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Abstract. We present a well-balanced scheme for the Euler equations with gravita-
tion. The scheme is capable of maintaining exactly (up to machine precision) a discrete
hydrostatic equilibrium without any assumption on a thermodynamic variable such as
specific entropy or temperature. The well-balanced scheme is based on a local hy-
drostatic pressure reconstruction. Moreover, it is computationally efficient and can be
incorporated into any existing algorithm in a straightforward manner. The presented
scheme improves over standard ones especially when flows close to a hydrostatic equi-
librium have to be simulated. The performance of the well-balanced scheme is demon-
strated on an astrophysically relevant application: a toy model for core-collapse super-
novae.

1. Introduction

In many interesting astrophysical phenomena the flow is close to hydrostatic equilib-
rium

∇p = −ρ∇φ. (1)

This is for instance the case when simulating wave propagation in stellar atmospheres,
convection in stellar interiors and the climate of exoplanets. In these examples, hydro-
static equilibrium dominates and the flow of interest is realized as a perturbation of it.
In other situations, hydrostatic equilibrium may be dominating only in a certain region,
whereas in other regions the flow may be fully dynamic. Moreover, the region close
to equilibrium may be the result of a dynamic process. This is for example the case
in the core-collapse supernova scenario, where the collapse of the core of an evolved
massive star results in the formation of a highly compact massive object. This object,
which is to become a neutron star 1, is very close to hydrostatic equilibrium. However,
the fate of the supernova explosion is sealed just above this proto-neutron star in a very
dynamic environment.

In the situations mentioned above, the interest relies in robust and accurate numer-
ical resolution of flows close to hydrostatic equilibrium. The numerical approximation
of near steady flows is challenging for standard finite volume schemes as they do not
necessarily satisfy a discrete equivalent of the balance of pressure gradient and gravita-
tional forces. As a result, equilibrium states are not preserved exactly but are approx-
imated with an error proportional to the truncation error. So if one is interested in the

1We focus here on events leaving behind a neutron star.
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simulation of the particular types above, the numerical resolution has to be increased to
the point that the truncation errors do not obscure the phenomena of interest. This need
in resolution may become prohibitively large (especially in multiple dimensions).

To overcome this challenge, we seek a scheme that satisfies a discrete version of
the delicate balance (1). Schemes having such a property have been coined as well-
balanced. However, the equilibrium eq. (1) only specifies a mechanical equilibrium.
Käppeli & Mishra (2014) have designed a well-balanced scheme under the further as-
sumption of a thermal equilibrium. By assuming isentropic (isothermal) conditions, eq.
(1) can be explicitly integrated to h + φ = const. (g + φ = const.), where h is the spe-
cific enthalpy (g the Gibbs free energy). These expressions can then be used to build a
well-balanced scheme for the isentropic (isothermal) case. However, the assumption on
a thermal equilibrium is not adequate in all instances. Especially when the equilibrium
is the outcome of a dynamic process.

In this contribution, we shall present a well-balanced scheme that does not rely on
any assumption of a thermal equilibrium. A mechanical equilibrium is directly built
from a discrete version of (1). In section 2 we shall derive the well-balanced scheme
and its use is illustrated at a toy model of core-collapse supernova explosions in 3. More
extensive presentations and examples will be presented in a forthcoming publication.

2. Well-balanced scheme

2.1. One-dimensional Cartesian

In one space dimension the Euler eqs. can be recast in the following compact form

∂u

∂t
+
∂F

∂x
= S (2)
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, (3)

where u, F and S are the vectors of conserved variables, fluxes and source terms. We
will denote the primitive variables by w = [ρ, vx, p]T .

Finite volume schemes compute numerical approximations to solutions of con-
servation laws by discretizing space into finite volumes or cells Ii = [xi−1/2, xi+1/2] of
regular size ∆x = xi+1/2 − xi−1/2 (for simplicity of the presentation). Cell centers are
given by xi = (xi−1/2 + xi+1/2)/2. By integrating eq. (2) over a cell Ii one obtains
a semi-discrete finite volume scheme for the evolution of the cell averaged conserved
variables

dui

dt
= −

1

∆x

(

Fi+1/2 − Fi−1/2

)

+ Si, (4)

where Fi+1/2 is the numerical flux at cell interface and Si is the cell averaged gravity
source term.

The numerical flux is obtained by solving (approximately) the Riemann problem
at cell interfaces

Fi+1/2 = F (wi+1/2−,wi+1/2+), (5)
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where the wi+1/2− and wi+1/2+ denote the cell interface extrapolated primitive variables.
For the well-balanced scheme elaborated below we require that the numerical flux is
capable of resolving stationary contact discontinuities, i.e.

F
(

[ρL, 0, p]T , [ρR, 0, p]T
)

= [0, p, 0]T , (6)

where ρL (ρR) is the density on the left (right) side of the contact discontinuity and p

the constant pressure. For example the HLLC (Toro et al. 1994) and Roe (Roe 1981)
approximate Riemann solvers have this property. In the numerical example presented
below, we have used the HLLC Riemann solver with wave speed estimates according
to Batten et al. (1997).

The gravitational source term is evaluated by standard second-order central differ-
ences

Si = −
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φi+1 − φi−1

2∆x
, (7)

where the φi are the cell centered values of the gravitational potential.

The cell interface extrapolated variables are obtained by reconstruction from the
cell averages. Commonly, some non-oscillatory piece-wise polynomial reconstruction
of the TVD, ENO or WENO type is used (see e.g. Toro (1997) and references therein).
However, these reconstructions are not well suited for the case of interest here. The rea-
son for this is simply the fact that a hydrostatic equilibrium is generally not a piece-wise
polynomial function. In the following subsection, we build a reconstruction that auto-
matically fulfills a discrete version of hydrostatic equilibrium (without any assumption
on a thermal equilibrium).

2.2. Well-balanced pressure reconstruction

In hydrostatic equilibrium, gravity forces are exactly balanced by the pressure gradient
force

∂p

∂x
= −ρ

∂φ

∂x
. (8)

This subtle balances is not readily maintained by standard schemes based on non-
oscillatory polynomial reconstruction.

In the first-order scheme, we propose to reconstruct the cell interface primitive
variables by

wi∓1/2± =



















ρi

vx,i

pi∓1/2±



















, (9)

i.e. a piece-wise constant reconstruction of density and velocity, and for the pressure

pi−1/2+ = pi + ρi

φi − φi−1

∆x

∆x

2
and pi+1/2− = pi − ρi

φi+1 − φi

∆x

∆x

2
. (10)

This pressure reconstruction takes explicitly into account the pressure variation induced
by gravity. Moreover, it is consistent with the central discretization of the momentum
component of the gravitational source term eq. (7), i.e.

pi+1/2− − pi−1/2+

∆x
= −ρn

i

φi+1 − φi−1

2∆x
. (11)
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In hydrostatic equilibrium the pressure is continuous everywhere. Now consider
the i + 1/2-th cell interface. If the reconstructed pressure from cell i and i + 1 are in
equilibrium at this interface, i.e. pi+1/2− = pi+1/2+, the following holds:

pi+1 − pi

∆x
= −
ρi + ρi+1

2

φi+1 − φi

∆x
, (12)

which is clearly a (spatially) second-order accurate discretization of hydrostatic equilib-
rium (8). Moreover, this is the discrete hydrostatic equilibrium that is exactly preserved
by our reconstruction.

2.3. The well-balanced scheme and its extensions

A well-balanced semi-discrete finite volume scheme can then be assembled by combin-
ing the hydrostatic reconstruction (9), a contact discontinuity resolving Riemann solver
(5) and the semi-discrete evolution prescription (4) for the conserved variables.

Now, suppose we are given a discrete pressure pi, density ρi and gravitational
potential φi profile fulfilling eq. (12) and vanishing velocity vi = 0. Then, this discrete
hydrostatic equilibrium is preserved exactly (or up to machine precision) by our well-
balanced scheme:

dui

dt
= 0. (13)

Therefore, we have built a well-balanced hydrostatic equilibrium preserving scheme
without any assumption on a thermodynamic variable such as specific entropy or tem-
perature. This is a substantial improvement over Käppeli & Mishra (2014), where
isentropic or isothermal conditions had to be assumed.

Although the hydrostatic equilibrium preserved by the scheme is (spatially) second-
order accurate, any perturbation on top of this stationary state is only resolved with
first-order accuracy. In a similar manner as Käppeli & Mishra (2014), a second-order
well-balanced pressure reconstruction can be built by applying a piece-wise linear re-
construction to the equilibrium perturbation. This is always applied, even when far
from equilibrium. For the density and the velocity a standard piece-wise linear recon-
struction can be applied. In the numerical tests below, we have used a MUSCL type
piece-wise linear reconstruction with the monotonized centered limiter.

The well-balanced scheme can also be generalized to different geometries (cylin-
drical and spherical) and higher dimensions. The multidimensional generalization can
be achieved in a direction-by-direction manner.

3. Application: a toy model of core-collapse

As an illustration of the performance of our well-balanced scheme, we apply it to a toy
model of core-collapse supernovae from Janka et al. (1993). This example simulates
in spherical symmetry the collapse, bounce, evolution of the induced shock waves and
formation of a proto-neutron star (PNS) for a simplified model of a stellar core and
equation of state (EoS). The forming PNS is close to hydrostatic equilibrium. Because
the PNS is the outcome of a very dynamic process, it is interesting to investigate how
accurately the well-balanced scheme captures the near equilibrium state.

The initial configuration models the iron core of an evolved massive star. It con-
sists of an equilibrium polytrope with polytropic index n = 3 (corresponding to a poly-
tropic exponent γ = 4/3), polytropic constant K = 4.897 × 1014 (in cgs units) and a



Well-balanced schemes for gravitationally stratified media 5

central density ρc = 1010 g/cm3. This corresponds to a total mass M ≈ 1.44M⊙ and a
radius R ≈ 1.54 × 103 km.

The EoS consists of a purely polytropic part and a thermal part. The polytropic
part is chosen to mimic the behavior of a relativistic and degenerate electron gas at low
densities ρ < 2 × 1014 g/cm3. At higher densities, it mimics the stiffening of a nuclear
gas EoS above nuclear saturation density. See Janka et al. (1993) for further details.

The polytrope is then set up on a radial domain [0, 1.5×103] km and discretized by
N = 128, 256, 512, 1024, 8192 zones with an exponentially growing size ∆ri = ai−1

∆r1,
i = 2, ...,N. Here a ≥ 1 is the grid scaling parameter and ∆r1 the size of the first zone.
For the resolutions we have taken ∆r1 = 2, 1, 0.5, 0.25, 0.025 km, respectively. The
finest resolution serves as a reference solution.

The polytrope is then evolved with a standard and the well-balanced schemes for
all resolutions from t = 0 up to 110 ms. The collapse is initiated by slightly lowering
the EoS’s polytropic exponent from 4/3 to 1.325. The collapse goes on until the central
density exceeds 2× 1014 g/cm3, where the EoS stiffens. This allows the inner-core, the
inner part that collapses subsonically, to progressively halt the collapse and, eventually,
to find a new equilibrium configuration, i.e. the ”toy” PNS is born. Starting at the
center of the inner core, where the density is largest, successive mass shells are stopped.
Pressure waves move out in radius and accumulate near the sonic point, i.e. the point
where the collapse velocity equals the speed of sound, where they steepen into a shock
wave. Due to its inertia, the inner core overshoots its equilibrium and rebounds behind
the shock wave: the core bounces.

In this simple model for core-collapse, the energy transferred to the shock wave
is large enough to make the polytrope explode, leaving behind a highly compact object
(the ”toy” PNS). It’s now interesting to compare the performance of the standard and
the well-balanced scheme in the numerical resolution of the PNS. The well-balanced
scheme consists of the pressure reconstruction outlined in section 2 with its second-
order extension. In the standard scheme, a standard piece-wise linear reconstruction is
used for all variables. Both schemes use the Heun method as time integrator.

A measure on how well a numerical scheme is able to resolve the near equilibrium
of the PNS is given by the evolution of the central density, which should remain roughly
constant (after post-bounce oscillations have stopped). In figure 1 we plot the central
density as a function of time for the standard and the well-balanced scheme for different
resolutions. From the figure it is clear, that the standard scheme has troubles for N <
512. Even at N = 512 one can discern a drift in the central density. On the contrary,
the well-balanced scheme is able to maintain the nearly constant central density at all
resolutions (with a slight overestimate for N = 128).

In figure 2 we show the integrated total internal, kinetic and gravitational energies
as a function of time for both schemes with N = 512. Also the error in total energy
conservation is displayed. After bounce, we observe that the standard scheme shows
a steadily growing error in total energy conservation. The reason behind this steadily
growing error is that it’s not able (at the present resolution) to maintain the PNSs hydro-
static equilibrium. As a matter of fact, the overwhelming majority of integrated internal
and gravitational energy is enclosed in the PNS. On the other hand, the well-balanced
scheme shows a constant error in energy conservation after bounce simply because it’s
able to resolve the hydrostatic equilibrium much better.
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Figure 1. Central density as a function of time for the standard (left panel) and
the well-balanced (right panel) schemes. In both panels the dashed (blue), dash-
dotted (red), dotted (green) and the solid (black) line represent the simulations with
N = 128, 256, 512, 8192, respectively.
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Figure 2. Energies and total energy conservation as a function of time for the
standard (left panel) and well-balanced (right panel) schemes with N = 512. In both
panels the solid (blue) line is the total internal energy, the dashed (green) line is the
total kinetic energy, the dash-dotted (red) line is minus the total gravitational energy
and the dotted (black) line is the total energy conservation.

4. Conclusion

We have presented a well-balanced scheme for hydrostatic equilibrium. We have shown
that the scheme substantially improves upon standard ones at the example of a toy
model for core-collapse. A more comprehensive description of the well-balanced scheme
as well as more astrophysically relevant applications will be exposed in a forthcoming
publication.
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