the jump relations
of Proposition 7.8, we obtain [γt(u̇)] = SLκ(u̇) = 0, which implies u̇ ∈ H−1/2(curlΓ, [Γ])
according to Proposition 4.5.

Now take an arbitrary u̇ ∈ H−1/2(curlΓ, [Γ]), and consider any x ∈ R
3 ∖ Γ. Denote

Gκ,x(y) ∶= Gκ(x − y). For any constant vector v ∈ C3 the vector field vGκ,x is smooth in
the neighbourhood of Γ, so that γt(vGκ,x) ∈ H−1/2(curlΓ, [Γ]). As a consequence of the po-
larity stated in Proposition 4.5, we have v ⋅ (Gκ ∗ γ

′
t
(u̇))(x) = ⟨⟨u̇, γt(vGκ,x)⟩⟩× = 0 for any

v ∈ C3, and x ∈ R3
∖Γ. This shows that Gκ∗γ

′
t
(u̇) = 0 in R

3
∖Γ. In a similar manner we prove

that ∇(Gκ∗γ
′
d
curlΓ(u̇)) = 0 in R

3
∖Γ. Since SLκ(u̇) = 0 in R

3
∖Γ in the sense of distributions,

and SLκ(u̇) ∈ (L2(R3))3, we finally conclude that SLκ(u̇) = 0 in R
3. ◻

According to Lemma 4.7 the jump space H̃−1/2(curlΓ, [Γ]) defined by (20) can be considered
as a quotient space. Therefore the above lemma shows that the potential operators naturally
induce injective continuous maps defined on the space of jumps:

SLκ,DLκ ∶ H̃
− 1

2 (curlΓ, [Γ])→Hloc(curl2,R3
∖ Γ) .

For the sake of simplicity, we use the same notation for these quotient maps. This should not
lead to any confusion.

7.3 Electric Field Integral Equation (EFIE)

In this paragraph, we come back to the boundary value problem (28)-(29) and show how to
reformulate it as a boundary integral equation by means of the layer potentials (39). For
this, assuming that u is solution to the scattering problem, we use the integral representation
formula from Proposition 7.3 that gives us

γt ⋅ SLκ(γr(u)) = γt ⋅ SLκ( [γr(u)] ) = f ∶= g − γt ⋅DLκ(g) , (42)

where the first equality is a consequence of Lemma 7.9. According to the jump relations
given in Proposition 7.8 we have f ∈ H−1/2(curlΓ, [Γ]). Let us consider p = [γr(u)] ∈
H̃−1/2(curlΓ, [Γ]) as unknown in the equation above. Thanks to the representation formula
of Proposition 7.3, determining u boils down to determining p for which we will derive a
boundary integral equation. Since (42) is posed in H−1/2(curlΓ, [Γ]), we obtain an equivalent
variational form by testing with arbitrary functions in H̃−1/2(curlΓ, [Γ]):

⎧⎪⎪⎨⎪⎪⎩
Find p ∈ H̃−1/2(curlΓ, [Γ]) such that

⟪γt ⋅ SLκ(p),q⟫× = ⟪f ,q⟫× ∀q ∈ H̃−1/2(curlΓ, [Γ]) . (43)

This is our generalisation of the so-called electric field integral equation (EFIE) [7, Section 7.2].
Analogous to [7, Formula (36)], the bilinear form in (43) can be split into two parts. Indeed
plugging the definition of the single layer potential provided by Proposition 7.3, as well as
the surface Green’s formula (26), we obtain the important identity

⟪γt ⋅ SLκ(p),q⟫× =
κ−2 ⟨⟨γd ⋅ Gκ ∗ γ

′
d
(curlΓ p), curlΓ q⟩⟩ − ⟪γt ⋅ Gκ ∗ γ

′
t
(p),q⟫

×
.

(44)

23



Based on this expression we give an explicit integral representation of the EFIE bilinear form.
Let Γj , j = 0, . . . n, be the subsets of a decomposition of Γ = ∪nj=0Γj where Γj = Γ ∩ ∂Ωj as in

Definition 2.3. Take two arbitrary functions p,q ∈ H−1/2(curlΓ,Γ) that are traces of smooth
vector fields u,v. As in Section 4.4, we consider uj = u∣Ωj

, vj = v∣Ωj
and pj = (nj ×uj ∣Γj

)×nj

and qj = (nj × vj ∣Γj
) × nj . With these notations we have

⟪γt ⋅ SLκ(p),q⟫× =
n

∑
j=0

n

∑
k=0
∫
Γj

∫
Γk

Gκ(x − y)(κ−2 curlΓj
pj(x) curlΓk

qk(y)

−(nj(x) × pj(x)) ⋅ (nk(y) × qk(y)))dσ(x)dσ(y)

(45)

Now, let us focus on the case of a standard orientable Lipschitz screen as in Sections 4.4.2
and 4.6.2. The above expression yields the customary definition of the EFIE operator for
screens in the case where Γ is a standard Lipschitz screen. Indeed, according to Lemma 4.9,
Proposition 7.8, Lemma 7.9, and (42), the identity (45) remains unchanged when adding any
element of H−1/2(curlΓ, [Γ]) to p,q. Moreover, in the case of standard Lipschitz screens, the
space H−1/2(curlΓ, [Γ]) can be identified with {(v̇, v̇) ∣ v̇ ∈H−1/2(curlΓ,Γ)}, see discussion in
Section 4.6.

As a consequence, for each p,q in (45), we can choose representatives of the form p =
(p0,p1), q = (q0,q1) with p1 = −p0 and q1 = −q0, adding elements of H−1/2(curlΓ, [Γ]), if
necessary. This implies n0 × p0 = n1 × p1 and n0 × q0 = n1 × q1. So in the case of a standard
Lipschitz screen, Expression (45) contains four terms that are all equal, which yields

⟪γt ⋅ SLκ(p),q⟫× = 4∫
Γ
∫
Γ

Gκ(x − y)(κ−2 curlΓ p0(x) curlΓ q0(y)
−(n0(x) × p0(x)) ⋅ (n0(y) × q0(y)))dσ(x)dσ(y) .

8 An Equivalent Norm on Jump Spaces

Since jump traces provide the natural variational space of the EFIE integral equation, as this
appears in Formulation (43), we will dedicate the present section to a more detailed study of
this space. To begin with, the next result shows that the operators SLκ with purely imaginary
κ induces a scalar product on H̃−1/2(curlΓ, [Γ]).
Lemma 8.1 (Coercivity of single layer potential, cf. [9, Proposition 8.7]).
With ı ∶=

√
−1, the sesquilinear form (p,q)↦ ⟪γt ⋅ SLı(p),q⟫× provides an inner product on

H̃−1/2(curlΓ, [Γ]). In particular, there exists a constant C > 0 such that

⟪p, γt ⋅ SLı(p)⟫× ≥ C ∥p∥2H̃−1/2(curlΓ,[Γ]) ∀p ∈ H̃−1/2(curlΓ, [Γ]) .
Proof. Continuity of the above sesquilinear form is a direct consequence of the continuity

of the map SLı ∶ H̃
−1/2(curlΓ, [Γ]) → H(curl,R3). Take any p,q ∈ H̃−1/2(curlΓ, [Γ]). Since

curl2 SLı(q) + SLı(q) = 0 in R
3
∖ Γ and q = [γr] ⋅ SLı(q), Green’s Formula (13) yields

⟪γt ⋅ SLı(p),q⟫× = ⟪γt ⋅ SLı(p), γr ⋅ SLı(q)⟫×
= ∫

R3∖Γ
curlSLı(p) ⋅ curlSLı(q) + SLı(p) ⋅ SLı(q)dx (46)
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Symmetry clearly follows from this expression, so we only need to check coercivity. The
expression above also implies that

⟪γt ⋅ SLı(p),p⟫× = ∥SLı(p)∥2
H(curl,R3∖Γ)

(47)

Temporarily set Ψ ∶= SLı(p) and observe that ∥curl(Ψ)∥
H(curl,R3∖Γ) = ∥Ψ∥H(curl,R3∖Γ), since

SLı(p) solves the homogeneous Maxwell equations and enjoys an exponential decay towards
∞. Continuity of the trace operator γt and of the jump operator show that, for some constant
C > 0,

∥ [γr(v)] ∥H̃−1/2(curlΓ,[Γ]) ≤ C∥curl(v)∥H(curl2,Γ) ∀v ∈H(curl2,R3
∖ Γ) . (48)

Since the jump formulas of Proposition 7.8 yield that p = [γr(Ψ)], (48) together with (47)
concludes the proof. ◻

As indicated by the notation H̃−
1

2 (curlΓ,Γ), usually (jump) spaces of tangential traces of
vector fields in H(curl,Ω) on ∂Ω or a standard Lipschitz screen Γ ⊂ ∂Ω are introduced as
graph space

H−
1

2 (curlΓ,Γ) ∶= {v ∈ (H1/2
× (Γ))′ ∣ curlΓv ∈ H̃− 1

2 (Γ)} , (49)

equipped with the corresponding graph norm (notations will be explained shortly). In this
section we demonstrate that (49) carries over to multi-screens. As a by-product we will derive
a continuity result for γt ⋅ Gκ ∗ γ

′
t
.

As a tool, consider the following tangential trace space

H
1

2

× (Γ) ∶= πt( (H1(R3))3 ) endowed with

∥u̇∥
H

1/2
× (Γ)

∶= inf { ∥u∥H1(R3)3 ∣ πt(u) = u̇, u ∈ (H1(R3))3 } .
(50)

This is clearly a Banach space, so we may consider its dual H̃
−1/2
× (Γ) ∶= (H1/2

× (Γ))′ and equip it

with the dual norm. In what follows, the duality pairing between H
1/2
× (Γ) and H̃

−1/2
× (Γ) shall

be denoted ⟨⋅, ⋅⟩. Observe that ∥v∥H(curl,R3) ≤ C∥v∥H1(R3)3 ∀v ∈ H1(R3) for some constant

C > 0. As a consequence for any u̇ ∈ H̃−1/2(curlΓ, [Γ]), and any v̇ ∈H1/2
× (Γ), we have

∣ ⟪v̇, u̇⟫× ∣ ≤ C ∥u̇∥H̃−1/2(curlΓ,[Γ])∥v∥H(curl,R3) ≤ C ∥u̇∥H̃−1/2(curlΓ,[Γ])∥v∥H1(R3)3

and the inequality above holds for any v ∈ (H1(R3))3 that satisfies πt(v) = v̇. This clearly

establishes that H̃−1/2(curlΓ, [Γ]) ⊂ H̃−1/2× (Γ) with continuous embedding.

It turns out that the second part of the EFIE bilinear form (44) is continuous on H̃
−1/2
× (Γ)×

H̃
−1/2
× (Γ).

Lemma 8.2 (Continuity of vector single layer potential, cf. [7, Corollary 3]).
The mapping (p,q)↦ ⟪γt ⋅ Gκ ∗ γ

′
t
(p),q⟫× that is a priori well defined for p,q ∈ H̃−1/2(curlΓ, [Γ])

can be extended to a continuous bilinear form on H̃
−1/2
× (Γ).
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Proof. As discussed in Remark 7.2, for any u̇ ∈ H−1/2(curlΓ,Γ) we have γ′t(u̇) ∈ (H1

loc
(R3)′)3.

More precisely, what precedes shows that, for any bounded open ball Br ⊂ R3 centred at 0
with radius r > 0 large enough to guarantee Γ ⊂ Br, there exists a constant C > 0 such that

∣⟨γt(v), u̇⟩∣ ≤ C ∥u̇∥
H
−1/2
× (Γ)

∥γt(v)∥
H

1/2
× (Γ)

≤ C ∥u̇∥
H
−1/2
× (Γ)

∥v∥H1(Br)3 ∀v ∈ (H1

loc
(R3))3 .

As a consequence u↦ γ′
t
(u) induces a continuous linear mapping fromH

−1/2
× (Γ) into (H1

loc
(R3)′)3.

In addition, the convolution operator Gκ∗ maps continuously H1

loc
(R3)′ into H1

loc
(R3), which

finally proves that u↦ γt(Gκ ∗ γ′t(u)) maps continuously H
−1/2
× (Γ) into H

1/2
× (Γ). ◻

Since the operator γt ⋅ Gκ ∗ γ
′
t
is close to the classical Dirichlet trace of the single layer

operator, it inherits its positivity properties.

Lemma 8.3 (Coercivity of vector single layer boundary integral operator, cf. [7, Lemma 8]).

The sesquilinear form (p,q)↦ ⟪γt ⋅ Gı ∗ γ
′
t
(p),q⟫× defines an equivalent norm on H̃

−1/2
× (Γ):

there exists a constant C > 0 such that

∣ ⟪γt ⋅ Gı ∗ γ
′
t
(p),p⟫

×
∣ ≥ C ∥p∥2

H̃
−1/2
× (Γ)

∀p ∈ H̃−1/2× (Γ) .
Proof. The only thing to be checked here is coercivity. We follow the proof of [5,

Theorem 4]. Take any p ∈ H̃−1/2× (Γ). Let ej , j = 1,2,3, stand for the canonical basis vectors of
R
3. The map u↦ ⟨p, πt(uej)⟩ is continuous on H1(R3) and vanishes whenever u ∈ H1

0,Γ(R3).
So it induces an element pj ∈ H̃−1/2([Γ]). This establishes a continuous embedding of H̃

−1/2
× (Γ)

into H̃−1/2([Γ])×H̃−1/2([Γ])×H̃−1/2([Γ]). Continuity implies that there exists a constant C > 0
such that

∥p∥2
H
−1/2
× (Γ)

≤ C
3

∑
j=1

∥pj∥2
H̃−1/2([Γ])

. (51)

We can abbreviate this decomposition by writing πt(p) = p1e1 + p2e2 + p3e2. Plugging this
decomposition into the sesquilinear form mentioned in the statement of the lemma we obtain
the decomposition

⟪γt ⋅ Gı ∗ γ
′
t
(p),p⟫

×
=

3

∑
j=1

⟪γd ⋅ Gı ∗ γ
′
d
(pj), pj⟫ . (52)

In [9, Proposition 8.7] we showed that there exists a constant C > 0 such that ⟨⟨γd ⋅ Gı ∗

γ′
d
(q), q⟩⟩ ≥ C∥q∥2

H̃−1/2([Γ])
. This together with (52) and (51) leads to the conclusion of the

proof. ◻

Proposition 8.4 (Jump space as graph space).
There exist two constants C± > 0 such that, for any p ∈ H̃−1/2(curlΓ, [Γ]), we have

C−∥p∥2
H̃−1/2(curlΓ,[Γ])

≤ ∥p∥2
H̃
−1/2
× (Γ)

+ ∥curlΓ(p)∥2H̃−1/2([Γ]) ≤ C+∥p∥2H̃−1/2(curlΓ,[Γ]) .
Thus, we can identify, algebraically and topologically,

H̃−1/2(curlΓ, [Γ]) = {p ∈ H̃−1/2× (Γ) ∣ curlΓp ∈ H̃−1/2([Γ])} .
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Proof. The continuous embedding H̃−1/2(curlΓ, [Γ]) ⊂ H̃−1/2× (Γ) is an immediate conse-

quence of the continuous embeddingH
1/2
× (Γ) ⊂H− 1

2 (curlΓ, [Γ]), which follows from (H1(R3))3 ⊂
H(curl,R3). Moreover, from Lemma 5.3 we conclude curlΓH̃

−1/2(curlΓ, [Γ]) ⊂ H̃−1/2([Γ]).
To confirm the reverse embedding {p ∈ H̃−1/2× (Γ) ∣ curlΓp ∈ H̃−1/2([Γ])} ⊂ H̃−1/2(curlΓ, [Γ])
we have to show that

{ H(curl,R3) → C ,

q ↦ ⟪p, πt(q)⟫× , (53)

is continuous, if p ∈ H̃−1/2× (Γ) and curlΓp ∈ H̃−1/2([Γ]). This can be inferred from the regular
decomposition of H(curl,R3), see [1, Lemma 3.5] or [15, Lemma 2.4], which guarantees a
stable decomposition

H(curl,R3) = (H1(R3))3 +∇H1(R3) .
Plugging the resulting splitting q = q⊥+∇w, q⊥ ∈ (H1(R3))3, w ∈ H1(R3), into (53), and using
Green’s Formula (26), we get

⟪p, πt(q)⟫× = ⟪p, πt(q⊥)⟫× + ⟪curlΓ(p), πd(w)⟫
which is obviously continuous. ◻

9 Generalised G̊arding Inequality for EFIE bilinear form

From (44) it is obvious that the EFIE bilinear form cannot be coercive on H̃−
1

2 (curlΓ,Γ),
because curlΓ features a kernel of infinite dimension. This compounds the difficulties of the
analysis of the variational EFIE (43) compared to the corresponding 1st-kind single layer BIE
for scalar problems. If Γ is the boundary of a domain [7, Lemma 10], [16, Section 3] or a
simple screen [4, Theorem 3.4], this key challenge has been successfully tackled by showing a
generalised G̊arding inequality, sometimes called “T-coercivity”. Its proof in [4] relies on an

L2(Γ)-orthogonal Hodge decomposition of H̃−
1

2 (curlΓ,Γ), which is not available in a multi-
screen setting. Yet, the proof in [7] needs only a regular vector potential in the volume, [7,
Lemma 1]. This perfectly fits our policy of understanding function spaces on Γ from the
volume R

3 ∖ Γ. Thus, in this section we exploit vector potential liftings in R
3 ∖ Γ to analyse

the EFIE bilinear form on multi-screens. We shall make use of the following spaces, cf. (30),

E ∶=H(curl,B ∖ Γ) ∩H(div,B ∖ Γ) , (54a)

En ∶={v ∈ E ∣ πn(v) = 0 on Γ and v ⋅ n = 0 on ∂B } (54b)

Et ∶={v ∈ E ∣ πt(v) = 0 on Γ and v × n = 0 on ∂B } (54c)

Et ∶={v ∈ Et ∣ curl(v) = 0 and div(v) = 0} , (54d)

all equipped with the graph norm ∥⋅∥
E
of E. Here, B ⊂ R3 is a fixed ball sufficiently large to

satisfy Γ ⊂ B.
Throughout this section we consider only multi-screens, for which Assumption 6.2
holds, which puts the Maxwell compactness property of Theorem 6.5 at our dis-
posal.
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9.1 Vector potential lifting operator

An important consequence of the Maxwell compactness property asserted in Theorem 6.5
(together with Assumption 6.2) is the finite dimensionality of the co-homology space Et. A
more precise description is given in the following lemma that extends Lemma 3 of [20] for the
present geometrical setting.

Lemma 9.1 (Harmonic Dirichlet vector fields).
The space Et is finite dimensional and

Et = {∇ϕ ∣ ϕ ∈ H1(B ∖ Γ), ∆ϕ = 0, ∇Γπd(ϕ) = 0, ∇∂Bϕ = 0} . (55)

Proof. Consider the bilinear form (v,w) ↦ ∫B∖Γ curl(v) ⋅ curl(w) + div(w)div(w)dx
for v,w ∈ Et that has Et as kernel. Since Et is compactly embedded into L2(B), finite
dimensionality of Et is a direct consequence of Fredholm’s alternative applied to this bilinear
form.

Next, it is clear that we have the inclusion “⊃” in (55). On the other hand, consider an
element w ∈ Et. Since πt(w) = 0, we have [πt(w)] = 0 hence w ∈H(curl,B) with curl(w) = 0
in B. The trivial topology of B then ensure the existence of a scalar potential: w = ∇ϕ for
some ϕ ∈ H1(B), see [14, Thm.2.9]. The fact ∆ϕ = 0 follows from divw = 0. Finally, we have
n ×w∣∂B = 0 so ∇∂Bϕ = 0, and 0 = πt(w) = ∇Γπd(ϕ) according to Lemma 5.1. ◻

Let us give an example of a geometrical configuration that is covered by the present analysis
but is outside the scope of [20, Lemma 3]. Figure 2 depicts a multi-screen scatterer in this
situation.

Figure 2: Connected multi-screen

Lemma 3.5 of [1] and variants of it are instrumental in domain based approaches tackling the
EFIE bilinear form on boundaries of a domain Ω. This lemma asserts the existence of vector
potentials in (H1(Ω))3 for divergence free functions with vanishing flux through any closed
surface. Alas, [1, Lemma 3.5] assumes that Ω is Lipschitz. Unfortunately we cannot use this
result here because R

3
∖ Γ is not Lipschitz and, in particular, it lies on both sides of its own

boundary. Providing a substitute for [1, Lemma 3.5] turned out to be a major challenge.

Lemma 9.2 (Vector potential lifting operator).
There exists a continuous operator S ∶ (L2(B))3 ↦ En such that div S(u) = 0 in B ∖ Γ and

∫
B∖Γ
(u − curl S(u) )curl(v)dx = 0 ∀v ∈ En .
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Proof. For the sake of conciseness, let us temporarily set

a(v,w) ∶= ∫
B∖Γ

curl(v) ⋅ curl(w) + div(v)div(w)dx ∀v,w ∈ En .

According to Theorem 6.5 the space En is compactly embedded into (L2(B))3. As a con-
sequence, the bilinear form a(⋅, ⋅) induces a Fredholm operator with index 0. For any u ∈
(L2(B))3, consider the following variational problem

Find v ∈ En such that a(v,w) = ∫
B∖Γ

u ⋅ curl(w)dx ∀w ∈ En . (56)

If w ∈ En such that a(w,v) = 0 for all v ∈ En then curl(w) = 0 and div(w) = 0 obviously,
so that ∫B∖Γ u ⋅ curl(w)dx = 0. As a consequence, although the bilinear form of Problem
(56) may have a non-trivial kernel, the compatibility conditions of the Fredholm alternative
are satisfied (see case (ii) of [18, Theorem 2.27], for example). Hence Problem (56) admits a
solution (that is a priori not unique), and we may define S(u) as the unique solution satisfying∥S(u)∥E =min{∥v∥E ∣ v solves (56) }, so that S ∶ L2(B)3 → En is continuous.

Now set f ∶= div(S(u)) ∈ L2(B) . Since, by assumption, πn(S(u)) = 0 and S(u) ⋅ n = 0
on ∂B, Green’s formula yields ∫B f dx = 0. Let ψ ∈ H1(B ∖ Γ) satisfy ∆ψ = f in B ∖ Γ, and
πn(∇ψ) = 0, ∇ψ ⋅ n = 0 on ∂B. By construction ∇ψ ∈ En. Taking w = ∇ψ in the variational
problem (56) satisfied by S(u), we obtain 0 = ∫R3∖Γ div(S(u))∆ψ dx = ∫R3∖Γ div(S(u))f dx =∥div S(u)∥2

L2(B). From this, we conclude that divS(u) = 0 in B ∖ Γ. Plugging this into the

variational problem (56) satisfied by S(u) leads to the variational identity stated in the lemma.
◻

We continue writing S for a mapping S ∶ (L2(B))3 ↦ En provided by the previous lemma.
The following corollary gives sufficient conditions for a vector field over B ∖ Γ to be the curl

of another vector field. This result is weaker than Lemma 3.5 of [1], because we fail to obtain
extra Sobolev regularity of the vector potential. On the other hand, we can handle more
general geometries

Corollary 9.3 (Existence of vector potentials).
For all u ∈ H(div,B ∖ Γ) such that div(u) = 0 in B ∖ Γ and ∫B u ⋅ v dx = 0 ∀v ∈ Et we have
curl S(u) = u.

Proof. Let u ∈ (L2(B))3 satisfy the assumptions of the corollary. Set w ∶= u − curlS(u),
so that ∫B∖Γw ⋅ curl(v)dx = 0 for any v ∈ En and div(w) = 0 in B ∖Γ. In particular we have

∫B∖Γw ⋅ curlS(u)dx = 0.
Take an arbitrary p ∈H(curl,B ∖ Γ) and let ψ refer to the unique element of H1(B ∖ Γ)

satisfying ∫Bψ dx = 0 and ∫B∖Γ∇ψ ⋅ ∇ϕdx = ∫B∖Γ p ⋅ ∇ϕdx for all ϕ ∈ H1(B ∖ Γ). Then
we have p − ∇ψ ∈ En, so ∫B∖Γw ⋅ curl(p)dx = ∫B∖Γw ⋅ curl(p − ∇ψ)dx = 0. Since p was

chosen arbitrarily in H(curl,B ∖ Γ), we deduce that curl(w) = 0 in B ∖ Γ, γt(w) = 0 and
w × n = 0 on ∂B. As a consequence w ∈ Et, and we have ∫B∖Γ u ⋅ w dx = 0. This yields

∫B∖Γ ∣w∣2dx = ∫B∖Γw ⋅ udx − ∫B∖Γw ⋅ curl S(u)dx = 0. So, finally, w = 0. ◻

9.2 Hodge-type decomposition of jump space

For the boundary of a Lipschitz domain Ω Hodge-type decompositions refer to splittings of

H−
1

2 (curlΓ, ∂Ω) into the kernel of curlΓ and a complement space that is compactly embedded
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in H̃
−1/2
× (∂Ω). As hinted above, we pursue a domain based approach to construct a Hodge-

type decomposition of the jump space H̃−1/2(curlΓ, [Γ]), taking the cue from [7, Lemma 2
and (21)]. A key tool will be the lifting operator S introduced in Lemma 9.2.

Let H1
0
(B) = {v ∈ H1(B) ∣ v∣∂B = 0} and recall that v ↦ ∥∇v∥L2(B) is a norm on H1

0
(B). We

define the continuous operator T ∶ H̃−1/2([Γ])→H0(curl,B) ∩H(div,B ∖ Γ) by
T(q) ∶= ∇ψq where ψq ∈ H1

0(B) and

∫
R3∖Γ

∇ψq∇v dx = ⟨⟨q, πd(v)⟩⟩ ∀v ∈ H1

0(B) . (57)

Lemma 9.4 (Projection onto complement of kernel of curlΓ, cf. [7, Lemma 2]).
Let S be a mapping satisfying the properties stated in Lemma 9.2, and let T be defined by
(57). Define the continuous mapping

R ∶ H̃−1/2(curlΓ, [Γ])→ H̃−1/2(curlΓ, [Γ]) , R ∶= [γt] ⋅ S ⋅T ⋅ curlΓ . (58)

This map is a projection satisfying

curlΓ(v) = curlΓ(R(v)) ∀v ∈ H̃(curlΓ, [Γ]) ,
and R(v) =R(v).

Proof. Note that div(T(q)) = 0 in R
3
∖ Γ and [πn] ⋅ T(q) = q for all q ∈ H̃−1/2(Γ). Also

observe that

∫
R3∖Γ

T(curlΓv) ⋅wj dx = ⟨⟨curlΓv,wj⟩⟩ = ⟪v,∇Γ(πdwj)⟫× = 0 ,
where wj = ∇wj , wj ∈ H1(B), are the basis functions of Et defined in Lemma 9.1. To
understand the last equality remember that ∇Γ(πdwj) = 0 on Γ. Summing up, we have found
that the vector fields T(curlΓv) satisfy the assumptions of Corollary 9.3.

Thus, we can use Corollary 9.3 together with Lemma 5.3 and its commuting diagram
involving jumps and surface differential operators:

curlΓR(v) = curlΓ ⋅ [γt] ⋅ S ⋅T ⋅ curlΓv = [curlΓγt ⋅ S ⋅T ⋅ curlΓv]
= [γn ⋅ curl ⋅S ⋅T ⋅ curlΓv] = [γn ⋅T ⋅ curlΓv] = curlΓv .

The projection property is immediate from this. Finally, we clearly have R(v) =R(v) simply
because this property is satisfied by S and T. ◻

The operator R induces a decomposition of the space H̃−1/2(curlΓ, [Γ]). In particular the
operator v ↦ Rv − (Id −R)v is an involution of H̃−1/2(curlΓ, [Γ]). In addition, the range of
R satisfies a crucial compactness property.

Lemma 9.5 (Compactness of R).

The operator R from (58) is compact as a mapping H̃−1/2(curlΓ, [Γ])→ H̃
−1/2
× (Γ).

Proof. Consider once again the ball B introduced in the beginning of this section. During
construction of R we built a continuous operator T ∶ H̃−1/2(curlΓ, [Γ]) → En such that R =[γt] ⋅T. For any p ∈ H̃−1/2(curlΓ, [Γ]) and any v ∈ (H1

0
(B))3, we have

∣ ⟪γt(v), γt ⋅T(p)⟫× ∣= ∣ ∫
B∖Γ

curl(v) ⋅T(p) − v ⋅ curl(T(p))dx ∣
≤ ∥v∥H1(B)3∥T(p)∥L2(B)3 + ∥v∥H1(B)3∥curlT(p)∥H−1(B)3 .
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Dividing the inequality above by ∥v∥H1(B)3 and taking the supremum over all v ∈ (H1
0
(B))3,

we obtain that ∥R(p)∥
H̃
−1/2
× (Γ)

≤ ∥T(p)∥L2(B)3 + ∥curlT(p)∥H−1(B)3 . Now recall that T maps

continuously into En. Besides En is compactly embedded into (L2(B))3 and (L2(B))3 is
compactly embedded into (H−1(B))3. This concludes the proof. ◻

Thus, from the continuity result of Lemma 8.2 we immediately infer the following compact-
ness.

Corollary 9.6 (Compactness of vectorial single layer potential on the range of R).
The bilinear form (p,q) ↦ ⟪γt ⋅ Gı ∗ γ

′
t
(R(p)),R(q)⟫× is compact on H̃−1/2(curlΓ, [Γ]) ×

H̃−1/2(curlΓ, [Γ]).
We abbreviate Θ ∶= 2R − Id, which clearly defines an “sign-flipping” isomorphism of

H̃(curlΓ, [Γ]), cf. the operator XΓ from [7, Eq. (38)]. We now proceed with the proof of
a generalised G̊arding inequality satisfied by the EFIE operator on multi-screens, which is
the main finding of the present section.

Theorem 9.7 (Generalized G̊arding inequality, cf. [7, Lemma 10]).
There exists a compact operator K ∶ H̃−1/2(curlΓ, [Γ]) → H−1/2(curlΓ, [Γ]) and a constant
C > 0 such that, for all p ∈ H̃−1/2(curlΓ, [Γ]) we have

∣ ⟪γt ⋅ SLκ(p),Θ(p)⟫× + ⟪K(p),p⟫× ∣ ≥ C ∥p∥2H̃(curlΓ,[Γ]). (59)

Proof. Denote ı ∶=
√
−1. According to Remark 3.1.3 in [24], the convolution operator(Gı − Gκ)∗ is a pseudo-differential operator of order −4 mapping H1

loc
(R3)′ to H3

loc
(R3). As

a consequence, the bilinear form induced by the operator γt ⋅ SLκ on H̃−1/2(curlΓ, [Γ]) ×
H̃−1/2(curlΓ, [Γ]) differs only by a compact perturbation from the following symmetric bilinear
form

α(p,q) ∶= κ−2 ⟨⟨γd ⋅ Gı ∗ γ
′
d
(curlΓ p), curlΓ q⟩⟩ − ⟪γt ⋅ Gı ∗ γ

′
t
(p),q⟫

×
,

for p,q ∈ H̃−1/2(curlΓ, [Γ]). Thus it suffices to show that α(p,Θ(p)) satisfies a Garding
inequality of the form (59). First, we conclude from (44)

α(p,q) = −κ−2 ⟪γt ⋅ SLı(p),q⟫× − (1 + κ−2)⟪γt ⋅ Gı ∗ γ
′
t
(p),q⟫

×
. (60)

Next, set Z ∶= Id − R. According to Lemma 9.4, for all p ∈ H̃−1/2(curlΓ, [Γ]) we have
curlΓZ(p) = curlΓp − curlΓR(p) = 0, which involves

α(Z(p),Z(p) ) = −⟪γt ⋅ Gı ∗ γ
′
t
(p),q⟫

×
.

Thus, for p ∈ H̃−1/2(curlΓ, [Γ]), thanks to the symmetry of α and (60)

Re{α(p,Θ(p) )} = α(R(p),R(p) ) − α(Z(p),Z(p) )
= −κ−2 ⟪γt ⋅ SLı(R(p)),R(p)⟫× − ⟪γt ⋅ SLı(Z(p)),Z(p)⟫×
−(1 + κ−2)⟪γt ⋅ Gı ∗ γ

′
t
(R(p)),R(p)⟫

×

(61)

Let write β(p,q) for the continuous sesquilinear form associated with the last term in (61).
According to Lemma 9.6 above, the bilinear form β is compact. So it suffices to prove
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Garding inequality for Re{α(p,Θ(p) ) − β(p,p)}. To deal with the first two terms in (61)
recall Lemma 8.1 that yields

⟪γt ⋅ SLı(q),q⟫× ≥ C ∥q∥2H̃−1/2(curlΓ,[Γ]) ∀q ∈ H̃−1/2(curlΓ, [Γ]) .
Since Id =R + Z and R is a continuous projector, we deduce that

∥R(p)∥2
H̃−1/2(curlΓ,[Γ])

+ ∥Z(p)∥2
H̃−1/2(curlΓ,[Γ])

≥ 1

2
∥p∥2

H̃−1/2(curlΓ,[Γ])
.

From this we conclude

−Re{ α(p,Θ(p) ) + β(p,p) }= κ−2 ⟪γt ⋅ SLı(R(p)),R(p)⟫× + ⟪γt ⋅ SLı(Z(p) ),Z(p)⟫×
≥ Cκ−2∥R(p)∥2

H̃−1/2(curlΓ,[Γ])
+C∥Z(p)∥2

H̃−1/2(curlΓ,[Γ])

≥ 1

2
Cmin(1, κ−2)∥p∥2

H̃−1/2(curlΓ,[Γ])
,

which completes the proof. ◻
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