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An A Priori Error Estimate for Interior Penalty
Discretizations of the Curl-Curl Operator on
Non-Conforming Meshes

Raffael Casagrande and Ralf Hiptmair

Abstract We prove an a-priori error estimate for conductivity-regularized Curl-Curl Problems

which are discretized by the Interior Penalty/Nitsche’s Method on meshes non-conforming across

interfaces. It is shown that the total error can be bounded by the best approximation error which in

turn depends on the concrete choice of the approximation space Vh. In this work we show that if Vh

is the space of edge functions of the first kind of order k we can expect (suboptimal) convergence

O(hk−1) as the mesh is refined. The numerical experiments in Casagrande, Winkelmann, Hiptmair

and Ostrowski, SAM Report 2014-32, ETH Zürich, indicate that this bound is sharp for k = 1.

Moreover it is shown that the regularization term can be made arbitrarily small without affecting

the error in the |·|curl semi-norm. A numerical experiment shows that the regularization parameter

can be chosen in a wide range of values such that, at the same time, the discrete problem remains

solvable and the error due to regularization is negligible compared to the discretization error.

1 Introduction

In this work we study the 3D, magnetostatic boundary value problem,

∇× (µ−1∇×A) = ji, in Ω , (1)

n×A = gD, on ∂Ω , (2)

which can be used to calculate the magnetic field that originates from a divergence free, stationary

current ji. Herein µ denotes the magnetic permeability and gD prescribes Dirichlet boundary data.

We seek the magnetic vector potential A that fulfills (1-2). The magnetic field is then B = ∇×A.

Note that if gD ≡ 0 on ∂Ω then (2) implies (∇×A) ·n = B ·n = 0 on ∂Ω which reflects the decay

of the fields away from the source.

Note that the solution of the boundary value problem (1-2) is only unique up to a gradient field

(if Ω is simply connected), which is not of importance if one is only interested in the magnetic
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field B. Thus it is possible to solve the ungauged problem (1-2) if the current ji lies in the range

of the system matrix [1]. The latter is hard to enforce on non-conforming meshes (cf. Section

6) and it is simpler to gauge the formulation (1-2) or to add a regularization term to (1) so that

the system matrix has full rank. In case of adding a regularization term to (1), one introduces a

modeling error which must not dominate the approximation error of the numerical scheme.

In some applications like the simulation of electric machines or magnetic actuators, magnetic

fields have to be computed in the presence of moving, rigid parts. Then one may use separate,

moving sub-meshes for them in order to avoid remeshing. However, this leads to so-called “sliding

interfaces”, i.e. meshes with hanging nodes (cf. Figure 1).

Fig. 1 Sliding Meshes. Initially conforming sub-meshes become non-conforming when the upper sub-mesh starts

moving.

Our goal is to construct a method that approximates the solution of (1-2) in a way that is inde-

pendent of the “non-conformity” of the sub-meshes at the common interface. This problem has

been tackled successfully in the framework of Mortar methods where the continuity constraints

are incorporated directly into the trial-space [2] or they are enforced by additional Lagrange Mul-

tipliers [3]. However they come at the price of introducing either non-local shape functions or

additional unknowns.

Another approach uses the Discontinuous Galerkin (DG) framework to solve problem (1-2)

in the presence of hanging nodes. In [4] problem (1-2) is regularized by adding a ∇(∇ ·A) term

to (1) and is then solved by the locally discontinuous galerkin method. However because of the

additional regularization term, additional assumptions on the smoothness of the solution have to

be made to prove convergence. Alternatively one can use a mixed DG formulation and enforce the

gauge condition ∇ · (µ−1A) = 0 explicitly to avoid the introduction of a regularization term [5].

The stability of this method for arbitrary, sliding meshes remains unclear: In [5] it is proven

that the mixed method yields the expected rates of convergence on conforming meshes and the

experimental results in [6] show that it also works on adaptively refined meshes with hanging

nodes. However, in light of the results in Section 6.1 and in [7] it is not clear that the the constant

in the inf-sup condition of [5] is independent of the “non-conformity” of the sub-meshes at the

common interface.

We study a different approach: We apply the Interior Penalty/Nitsche’s Method [8] to the

regularized magnetostatic problem,

∇× (µ−1∇×A)+ εµ−1A = ji, in Ω , (3)

n×A = gD, on ∂Ω . (2)
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Here 0 < ε ≪ 1 is the regularization parameter. In an earlier investigation [9] it was shown exper-

imentally that the Interior Penalty Method solves problem (2-3) successfully if second order edge

functions of the first kind are used. Moreover it was shown that first order edge functions fail to

converge to the exact solution as the mesh is refined. In this work we intend to give theoretical ex-

planations of these observations and investigate the error that is introduced by the regularization

term in (3).

We start our discussion in Section 2 by introducing Discontinuous Galerkin (DG) notations

that were already introduced in [9] and which are needed to state the interior penalty formulation

of (2 - 3) in Section 3. Section 3 also proves an a-priori bound of the total error in terms of the best

approximation error for piecewise-polynomial test- and trial spaces Vh. In Section 4 we analyze

the particular case where Vh is the space of k-th order edge functions, Rk. Combining the results

of Sections 3 and 4 we get rates of convergence for the regularized problem (2-3). Section 5 is

devoted to the choice of the local length scale appearing in the Interior Penalty formulation and

presents numerical experiments underlining the results of Sections 3, 4. Section 6 discusses the

role of the regularization parameter ε and how to choose it. We end our presentation with a short

conclusion and outlook in Section 7.

2 Preliminaries

Before we can introduce the Symmetric Weighted Interior penalty (SWIP) formulation of (2-3)

we give some definitions and notations (cf. [9]):

Subdomains and submeshes: Let us assume that the domain Ω , on which (2-3) is posed, is a

simply connected polyhedron with Lipschitz boundary. Furthermore we assume Ω to be split into

two non-overlapping subdomains, Ω1 ∪Ω2 = Ω .

We introduce a sequence of simplical meshes TH = (Th)h∈H
on Ω . Here H denotes a

countable subset of R+ having 0 as the only accumulation point. For each h∈H we let Th ∈TH

denote a particular mesh in the sequence TH and we let T ∈Th be a mesh element (tetrahedron).

The meshwidth is defined as h = maxT∈Th
hT , where hT is the diameter of element T .

We assume that each mesh Th, which covers Ω , can be split into two conforming, non-

overlapping submeshes, Th = Th,1 ∪Th,2, that cover Ω1 and Ω2, respectively. As before we

define TH ,1 =
(
Th,1

)
h∈H

and TH ,2 =
(
Th,2

)
h∈H

.

Furthermore we define FT to be the set of the four facets of a tetrahedron T . The intersection

of two facets, is called an inner face while the intersection of a facet with the boundary ∂Ω
is called a boundary face. Note that facets are always triangular while inner faces are convex

polygons with up to six nodes and boundary faces can have virtually any polygonal shape (cf.

Figure 2). We denote by F b
h the set of all boundary faces, by F i

h the set of all inner faces and

define Fh = F b
h ∪F i

h to be the set of all faces. Furthermore, FT stands for the set of all faces

which lie on the boundary of element T .

Mesh assumptions We assume that the elements are shape regular in the sense of Ciarlet:

There is a constant σmax, independent of h, such that for all h ∈ H and for all T ∈ Th we have
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Inner Intersection

Boundary Intersection

Fig. 2 Non-Conforming overlap of two submeshes. Consider two cuboids stacked upon each other (similar to

Figure 1) which are meshed individually. This figure shows the restriction of the two submeshes Th,1 and Th,2 to

the common interface and the inner/boundary intersections are marked.

hT

ρT

≤ σmax, (4)

where ρT is the radius of the largest ball inscribed in T . It is easy to check that this condition

is satisfied if two sequences of static sub-meshes are moved against each other. We will make

additional assumptions about the mesh when we discuss choices for the local length scale in Sect.

5.

Magnetic Permeability: We assume there exists a partition PΩ =
{

Ωi,µ

}
such that each Ωi,µ

is a polyhedron and such that the permeability µ > 0 is constant on each Ωi,µ . Furthermore the

mesh sequence TH is compatible with the partition PΩ : For each Th ∈TH , each element T ∈Th

belongs to exactly one Ωi,µ ∈ PΩ . I.e. the magnetic permeability is constant on each element but

it is allowed to jump element boundaries, and in particular over the non-conforming interface

Γ := Ω 1 ∩Ω 2

Polynomial approximation: Later on we will seek the discrete solution in the piecewise poly-

nomial space (cf. [10])

P
k(Th) :=

{
p ∈ L2(Ω)

∣∣∣ ∀T ∈ Th, p|T ∈ P
k(T )

}
, (5)

where Th ∈TH and P
k(T ) is the usual space of polynomials up to total degree k on mesh element

T . L2(Ω) is the usual space of square integrable functions on Ω . Note that functions of Pk(Th)
are discontinuous across element boundaries.
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Mesh Faces, Jump and Average Operators For each mesh face F and vector valued function

Ah ∈ P
k(Th)

3, we define the tangential jump as follows:

for F ∈ F
i
h, F = ∂T1 ∩∂T2, [Ah]T := nF ×

(
Ah|T1

− Ah|T2

)
,

for F ∈ F
b
h , F ⊆ ∂T1 ∩∂Ω , [Ah]T := nF × Ah|T1

.

The weighted average is defined similarly:

for F ∈ F
i
h, F = ∂T1 ∩∂T2, {Ah}ω := ω1 Ah|T1

+ω2 Ah|T2
,

for F ∈ F
b
h , F ⊆ ∂T1 ∩∂Ω , {Ah}ω := Ah|T1

.

Here the normal nF always points from T1 to T2 and ω1,ω2 ∈ [0,1] such that ω1 +ω2 = 1. Note

that the jump and average operators are well defined for all p ∈ P
k(Th)

3.

The following Lemma relates the trace of a polynomial function to its L2 norm on the element

(cf. [10, Lemma 1.46]):

Lemma 1 (Discrete Trace Inequality). Let TH be a sequence of shape regular, possibly non-

conforming, simplical meshes. Then for all h ∈ H , all vh ∈ P
k(Th), and all T ∈ Th we have

h
1/2
T

∥∥vh|T
∥∥

L2(∂T )
≤Ctr ‖vh‖L2(T ) . (6)

Herein Ctr is independent of T and h but depends on σmax, k.

Function Spaces We will use the spaces

H(curl;Ω) :=

{
f ∈ L2(Ω)3

∣∣∣‖∇× f‖L2(Ω)3 < ∞

}
,

Hs(PΩ ) :=

{
f ∈ L2(Ω)

∣∣∣∀Ωi,µ ∈ PΩ : f |Ωi,µ
∈ Hs(Ωi,µ)

}
.

Herein Hs(Ω) = W s,2(Ω) is the Sobolev space of order s with Hölder coefficient p = 2. The

associated norms and semi-norms are

‖f‖2
H(curl;Ω) := ‖f‖2

L2(Ω)3 + |f|2H(curl;Ω) , |f|2H(curl;Ω) := ‖∇× f‖2
L2(Ω)3 ,

‖ f‖2
Hs(PΩ ) :=

N

∑
i=1

‖ f‖2
Hs(Ωi,µ )

.

3 Symmetric Weighted Interior Penalty (SWIP) Formulation

We chose an arbitrary subspace Vh ⊆ P
k(Th)

3 as discrete test and trial space, and use integration

by parts (cf. [10,14] for details) to arrive at the SWIP formulation of (3): Find Ah ∈Vh subject to

aSWIP
h (Ah,A

′
h) = ℓh(A

′
h) for all A′

h ∈Vh. (7)
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Here,

aSWIP
h (Ah,A

′
h) :=

∫

Ω

(
µ−1∇×Ah

)
·
(
∇×A′

h

)

− ∑
F∈Fh

∫

F

{
µ−1∇×Ah

}
ω
·
[
A′

h

]
T
− ∑

F∈Fh

∫

F

{
µ−1∇×A′

h

}
ω
· [Ah]T

+ ∑
F∈Fh

ηγµ,F

aF

∫

F
[Ah]T ·

[
A′

h

]
T
+ ε

∫

Ω
µ−1Ah ·A′

h,

(8)

ℓh(A
′
h) :=

∫

Ω
ji ·A′

h − ∑
F∈F b

h

∫

F

{
µ−1∇×A′

h

}
ω
· (n×gD)

+ ∑
F∈F b

h

ηγµ,F

aF

∫

F

[
A′

h

]
T
· (n×gD),

(9)

where η is the penalty parameter. The last four terms of aSWIP
h are called consistency, symmetry,

penalty, regularization term, respectively. For an inner face F ∈ F i
h, F = ∂T1 ∩ ∂T2 , we chose

the weights

γµ,F :=
2

µ1 +µ2
, ω1 :=

µ1

µ1 +µ2
, ω2 :=

µ2

µ1 +µ2
.

If F is a boundary face, F ∈ F b
h , we choose γµ,F := µ−1. The term aF is the local length

scale of face F and can be chosen in different ways (e.g. aF = 1
2
(hT1

+hT2
) where hT1

, hT2
are the

diameters of the neighboring elements). For now we assume that there exists a constant ς2 > 0

such that for all h ∈ H , all T ∈ Th, and all F ∈ FT :

0 < aF ≤ ς2hT . (10)

In Section 5 we will look at concrete choices of aF and discuss the circumstances under which

(10) is fulfilled. It will turn out that depending on the choice of aF we have to make additional

assumptions about the mesh regularity to guarantee (10).

Remark 1. If Vh ⊆ H(curl;Ω), then all inner tangential jumps in (8) will drop out [14, Lemma

3.8] and only jumps at the boundary remain, i.e. we are left with a standard FEM formulation

where the inhomogeneous boundary conditions (2) are enforced in a weak sense.

3.1 A Priori Error Estimate

In the following we derive an error estimate in the “energy-norm” for the variational problem (7).

Regularity of the exact solution We assume that the exact solution A of (2-3) (in the sense of

distributions) is such that

A ∈V ∗ :=
{

A ∈ H(curl;Ω)∩H1(PΩ )3 | ∇×A ∈ H1(PΩ )3
}
.
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Furthermore, we set V ∗
h

:= V ∗+Vh. Note that, because A and ∇×A are in H1(PΩ )3 the traces

of A and ∇×A are well defined on the faces of the mesh elements (cf. [10, Remark 1.26]).

Indeed, let T ∈Th be a mesh element, then by the multiplicative trace inequality [11, Thm. 1.6.6]

‖A‖L2(∂T )3 < Ctr ‖A‖1/2

L2(T )3 ‖A‖1/2

H1(T )3 , and the same estimate holds for ∇×A. Therefore we see

that aSWIP
h

: V ∗
h ×Vh → R is well defined.

In order for the right-hand side to be well-posed we assume ji ∈ L2(Ω)3 and gD = L2(∂Ω)3.

We begin the proof of the a priori error estimate by showing that the exact solution A fulfills

equation (7):

Lemma 2 (Consistency). Assume A ∈V ∗ is the exact solution of (2-3). Then, for all A′
h ∈Vh,

aSWIP
h (A,A′

h) = ℓh

(
A′

h

)
. (11)

Proof. Since A ∈ H(curl,Ω), A is tangentially continuous across all element boundaries (cf.

Lemma 3.8 in [14]). Thus all inner jump terms drop out,

aSWIP
h (A,A′

h) =
∫

Ω

(
1

µ
∇×A

)
·
(
∇×A′

h

)
− ∑

F∈Fh

∫

F

{
µ−1∇×A

}
ω
·
[
A′

h

]
T

− ∑
F∈F b

h

∫

F

{
µ−1∇×A′

h

}
ω
· [A]T + ∑

F∈F b
h

ηγµ,F

aF

∫

F
[A]T ·

[
A′

h

]
T
+
∫

Ω

ε

µ
Ah ·A′

h. (12)

Note that the last two sums include only boundary faces. Next we make use of the following

identity (which holds for any interior face F = ∂T1 ∩∂T2)

[a×b]n = (a1 ×b1 −a2 ×b2) ·nF

=
(
(ω1a1 +ω2a2)× (b1 −b2)+(a1 −a2)× (ω2b1 +ω1b2)

)
·nF

=−{a}ω · [b]T +[a]T · {b}ω .

Here {b}ω := (ω2b1 +ω1b2) is the skew-weighted average and [b]n := (b1 −b2) ·nF is the nor-

mal jump. Let us apply the identity to the second term of (12):

− ∑
F∈Fh

∫

F

{
µ−1∇×A

}
ω
·
[
A′

h

]
T
= ∑

F∈F i
h

∫

F

[(
µ−1∇×A

)
×A′

h

]

n

− ∑
F∈F i

h

∫

F

[
µ−1∇×A

]
T︸ ︷︷ ︸

=0

·
{

A′
h

}
ω
− ∑

F∈F b
h

∫

F

{
µ−1∇×A

}
ω
·
[
A′

h

]
T
.

The second term on the right-hand side vanishes because A is a solution of the strong formulation

(3). Thus µ−1∇×A ∈ H(curl;Ω), which implies that µ−1∇×A is tangentially continuous. Note

that for all F ∈ F b
h :
{

µ−1∇×A
}

ω
·
[
A′

h

]
T
= −

[(
µ−1∇×A

)
×A′

h

]
·nF so we can rearrange

the face contributions to the element boundaries,

− ∑
F∈Fh

∫

F

{
µ−1∇×A

}
ω
·
[
A′

h

]
T
= ∑

T∈Th

∫

∂T

(
µ−1 (∇×A)×A′

h

)
·nT . (13)
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Now substitute (13) into (12) and use integration by parts on each mesh element [15, Thm. 3.29]:

aSWIP
h (A,A′

h) = ∑
T∈Th

∫

T
∇×

(
1

µ
∇×A

)
·A′

h + ε

∫

Ω
µ−1Ah ·A′

h

− ∑
F∈F b

h

∫

F

{
µ−1∇×A′

h

}
ω
· [A]T + ∑

F∈F b
h

ηγµ,F

aF

∫

F
[A]T ·

[
A′

h

]
T

(2−3)
= ℓh(A

′
h).

Let us introduce the following (semi-)norms on the space V ∗
h :

‖A‖2
SWIP :=

∥∥∥µ−1/2∇×A

∥∥∥
2

L2(Ω)3
+ ε
∥∥∥µ−1/2A

∥∥∥
2

L2(Ω)3
+ |A|2j,µ ,

|A|2j,µ := ∑
F∈Fh

γµ,F

aF

∥∥[A]T
∥∥2

L2(F)3 ,

‖A‖2
SWIP,∗ := ‖A‖2

SWIP + ∑
T∈Th

hT

∥∥∥∥µ−1/2∇×A

∣∣∣
T

∥∥∥∥
2

L2(∂T )3

.

Lemma 3 (Bound on consistency term). For all A,A′ ∈V ∗
h there holds

∣∣∣∣∣∣ ∑
F∈Fh

∫

F

{
µ−1∇×A

}
ω
·
[
A′]

T

∣∣∣∣∣∣
≤

ς
1/2

2



 ∑

T∈Th

hT

∥∥∥∥µ−1/2∇×A

∣∣∣
T

∥∥∥∥
2

L2(∂T )3





1/2

∣∣A′∣∣
j,µ

.

Here hT := max
{
‖x− y‖| x,y ∈ T

}
is the diameter of mesh element T ∈ Th.

Proof. For an arbitrary inner face F = ∂T1∩∂T2 we have by the Cauchy-Schwarz (CS) inequality

∣∣∣∣
∫

F

{
µ−1∇×A

}
ω
·
[
A′]

T

∣∣∣∣

≤
∣∣∣∣∣
∫

F

(
ω1

µ1
∇×A1 +

ω2

µ2
∇×A2

)2
∣∣∣∣∣

1/2 ∣∣∣∣
∫

F

∥∥∥
[
A′]

T

∥∥∥
2
∣∣∣∣
1/2

. (14)

By using Cauchy-Schwarz again we see that
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∥∥∥∥
ω1

µ1
∇×A1 +

ω2

µ2
∇×A2

∥∥∥∥

≤
(

ω2
1

µ1
+

ω2
2

µ2

)1/2(∥∥∥µ
−1/2

1 ∇×A1

∥∥∥
2

+
∥∥∥µ

−1/2

2 ∇×A2

∥∥∥
2
)1/2

≤ a
1/2
F

(
γµ,F

aF

)1/2(∥∥∥µ
−1/2

1 ∇×A1

∥∥∥
2

+
∥∥∥µ

−1/2

2 ∇×A2

∥∥∥
2
)1/2

.

Substitute this back into (14) to get

∣∣∣∣
∫

F

{
µ−1∇×A

}
ω
·
[
A′]

T

∣∣∣∣≤
(

γµ,F

aF

)1/2∥∥∥
[
A′]

T

∥∥∥
L2(F)3

[
aF

∫

F

(∥∥∥µ
−1/2

1 ∇×A1

∥∥∥
2

+
∥∥∥µ

−1/2

2 ∇×A2

∥∥∥
2
)]1/2

. (15)

Similarly, for a boundary face F ∈ F b
h we have

∣∣∣∣
∫

F

{
µ−1∇×A

}
ω
·
[
A′]

T

∣∣∣∣
(CS)

≤ 1√
µaF

∥∥∥
[
A′]

T

∥∥∥
L2(F)3

∣∣∣∣aF

∫

F

∥∥∥µ−1/2∇×A

∥∥∥
2
∣∣∣∣
1/2

. (16)

Now use (15-16) to bound the sum over all faces,
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∣∣∣∣∣∣∣
∑

F∈F b
h

∫

F

{
µ−1∇×A

}
ω
·
[
A′]

T
+ ∑

F∈F i
h

∫

F

{
µ−1∇×A

}
ω
·
[
A′]

T

∣∣∣∣∣∣∣
(15-16)

≤ ∑
F∈F b

h

1√
µaF

∥∥∥
[
A′]

T

∥∥∥
L2(F)3

{
aF

∫

F

∥∥∥µ−1/2∇×A

∥∥∥
2
}1/2

+ ∑
F∈F i

h

(
γµ,F

aF

)1/2∥∥∥
[
A′]

T

∥∥∥
L2(F)3

{
aF

∫

F

(∥∥∥µ
−1/2

1 ∇×A1

∥∥∥
2

+
∥∥∥µ

−1/2

2 ∇×A2

∥∥∥
2
)}1/2

(CS)

≤



 ∑

F∈Fh

γµ,F

aF

∥∥∥
[
A′]

T

∥∥∥
2

L2(F)3





1/2





∑
F∈F i

h

aF

∫

F

(∥∥∥µ
−1/2

1 ∇×A1

∥∥∥
2

+
∥∥∥µ

−1/2

2 ∇×A2

∥∥∥
2
)

+ ∑
F∈F b

h

aF

∫

F

∥∥∥µ−1/2∇×A

∥∥∥
2





1/2

≤ ς
1/2

2



 ∑

T∈Th

hT

∫

∂T

∥∥∥∥µ−1/2∇×A

∣∣∣
T

∥∥∥∥
2





1/2

∣∣A′∣∣
j,µ

,

where we have regrouped the face contributions and used that aF ≤ ς2hT in the last step, cf. (10).

Using Lemma 3 we can finally prove discrete coercivity.

Lemma 4 (Discrete Coercivity). The bilinear form aSWIP
h is coercive: For all η > C2

trς2 and all

h ∈ H there holds

aSWIP
h (Ah,Ah)≥Cstab ‖Ah‖2

SWIP ∀Ah ∈Vh,

with Cstab = min

(
η−C2

trς2

1+η ,1

)
. The constant Ctr stems from the discrete trace inequality (6) and

is independent of h, µ , ε , ς2.

Proof. By definition of aSWIP
h we have

aSWIP
h (Ah,Ah) =

∥∥∥µ−1/2∇×Ah

∥∥∥
2

L2(Ω)3
−2 ∑

F∈Fh

∫

F

{
µ−1∇×Ah

}
ω
· [Ah]T +

∑
F∈Fh

ηγµ,F

aF

∥∥[Ah]T
∥∥2

L2(F)3 + ε
∥∥∥µ−1/2Ah

∥∥∥
2

L2(Ω)3
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Now let us give a bound on the second term on the right-hand side using Lemma 3,

∣∣∣∣∣∣ ∑
F∈Fh

∫

F

{
µ−1∇×Ah

}
ω
· [Ah]T

∣∣∣∣∣∣

≤ ς
1/2

2



 ∑

T∈Th

hT

∥∥∥∥µ−1/2∇×Ah

∣∣∣
T

∥∥∥∥
2

L2(∂T )3





1/2

|Ah| j,µ

≤ Ctrς
1/2

2

∥∥∥µ−1/2∇×Ah

∥∥∥
L2(Ω)3

|Ah| j,µ ,

where we have used the discrete trace inequality (6) componentwise in the last step. Hence,

aSWIP
h (Ah,Ah)≥ ε

∥∥∥µ−1/2Ah

∥∥∥
2

L2(Ω)3

+
∥∥∥µ−1/2∇×Ah

∥∥∥
2

L2(Ω)3

︸ ︷︷ ︸
:=x2

−2 Ctrς
1/2

2︸ ︷︷ ︸
:=β

∥∥∥µ−1/2∇×Ah

∥∥∥
L2(Ω)3

|Ah| j,µ +η |Ah|2j,µ︸ ︷︷ ︸
:=y2

.

Now use the inequality x2 − 2βxy+ηy2 ≥ η−β 2

1+η (x2 + y2) which holds for arbitrary β ,η ,x,y as

outlined above (it follows from (βx−ηy)2 +(x−βy)2 ≥ 0):

aSWIP
h (Ah,Ah)

≥ η −C2
trς2

1+η

(∥∥∥µ−1/2∇×Ah

∥∥∥
2

L2(Ω)3
+ |Ah|2j,µ

)
+ ε
∥∥∥µ−1/2Ah

∥∥∥
2

L2(Ω)3

≥Cstab

(∥∥∥µ−1/2∇×Ah

∥∥∥
2

L2(Ω)3
+ |Ah|2j,µ + ε

∥∥∥µ−1/2Ah

∥∥∥
2

L2(Ω)3

)
.

Finally, we note that Cstab > 0 if η >C2
trς2 which completes the proof.

Lemma 5 (Boundedness). There exists a constant Cbnd > 0 independent of h, µ , and ε such that

for all A ∈V ∗
h , all A′

h ∈Vh, all h ∈ H

aSWIP
h (A,A′

h)≤Cbnd ‖A‖SWIP,∗
∥∥A′

h

∥∥
SWIP

.

Proof. We start by splitting the bilinear form aSWIP
h into five terms,

aSWIP
h (A,A′

h) =
∫

Ω

(
µ−1∇×A

)
·
(
∇×A′

h

)
− ∑

F∈Fh

∫

F

{
µ−1∇×A

}
ω
·
[
A′

h

]
T

− ∑
F∈Fh

∫

F

{
µ−1∇×A′

h

}
ω
· [A]T + ∑

F∈Fh

ηγµ,F

aF

∫

F
[A]T ·

[
A′

h

]
T
+
∫

Ω

ε

µ
A ·A′

h

= T1 +T2 +T3 +T4 +T5.

We can now bound these terms individually,
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|T1|
(CS)

≤
∥∥∥µ−1/2∇×A

∥∥∥
L2(Ω)3

∥∥∥µ−1/2∇×A′
h

∥∥∥
L2(Ω)3

≤ ‖A‖SWIP

∥∥A′
h

∥∥
SWIP

,

|T2|
Lemma 3

≤ ς
1/2

2 ‖A‖SWIP,∗
∥∥A′

h

∥∥
SWIP

,

|T3|
Lemma 3

≤ ς
1/2

2



 ∑

T∈Th

hT

∥∥∥∥µ−1/2∇×A′
h

∣∣∣
T

∥∥∥∥
2

L2(∂T )3





1/2

‖A‖SWIP

Lemma 1
≤ Ctrς

1/2

2

∥∥∥µ−1/2∇×A′
h

∥∥∥
L2(Ω)3

‖A‖SWIP

≤ Ctrς
1/2

2

∥∥A′
h

∥∥
SWIP

‖A‖SWIP ,

|T4|
(CS)

≤ η |A| j,µ

∣∣A′
h

∣∣
j,µ

≤ η ‖A‖SWIP

∥∥A′
h

∥∥
SWIP

,

|T5|
(CS)

≤
∥∥∥∥∥

√
ε

µ
A

∥∥∥∥∥
SWIP

∥∥∥∥∥

√
ε

µ
A′

h

∥∥∥∥∥
SWIP

≤ ‖A‖SWIP

∥∥A′
h

∥∥
SWIP

.

Finally, we can combine the previous results into one theorem.

Theorem 1 (Error Estimate). Let A ∈ V ∗ be a solution of the strong formulation (2-3) (in the

sense of distributions) and let Ah ∈ Vh ⊆ P
k(Th)

3 solve the variational formulation (7). Then

there exist constants C > 0, Cη > 0, both independent of h, µ , and ε such that for η >Cη

‖A−Ah‖SWIP <C inf
vh∈Vh

‖A−vh‖SWIP,∗, (17)

and the discrete problem (7) is well-posed. The constant Cη depends on ς2, k and C depends on

η , ς2, k.

This theorem tells us that the total error is bounded by the best approximation error (w.r.t. suitable

norms). Note that we didn’t make any assumption on how the submeshes Th,1 and Th,2 meet at

Γ . In order to get rates of convergence we will have to make additional assumptions about the

approximation space Vh and the exact solution A. This will be the topic of Section 4.

Proof (Proof of Thm. 1). In this proof C denotes an arbitrary, positive constant that is independent

of h, µ , ε , and that may take a different value every time it used. We begin by picking an arbitrary

vh ∈Vh. Then, by the triangle inequality,

‖A−Ah‖SWIP ≤ ‖A−vh‖SWIP +‖vh −Ah‖SWIP . (18)

This is almost the statement of Thm. 1. It remains to bound ‖Ah −vh‖SWIP,
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‖Ah −vh‖SWIP

Lemma 4
≤ C

aSWIP
h (Ah −vh,Ah −vh)

‖Ah −vh‖SWIP

Lemma 2
= C

aSWIP
h (A−vh,Ah −vh)

‖Ah − vh‖SWIP

Lemma 5
≤ C

‖A−vh‖SWIP,∗ ‖Ah −vh‖SWIP

‖Ah −vh‖SWIP

= C‖A−vh‖SWIP,∗ .

Inserting this bound into (18) (which holds for arbitrary vh) yields the assertion. Note that the

bilinear form aSWIP
h is coercive (Lemma 4) and bounded (finite dimensions). Thus, Lax-Milgram

assures the well-posedness of the discrete problem.

Remark 2. Observe that for ε → 0 the variational formulation (7) becomes ill-posed. To see this

we observe that the ‖·‖SWIP norm “becomes” a semi-norm as ε → 0. In order to study the behavior

as ε → 0 it is thus desirable to state the discrete coercivity (Lemma 4) w.r.t. a norm that does not

depend on ε: We use that ‖Ah‖2
SWIP ≥ ε

∥∥∥µ−1/2Ah

∥∥∥
2

L2
and thus Lemma (4) can be rewritten as

aSWIP
h (Ah,Ah)≥ εCstab

∥∥∥µ−1/2Ah

∥∥∥
2

L2
. (19)

We see now clearly that the coercivity constant depends linearly on ε , i.e. the discrete problem

becomes ill-posed as ε → 0.

4 Rate of convergence for Edge Functions

In the following we will bound the best approximation error appearing in Theorem 1 for edge

functions of the first kind. For this we assume, in addition to (10), that aF is uniformly bounded

from below in the sense that there exists a constant ς1 such that for all h ∈ H , all T ∈ Th and all

F ∈ FT we have

aF ≥ ς1hT . (20)

For the remainder of this section, let us choose Vh = Rk(Ω1)⊕Rk(Ω2) ⊂ P
k(Th)

3 where Rk

is the space of k-th order edge functions (k=1 are the lowest order, H(curl) conforming Whitney

elements, cf. [15, Eq. (5.32)]). Because the sub-meshes Th,1, Th,2 are conforming, the spaces

Rk(Ω1), Rk(Ω2) are H(curl) conforming. We can thus use the standard projection operator rh as

it is defined in [15, Sect. 5.5] for edge functions on Ω1, Ω2 to build our global projection operator

πh : V ∗ →Vh,

A 7→
(

rh

(
A|Ω1

)
,rh

(
A|Ω2

))
.

The following theorem then gives an upper bound for the best approximation error of Theo-

rem 1:



14 Raffael Casagrande and Ralf Hiptmair

Theorem 2. Assume the exact solution of (2-3) is such that A ∈ H(curl,Ω)∩Hs({Ω1,Ω2})3,

∇×A ∈ Hs({Ω1,Ω2})3 with integer 1 ≤ s ≤ k. Then

‖A−πhA‖SWIP,∗ <Chs−1
2

∑
i=1

(
‖A‖Hs(Ωi)

+‖∇×A‖Hs(Ωi)

)
.

Here C depends on µ , ς1, k, ε but not on h. Moreover if ε < 1, C is independent of ε .

Remark 3. By combining Theorem 2 with Theorem 1 we see that for a sufficiently smooth exact

solution A, the total error ‖A−Ah‖SWIP = O(hk−1) if k-th order edge functions are used. In com-

parison to standard FEM on conforming meshes one order of convergence is lost. Theoretically

it is possible that there exists another projector π̃h which would give a better rate of convergence,

but numerical experiments show that Theorem 2 is sharp for k = 1 (see Section 5).

In order to prove the above theorem we will make use of two Lemmas to bound the face

contributions.

Lemma 6. Let TH ,1 be a sequence of shape regular, conforming, simplical meshes of the domain

Ω1. Suppose there exists an integer 1 ≤ s ≤ k such that u ∈ Hs(Ω1)
3 and ∇×u ∈ Hs(Ω1)

3. Then

∀T ∈ Th,1 ∈ TH ,1

‖u− rhu‖L2(∂T )3 ≤Ch
s−1/2
T

(
‖u‖Hs(T )3 +‖∇×u‖Hs(T )3

)
,

where C is independent of hT , T .

For the proof of Lemma 6 we refer the reader to [15, Lemma 5.52] (which is proven element-

wise).

Lemma 7. Let TH ,1 be a sequence of shape regular, conforming, simplical meshes of Ω1. As-

sume u ∈ Hs(Ω1)
3 for some integer 1 ≤ s ≤ k and u transforms such that it preserves the diver-

gence, i.e. if F : T̂ → T , û 7→ u is an arbitrary mapping then u transforms as

u◦F =
1∣∣det(DF)

∣∣ DF û. (21)

Then the following estimate holds:

‖u−wT u‖L2(∂T )3 ≤Ch
s−1/2
T ‖u‖Hs(T )3 ∀T ∈ Th,1 ∈ TH ,1,

where wT : H1(T )3 → Dk is the standard (local) interpolation operator for k-th order Thomas-

Raviart elements Dk [15, Sect. 5.4]. The constant C does not depend on hT , T .

Proof. In order to simplify notation we will assume in this proof that C > 0 is an arbitrary constant

independent of h, T that may take a different value every time it is used. We note that since

u ∈ Hs(T )3, wT u is well defined by [15, Lemma 5.15]. Now split the integral over ∂T into its

facet contributions,

‖u−wT u‖2
L2(∂T )3 = ∑

FT∈FT

∫

FT

|u−wT u|2 .
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Since our mesh contains only tetrahedrons we can find for every FT ∈ FT a linear transformation

ΦT,FT
: T̂ → T which maps the reference element T̂ onto the actual element T such that the

pre-image F̂T of facet FT lies in the x− y plane of T̂ ,

ΦT,FT
: x̂ 7→ BT,FT

x̂+bT,FT
,

where BT,FT
∈ R

3×3. Now using the usual change of variables together with (21) we obtain

∫

FT

|u−wT u|2

=
∫

F̂T

∣∣∣det(BT,FT
)−1BT,FT

(
û− ŵT u

)∣∣∣
2 ∣∣∣
(
BT,FT

)
:,1
×
(
BT,FT

)
:,2

∣∣∣

=
area(FT )

area(F̂T )
∣∣det(BT,FT

)
∣∣2
∫

F̂T

∣∣BT,FT
(û−wT̂ û)

∣∣2

≤Ch2
T

∣∣det(BT,FT
)
∣∣−2∥∥BT,FT

∥∥2∥∥û−wT̂ û
∥∥2

L2(F̂T )3 . (22)

Here
(
BT,FT

)
:,i

denotes the i− th column of BT,FT
, ŵT u is defined by (21), and we have used that

ŵT u = wT̂ û [15, Lemma 5.22]. Now notice that û−wT̂ û ∈ Hs(T̂ )3 and thus we can use the trace

inequality [15, Thm. 3.9],

∥∥û−wT̂ û
∥∥

L2(F̂T )3 ≤
∥∥û−wT̂ û

∥∥
L2(∂ T̂ )3 ≤C

∥∥û−wT̂ û
∥∥

H1(T̂ )3 .

For the next step we note that ∀φ ∈ P
k−1(T̂ )3 ⊂ Dk(T̂ ) we have φ = wT̂ φ by the definition of wT̂

(Dk is the H(div;Ω) conforming Raviart-Thomas space, see [15, Sect. 5.4]). Therefore,

∥∥û−wT̂ û
∥∥

H1(T̂ )3 ≤
∥∥(I−wT̂ )(û+φ)

∥∥
H1(T̂ )3 ≤C‖û+φ‖H1(T̂ )3 ,

where we have used that wT̂ : H1(T̂ )3 →Dk is a bounded operator, i.e.
∥∥wT̂ û

∥∥
H1(T̂ )3 ≤C‖û‖H1(T̂ )3

(cf. Proof of [15, Thm. 5.25]). Since φ is arbitrary we can use the Deny-Lions theorem [15, Thm.

5.5]

∥∥û−wT̂ û
∥∥

L2(T̂ )3 ≤C inf
φ∈Pk−1(T̂ )3

‖û+φ‖H1(T̂ )3 ≤C |û|Hs(K̂)3 . (23)

Finally we have to map |û|Hs(T̂ )3 back to the actual element T . For this observe that using (21),

∂ α

∂ x̂α û = det(BT,FT
)B−1

T,FT

∂ α

∂ x̂α (u◦ΦT )

with |α|ℓ1 = s being a multi-index. Therefore,

|û|2
Hs(T̂ )3 = ∑

|α|
ℓ1
=s

∫

T̂

∣∣∣∣
∂ α û

∂ x̂α

∣∣∣∣
2

≤
∣∣det(BT,FT

)
∣∣2
∥∥∥B−1

T,FT

∥∥∥
2

∑
|α|

ℓ1
=s

∫

T̂

∣∣∣∣
∂ α(u◦ΦT )

∂ x̂α

∣∣∣∣
2

≤C
∣∣det(BT,FT

)
∣∣2
∥∥∥B−1

T,FT

∥∥∥
2∥∥BT,FT

∥∥2s ∣∣det(BT,FT
)
∣∣−1 |u|2Hs(T )3 , (24)
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where we have used [15, Lemma 5.9] in the last step. Now combining (22-24) gives.

‖u−wT u‖2
L2(FT )3

≤C
∣∣det(BT,FT

)
∣∣−1

h2
T

∥∥BT,FT

∥∥2
∥∥∥B−1

T,FT

∥∥∥
2∥∥BT,FT

∥∥2s |u|2Hs(T )3

≤Ch2s−1
T |u|2Hs(T )3 .

Here we have used [15, Lemma 5.10] together with the fact that the mesh sequence is shape

regular. Now summing over all facets FT ∈ FT yields the assertion.

Using these Lemmas we can finally give a bound for ‖A−πhA‖SWIP,∗.

Proof (Proof of Theorem 2). In order to simplify notation, C denotes in this proof an arbitrary,

positive constant that is independent of h. Note that the interpolation operator rh

(
A|Ω1

)
is well

defined for s ≥ 1 by the Sobolev Embedding Theorem and [15, Lemma 5.38]. Because the sub-

meshes of Ω1, Ω2 are conforming themselves, rh

(
A|Ω1

)
is tangentially continuous across all

inner, conforming faces. The same holds for Ω2 and because A ∈ H(curl;Ω) the exact solution

is also tangentially continuous across all inner faces. Therefore only jump terms across the faces

F ∈ F
Γ ,b
h

:= F b
h ∪
{

F ∈ F i
h | F ⊂ Ω 1 ∩Ω 2

}
remain in the definition of the jump semi-norm

|·| j,µ , i.e. we have to bound

‖A−πhA‖2
SWIP,∗ = ‖µ−1/2∇× (A−πhA)‖2

L2(Ω)3

︸ ︷︷ ︸
:=T1

+ε‖µ−1/2(A−πhA)‖2
L2(Ω)3

︸ ︷︷ ︸
:=T2

+ ∑
F∈F

b,Γ
h

γµ,F

aF

‖ [A−πhA]T ‖2
L2(F)3

︸ ︷︷ ︸
:=T3

+ ∑
T∈Th

hT‖µ−1/2∇× (A−πhA)‖2
L2(∂T )3

︸ ︷︷ ︸
:=T4

. (25)

Since µ is piecewise constant on each Ωi,µ ∈ PΩ there are constants µmin,µmax such that 0 <
µmin ≤ µ ≤ µmax. T1 and T2 are easily bounded using [15, Thm. 5.41]:

T1 +T2 ≤ µ−1
min max(1,ε)

[
‖∇× (A−πhA)‖2

L2(Ω)+‖(A−πhA)‖2
L2(Ω)

]

≤Ch2s

[
2

∑
i=1

(
‖A‖Hs(Ωi)3 +‖∇×A‖Hs(Ωi)3

)]2

.

The term T3 is bounded using Lemma 6,
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T3 ≤ µ−1
min ∑

F∈F
b,Γ
h

a−1
F

(∥∥∥A−πhA|T1

∥∥∥
2

L2(F)3
+
∥∥∥A−πhA|T2

∥∥∥
2

L2(F)3

)

≤C ∑
T∈Th

∑
F∈FT∩F

b,Γ
h

h−1
T

∥∥A−πhA|T
∥∥2

L2(F)3

≤C ∑
T∈Th

∑
F∈FT∩F

b,Γ
h

h2s−2
T

(
‖A‖2

Hs(T )3 +‖∇×A‖2
Hs(T )3

)

≤Ch2s−2
2

∑
i=1

(
‖A‖2

Hs(Ωi)3 +‖∇×A‖2
Hs(Ωi)3

)
.

Here we have used that aF ≥ ς1hT .

In order to bound the term T4 we first note that the global Thomas-Raviart interpolation

operator wh

(
∇×A|Ωi

)
i=1,2

is well defined by [15, Lemma 5.15]. Thus, ∇×
[

rh

(
A|Ωi

)]
=

wh

(
∇×A|Ωi

)
by [15, Lemma 5.40] and we can bound T4 as follows:

T4 ≤ µ−1
min ∑

T∈Th

hT

∥∥∇×A−wh (∇×A)
∥∥2

L2(∂T )

≤C ∑
T∈Th

h2s
T ‖∇×A‖2

Hs(T )3 ≤Ch2s
2

∑
i=1

‖∇×A‖2
Hs(Ωi)3 ,

where we have used Lemma 7 and the fact that hT ≤ h.

Remark 4. From the proof of Theorem 2 it is clear that for h sufficiently small the term T3 dom-

inates the other three terms and is thus responsible for the loss of one order of convergence as

pointed out in Remark 3. Interestingly T3 sums the jump terms only over the faces F
b,Γ
h . This

suggests that it suffices to use (k+ 1)-th order edge functions in elements adjacent to F b,Γ and

k-th order edge functions everywhere else to achieve O(hk) order convergence. This can be im-

plemented easily by using a hierarchical basis for the edge functions [16].

5 The local length scale aF and h-convergence

So far we have assumed that the local length scale aF fulfills (10), (20) in order to derive an a-

priori error estimator, i.e. 0 < ς1hT ≤ aF ≤ ς2hT . We will now study the following three concrete

choices for aF :

• a
(1)
F := 1

2
(hT1

+hT2
) if F ∈ F i

h and a
(1)
F = hT for F ∈ F b

h , see [10][Remark 4.6],

• a
(2)
F := min(hT1

,hT2
) if F ∈ F i

h and a
(2)
F = hT for F ∈ F b

h , see [5],

• a
(3)
F := hF if F ∈ Fh, see [8, 10],

where hT1
, hT2

are the diameters of the adjacent elements of face F and hF is the diameter of

face F . It turns out that for each choice of aF we have to make additional assumptions on the
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mesh such that aF fulfills (10), (20). So once we have chosen a concrete aF we can think of ς1,

ς2 as mesh dependent parameters. The important point is that the constants C in Theorems 1 and

2 depend on the constants σmax, ς1, ς2 but they do not depend in any other way on the shape of

the underlying meshes. Hence, if we can show that σmax, ς1, ς2 are independent of the way that

TH ,1, TH ,2 intersect at the sliding interface Γ , then there must be an upper bound on the total

error ‖A−Ah‖ that is independent of the relative position of TH ,1 to TH ,2 and that tends to 0

as h → 0.

Let us now discuss the precise conditions on the mesh for each choice of aF ; For a
(1)
F , a

(2)
F we

require TH to be quasi-uniform at the sliding interface Γ :

Definition 1. A mesh-sequence TH is said to be quasi-uniform at Γ if it is shape regular (4) and

if there exists a constant σ1 > 0 such that for all h ∈H , all T ∈T Γ
h

:=
{

T ∈ Th | ∂T ∩Γ 6= /0
}

:

hT ≥ σ1 max
T̃∈T Γ

h

hT̃ . (26)

Lemma 8. If the mesh is quasi-uniform at Γ then a
(1)
F , a

(2)
F fulfill conditions (10), (20) and the

constants σmax, ς1, ς2 are independent of the way TH ,1, TH ,2 intersect at Γ .

Proof. a
(1)
F ≥ 1

2
hTi

follows immediately from the definition for i = 1,2. For the other direction we

use (26) and get a
(1)
F ≤ 1

2
(1+σ−1

1 )hTi
. Moreover, σ1hTi

≤ a
(2)
F ≤ hTi

.

The Lemma above asserts that the choices a
(1)
F , a

(2)
F lead to a method that converges indepen-

dently of the way that the two mesh-sequences TH ,1, TH ,2 intersect at Γ . In particular the faces

can be very tiny “slivers” (i.e. triangles with high aspect ratio). But note that the choice of aF

determines the required minimum value of the penalty parameter (see Lemma 4).

By substituting a
(3)
F into (20) we see that we need an estimate of the form hF ≥ ς1hT in order

for Thm. 2 to hold. However if two meshes are sliding against each other such an estimate is not

feasible since hF can become arbitrarily small in comparison to hT . In other words, the constant

ς1 depends on the way TH ,1 intersects with TH ,2. Nevertheless using a
(3)
F in the variational

formulation 7 seems to work in practice (see below).

5.1 Numerical examples

We study the behavior of the SWIP formulation for the three different choices of the local length

scale aF ; As in [9] we consider a 3D sphere with radius 1 that is split into two hemispheres, Ω1 and

Ω2. For each hemisphere we create a sequence of quasi-uniform meshes, TH ,1 and TH ,2, which

approximate the boundary linearly. We impose the analytical solution A = (siny,cosz,sinx) and

choose ji, gD such that they fulfill (2-3).

Figure 4 shows the error in the curl-semi-norm for different angles of rotation, for all three

choices of aF , and for different mesh-sizes h. We can see that although the error depends slightly

on the angle, it converges to zero in all three formulations as h is decreasing. Moreover we see

that the choices a
(1)
F , a

(2)
F yield similar results which are slightly better than the choice a

(3)
F .
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Fig. 3 The meshes for the two half spheres. The upper hemisphere is turned against the lower hemisphere by

θ = 2.86 degrees to create a non-conforming mesh.

Fig. 4 The relative H(curl) error vs. the rotation angle for three different choices of aF and 4 different mesh-sizes:

h = 0.638174,0.482025,0.359644,0.261798. Second order edge functions R2 were used for discretization and

ε = 10−6, η = 50, µ ≡ 1. Note that the curve for a
(2)
F is partially hidden by the one of a

(1)
F .

In order to illustrate the estimates of Theorems 1 and 2 we plot the error for a series of quasi-

uniform meshes in Figure 5 for aF = a
(3)
F

1. As in [9] no convergence is observed when first

1 Based on the results in Figure 4 we can expect similar behavior for other choices of aF .
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order edge functions (k = 1) are employed which implies that Theorem 2 is sharp for k = 1. For

k = 2 and k = 3 we observe rates of convergence O(h1.5) and O(h2.7), respectively, which affirms

Theorems 1 and 2.
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Fig. 5 h-convergence The relative H(curl) error vs. the mesh size h for rotation angle θ = 0.05rad (solid lines).

The dashed lines correspond to θ = 0.01n, n ∈ 0,1, . . . ,49. aF = hF , ε = 10−6, η = 50, µ ≡ 1.

For Vh = P1(Th)
3 we observe the rate of convergence O(h), i.e. there is no loss of one order

of accuracy. This is because P
1(Th)

3 spans the full polynomial space (see [14] for a proof).

Remark 5. The observed rates for k = 2 and k = 3 are higher than the rates O(h), O(h2) which we

expect from Theorem 2. This is due to the better approximation properties of the edge functions

in the inside of the two hemispheres (cf. Remark 4).

Remark 6. Strictly speaking this numerical experiment does not fit the framework developed in

Sections 3, 4 because Ω is not a polyhedron. Extending the theory to domains with curved bound-

ary ∂Ω is beyond the scope of this paper but Figure 5 suggests that the order of convergence for

k = 2, k = 3 is the same as for polyhedral domains.
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6 The regularization parameter ε

So far we have looked at the regularized system (2-3) and it was shown that the proposed method

yields the expected rates of convergence for ε > 0. However, genuine magnetostatics amounts to

choosing ε = 0. We will consider two approaches to solve the system (2-3) with ε = 0: On the one

hand we will try to set ε = 0 directly and on the other hand we will study the effect of choosing

ε small enough such that the error due to regularization is negligible.

6.1 The case ε = 0

If we set ε = 0, the boundary value problem (2-3) does not have a unique solution. Indeed the

continuous curl−curl operator has an infinite-dimensional kernel and the non-zero eigenvalues

are well separated from 0 [15][Corollary 4.8]. If one uses H(curl) conforming edge functions of

the first kind on a conforming mesh it can be shown that the discrete curl−curl operator has a

(finite-dimensional) kernel and that the discrete eigenvalues are well separated from it [15][Dis-

crete Friedrichs inequality, Lemma 7.20], i.e. edge functions of the first kind yield a spectrally

accurate discretization of the curl−curl operator. From a theoretical point of view it remains

unclear whether this property carries over to the SWIP formulation (7), cf. [17].

Therefore the spectrum of the aSWIP
h bilinear form is investigated in a numerical experiment.

The setup is very similar to the one in the previous section: The domain Ω consists of two half-

spheres which can be rotated against each other by an angle θ . However this time we only as-

semble the matrix of the aSWIP
h bilinear form with ε = 0, aF = a

(3)
F

2 and compute its eigenvalues

using the eig routine of MATLAB R2013a.

Figure 6 shows the smallest and largest non-zero eigenvalues of the SWIP formulation for dif-

ferent mesh-widths h and different angles θ (dashed, blue lines) (an eigenvalue has been classified

as non-zero if its absolute value is greater than 10−12). For comparison we have also plotted the

eigenvalues of a standard H(curl) conforming discretization using second order edge functions

on the conforming grid with θ = 0 (green lines).

We see that the bandwidth of the SWIP eigenvalues is comparable to the bandwidth of the

H(curl) conforming discretization for many angles. But we also observe that for some angles the

lower end of the spectrum tends to zero. In order to better understand this phenomena we plotted

the smallest/largest non-zero eigenvalues of the SWIP discretization against θ for one mesh-size

(Figure 7). We now see that the lower end of the spectrum deteriorates as θ → 0, i.e. we can

expect spectral pollution for very small angles. This agrees with the observations of [7].

The previous considerations indicate that the aSWIP
h bilinear form is not suitable to solve the

Maxwell Eigenvalue Problem. However in this work we are concerned with the curl−curl source

problem (2-3). Although the Galerkin matrix becomes singular for ε = 0 we can in principle still

solve the linear system if it is consistent, i.e. if the right-hand side lies in the range of the Galerkin

matrix. Then the solution Ah is not unique anymore, but curlAh is.

We attempt to solve the linear system of equations using the conjugate gradient (CG) method

[1]. In [20] it is shown that the CG method converges for consistent, symmetric positive semi-

2 The choices a
(1)
F and a

(2)
F yield qualitatively the same results. In particular the smallest non-zero eigenvalues also

tend to 0 as ε → 0, cf. Figure 7
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Fig. 6 The smallest/largest non-zero eigenvalue for ε = 0 is plotted against the meshwidth for 50 different angles

of rotation (dashed lines). For comparison the smallest/largest non-zero eigenvalue of a H(curl) conforming dis-

cretization based on second order edge functions is plotted as well. The angles are θ = 0.01n rad, n ∈ 0, . . . ,49 and

R2 edge functions were used to discretize aSWIP
h , µ ≡ 1.

definite problems and that its rate of convergence is determined by the non-zero eigenvalues. In

particular, the number of CG iterations is related to the generalized condition number κ = λmax
λmin

where λmin is the smallest, non-zero eigenvalue of the system matrix. If again we take a look at

Figure 7 it becomes clear that κ → ∞ as θ → 0. I.e. the number of CG iterations should increase

as θ → 0.

This has been confirmed in a numerical experiment: We take the example from Section 5 with

the same analytical solution and chose the right-hand side ji = ∇× (∇×A) (ε = 0, µ ≡ 1). Table

1 provides the number of CG iterations required to reach the prescribed tolerance 10−6. We see

that without a preconditioner the computational cost for the angle θ = 10−6 is almost 6 times

larger than for θ = 10−1. For comparison we also list the number of iterations needed when the
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Fig. 7 Smallest/Largest non-zero eigenvalues vs. the rotation angle θ for h = 0.359644, ε = 0, µ ≡ 1. The dis-

cretization is based on R2 edge functions.

multi-level ILU decomposition ILUPACK is employed 3 [12]. In this case the number of iterations

also increases but the factor 6 is reduced to ≈ 3.15.

Table 1 Number of CG iterations for θ → 0, h = 0.359, ε = 0; the discretization is based on R2 edge functions.

θ [rad] No Preconditioner ILUPACK

10−1 1118 135

10−2 3705 214

10−3 3731 320

10−4 6102 426

3 The ILU factorization is built from the system matrix with ε = 10−6 and the parameters for ILUPACK

are: type sol = 0, partitioning=3, flags=-1,-1, inv. droptol=5, threshold ILU=0.1,

condest=1e-2, residual tol. = 5e-6
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Remark 7. Although the right-hand side ji chosen in the numerical experiment above is clearly

divergence free, there is no guarantee that its discrete counterpart ℓh is so too, i.e. it is not clear

that the right-hand side vector b, that is associated with ℓh, lies in the range of the system matrix.

We have investigated this by splitting the right-hand side vector b into a part that lies in the kernel

of the system matrix, b̃, and into it’s orthogonal complement, b̃
⊥

. It turned out that for all angles∥∥∥b̃
⊥
∥∥∥

2
/‖b‖2 ≈ 10−9, which seems to be sufficient for CG to converge.

We can conclude that setting ε = 0 is in principal possible if the right hand side vector b lies

in the range of the system matrix. However checking this for non-zero right hand sides ji is a

non-trivial task because we don’t know a-priori the kernel of the system matrix aSWIP
h . Moreover

the system matrix becomes ill-conditioned as the angle θ → 0 which causes an increase in the

number of CG iterations.

Remark 8. For H(curl) conforming discretizations, which fulfill the discrete sequence property,

the kernel of the system matrix is known. In particular it is easily proven that div ji = 0 implies

that ℓh lies in the range of the system matrix. Unfortunately it is not clear whether this property

carries over to the SWIP formulation (7) because to the best of our knowledge there exists no

characterization of the kernel of aSWIP
h on arbitrarily non-conforming meshes.

6.2 The case 0 < ε ≪ 1

We saw in the previous section that setting ε = 0 is in practice not feasible. Therefore we study a

different approach: We choose ε so small that the error due to regularization becomes negligible.

To make this more explicit we bound the total error between the discrete, regularized solution Aε
h

and the exact solution of (2-3) with ε = 0, A0, by two contributions:

∥∥∥µ−1/2∇× (Aε
h −A0)

∥∥∥
L2(Ω)3

≤
∥∥∥µ−1/2∇× (Aε

h −Aε)
∥∥∥

L2(Ω)3

+
∥∥∥µ−1/2∇× (Aε −A0)

∥∥∥
L2(Ω)3

, (27)

herein Aε is the exact solution of the regularized system (2-3). Clearly the second component is

independent of the discretization and thus h, but it depends on ε for a given problem. Moreover,

the first term depends on h but is independent of ε because the constant C of Thms. 1 and 2 is

independent of ε .

It is thus desirable to choose ε small such that

∥∥∥µ−1/2∇× (Aε −A0)
∥∥∥

L2(Ω)3
≪ ‖µ−1/2∇×

(Aε
h −Aε)‖L2(Ω)3 . However, as ε → 0 the discrete problem becomes ill-posed and solvers typi-

cally fail to converge, cf. Remark 3.1, Section 6.1.

We try to circumvent this problem by two approaches:

• For small problems we use the Sparse Cholesky Decomposition of PARDISO [19] (Intel MKL

Version 11.2) and solve the linear system of equations directly.

• For problems whose Cholesky Decomposition does not fit into memory we use the Conjugate

Gradient Method together with ILUPACK [12] as a preconditioner (using the settings of Sect.

6.1).
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Remark 9. We are only interested in the curl of the solution, i.e. the magnetic field B. If we were

to look at A instead of ∇×A then
∥∥Aε

h −Aε
∥∥

L2(Ω)3 would not be independent of ε as can be seen

from Thm. 1.

The following Lemma gives us a guideline for choosing ε .

Lemma 9. If we impose homogeneous dirichlet data, gD ≡ 0, we have,

∥∥∥µ−1/2∇× (Aε −A0)
∥∥∥

L2(Ω)3∥∥µ−1/2∇×A0
∥∥

L2(Ω)3

≤ µmaxε

α2
, (28)

where α is the smallest, non-zero eigenvalue of ∇× (µ−1∇×A) = αA. If Ω is convex we can

choose α = µ
1/2
min π/diam(Ω) 4.

The first part of this lemma is proven in [21, Lemma 2.1] and for the second part we use a result

of [22, Theorem 6].

By comparing (28) with (27) we see that

∥∥∥µ−1/2∇× (Aε
h −Aε)

∥∥∥
L2(Ω)3

= O(hk−1) for k order

edge functions. Therefore ε should be chosen such that ε ∼ hk−1 as the mesh is refined.

Numerical example We consider the same setup as in the previous section (cf. Figure 3) but

we choose a different µ for the upper and lower hemisphere. The analytic solution is chosen as

A0 = (siny,0,µ sinx). ji is chosen such that A0 fulfills (2-3) with ε = 0.

We solve the system of linear equations using PARDISO for different values of ε and

µ (as in the previous section we choose aF = a
(3)
F ). Figure 8 shows the total relative error∥∥∥µ−1/2∇× (Aε

h −A0)
∥∥∥

L2(Ω)3
as a function of ε for various mesh-sizes. The solid lines show

the error for µupper/µlower = 102 whereas the dashed lines show it for µupper/µlower = 107.

We note that the errors are almost identical for both choices of µ . Morever, we observe that

for ε < 10−3 the discretization error

∥∥∥µ−1/2∇× (Aε
h −Aε)

∥∥∥
L2(Ω)

(which here includes the er-

ror due to boundary approximation, cf. Remark 6) clearly dominates the regularization error∥∥∥µ−1/2∇× (Aε −A0)
∥∥∥

L2(Ω)
whereas for ε > 10−3 the regularization error is dominated by the

discretization error. This is what we can expect from the previous discussion. In fact, from lemma

9 we can expect that the relative regularization error is bounded by
4µmax

π2µmin
ε . The black, dashed

line in Figure 8 visualizes the corresponding estimate (28) for µmax/µmin = 1 and we see that for

ε large the behavior is clearly linear, as proven in lemma 9, and that the estimate is valid even

though gD 6= 0 and µmax/µmin ≫ 1.

Remark 10. The same results are obtained if CG together with ILUPACK is used. For brevity we

omit these results here.

We would like to point out that by using the direct solver PARDISO we were able to solve the

resulting system of linear equations for ε as small as 10−10 and that the time needed to solve the

4 In a previous version of this report the convexity assumption on Ω was missing and an additional factor of 1/
√

2

was spuriously present.



26 Raffael Casagrande and Ralf Hiptmair

Fig. 8 Relative L2-error of curl vs. ε for multiple mesh-sizes h. The solid lines show the error for µupper = 10,

µlower = 0.1 whereas the dashed lines show it for µupper = 106, µlower = 0.1. The meshes have been rotated against

each other by θ = 0.057 degrees and second order edge functions (k = 2) were used for discretization.

problem seems to be independent of ε (see Table 2). A similar result holds for preconditioned CG

with ILUPACK preconditioner where the system is solvable for arbitrary small ε (cf. Section 6.1)

and the solution time seems to be independent of ε for ε small enough.

We can thus choose ε (almost) arbitrarily small without affecting the discretization error∥∥∥µ−1/2∇× (Aε
h −Aε)

∥∥∥
L2(Ω)

and incurring rising cost for solving the resulting linear sys-

tems of equations. In other words, one should choose ε as small as possible such that the

resulting linear system can still be solved.
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Table 2 Relative runtimes for ε → 0, h = 0.359; the discretization is based on R2 edge functions and θ = 10−4

rad. The runtimes have been normalized with the runtime for ε = 10−1.

ε PARDISOa ILUPACKb

10−1 1 1

10−2 1.01 1.41

10−3 1.01 1.42

10−4 1.02 1.43

10−5 0.98 1.42

a Time includes cholesky factorization and back-substitution
b Time includes ILU factorization and CG iterations

7 Conclusion and Outlook

We have proved a-priori error estimators for the interior penalty formulation of the regularized

curl-curl source problem (2-3); If the solution is approximated by k-th order edge functions we can

expect at least convergence of order O(hk−1) (provided the exact solution is sufficiently smooth).

In particular, for k = 1 no convergence was observed in a numerical experiment [9], which implies

that our result is sharp. The reason for this is that Rk does not span the full polynomial space P
k.

The bounds require the mesh to be quasi-uniform at the sliding interface but do not make

any assumptions on how the sub-meshes abut at the sliding interface nor does the error estimate

depend on it. This is confirmed by the numerical experiments and it is observed that the approxi-

mation is stable independent of the way the sub-meshes intersect.

Moreover the role of the regularization parameter ε has been investigated; For practical pur-

poses one can choose ε (almost) arbitrarily small and solve the discrete problem with a direct

solver or by using the preconditioned conjugate gradient method. The error due to regularization

is then dominated by the discretization error of the regularized problem and is negligible.

Outlook The proof of Thm. 2 suggest that it suffices to use 2nd order edge functions solely

in elements adjacent to the non-conforming interface, respectively boundary faces, to achieve

O(h) convergence. This would reduce the required number of unknowns drastically and should

be pursued for practical applications.
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