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Abstract

We analyze reduced basis acceleration of recently proposed deterministic Bayesian inversion algo-
rithms for partial differential equations with uncertain distributed parameter, for observation data
subject to additive, Gaussian observation noise. Specifically, Bayesian inversion of affine-parametric,
linear operator families on possibly high-dimensional parameter spaces. We consider “high-fidelity ”
Petrov-Galerkin (PG) discretizations of these countably-parametric operator families: we allow gen-
eral families of inf-sup stable, PG Finite-Element methods, covering most conforming primal and
mixed Finite-Element discretizations of standard problems in mechanics. Reduced basis accelera-
tion of the high-dimensional, parametric forward response maps which need to be numerically solved
numerous times in Bayesian inversion is proposed and convergence rate bounds for the error in the
Bayesian estimate incurred by the use of reduced bases are derived. As consequence of recent theoret-
ical results on dimension-independent sparsity of parametric responses, and preservation of sparsity
for holomorphic-parametric problems, we establish new convergence rates of greedy reduced basis ap-
proximations for both, the parametric forward maps as well as for the countably-parametric posterior
densities which arise in Bayesian inversion. We show that the convergence rates for the reduced basis
approximations of the parametric forward maps as well as of the countably-parametric, deterministic
Bayesian posterior densities are free from the curse of dimensionality and depend only on the sparsity
of the uncertain input data. In particular, we establish the quadratic convergence of the reduced basis
approximation for the posterior densities with respect to that for the parametric forward maps.

Numerical experiments for model elliptic, affine-parametric problems in two space dimensions with
hundreds of parameters are reported which confirm that the proposed adaptive, deterministic reduced
basis algorithms indeed exploit sparsity of both, the parametric forward maps as well as the Bayesian
posterior density.

Key words: Parametric Operator Equations, Bayesian Inversion, Reduced Basis, Sparse Grid, A Pos-
teriori Error Estimate, A Priori Error Estimate, Best N -term Convergence, Curse of Dimensionality
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1 Introduction

The problem of prediction and estimation of responses from differential (or integral) equation models
in engineering, subject to possibly large sets of noisy data, has found considerable interest in recent
years. For models with a moderate, finite number of uncertain parameters, theoretical and numerical
aspects are well-investigated. We refer to [34] and the references there for recent contributions regard-
ing computational aspects. In applications involving systems governed by PDEs, however, Bayesian
inversion is often subject to noisy data from a finite number K of observable responses (being continu-
ous functionals on spaces of suitable weak solutions), and subject to uncertain distributed parameters
in the model under consideration. Examples could be soil permeability in subsurface flow or, in solid
mechanics, elastic constitutive parameters in heterogeneous solids, uncertain bottom topography in
shallow water equations, to name but a few. In these cases, the parametric uncertainty is distributed
in space (and, possibly, also in time) which mandates in parsimonius representations a rather large
number of parameters. The problem of efficient computational treatment of high-dimensional, multi-
parametric forward maps in computational Bayesian inversion in Partial Differential Equations (PDEs
for short) attracted considerable attention recently; we mention only [6, 7, 5, 44]. In these references,
several computational methods for “extracting” parsimonious, low-parametric “principal modes and
components” of complex computational models have been proposed and found to be efficient in a
host of problems governed by (linear and nonlinear) elliptic and parabolic PDEs. In each case, the
feasibility of such extraction has been shown to afford large computational savings in parameter cali-
bration and estimation. To unify and mathematically justify these obervations, for a general class of
abstract, affine-parametric operator equations with uncertain inputs, is a purpose of the present pa-
per. Based on previous results on sparsity of solution families of affine-parametric operator equations
from [20, 28, 52, 31, 29, 30, 29, 30], Reduced Basis Methods (RBM), or more general model reduction
techniques, have been applied to solve Bayesian inverse problems recently in [39, 35, 25, 33, 21]. These
methods are either limited to low dimensional parametric forward models or lack efficient algorithms
to construct the reduced bases without taking advantage of the sparsity of the parametric forward
solution and the posterior density function.

In the present paper, we propose and analyze RBM acceleration of a class of affine-parametric,
linear operator equations and its use in Bayesian inversion, in particular in Bayesian estimation algo-
rithms in the infinite-dimensional setting proposed in [55], and in the context of dimension-adaptive,
deterministic quadrature algorithms proposed in [49, 50]. RM methods have been largely developed
during the past decade; we refer to [37, 45, 42, 48]. Recently, RB methods have also been success-
fully applied to PDEs with random inputs, cp. [3, 24, 27]. A detailed computational comparison of
RB and (generalized) sparse grid (SG for short) stochastic collocation methods in terms of accuracy
versus computational cost has been given in [14]. It was found that the former perform superior
for linear elliptic problems. Reduced basis methods (RBM for short) have been proposed to deal
with arbitrary prior probability distributions in [13, 15]. They have bee applied, in combination with
sparse grid methods (SGM for short), to efficiently solve stochastic optimal control problems [11, 12].
In the present work, we investigate the RBM to solve “many-query” Bayesian estimation problems
for parametric forward problems in high dimensions. While affine parameter dependence may be
considered as rather specific, the presently considered class of affine-parametric operator equations
comprises in fact a wide range of elliptic and parabolic PDEs with distributed parameter uncertainty,
being parametrized by a Karhunen–Loève (or principal components) expansion (see, eg., [51] and the
references there).

We exploit parametric holomorphy of solution families of affine-parametric operators on polydiscs.
The holomorphic dependence on the parameters is inherited by the countably-parametric posterior
density in Bayesian inversion (cp. [53, 50]). As shown in [53, 50], this holomorphic dependence
implies dimension-independent convergence rates of N -term truncated Taylor expansions for both, the
parametric forward maps and for the parametric Bayesian posterior density. A comparison argument
implies the same rates for greedy approximations and RBM of the parametric forward maps and for
the Bayesian posterior density. In particular, we establish the quasi-optimality of the reduced basis
(RB) Petrov-Galerkin approximation. Based on this result, the N -width convergence rate for the
PG-RB approximation of the parametric forward solution follows by comparison with best N -term
polynomial approximation. Moreover, by exploiting the Taylor expansion of the posterior density on
the RB solution, and using a dual approach for a corrected posterior density with a dual-weighted
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residual, we obtain a superconvergence bound of the N -width the RB approximation.
In the present paper, we estimate errors due to different approximations on the Bayesian estimates;

specifically, error due to parametric dimension truncation and due to high-fidelity PG discretization,
SG sampling and Smolyak quadrature and, most importantly, due to RB approximation of the high-
dimensional, parametric solution manifold of the forward problem. An analysis for combined/total
error for the approximation of the parametric forward solution and for the posterior density as well as
of quadrature errors with respect to the prior measure are also provided. These error bounds also lead
to a new error bound for the Hellinger distance between the exact and approximate Bayesian posterior,
and in particular to dimension-independent convergence rates for the errors of these quantities (forward
solution, posterior density and measure distance) by the combined SG-RB approximation.

We report here numerical experiments with the proposed algorithms showing that they realize
N -term approximation error bounds already for few, but also for high (hundreds of) parametric
dimensions. The results indicate that the high-fidelity error estimate and SG interpolation error
estimate are sharp, while the error estimates for the RB approximation, and in particular for the
SG integration are likely not optimal. We also investigate the dependence of the number of RB
approximation with respect to the high-fidelity PG discretization, the noise realization and scale, the
locations and number of sensors/observations. In general, the number of reduced bases constructed
from the dual-weighted residual based a posteriori error estimate are rather robust, remaining the same
when refining the high-fidelity PG discretization when it is fine enough, displaying little sensitivity
to the noise samples and small increase with decreasing noise scale, exhibiting small sensitivity with
respect to the number K of sensors.

The structure of this paper is as follows. In Section 2, we present the problem of Bayesian
inversion of parametric operator equations in a function space setting, based on [55, 22], and for the
general class of affine-parametric operator equations considered here. Section 3 presents the results on
adaptive SG interpolation and integration, from [10]. Section 4 summarizes the principal results and
algorithms from the reduced basis method. Section 5 combines the basic error bounds, in particular
the dimension-independent RB convergence rates of convergence for the RB approximation of the
forward problems and for the Bayesian posterior density. Section 6 contains a suite of numerical
experiments for a model parametric problem class which confirm the theoretical results. Section 7
contains some conclusions, and also indicate a number of generalizations, most notably to problems
which do not allow an affine-parametric representation and nonlinear problems.

2 Bayesian Inversion

We define a class of operator equations which depend on an uncertain datum u taking values in a
separable Banach space X (such as spaces for permeability), via a possibly countably infinite sequence
y = (yj)j∈J of parameters, and formulate theorems on Bayesian estimation for responses of these
equations, with respect to a uniform, in a sense, prior measure π0 on a suitable subset X+ ⊂ X,
conditional to noisy observation data δ ∈ Y . Ie., the data δ is subject to additive, Gaussian observation
noise η ∼ N(0,Γ) on Y ; we assume that Y is finite-dimensional and that the covariance operator Γ is
nondegenerate, ie. Y ⊆ RK for some K <∞, corresponding to, say, noisy data from K sensors.

2.1 Formulation of Bayesian Estimation

We review Bayesian Inversion, from [22, Sections 3 and 5] and [55], in the setting considered here.
By G : X → X we denote a “forward” response map from a separable Banach space X of uncertain
data u in the operator A into a Banach space X of responses q which are accessible through a finite
number K of bounded, linear functionals O() = (o1, ..., oK)⊤∈ (X ′)K .

The goal of Bayesian estimation is to predict a “most likely” value of a Quantity of Interest (QoI)
Ψ : X → Z taking values in a Banach space Z, conditional on given, noisy measurement data δ.

We consider forward models described by linear operator equations

Given u ∈ X, f ∈ Y ′ find q ∈ X : A(u)q = f in Y ′ , (2.1)

where the uncertain operator A(u) ∈ L(X ,Y ′) is assumed to be boundedly invertible, uniformly w.r.
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to uncertain input u ∈ X+ ⊆X sufficiently close to a nominal input 〈u〉 ∈ X+, ie. for ‖u − 〈u〉‖X
small enough and a suitable, closed subset X+ of X. Then, for such u, the response of (2.1) is

X+ ∋ u 7→ q(u) := G(u; f) = (A(u))−1f ∈ X . (2.2)

As we assume the forcing f ∈ Y ′ to be known, we omit the dependence of the response on f and simply
write q = G(u). We also assume given an observation functional O(·) : X → RK denoting a bounded
linear observation operator on the space X of system responses, i.e. O = (o1, . . . , oK)⊤ ∈ (X ′)K , the
dual space of the space X of system responses. We assume that the number of observations is finite
so that K <∞. Then Y = RK equipped with the Euclidean norm, denoted by | · |.

In this setting, we wish to predict computationally an expected (under the Bayesian posterior)
system response of the QoI Ψ, conditional on measurement data δ ∈ Y corrupted by additive, gaussian
observation noise η. Ie., we assume δ ∈ Y consists of exact system responses (for known, given f ∈ Y ′

and for some realization of the uncertain input u ∈ X) plus additive, gaussian noise,

δ = O(G(u)) + η ∈ Y = RK (2.3)

where η ∼ N (0,Γ), for a positive definite covariance operator Γ on RK (ie., a symmetric, positive
definite K ×K covariance matrix Γ). With the uncertainty-to-observation map G : X → RK : u 7→
G(u) = O(G(u)), it holds

δ = G(u) + η = (O ◦G)(u) + η : X 7→ L2
Γ(R

K)

where L2
Γ(R

K) denotes random vectors taking values in RK which are square integrable with respect
to the Gaussian measure on RK . In view of Bayes’ formula, we define the observation noise covariance
weighted least squares functional (also referred to as “potential” in what follows) Φ : X × Y → R by

Φ(u; δ) = 1
2 |δ − G(u)|2Γ where | · |Γ = |Γ− 1

2 · |. For given u ∈ X, the Bayesian potential takes the form

Φ(u; δ) =
1

2

(
(δ − (O ◦G)(u))⊤Γ−1(δ − (O ◦G)(u))

)
. (2.4)

In [55] an infinite-dimensional version of the Bayes rule is shown to hold in the present setting. It states
that, under appropriate continuity conditions on the uncertainty-to-observation map G = (O ◦ G)(·)
and given the prior measure π0 on X, the posterior distribution πδ of u, given data δ ∈ Y , is absolutely
continuous with respect to the prior π0. In particular, then, the Radon-Nikodym derivative of the
Bayesian posterior w.r. to the prior measure admits a bounded density Θ(u) w.r. to the prior π0.

2.2 Uncertainty Parametrization

We parametrize the uncertain datum u in the forward equation (2.1) and in the posterior density Θ.
In the context of PDEs, often the case where u ∈ X, a separable Banach space is of interest. We
assume that there exists a countable, unconditional base (ψj)j∈J of X such that, for some “nominal”
value 〈u〉 ∈ X of the uncertain datum u, and for a random coefficient sequence y = (yj)j∈J (depending
on u− 〈u〉 ∈ X) the uncertainty u is parametrized by y in the sense that

u = u(y) := 〈u〉+
∑

j∈J

yjψj ∈ X (2.5)

with unconditional convergence. We refer to u − 〈u〉 as “fluctuation” of u about the nominal value
〈u〉 ∈ X; examples of (2.5) are Karhunen–Loève expansions.

The assumption (2.5) on affine parametrization of the distributed system uncertainty by the se-
quence y = (yj)j∈J of (possibly countably many) parameters results in a parametric operator equation
of the form

A(y) = A0 +
∑

j∈J

yjAj ∈ L(X ,Y ′) . (2.6)

With the affine-parametric, linear operator family A(y) we associate the parametric bilinear form
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a(y; ·, ·) : X × Y → R via

a(y;w, v) :=Y 〈v,A(y)w〉Y′ , w ∈ X , v ∈ Y . (2.7)

Many choices for the functions ψj in (2.5) are conceivable; among them are standard spline bases, but
also Karhunen–Loève eigenfunctions. With yj denoting the coordinate variables, the parametrization
(2.5) is deterministic. In order to place (2.3), (2.5) into the (probabilistic) Bayesian setting of [55], we
introduce (after possibly rescaling the fluctuations) a “reference” parameter domain U = [−1, 1]J =
∏

j∈J
[−1, 1], and equip this countable cartesian product of sets with the product sigma-algebra B =

⊗

j∈J
B1, with B1 the sigma-algebra of Borel sets on [−1, 1]. On the measurable space (U,B) we

introduce a probability measure π0 (which will serve a Bayesian prior in what follows), and which
we shall choose as π0 =

⊗

j∈J

1
2λ

1 with λ1 denoting the Lebesgue measure on [−1, 1]. More general
measures other than the uniform type can be efficiently treated by a weighted RB along the lines of
[13]. Then, (U,B, π0) becomes (as countable product of probability spaces) a probability space on
the set U of all sequences of coefficient vectors y. Then the uncertain datum u in (2.5) becomes a
random field, with π0 charging the possible realizations of u. As indicated in [20, 49, 18], analyticity
of uncertainty parametrization (2.5) with respect to the parameter sequence y can be used to derive
sparsity results for this posterior.

2.3 Holomorphy of Parametric Forward Solutions

Analytic dependence of responses on the components yj of the parameter y ∈ U plays an important
role for polynomial approximation results, as well as for the sparsity of the Bayesian posterior. To
state it, we denote by Dr = {z ∈ C : |z| ≤ r} the closed disc in C of radius r ≥ 1. All spaces in this
section will be understood as Banach spaces over the coefficient field C without explicitly indicating
so notationally.

Definition 2.1 Given a summability exponent 0 < p < 1 and a real number ε > 0, we say that the
parametric family {q(y) : y ∈ U} ⊂ X is (p, ε)-analytic if

(p, ε) : 1 (well-posedness of the forward problem)
for each y ∈ U , there exists a unique realization u(y) ∈ X of the uncertainty and a unique
solution q(y) ∈ X of the forward problem (2.1). The forward problem is well-posed, uniformly
w.r. to the parameter y, i.e.

∀y ∈ U : ‖q(y)‖X ≤ C0 . (2.8)

(p, ε) : 2 (analyticity)
There exists 0 < p < 1 and a sequence b = (bj)j∈J ∈ ℓp(J) such that for sufficiently small
0 < ε ≤ 1 and for every (b, ε)-admissible sequence ρ = (ρj)j∈J of poly-radii ρj > 1, ie. such that

∑

j∈J

(ρj − 1)bj ≤ ε , (2.9)

and such that solution map U ∋ y 7→ q(y) ∈ X admits an analytic continuation to the open
polydisc Dρ :=

∏

j∈J
Dρj ⊂ CJ and satisfies the bound

∀z ∈ Dρ : ‖q(z)‖X ≤ Cε (2.10)

where y := ℜ(z) ∈⊗j∈J
[−ρj , ρj ] ⊂ RJ.

We refer to ρ as poly-radius. In the case when ρj = 1 for all j ∈ J, we simply write D in place of Dρ
to denote the unit disc in CJ. We observe U ⊂ Dρ for ρj > 1. All assertions proved in the sequel
hold in either case, and all constants are, in particular, independent of J = #(J).

In a stochastic interpretation of (2.6) in the context of Bayesian estimation, the parameter se-
quence y = (yj)j∈J is assumed to be an i.i.d sequence of real-valued random variables yj ∼ U(−1, 1),
A0 denotes a “nominal operator” (representing the non-perturbed system) and the sequence (Aj)j∈J ⊂
L(X ,Y ′) denotes a sequence of “fluctuations” about the “nominal operator”A0 = A(0). Affine pa-
rameter dependences (2.6) result for example when u in (2.5) is modelled as random field via its
Karhunen–Loève expansion in X (or in a closed subspace of X).
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In order for the sum in (2.6) to converge, we impose the following assumptions on the sequence
{Aj}j≥0 ⊂ L(X ,Y ′). In doing so, we associate with Aj ∈ L(X ,Y ′) the bilinear forms aj(·, ·) : X×Y →
R via

∀w ∈ X , v ∈ Y : aj(w, v) =Y 〈v,Ajw〉Y′ , j = 0, 1, 2....

Assumption 1 The operator family {Aj}j≥0 ∈ L(X ,Y ′) in (2.6) satisfies:

1. The “nominal” or “mean field” operator A0 ∈ L(X ,Y ′) is boundedly invertible, i.e. there exists
β0 > 0 such that

A1 inf
0 6=w∈X

sup
0 6=v∈Y

a0(w, v)

‖w‖X ‖v‖Y
≥ β0 , inf

0 6=v∈Y
sup

0 6=w∈X

a0(w, v)

‖w‖X ‖v‖Y
≥ β0 . (2.11)

2. The “fluctuation” operators {Aj}j≥1 are small with respect to A0 in the following sense: there
exists a constant 0 < κ < 1 such that

A2

∑

j∈J

bj ≤ κ < 1 , where bj := ‖A−1
0 Aj‖L(X ,X ) , j = 1, 2, ... . (2.12)

3. (p-summability) For some 0 < p < 1, the operators Bj := A−1
0 Aj, j = 1, 2, ..., are p-summable,

in the sense that with the sequence b := (bj)j∈J as in (2.12) holds

A3 ‖b‖pℓp(J) =
∑

j∈J

bpj <∞ . (2.13)

Condition (2.12) (and, hence, Assumption 1) is sufficient for the bounded invertibility of A(y), uni-
formly with respect to the parameter sequence y ∈ U = [−1, 1]J.

Theorem 2.1 Under Assumption 1, for every realization y ∈ U of the parameters, the affine para-
metric operator family A(y) is boundedly invertible, uniformly with respect to the parameter sequence
y ∈ U . In particular, for the parametric bilinear form a(y; ·, ·) : X × Y → R associated with
A(y) ∈ L(X ,Y ′) via (2.7), there hold the uniform inf-sup conditions with β = (1− κ)β0 > 0,

∀y ∈ U : inf
0 6=w∈X

sup
0 6=v∈Y

a(y;w, v)

‖w‖X ‖v‖Y
≥ β , inf

0 6=v∈Y
sup

0 6=w∈X

a(y;w, v)

‖w‖X ‖v‖Y
≥ β . (2.14)

In particular, for every f ∈ Y ′ and for every y ∈ U , the parametric operator equation

find q(y) ∈ X : a(y; q(y), v) = f(v) ∀v ∈ Y (2.15)

admits a unique solution q(y) = (A(y))−1f which is uniformly bounded over U , ie.

sup
y∈U

‖q(y)‖X ≤ ‖f‖Y′

β
. (2.16)

2.4 Parametric Bayesian posterior

The presently proposed, adaptive deterministic quadrature, and reduced basis approaches for Bayesian
estimation via the computational realization of Bayes’ formula is a parametric, deterministic repre-
sentation of the derivative of the posterior measure with respect to the prior measure π0. The prior
measure π0 being uniform in the present paper, we admit in (2.6) sequences y which take values
in the parameter domain U = [−1, 1]J . As explained in Section 2.2, we consider the parametric,
deterministic forward problem (2.1), (2.5) in the probability space

(U,B, π0) . (2.17)
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We assume throughout what follows that the prior measure on the uncertain input data, parametrized
in the form (2.6), is the uniform measure π0(dy). With the parameter domain U as in (2.17) the
parametric forward map is given by

G(y) := G(u)
∣
∣
∣
u=〈u〉+

∑
j∈J

yjψj

. (2.18)

We abuse notation here by denoting this map by G() in either case, with the definition (2.18) depending
implicitly on the choice of basis ψj . The mathematical foundation of Bayesian inversion in the present
setting is a parametric version of Bayes’ formula from [53] (see also [55]).

Theorem 2.2 Under the above assumptions, in the parametrization (2.5) the posterior distribution
πδ of u ∈ X, given data δ ∈ Y , is absolutely continuous with respect to the prior π0, ie.

dπδ

dπ0
(y) =

1

Z
Θ(y) (2.19)

with the parametric Bayesian posterior Θ(y) given by

Θ(y) = exp
(
−Φ(u; δ)

)
∣
∣
∣
u=〈u〉+

∑
j∈J

yjψj

, (2.20)

where the Bayesian potential Φ is as in (2.4) and the normalization constant Z is given by

Z = Eπ0 [Θ(y)] =

∫

U

Θ(y)dπ0(y) . (2.21)

Computational Bayesian inversion is concerned with approximation of a “most likely” system response
φ : X → Z (sometimes also referred to as Quantity of Interest (QoI) which may take values in a Banach
space Z) for given (noisy) observation data δ of the QoI φ. In particular the choices φ(u) = G(u)
(with Z = X ) and φ(u) = G(u)⊗G(u) (with Z = X ⊗X ) facilitate computation of the “most likely”
(given the data δ) mean and covariance of the system’s response.

With the QoI φ we associate the (infinite-dimensional) parametric map

Ψ(y) = Θ(y)φ(u) |u=〈u〉+
∑

j∈J
yjψj

= exp
(
−Φ(u; δ)

)
φ(u)

∣
∣
∣
u=〈u〉+

∑
j∈J

yjψj

: U → Z . (2.22)

Then the Bayesian estimate of the QoI φ, given noisy data δ (2.3), takes the form

Eπ
δ

[φ] =

∫

y∈U

Ψ(y)πδ(dy) =
1

Z

∫

y∈U

exp
(
−Φ(u; δ)

)
φ(u)

∣
∣
∣
u=〈u〉+

∑
j∈J

yjψj

π0(dy) . (2.23)

Our aim is to approximate the expectations Z ′ and Z which, in the parametrization with respect to
y ∈ U , take the form of infinite-dimensional integrals with respect to the prior π0(dy).

Quadrature, or MC approximation of the Bayesian posterior distribution to estimate any other
quantity of interest based on this posterior distribution, amounts to computing the pointwise densities
Θ(y) and Ψ(y) for y ∈ U , and their expectations Z ′ and Z under the prior π0. To estimate the
computational accuracy, we proceed as in [53, 50].

Proposition 2.3 Under Assumption 1, the parametric forward solution q(y) with y ∈ U is (b, p, ǫ)-
analytic in the polydisc Dρ for any (b, ǫ)-admissible poly-radius ρ. In particular, q(y) admits approx-
imations qΛN

(y), being N -term truncated series of tensorized Legendre polynomials such that

sup
y∈U

‖q(y)− qΛN
(y)‖X ≤ CqN

−s , s = 1/p− 1 . (2.24)

Here, the summation exponent p is as in (2.13) and the sets ΛN are collections of N finitely supported
multi-indices indicating the active polynomial degrees in the approximation qΛN

(y). The sets ΛN can
be chosen nested and ‘downward closed ’, as defined in [50]. The constant Cq > 0 is independent of
the number of dimensions activated in ΛN . Similarly, Θ(y) admits gpc approximations ΘΛN

(y) such
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that
sup
y∈U

|Θ(y)−ΘΛN
(y)| ≤ CΘN

−s , s = 1/p− 1 , (2.25)

where ΛN could be different for q and Θ; the constant CΘ does not depend on N but depends on the
additive, gaussian observation noise covariance Γ as exp(b/Γ) for some b > 0. An analogous result
holds also for the parametric QoI Ψ.

3 Dimension-adaptive sparse grid approximation

In this section, we introduce the dimension-adaptive SG techniques in order to evaluate efficiently the
high-dimensional parametric response quantity; we draw upon recent work [10].

3.1 Univariate interpolation and integration

Let I denote a univariate interpolation operator associated with a sequence of interpolation nodes
y1, . . . , ym ∈ U (in the univariate setting, ie., U = [−1, 1]) and corresponding Lagrange basis functions
l1, . . . , lm : U → R, m ∈ N0, i.e.,

Ig =

m∑

k=1

g(yk)lk(y), (3.1)

where the function g : U → Z, represents, e.g. the parametric solution q : U → X (Z = X ), or the
parametric Bayesian posterior Θ : U → R (Z = R). A particular choice for the basis functions and
nodes are Lagrange polynomials based on the extrema of Chebyshev polynomials (see, eg., [47]):

lk(y) =
∏

l=1,l 6=k

y − yl
yk − yl

, where yk = cos

(
k − 1

m− 1
π

)

, k = 1, . . . ,m . (3.2)

By i ∈ N+ we denote the grid level, and by Ξi the corresponding set of nodes and by mi the number
of nodes on the grid of level i. In (3.2), we consider nested sets of nodes, i.e. Ξi ⊂ Ξi+1, i = 1, . . . , q
for some q ∈ N+, and therefore do not indicate dependence on m in (3.2). Specifically, we choose
Clenshaw–Curtis nodes, ie., m1 = 1, mi = 2i−1 + 1 for i = 2, . . . , q. We point out, however, that
all algorithms and error bounds which follow hold also for other nested sets of nodes, such as Leja
nodes or symmetric Leja nodes [16], Gauss-Kronrod/Patterson nodes. Under such specification, the
interpolation operator (3.1) can be rewritten in a hierarchical way indexed by q as

Iqg =

q
∑

i=1

△ig, (3.3)

where △i denotes an interpolation difference operator △i = Ii − Ii−1 for i = 1, . . . , q, being I0g ≡ 0.
For ease of notation, we denote Ξi△ = Ξi \ Ξi−1 for i = 1, . . . , q with Ξ0 = ∅, and denote the nodes

yik ∈ Ξi△ and the corresponding basis functions lik for k ∈ mi
△, where mi

△ = {1, . . . ,mi −mi−1} with

m0 = 0. Thanks to the nested structure Ξi−1 ⊂ Ξi, we have Ii−1 = Ii◦Ii−1. Moreover, g(yik) = Ii−1g
for yik ∈ Ξi−1. Therefore, the interpolation operator (3.3) can be written more explicitly as

Iqg =

q
∑

i=1

(Iig − Ii ◦ Ii−1g) =

q
∑

i=1

∑

yi
k
∈Ξi

△

(g(yik)− Ii−1g(y
i
k))

︸ ︷︷ ︸

si
k

lik(y), (3.4)

where sik denotes the so-called hierarchical surplus [8] that represents the interpolation error at the
nodes in Ξi△. The univariate integration of g can be evaluated as

E[g] ≈ E[Iqg] =
q
∑

i=1

∑

k∈mi
△

sikw
i
k, (3.5)

7



where the weights wik can be computed using suitable quadrature rule, e.g. Clenshaw–Curtis, as

wik =

∫

U

lik(y)π0(dy), i = 1, . . . , q, k ∈ mi
△. (3.6)

Based on the hierarchical surplus sik, we define the interpolation error indicator Ei and quadrature
error indicator Ee for adaptive construction of the SG interpolation and Smolyak quadrature formula,
respectively:

Ei := max
k∈mi

△

sqk and Ei :=
∑

k∈mi
△

sqkw
q
k . (3.7)

Remark 3.1 Thanks to the nested structure of the interpolation/collocation nodes, the interpola-
tion operator defined (3.3) and the associated integration operator defined in (3.5) can be efficiently
evaluated in a hierarchical manner. Moreover, the error estimates (3.7) can be effectively used for
the construction of the interpolation and integration operators. Besides the Clenshaw-Curtis nodes
given in (3.2), other feasible choices of nested nodes include real projection of Leja nodes [16] and
Gauss–Kronrod nodes [43], etc.

3.2 Smolyak sparse grid interpolation

In J dimensions, J ∈ N+, the Smolyak SG interpolation operator is defined as [54]

Sqg =
∑

|i|≤q

(
△i1

1 ⊗ · · · ⊗ △iJ
J

)
g, (3.8)

where the multi-index i = (i1, . . . , iJ) ∈ NJ+ represents a multi-dimensional grid level; △ij
j is the

interpolation difference operator at grid level ij in dimension j; q ≥ J represents the total level of the
sparse grid. The hierarchical structure of the sparse grid allows us to rewrite Sq as

Sq = Sq−1 +△Sq where △Sq = Sq − Sq−1 =
∑

|i|=q

(
△i1

1 ⊗ · · · ⊗ △iJ
J

)
. (3.9)

Thanks to the the relation Sq−1 = Sq ◦ Sq−1 on Ξi
△ = Ξi1△ × · · · × ΞiJ△ with |i| = q, we have

△Sqg(y) =
∑

|i|=q

∑

k∈mi

△

(
g(yi1k1 , . . . , y

iJ
kJ
)− Sq−1g(y

i1
k1
, . . . , yiJkJ )

)

︸ ︷︷ ︸

si
k

(
li1k1(y1)⊗ · · · ⊗ liJkJ (yJ)

)

︸ ︷︷ ︸

li
k

, (3.10)

where the set of index mi
△ = mi1

△ × · · · ×miJ
△ . Consequently, the interpolation operator Sq permits

the following hierarchical representation

Sqg =
∑

|i|≤q

∑

k∈mi

△

sikl
i
k. (3.11)

The integration of g can thus be approximated by the SG quadrature, the exact integral over the
sparse interpolation

E[g] ≈ E[Sqg] =
∑

|i|≤q

∑

k∈mi

△

sikw
i
k, (3.12)

where the weight wi
k =

∏J
j=1 w

ij
kj
, with w

ij
kj

=
∫

Uj
l
ij
kj
(yj)π0(dyj) given in closed form.

3.3 Dimension-adaptive sparse grid approximation

As different yj , j = 1, . . . , J , may have very different influence on the output of interest, we relax the
total degree structure |i| ≤ q of the Smolyak SG construction introduced in the last section and adopt
a dimension-adaptive construction for a generalized sparse grid [26]. To start, we recall the notion
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of downward closed index set: let ej ∈ {0, 1}J , whose j-th element is 1 and all the other elements
are 0; a set Λ of indices is called downward closed if i ∈ Λ then i − ej ∈ Λ for each j = 1, . . . , J
such that ij > 1. For each downward closed set ΛM of cardinality M , the generalized SG polynomial
interpolation operator and the corresponding approximate quadrature are, resp.,

SΛM
g(y) =

∑

i∈ΛM

∑

k∈mi

△

(
g(yi

k)− SΛM\{i}g(y
i
k)
)

︸ ︷︷ ︸

si
k

lik(y) and E[SΛM
g] =

∑

i∈ΛM

∑

k∈mi

△

sikw
i
k . (3.13)

We next outline a heuristic algorithm for the construction of the dimension-adaptive, generalized
SG: we initialize the set Λ1 = {1}, and compute s1

1
= g(y1

1
); at the next level, we enrich Λ1 with

the indices of the “forward neighborhood” (also referred to as “reduced set of neighbors” in [50])
{1 + ej , j = 1, . . . , J} of the root index i, i.e. ΛM = {1,1 + ej , j = 1, . . . , J} with M = J + 1, and
compute the hierarchical surplus sik for i ∈ ΛM \ {1}. Afterwards, we pick the new index i according
to a suitable error indicator defined via the hierarchical surplus and enrich ΛM with the indices from
{i + ej , 1 ≤ j ≤ J} such that ΛM remains downward closed . The interpolation error indicator is
defined by incorporation (as a trade-off) of the work to evaluate the hierarchical surplus as

i = argmax
i′∈A

Ei(i′) with Ei(i′) =
1

|mi′

△|
∑

k∈mi′

△

|si′k |, (3.14)

where |mi′

△| is the cardinality of the mi′

△; here, A denotes the active index set collecting all those
multiindices in ΛM whose forward neighbors have not yet been processed. We refer to its complement
as “old index set”, and denote it as O. Upon termination of the enrichment, the index i is moved from
A to O and all elements in the reduced set of neighbors of i into A and ΛM are added. Subsequently,
we carry out the same procedure to construct the generalized SG until a stopping criterion is reached
(typically, error tolerance or a maximum number of indices (or nodes). This is summarized in

Algorithm 1 Dimension-adaptive sparse grid construction

1: procedure Initialization:

2: specify error tolerance εt and indicator Emax = 2εt, set the maximum number of indicesMmax;
3: setM = 1, i = 1, initialize index sets A = {1}, O = ∅, ΛM = A ∪O, and evaluate s1

1
= g(y1

1
);

4: end procedure

5: procedure Construction:

6: while Emax > εt and M ≤Mmax do

7: set O = O ∪ {i}, A = A \ {i} and enrich A by the admissible forward neighbors of i;
8: compute the set of nodes Ξ△ different from old nodes at the newly added indices m△;
9: for all i ∈ m△ and yi

k ∈ Ξ△, evaluate g(yi
k) and the interpolation SΛM

g(yi
k) by (3.13);

10: compute the hierarchical surpluses sik = s(yi
k)−SΛM

s(yi
k) and error indicator Ei by (3.14);

11: increase the number of indices M =M +#|m△|, update the total index set ΛM = A ∪O;
12: pick the next index i such that i = argmaxi′∈A Ei(i′), set the indicator Emax = Ei(i);
13: end while

14: end procedure

The high-dimensional integration is performed by dimension-adaptive, sparse tensor product Smolyak
quadrature with replacement of the interpolation error indicator Ei by the (heuristic) integration error
indicator

Ee(i′) =
1

|mi′

△|

∣
∣
∣
∣
∣
∣
∣

∑

k∈mi′

△

si
′

kw
i′

k

∣
∣
∣
∣
∣
∣
∣

. (3.15)

Reasonable error estimates for the interpolation and integration approximation are given by

Ei(A ) = max
i∈A

max
k∈mi

△

|sik| and Ee(A ) =

∣
∣
∣
∣
∣
∣

∑

i∈A

∑

k∈mi

△

sikw
i
k

∣
∣
∣
∣
∣
∣

. (3.16)
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We remark that there might be situation where the error indicator becomes smaller than the error
tolerance, the true approximation error still remains very large, which leads premature termination of
the construction. This phenomenon is well-known in adaptive SG algorithms and has been referred
to as stagnation (cp. [26]). To avoid stagnation, we propose to use the verified dimension-adaptive
construction algorithm in [10].

4 Reduced basis approximation

This section is devoted to the development of efficient computational reduction techniques in order
to tackle the computational challenge of the expensive forward emulator G in Bayesian estimation
for large scale PDE. For this purpose, we rely on a reduced basis method [42, 46] in approximating a
high-fidelity PG solution.

4.1 Petrov–Galerkin (“high-fidelity ”) discretization

Our proposed RB acceleration will be based on so-called “high-fidelity ” discretizations of the forward
problems. As we do not assume the parametric operator A(y) to be self-adjoint, we assume available
general, high-fidelity PG (PG for short) discretization, which we formulate next: let {Xh}h>0 ⊂ X and
{Yh}h>0 ⊂ Y be two one-parameter families of subspaces of equal, finite dimension Nh = dim(Xh) =
dim(Yh) which are dense in X and in Y, respectively. Here, h > 0 is a discretization parameter such
as the meswidth in Finite Element of Finite Volume methods, or the reciprocal of the spectral order
in spectral methods.

The high-fidelity PG approximation of the parametric operator equation (2.15) reads:

given any y ∈ U, find qh(y) ∈ Xh such that a(y; qh(y), vh) = f(vh) ∀vh ∈ Yh . (4.1)

For the well-posedness of the discrete problem (4.1), we assume that the subspace sequences {Xh}h>0 ⊂
X and {Yh}h>0 ⊂ Y are stable with respect to the nominal problem. Then, under Assumption (2.12),
there exist βh0 > 0 and h0 > 0 such that for every 0 < h ≤ h0, there hold the uniform (with respect
to y ∈ U) discrete inf-sup conditions

inf
0 6=wh∈Xh

sup
0 6=vh∈Yh

a0(wh, vh)

‖wh‖X ‖vh‖Y
≥ βh0 > 0, inf

0 6=vh∈Yh

sup
0 6=wh∈Xh

a0(wh, vh)

‖wh‖X ‖vh‖Y
≥ βh0 > 0 , (4.2)

∀y ∈ U : inf
0 6=wh∈Xh

sup
0 6=vh∈Yh

a(y;wh, vh)

‖wh‖X ‖vh‖Y
≥ βh > 0, inf

0 6=vh∈Yh

sup
0 6=wh∈Xh

a(y;wh, vh)

‖wh‖X ‖vh‖Y
≥ βh > 0 . (4.3)

We expand the parametric high-fidelity PG solution qh(y) on the bases (wnh)
Nh

n=1 as

qh(y) =

Nh∑

n=1

qnh(y)w
n
h (4.4)

and denote the parametric coefficient vector qh(y) = (q1h(y), . . . , q
Nh

h (y))⊤. Due to the affine structure
(2.6) we may express the bilinear form in (4.1) through the definition (2.7) as

a(y; qh(y), vh) = a0(y; qh(y), vh) +
∑

j∈J

yjaj(qh(y), vh) . (4.5)

We introduce the high-fidelity PG matrices Ajh, j ∈ {0} ∪ J, through the bilinear forms in (4.1) as

(Ajh)nn′ := aj(w
n
h , v

n′

h ) 1 ≤ n, n′ ≤ Nh (4.6)

and denote the parametric coefficient vector fh = (f(v1h), . . . , f(v
Nh

h ))⊤. With these notations, we
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recast the high-fidelity PG problem (4.1) in algebraic form:

given any y ∈ U, find qh(y) ∈ RNh such that



A0
h +

∑

j∈J

yjA
j
h



qh(y) = fh . (4.7)

Observe that discrete inf-sup condition (4.3) implies nonsingularity of parametric stiffness matrix in
(4.7). Once the parametric high-fidelity solution vector qh(y) is available at given y ∈ U , we can
compute the high-fidelity approximation Θh(y) of the parametric Bayesian posterior density Θ(y)
defined by

Θh(y) = exp

(

−1

2
(δ −Ohqh(y))

⊤Γ−1(δ −Ohqh(y))

)

, (4.8)

where Oh ∈ RK×Nh denotes the high-fidelity observation matrix, the kth row vector of which is given
by

okh = (ok(w
1
h), . . . , ok(w

Nh

h )), (4.9)

being the linear functional ok the kth element of the observation operator O.

4.2 Reduced basis approximation

To achieve an accurate high-fidelity PG approximation of the foward problem often requires a pro-
hibitive number Nh = dimXn = dimYh of degrees of freedom. The large-scale algebraic system (4.7)
is then costly to solve, even at linear, ie., O(Nh) complexity.

In order to further reduce this computational cost, particularly in the real-time or many-query
context as in the Bayesian inverse problem, we propose acceleration by model order reduction tech-
niques [9]. Specifically, a RBM [42] that only requires the solution of a small parametric algebraic
system once RB approximation spaces which perform uniformly with respect to uncertainty u, resp.
to the parameter y ∈ U are constructed.

To this end, let XN ⊂ X and YN ⊂ Y denote two RB approximation spaces of equal, finite
dimension N . In particular, we seek XN ⊂ Xh and YN ⊂ Yh such that N ≪ Nh. In the context
of the RBM [42], we choose the reduced bases such that XN ⊂ Mh, being Mh the high-fidelity PG
parametric solution manifold defined as Mh := {qh(y) ∈ Xh : qh(y) solves (4.1), ∀y ∈ U}. Moreover,
we require that the bases in XN are mutually orthonormal, which can be achieved by performing
the Gram–Schmidt process in order to guarantee that the RB system is well-conditioned. The test
space YN associated with XN will be specified at the end of the next section. Analogous to the high-
fidelity PG approximation, we denote by (wnN )Nn=1 and (vnN )Nn=1 the bases of the spaces XN and YN .
Then the reduced basis Petrov–Galerkin (RB-PG) approximation of problem (2.15) reads:

given any y ∈ U, find qN (y) ∈ XN such that a(qN (y), vN ;y) = f(vN ) ∀vN ∈ YN , (4.10)

where the expansion of the reduced solution qN (y) on the bases in XN is written as

qN (y) =

N∑

n=1

qnN (y)wnN . (4.11)

By qN (y) = (q1N , . . . , q
N
N )⊤, we denote the (parametric) RB coefficient vector. Again due to the affine

structure of the diffusion coefficient in (2.5), the bilinear form in (4.10) can be written as

a(qN (y), vN ;y) = a0(qN (y), vN ) +
∑

j∈J

yjaj(qN (y), vN ). (4.12)

In order to establish the algebraic formulation of the reduced problem (4.10), we first expand the
reduced bases (wnN )Nn=1 and (vnN )Nn=1 on the high-fidelity bases (wnh)

Nh

n=1 and (vnh)
Nh

n=1, due to the fact
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that XN ⊂ Xh and YN ⊂ Yh, respectively, yielding

wnN =

Nh∑

m=1

wn,mN wmh , and v
n
N =

Nh∑

m=1

vn,mN vmh , 1 ≤ n ≤ N . (4.13)

Let wn
N = (wn,1N , . . . , wn,Nh

N )⊤, and let vnN = (vn,1N , . . . , vn,Nh

N )⊤, 1 ≤ n ≤ N , denote the coefficient
vectors of the high-fidelity PG approximation. A key role is played by the “high-fidelity coefficient
matrices”, ie. W = (w1

N , . . . ,w
N
N ) and V = (v1

N , . . . ,v
N
N ). To this end, we construct reduced matrices

A
j
N , j ∈ {0} ∪ J, through the bilinear forms in (4.12) as

(AjN )nn′ := aj(w
n
N , v

n′

N ) =

Nh∑

m=1

Nh∑

m′=1

wn,mN aj(w
m
h , v

m′

h )vn
′,m′

N = vnN
⊤
A
j
hw

n′

N , (4.14)

so that the reduced matrices are given by

A
j
N = V⊤A

j
hW, j ∈ {0} ∪ J . (4.15)

We construct the reduced load vector fN ∈ RN whose n-th (1 ≤ n ≤ N) entry is given by

(fN )n = f(vnN ) =

Nh∑

m=1

f(vmh )vn,mN = (vnN )⊤fh, (4.16)

yielding
fN = V⊤fh . (4.17)

The algebraic form of the RB Galerkin approximation (4.10) becomes:

given any y ∈ U, find qN (y) ∈ RN such that



A0
N +

∑

j∈J

yjA
j
N



qN (y) = fN . (4.18)

Note that we only need to assemble A
j
N , j ∈ {0}∪ J, and fN once with computational cost depending

on the high-fidelity degree of freedom Nh. With the RB solution qN (y) at some given y ∈ U , we
evaluate a RB approximation of the posterior density ΘN (y) as an approximation of Θh(y) in (4.8)
by (note that WqN (y) is an approximation of qh(y))

ΘN (y) = exp

(

−1

2
(δ −ONqN (y))⊤Γ−1(δ −ONqN (y))

)

= exp

(

−1

2

(
δ⊤Γ−1δ − 2δ⊤Γ−1ONqN (y) + q⊤

NO⊤
NΓ−1ONqN (y)

)
) (4.19)

where δ⊤Γ−1δ, δ⊤Γ−1ON and O⊤
NΓ−1ON can be assembled once, being the RB observation matrix

ON := OhW. Therefore, instead of solving the (generally large) linear system (4.7) from the high-
fidelity PG discretization, which is of size Nh ×Nh, only the numerical solution of the much smaller,
but generally dense reduced, linear system (4.18) of equations of size N × N is required, which is
O(N3) due to the matrix being dense. The overall computational work is considerably smaller than
(4.7) when N ≪ Nh. The cost for evaluation of the density ΘN (y) by formula (4.19) is only O(N2).

4.3 Construction of RB trial and test function spaces

Once the reduced bases are determined, the high-fidelity solution of a large system (4.7) can be
approximated by the reduced solution of a small system (4.18) at any given y ∈ U . The accuracy of
RB approximation depends crucially on, roughly speaking, the ability of reduced bases to represent the
high-fidelity solution manifold uniformly over the parameter space U . We present a greedy algorithm
from [42] to adaptively construct the RB trial and test space sequences X1 ⊂ X2 ⊂ · · · ⊂ XN and
Y1 ⊂ Y2 ⊂ · · · ⊂ YN with favourable approximation and stability properties.
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As mentioned in the last section, in the context of the RBM, reduced bases are constructed from
the high-fidelity solutions at some parameter samples in U , known as “snapshots”. To start, we pick
the first sample y(1) ∈ U , e.g. by random sampling or by using the center of U , and subsequently
solving the high-fidelity system (4.7) to get the first snapshot qh(y

(1)). The trial reduced space is
initialized as XN = span{qh(y(1))} for N = 1 (the test reduced space YN with be defined later). In
the following steps for N = 1, 2, . . . ,, we seek the sample y(N+1) ∈ U by solving (approximately) a
high-dimensional maximization problem [42], e.g. maximizing the RB error of the forward solution

y(N+1) = argsup
y∈U

||qh(y)− qN (y)||X , (4.20)

where qN (y) is the reduced solution of problem (4.10) in the reduced space given by

XN = span{qh(y(n)), 1 ≤ n ≤ N}. (4.21)

This is to say that y(N+1) is a sample (not nec. unique) where the high-fidelity solution qh is worst
approximated by the RB solution qN among all y ∈ U , when measured in ||·||X norm. However, as the
maximization problem (4.20) is infinite dimensional (there is generally an infinite number of y ∈ U)
and requires the high-fidelity solution, it is computationally very expensive. In order to alleviate this
cost, we replace U by a finite training set Ξtrain ⊂ U and replace ||qh(y)− qN (y)||X for N = 1, 2, . . . ,
by some a posteriori error estimate △N (y) for any y ∈ U . We present the greedy algorithm in 2, also
called weak greedy algorithm because of the replacement by the error estimate and the training set.

Algorithm 2 Greedy algorithm [42]

1: procedure Initialization:

2: specify tolerance ǫt, a training set Ξtrain ⊂ U , and Nmax ∈ N, set N = 1, pick y(1) ∈ Ξtrain;
3: solve (4.1) at y(1) and construct X1 = span{qh(y(1))}, evaluate △N (y) at all y ∈ Ξtrain;
4: end procedure

5: procedure Construction:

6: while maxy∈Ξtrain
△N (y) ≥ ǫt & N ≤ Nmax do

7: set y(N+1) = argmaxy∈Ξtrain
△N (y);

8: solve (4.1) at y(N+1) to obtain qh(y
(N+1));

9: update XN+1 = XN ⊕ span{qh(y(N+1))};
10: compute △N+1(y) for all y ∈ Ξtrain;
11: set N = N + 1;
12: end while

13: set Nmax = N ;
14: end procedure

Some (empirical) finding to ensure computational efficiency and accuracy of the greedy algorithms
from [42, 46]: (i) the training set Ξtrain ought to be sufficiently rich such that the solution manifold
can be well explored over the training set, while it should not be too large to spoil the computational
efficiency by exploring too many samples where the solution is well approximated; (ii) the error
estimate should be inexpensive to evaluate in order to allow a rich training set; moreover, the error
estimate must be reliable in order to provide a confident and sharp estimates of the RB approximation
error for all samples, not only in Ξtrain but also in the entire parameter space U .

We leave the treatment of the second criterion to the next section and address the first criterion by
developing an adaptive greedy algorithm in combination of the construction of the generalized SG in
section 3.3. In fact, as we only need to evaluate the posterior density at the interpolation/quadrature
nodes by the dimension-adaptive SG method, it is natural to take these nodes as the training samples.
In Algorithm 3, we present an adaptive greedy algorithm that enable the construction of the reduced
space and the evaluation of the reduced posterior density on the generalized SG simultaneously.

To this end, we specify the construction of the test space YN in two different cases. In the first
case, we set YN = XN , so that the PG approximation (4.1) is simply a Galerkin approximation with
Yh = Xh. In the second case, normally when Yh 6= Xh in the PG approximation problem (4.1), we
adopt a minimum-residual (or least-squares) approach [36] to compute a set of parameter dependent
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Algorithm 3 Adaptive greedy algorithm [10]

1: procedure Initialization:

2: specify tolerance ǫt, set N = 1, solve (4.1) at y1

1
and construct X1 = span{qh(y1

1
)};

3: end procedure

4: procedure Construction:

5: at each step in line 9 of Algorithm 1, choose the training set Ξtrain = Ξ△;
6: solve problem (4.10) at each y ∈ Ξtrain and compute △N (y) and ΘN (y);
7: update Ξtrain as Ξtrain = Ξtrain \ {y ∈ Ξtrain : △N (y) < ǫt};
8: while maxy∈Ξtrain

△N (y) ≥ ǫt do
9: set y(N+1) = argmaxy∈Ξtrain

△N (y);

10: solve (4.1) at y(N+1) to obtain qh(y
(N+1));

11: update XN+1 = XN ⊕ span{qh(y(N+1))};
12: set N = N + 1 and repeat lines 6 – 7;
13: end while

14: end procedure

reduced bases vnN (y), 1 ≤ n ≤ N , by solving

(vnN (y), vh)Yh
= a(wnN , vh;y) ∀vh ∈ Yh, given y ∈ U, (4.22)

where (wnN )Nn=1 are the bases of XN and the inner product (·, ·)Yh
is defined in Yh. In this case, the

reduced algebraic system in problem (4.18) can be expressed more explicitly. Let Mh denote the mass
matrix in Yh, whose entries are defined as (Mh)nn′ = (vnh , v

n′

h )h, 1 ≤ n, n′ ≤ Nh. Then the matrix A
j
N

in (4.15) is replaced by A
j,j′

N = (AjhW)⊤M−1
h A

j′

hW, and the vector fN in (4.17) by f
j
N = (AjhW)⊤M−1

h fh
for j, j′ ∈ {0} ∪ J. The RB algebraic system in problem (4.18) can be rewritten as



A
0,0
N + 2

∑

j∈J

yjA
0,j
N +

∑

j∈J

∑

j′∈J

yjyj′A
j,j′

N



qN (y) = f0N +
∑

j∈J

yjf
j
N , (4.23)

where the matrices Aj,j
′

N and vectors f jN , j, j′ ∈ {0}∪J, are assembled only once. For any given y ∈ U ,
this requires O((1 + |J|)2N2) and O(N3) operations for assembling and solving (4.23).

4.4 A posteriori error estimate

An inexpensive, reliable a-posteriori error estimator plays an crucial role in constructing suitable
reduced basis trial- and test spaces as well as in quantifying the RB approximation error. As our
primary interest is the posterior density Θ and the QoI Ψ, we propose a dual-weighted residual,
goal-oriented a posterior error estimator to bound the error for the density Θ(y) between the high-
fidelity approximation Θh(y) in (4.8) and the RB approximation ΘN (y) in (4.19) for any y ∈ U . A
computable estimator for the the QoI Ψ can be obtained analogously.

For every y ∈ U , the nonlinear (with respect to the high-fidelity solution qh(y)) output Θh(y) is
formally expanded about the reduced solution qN (y) as

Θh(y) ≈ ΘN (y) +
∂Θh
∂qh

∣
∣
∣
qN (y)

(qh(y)− qN (y)), (4.24)

where the Fréchet derivative ∂Θh

∂qh

∣
∣
∣
qN (y)

(wh) ievaluated in the direction of wh, ∀wh ∈ Xh, is given by

∂Θh
∂qh

∣
∣
∣
qN (y)

(wh) = ΘN (y)
(

(δ −O(qN (y)))
⊤
Γ−1O(wh)

)

. (4.25)

As the posterior density Θ(y) is nonlinear with respect to the parametric forward solution map
q(y), we may not directly apply a primal-dual approach as in[36, 42]. Following [1], we associate a
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dual problem with the density Θ(y), and construct a so-called dual-weighted-residual (DWR) [38] as
an a posteriori error estimate. The parametric high-fidelity PG approximation of the dual problem
corresponding to (4.1) is given by

given any y ∈ U, find ψh(y) ∈ Yh such that a(y;wh, ψh) =
∂Θh
∂qh

∣
∣
∣
qN (y)

(wh) ∀wh ∈ Xh . (4.26)

We numerically approximate this high-fidelity PG solution with a RB solution by solving

find ψNdu
(y) ∈ YNdu

such that a(y;wduNdu
, ψNdu

) =
∂Θh
∂qh

∣
∣
∣
qN (y)

(wduNdu
) ∀wduNdu

∈ XNdu
, (4.27)

where Ndu represents the number of reduced bases constructed for the dual problem (4.26). Note that
the trial and test reduced spaces become YNdu

and XNdu
, whose construction is clear by following the

same procedure as in Section 4.3. Once the parametric RB solution ψNdu
(y) has been computed, we

evaluate the a-posteriori error estimate for Θh(y)−ΘN (y) as

△Θ
N (y) := r(ψNdu

(y);y) , (4.28)

where the parametric, weak residual is defined for every y ∈ U as

r(vh;y) = f(vh)− a(y; qN (y), vh) ∀vh ∈ Yh . (4.29)

Due to (4.1) and (4.26), we have

∀y ∈ U : r(ψh(y);y) = a(y; eh(y), ψh(y)) =
∂Θh
∂qh

∣
∣
∣
qN (y)

(eh(y)), (4.30)

which is nothing but the second term in the expansion (4.24). Moreover, subtracting (4.28) from
(4.30) with the notation eduh (y) = ψh(y)− ψNdu

(y) yields

∣
∣r(ψh(y);y)−△Θ

N (y)
∣
∣ = |r(eduh (y);y)| = |a(y; eh(y), eduh (y))| ≤ γh(y)||eh(y)||X ||eduh (y)||Y , (4.31)

where γh(y) denotes the continuity constant of the bilinear form a(y; ·, ·) in the high-fidelity spaces
Xh and Yh at y ∈ U , i.e. a(y;wh, vh) ≤ γh(y)||wh||X ||vh||Y , ∀wh ∈ Xh, ∀vh ∈ Yh. This demonstrates
that as long as (4.30) provides an accurate error estimate for Θh(y)−ΘN (y), the error estimate △Θ

N

defined in (4.28) also does with additional error bounded by (4.31). Therefore, we may correct the
RB approximation ΘN by △Θ

N as

Θ̃N (y) = ΘN (y) +△Θ
N (y) . (4.32)

In evaluation of △Θ
N , the dual reduced matrices in (4.27) can be assembled as in the primal case:

A
du,j
Ndu

= W⊤
duA

j
hVdu, j ∈ {0} ∪ J, (4.33)

where Vdu and Wdu are the coefficient matrices corresponding to the dual reduced bases. The right
hand side of the dual problem (4.27) can be evaluated as

fduNdu
(y) := ΘN (y)

(
W⊤
duO

⊤
h Γ

−1δ −W⊤
duO

⊤
h Γ

−1OhWqN (y)
)
, (4.34)

where W⊤
duO

⊤
h Γ

−1δ and W⊤
duO

⊤
h Γ

−1OhW are assembled for just once. Once the reduced dual solution
vector ψNdu

(y) is obtained by solving the following dual linear system



A
du,0
Ndu

+
∑

j∈J

yjA
du,j
Ndu



ψNdu
(y) = fduNdu

(y), (4.35)
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with A
du,j
Ndu

, j ∈ {0} ∪ J, assembled for only once, we can evaluate the dual-weighted residual by

△Θ
N (y) = r(ψNdu

(y);y) = f⊤h WduψNdu
(y)−

∑

j∈{0}∪J

yj(qN (y))⊤W⊤A
j
hWduψNdu

(y), (4.36)

where the quantities f⊤h Wdu and W⊤A
j
hWdu are computed for just once. Note that the dual reduced

problem (4.35) can be assembled and solved in O((1 + |J|)N2) and O(N3) operations, respectively,
and △Θ

N (y) is assembled in O(NNdu(1 + |J|)) operations.

5 A priori error estimates

We provide a priori error estimates for the approximation of the parametric solution family {q(y) ∈
X : y ∈ U} with error contribution from parametric truncation, SG interpolation/integration, high-
fidelity PG discretization and from RB acceleration, respectively. More importantly, we obtain error
bounds and convergence rate estimates for the sparse approximation of the Bayesian posterior density
Θ and for the integral of Θ with respect to the Bayesian prior distribution, which plays a key role in
Bayesian inversion.

5.1 Dimension truncation

To obtain computationally feasible numerical approximation methods, we truncate the infinite sum
in (2.6) to a finite number of J terms, so that the SG and the RB approximations introduced in
section 3 and section 4 in J-dimensional parametric space become applicable. We remark that both
approximations can be employed with adaptive truncation of the dimensions. We denote by qJ(y) the
solution of the corresponding parametric weak problem (2.15). Then Theorem 2.1 holds when q(y) is
replaced by qJ(y). In addition to the assumption (2.13), which implies

∑

j≥1 b
p
j <∞ with bj defined

as in (2.12), we assume that the operators Aj are enumerated so that

b1 ≥ b2 ≥ · · · ≥ bj ≥ · · · . (5.1)

Proposition 5.1 ([32, Theorem 5.1]) Under Assumption 1, for every f ∈ Y ′, for every y ∈ U and
for every J ∈ N, the solution qJ(y) of the J-term truncated parametric weak problem (2.15) satisfies

‖q(y)− qJ(y)‖X ≤ CpJ
−s, s =

1

p
− 1, (5.2)

where the constant

Cp = min

(
1

1/p− 1
, 1

)



∑

j≥1

bpj





1/p

C

β
||f ||Y′ , (5.3)

being 0 < C <∞ independent of f , and bj defined in (2.12), and β is the stability constant in (2.14).
Moreover, for every observational functional O ∈ X ′, we have

|O(q(y))−O(qJ(y))| ≤ C̃Cp||O||X ′J−s, s =
1

p
− 1, (5.4)

where the constant 0 < C̃ <∞ depends on K but not on f and O.

5.2 Sparse grid approximation

To establish generalized SG interpolation and integration error estimates, we employ the results for
the best M -term approximation by multidimensional polynomials [20, 19, 53, 17, 49].
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We consider the generalized polynomial chaos (gPC) expansions

q(y) =
∑

ν∈F

qνLν(y) and Θ(y) =
∑

ν∈F

ΘνLν(y), (5.5)

where the coefficient function qν ∈ X and Θν ∈ R. Here, and throughout, F denotes the set of all
“finitely supported” sequences of nonnegative integers, ie. sequences ν = (ν1, . . . , νj , ...) ∈ NN

0 for
which |ν| = ν1 + ν2 + ... <∞. We remark that F is countable and that (5.5) hold with unconditional
convergence in X resp. in R. Furthermore, in (5.5), Lν is a tensorized polynomial of degree ν, i.e.
Lν(y) =

∏

j≥1 Lνj (yj), where Lνj a polynomial of degree νj with respect to yj and ||Lνj ||L∞([−1,1]) = 1
for νj ∈ N0, for instance, the normalized Legendre polynomial for Legendre polynomial chaos or simply
yνj in Taylor gPC representation, as in [17]. For a given downward closed index set ΛM ⊂ F of finite
cardinality #(ΛM ) =M <∞, we denote by qΛM

and ΘΛM
the M -term truncated gPC expansions

qΛM
(y) =

∑

ν∈ΛM

qνLν(y) and ΘΛM
(y) =

∑

ν∈ΛM

ΘνLν(y) . (5.6)

As ΛM ⊂ F is downward closed , the generalized SG interpolation formula (3.13) implies SΛM
v(y) =

vΛM
(y), ∀v ≡ q ∈ X × PΛM

or ∀v ≡ Θ ∈ R × PΛM
with PΛM

:= span{Lν , ν ∈ ΛM}, i.e. the inter-
polation is as accurate as a gPC approximation with the same downward closed set of active indices.
Consequently, the generalized SG interpolation error can be bounded by the gPC approximation with
proper consideration of the Lebesgue constant. By the holomorphy of the parametric forward solution
q(y) and of the parametric Bayesian posterior density Θ(y), the following approximation result can
be established as in [17].

Proposition 5.2 Under Assumption 1, let (ΛM )M≥1, #(ΛM ) = M denote a sequence of nested,
downward closed sets of (indices of) M largest gpc coefficients ||qν ||X , the error of the generalized SG
interpolation (3.13) of the solution q : U → X can be bounded by

sup
y∈U

||q(y)− SΛM
q(y)||X ≤ CiqM

−s, s =
1

p
− 1, (5.7)

where the constant Ciq = 2||(pθ(ν)||qν ||X )ν∈F ||ℓp(F) < ∞, being pθ(ν) =
∏

j≥1(1 + νj)
θ+1, and θ is

such that the Lebesgue constant of the univariate interpolation (3.1) λm ≤ mθ. For instance, it has
been shown that 0 < θ < 1 for Clenshaw–Curtis nodes [4] and 2 < θ < 3 for real-Leja nodes [16].
Analogously, for ΛM corresponding to the M largest coefficients |Θν |, we have

sup
y∈U

|Θ(y)− SΛM
Θ(y)| ≤ CiΘM

−s, s =
1

p
− 1, (5.8)

where the constant CiΘ = 2||(pθ(ν)|Θν |)ν∈F ||ℓp(F) <∞. An analogous result holds also for the QoI Ψ.

Remark 5.1 The interpolation error estimate is obtained with respect to the cardinality M of the
index set ΛM . For Leja and Gauss quadrature nodes, the same convergence rate with respect to the
number of nodes can be obtained; the number of nodes is also M (or 2M for symmetric Leja nodes).
As for Clenshaw–Curtis, though the number of nodes grows more quickly than the number of indices,
the interpolation accuracy also grows faster than the number of indices, i.e. polynomials of degree
2νj−1 + 1 (rather than νj) are exactly interpolated at level νj for νj > 1, 1 ≤ j ≤ J . Therefore, the
same convergence rate with respect to the number of nodes is expected, based on the the numerical
experiments in Section 6 ahead.

Analogous results have been obtained for the generalized SG integration error in [49] by comparison
to a Taylor expansion of the solution, which is summarized as follows in finite dimensions.

Proposition 5.3 Under Assumption 1, we denote by (ΛM )M≥1 ⊂ NN
0 with #(ΛM ) = M < ∞ a

sequence of nested downward closed sets of (indices of) M largest coefficients ||qν ||X corresponding
to a Taylor expansion of q(y) at the nominal values y = 0. Then, the error of the generalized SG

17



integration (3.13) of the solution q : U → X with the SG corresponding to ΛM can be bounded by

||E[q]− E[SΛM
q]||X ≤ CeqM

−s, s =
1

p
− 1, (5.9)

where Ceq = 2||(pe(ν)||qν ||X )ν∈F ||ℓp(F) < ∞, being pe(ν) =
∏

j≥1(1 + νj)
2. Similarly, the integration

error of the Bayesian posterior density is bounded by

|E[Θ]− E[SΛM
Θ]| ≤ CeΘM

−s, s =
1

p
− 1, (5.10)

where the constant CeΘ = 2||(pe(ν)|Θν |)ν∈F ||ℓp(F) <∞. An analogous result holds also for the QoI Ψ.

Remark 5.2 The algebraic error convergence rates for interpolation and integration by generalized SG
in Theorem 5.2 and 5.3 have been obtained in infinite dimensional cases in [17] and [49], respectively,
which also hold in finite dimension J < ∞ with constants which are independent of J . A sub-
exponential error bound for the generalized SG interpolation (with constant depending on J) has been
obtained in [41] in L2(U,X )-norm instead of the L∞(U,X )-norm.

Remark 5.3 The results in Propositions 5.2 and 5.3 are based on the fact that the downward closed set
ΛM collects M largest coefficients of the gPC expansion. To date, however, there is no rigorous
guarantee that the heuristic, dimension-adaptive algorithm 1 for the construction of the generalized
SG gives rise to a quasi-optimal sequence {ΛM}M≥1 of such downward closed sets. Higher EOC1

is observed for this algorithm in practice, particularly for the integration error, cp. the examples in
Section 6 ahead.

5.3 High-fidelity approximation

For the numerical analysis of the high-fidelity PG approximation error we work under primal and
dual approximation properties: for 0 < t ≤ t̄ and 0 < t′ ≤ t̄′, and for 0 < h ≤ h0, there hold

∀v ∈ Xt : inf
vh∈Xh

‖v − vh‖X ≤ Ct h
t ‖v‖Xt

,

∀w ∈ Yt′ : inf
wh∈Yh

‖w − wh‖Y ≤ Ct′ h
t′ ‖w‖Yt′

.
(5.11)

In (5.11), {Xt}t≥0, {Yt}t≥0, are scales of smoothness spaces with

X = X0 ⊃ X1 ⊃ X2 ⊃ · · · , Y = Y0 ⊃ Y1 ⊃ Y2 ⊃ · · · , and

X ′ = X ′
0 ⊃ X ′

1 ⊃ X ′
2 ⊃ · · · , Y ′ = Y ′

0 ⊃ Y ′
1 ⊃ Y ′

2 ⊃ · · · . (5.12)

The scales are assumed to be defined also for noninteger values of the smoothness parameter t ≥ 0 by
interpolation. For self-adjoint operators, usually Xt = Yt. We assume uniform parametric regularity
in the scale {Xt}t≥0, ie. that

∀ 0 ≤ t ≤ t̄ : sup
y∈U

‖A(y)−1‖L(Y′
t,Xt) <∞ . (5.13)

The maximum amount of smoothness in the scale Xt, denoted by t̄, depends on the problem class
under consideration and on the Sobolev scale: e.g., for elliptic problems in polygonal domains, it is
well known that choosing for Xt the usual Sobolev spaces will allow (5.13) with t only in a possibly
small interval 0 < t ≤ t̄, whereas choosing Xt as Sobolev spaces with weights allow large values of t̄
(see, e.g., [40]).

Theorem 5.4 Assume that the inf-sup condition (4.2) and (4.3) hold. Assume, moreover, that (2.12)
holds. Then, there exist βh > 0 and h0 > 0 such that, for every 0 < h ≤ h0 and for every y ∈ U , the
parametric Petrov-Galerkin approximation qh(y) ∈ Xh given by (4.1), admits a unique, parametric

1EOC = Empirical Order of Convergence
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high-fidelity solution qh(y) which satisfies the uniform a-priori estimate

sup
y∈U

‖qh(y)‖X ≤ 1

βh
‖f‖Y′ , (5.14)

and the (uniform w.r. to y ∈ U) quasi-optimality estimate holds

‖q(y)− qh(y)‖X ≤
(

1 +
||A(y)||L(X ,Y′)

βh

)

inf
0 6=wh∈Xh

‖q(y)− wh‖X . (5.15)

Proof Under Assumption 1, (2.12), the validity of the discrete inf-sup conditions for the nominal
bilinear form a0(·, ·), see (2.11), with constant βh0 > 0 independent of h, implies (4.2) and (4.3) for
the bilinear form a(y; ·, ·) with βh = (1 − κ/2)βh0 > 0. This follows from the stability (2.11) for the
nominal problem and a perturbation argument via Neumann series, from (2.12). �

Proposition 5.5 Under Assumption 1 and condition (5.13), for every f ∈ Y ′ and for every y ∈ U ,
the approximations qh(y) are stable, i.e., (5.14) holds. There exists a constant C > 0 such that for
every y ∈ U , every f ∈ Y ′

t with 0 < t ≤ t̄, as h→ 0 there holds

‖q(y)− qh(y)‖X ≤ C ht ‖f‖Y′
t
. (5.16)

Since we are interested in the expectations of functionals of the parametric solution, we will also
impose a regularity assumption on the observation functional O(·) ∈ X ′:

∃ 0 < t′ ≤ t̄ : O(·) ∈ X ′
t′ , (5.17)

and the adjoint regularity: for t′ as in (5.17) there exists Ct′ > 0 such that for every y ∈ U ,

v(y) = (A∗(y))−1O ∈ Yt′ , ‖v(y)‖Yt′
≤ Ct′ ‖O‖X ′

t′
. (5.18)

Often, the discretization error of observation functionals O(q(y)) of the parametric solution is of
interest. For sufficiently regular O(·), the error |O(q(y)) − O(qh(y))| may converge faster than
‖q(y)− qh(y)‖X by an Aubin-Nitsche duality argument. We state the result without proof.

Proposition 5.6 Under Assumption 1 and the conditions (5.13) and (5.18), for every f ∈ Y ′
t with

0 < t ≤ t̄, for every O(·) ∈ X ′
t′ with 0 < t′ ≤ t̄ and for every y ∈ U , as h→ 0, there exists a constant

C > 0 independent of h > 0 and of y ∈ U such that the Petrov-Galerkin approximations O(qh(y))
satisfy, with 0 < τ := t+ t′,

|O(q(y))−O(qh(y))| ≤ C hτ ‖f‖Y′
t
‖O‖X ′

t′
. (5.19)

5.4 Reduced basis approximation

First, we prove that both the reduced problem (4.10) and its adjoint (4.27) are well-posed under the
construction of trial space XN and test space YN in section 4.3.

Theorem 5.7 Under the assumption of Theorem 5.4 for the high-fidelity problem, for every N ∈ N,
there exists a unique reduced, parametric solution qN (y) ∈ XN which satisfies the a-priori estimate

||qN (y)||X ≤ 1

βN
||f ||Y′ (5.20)

where βN ≥ βh. Moreover, for all y ∈ U , there holds the quasi-optimality estimate

||qh(y)− qN (y)||X ≤
(

1 +
||A(y)||L(X ,Y′)

βN

)

inf
0 6=wN∈XN

||qh(y)− wN ||X . (5.21)
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Analogously, for every N ∈ N, there exists a unique reduced, adjoint solution ψN (y) ∈ YNdu
such that

||ψNdu
||Y ≤ 1

βNdu

(

|δ|+ ||f ||Y′

βh
||O||X ′

)

· |Γ−1| · ||O||X ′ . (5.22)

Moreover, for every y ∈ U , there holds the quasi-optimality estimate

‖ψh(y)− ψNdu
(y)‖Y ≤

(

1 +
||A∗(y)||L(Y,X ′)

βNdu

)

inf
0 6=vNdu

∈YNdu

||ψh(y)− vNdu
||Y . (5.23)

Proof For any fixed y ∈ U , we denote by Ty the linear map which, for any wh ∈ Xh, yields Tywh,
the “supremizer” which satisfies

(Tywh, vh)Yh
= a(y;wh, vh) ∀vh ∈ Yh. (5.24)

The construction of the test space YN in (4.22), implies TywN ∈ YN for any wN ∈ XN . We point out
that the test space YN depends on the high-dimensional parameter vector y. However, there holds a
uniform w.r. to y discrete inf-sup condition in the RB trial and test spaces XN and YN :

inf
0 6=wN∈XN

sup
0 6=vN∈YN

a(y;wN , vN )

||wN ||X ||vN ||Y
= inf

0 6=wN∈XN

a(y;wN , TywN )

||wN ||X ||TywN ||Y

= inf
0 6=wN∈XN

(TywN , TywN )Yh

||wN ||X ||TywN ||Y

= inf
0 6=wN∈XN

||TywN ||Y
||wN ||X

≥ inf
0 6=wh∈Xh

||Tywh||Y
||wh||X

= inf
0 6=wh∈Xh

sup
0 6=vh∈Yh

a(y;wh, vh)

||wh||X ||vh||Y
≥ βh,

(5.25)

where the first and second equalities are due to the definition of the linear, parametric operator Ty,
the first inequality is due to XN ⊂ Xh. This implies the stability of the reduced problem (4.10) with
inf-sup constant βN ≥ βh. As a result, the existence of a unique solution qN (y) ∈ XN for every
y ∈ U , the stability estimate (5.20) and the quasi-optimality estimate (5.21) are established. The
lower bound on the stability constant βNdu

> βh can be proved along the lines used to establish (5.25).
Therefore, we have the stability estimate for the adjoint solution

||ψNdu
||Y ≤ 1

βNdu

∣
∣
∣
∣

∣
∣
∣
∣

∂Θh
∂qh

∣
∣
∣
qN (y)

∣
∣
∣
∣

∣
∣
∣
∣
X ′

. (5.26)

We consider the first order Fréchet derivative given in (4.25). Since each term of this derivative can
be bounded, i.e. ΘN (y) ≤ 1, δ is finite almost surely, each entry of the matrix Γ−1 is finite, moreover
the norm of the linear functional ||ok||X ′ < ∞ for each 1 ≤ k ≤ K and ||qN (y)||X is bounded by the
stability estimate (5.20), we have that the norm of the first order Fréchet derivative (4.25) (as a linear
functional) can also be bounded. More explicitly, as ΘN (y) = exp(−Φ(u(y); δ)) ≤ 1, we have

∣
∣
∣
∣

∣
∣
∣
∣

∂Θh
∂qh

∣
∣
∣
qN (y)

∣
∣
∣
∣

∣
∣
∣
∣
X ′

≤
(

|δ|+ ||f ||Y′

βh
||O||X ′

)

· |Γ−1| · ||O||X ′ <∞ . (5.27)

The quasi optimality estimate (5.23) thus follows. �

In order to establish the best N -term convergence rate for the RB approximation, we take advan-
tage of that for the SG interpolation approximation in the high-fidelity PG spaces.

Lemma 5.8 Under Assumption 1, (4.2) and (4.3), there exists a sequence of downward closed index
sets (ΛN )N≥1, with #(ΛN ) = N , corresponding to (indices of) N largest coefficients of the gPC
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expansion of the high-fidelity PG solution qh(y) of problem (4.1) for every y ∈ U , with the convergence
rate estimate for the generalized SG error

sup
y∈U

||qh(y)− SΛN
qh(y)||X ≤ CiqN

−s, s =
1

p
− 1, (5.28)

where Ciq is a constant independent of N and of the PG meshwidth h. The sparse grid is unisolvent
for PΛN

= span{yν : ν ∈ ΛN} and the number of interpolation points equals the number of indices in
ΛN . Similarly, we have

sup
y∈U

||ψh(y)− SΛdu
Ndu

ψh(y)||Y ≤ CiψN
−s
du , s =

1

p
− 1, (5.29)

where Ciψ is a constant independent of Ndu and the meshwidth h.

Proof The existence of index sets ΛN and the dimension-independent convergence rate follow from
the Assumption 1. It remains to verify the relations (2.11), (2.12) and (2.13) in this assumption in
the high-fidelity PG spaces Xh and Yh. The first one (2.11) is due to the assumption (4.2). As for the
second term, we have

||A−1
0 Aj ||L(Xh,X ) := sup

wh∈Xh

||A−1
0 Ajwh||X
||wh||X

≤ sup
w∈X

||A−1
0 Ajw||X
||w||X

≤ bj , (5.30)

so that (2.12) and (2.13) also hold in Xh and Yh provided they hold in X and Y. For each index
ν ∈ ΛN , we choose the set of interpolation points Ξν such that Ξν = ×j≥1Ξ

j
νj with #(Ξjνj ) = νj + 1

and Ξjνj ⊂ Ξjν′
j
if νj ≤ ν′j , and such that the Lebesgue constant corresponding to Ξjνj is bounded by

(1+νj)
θ for a finite θ <∞. For instance, nested sequences of Leja points admit polynomial Lebesgue

constants with 2 < θ ≤ 3 [16]. The convergence rate for the high-fidelity dual solution can be proved
by following the same lines. In particular,

||(A∗
0)

−1A∗
j ||L(Yh,Y) := sup

vh∈Yh

||(A∗
0)

−1A∗
jvh||Y

||vh||Y
≤ sup
v∈Y

||(A∗
0)

−1A∗
jv||Y

||v||Y
≤ bj . (5.31)

Moreover, Assumption (1) can be verified for the reduced forward solution qN in the reduced spaces
XN and YN . More explicitly, (2.11) can be verified by setting y = 0 in (5.25). Estimates (2.12) and
(2.13) hold by

||A−1
0 Aj ||L(XN ,X ) := sup

wN∈XN

||A−1
0 AjwN ||X
||wN ||X

≤ sup
w∈X

||A−1
0 Ajw||X
||w||X

≤ bj . (5.32)

Therefore, the reduced forward solution qN ∈ XN is holomorphic in the holomorphic domain of the
solution q ∈ X . We note that the right hand side of the adjoint problem (4.26) is holomorphic with
respect to the parameter y (z in complex domain) with the same holomorphic domain as the reduced
forward solution qN , since it is a composition of analytic functions of the forward solution qN , which,
together with Assumption (1), imply the sparsity of the adjoint solution and the convergence rate in
(5.29). �

Thanks to this quasi-optimality result and the convergence rate for the SG interpolation error, we
can prove the best N -term convergence rate for the RB approximation.

Theorem 5.9 Under Assumption 1, (4.2) and (4.3), the RB approximation error of the forward
solution, ie., the solution of the reduced problem (4.10) can be bounded by

sup
y∈U

||qh(y)− qN (y)||X ≤ CrN
−s, s =

1

p
− 1 , (5.33)

where the positive constant Cr does not depend on N (but depends, in general, on the observation
noise covariance Γ in (2.4)). Analogously, the RB approximation error of the adjont solution of the
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reduced problem (4.27) is bounded by

sup
y∈U

||ψh(y)− ψNdu
(y)||Y ≤ Cdur N−s

du , s =
1

p
− 1 , (5.34)

where the positive constant Cdur does not depend on the number of reduced dual bases Ndu.

Proof Lemma 5.8 implies that there exists a sequence of interpolation operators (SΛN
)N≥1 satisfying

the convergence rate for the interpolation error and that there are N interpolation points for the index
set ΛN . We construct the RB space XN based on these N points. By the quasi-optimality of the RB
approximation (5.21), we have

sup
y∈U

||qh(y)− qN (y)||X ≤ Ca sup
y∈U

inf
0 6=wN∈XN

||qh(y)− wN || ≤ Ca sup
y∈U

||qh(y)− SΛN
qh(y)||X , (5.35)

where the constant Ca is given by

Ca = sup
y∈U

(

1 +
||A(y)||L(X ,Y′)

βh

)

<∞, (5.36)

and the second inequality is due to that the interpolation operator is linear, i.e. SΛN
qh(y) ∈ XN .

Therefore, a combination of (5.28) and (5.35) leads to the result (5.33) with Cr = CaC
i
q. The result

(5.34) can be obtained by following the same argument with Cdur = CaC
i
ψ.

�

Remark 5.4 An alternative proof for this theorem in the case that X and Y are Hilbert spaces is to
use the recent result in [18] for the bound of the RB best approximation error, ie., the Kolmogorov
N -width estimate dN ≤ CN−s, and the abstract result in [2] that the RB error achieves the same
convergence rate as dN . This comparison argument does not require the holomorphy. However, this
argument of proof [23] for Banach spaces X and Y, only a convergence rate estimate for the RB error
of the form CN−s+α, α ≥ 1/2, which is inferior to dN ≤ CN−s.

Theorem 5.10 Under Assumption 1, (4.2) and (4.3), the RB approximation error of the posterior
density ΘN in (4.19) can be bounded by

sup
y∈U

|Θh(y)−ΘN (y)| ≤ CΘN
−s, s =

1

p
− 1, (5.37)

where CΘ does not depend on N (but on Γ) provided that N is sufficiently large. Moreover, the RB
approximation error of the corrected posterior density Θ̃N in (4.32) is bounded by

sup
y∈U

|Θh(y)− Θ̃N (y)| ≤ CΘ̃N
−2s, s =

1

p
− 1, (5.38)

where the constant CΘ̃ does not depend on N (but on Γ) provided that N is sufficiently large. An
analogous result also holds for the QoI Ψ by following the same arguments for the RB error analysis for
ΨN and Ψ̃N when the right hand side of the dual problem (4.26) is replaced by the Fréchet derivative
of Ψ.

Proof By definition, the RB error for the posterior density can be written as

Θh(y)−ΘN (y) = exp

(

−1

2
(δ −Oh(qh(y)))

⊤Γ−1(δ −Oh(qh(y)))

)

− exp

(

−1

2
(δ −Oh(qN (y)))⊤Γ−1(δ −Oh(qN (y)))

)

= ΘN (y) (exp (△)− 1)

= ΘN (y)

(

△+
1

2!
△2 +

1

3!
△3 + · · ·

)

,

(5.39)
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where Oh is the high-fidelity approximation of O with ||Oh||X ′ <∞ and

△ =
1

2

(
(δ −Oh(qN (y)))⊤Γ−1(δ −Oh(qN (y)))− (δ −Oh(qh(y)))

⊤Γ−1(δ −Oh(qh(y)))
)

=
1

2
(2δ −Oh(qh(y))−Oh(qN (y)))⊤Γ−1(Oh(qh(y))−Oh(qN (y)))

≤
(

|δ|+ ||Oh||X ′

||f ||Y′

βh

)

· |Γ−1| · ||Oh||X ′ ||qh(y)− qN (y)||X =: △+ <∞,

(5.40)

where in the last inequality we have used the stability estimates (5.14) and (5.20) and the relation
βN ≥ βh in (5.25). From (5.39), we have

|Θh(y)−ΘN (y)| ≤ ΘN (y) exp(△+)△+, (5.41)

being △+ defined in (5.40), which yields (5.37) with the constant CΘ given by

CΘ = ΘN (y) exp(△+)

(

|δ|+ ||Oh||X ′

||f ||Y′

βh

)

· |Γ−1| · ||Oh||X ′Cr <∞. (5.42)

Note that ΘN (y) ≤ 1 and exp(△+) is decreasing with respect to N , with △+ bounded by

△+ ≤ 2
||f ||Y′

βh

(

|δ|+ ||Oh||X ′

||f ||Y′

βh

)

· |Γ−1| · ||Oh||X ′ . (5.43)

Therefore, CΘ is uniformly bounded with respect to N and depends on |Γ−1|, which could be big
when small measurement noise is present, i.e. |Γ−1| ≫ 1. Moreover, ΘN (y) exp(△+) could be small
even when |Γ−1| is very large, since ΘN (y) roughly scales as exp(−△+), avoiding CΘ ∝ exp(C|Γ−1|).

In order to bound the error |Θh(y)− Θ̃N (y)|, we first split the error by

|Θh(y)− Θ̃N (y)| = |Θh(y)−ΘN (y)−△Θ
N (y)|

= |(Θh(y)−ΘN (y)−ΘN (y)△) + (ΘN (y)△− r(ψh(y))) + (r(ψh(y))−△Θ
N (y))|

≤ |Θh(y)−ΘN (y)−ΘN (y)△|+ |ΘN (y)△− r(ψh(y))|+ |r(ψh(y))−△Θ
N (y)|.

(5.44)

The first term of (5.44) can be bounded by using (5.39) as

|Θh(y)−ΘN (y)−ΘN (y)△| ≤ 1

2
ΘN (y) exp(△+)△2

+ ≤ CI ||qh(y)− qN (y)||2X , (5.45)

where the constant CI is given by

CI =
1

2
ΘN (y) exp(△+)

(

|δ|+ ||Oh||X ′

||f ||Y′

βh

)2

· |Γ−1|2 · ||Oh||2X ′ , (5.46)

which is uniformly bounded with respect to N as the analysis for (5.42) and CI ∝ |Γ−1|2. For the
second term of (5.44), we observe that (being r(ψh(y);y) defined in (4.30))

|ΘN (y)△− r(ψh(y);y)| = |(Oh(qN (y))−Oh(qh(y)))
⊤Γ−1(Oh(qh(y))−Oh(qN (y)))|

≤ ||Oh||2X ′ · |Γ−1| · ||qh(y)− qN (y)||2X ,
(5.47)

where we denote CII = ||Oh||2X ′ · |Γ−1|. The third term of (5.44) is bounded as in (4.31). Therefore,

|Θh(y)−Θ̃N (y)| ≤ (CI+CII)||qh(y)−qN (y)||2X +γh(y)||qh(y)−qN (y)||X ||ψh(y)−ψN (y)||X , (5.48)
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which concludes the estimate (5.38) with the constant CΘ̃ given by

CΘ̃ = (CI + CII)C
2
r + γh(y)CrC

du
r <∞, (5.49)

which does not depend on N and which is uniformly bounded w.r. to y as γh(y) <∞, ∀y ∈ U . �

5.5 Combined Error Bound

To estimate the combined effect of all approximations on the accuracy of the parametric forward map,
we denote by qJ , qJ,h, qJ,h,N approximate parametric forward maps of the solution q ∈ X which are
obtained by dimension-truncation, high-fidelity (PG) discretization, and, finally, by RB approxima-
tion.

Theorem 5.11 Given any y ∈ U , there holds the following a priori error estimate

||q(y)− qJ,h,N (y)||X ≤ CpJ
−s + Cth

t + CrN
−s, s =

1

p
− 1, (5.50)

where J is the number of truncated dimension, h is the high-fidelity discretization parameter (ie.spectral
order or meshwidth), N denotes the number of reduced bases and the constants Cp, Ct and Cr are
understood to be independent of h and of N , respectively and, in particular, independent of the number
J of active parameters in the approximation. Then, the error in the Bayesian estimate due to
generalized SG quadrature (3.13) can be estimated by

||E[q]− E[SΛM
qJ,h,N ]||X ≤ CpJ

−s + Cth
t + CrN

−s + CeqM
−s, s =

1

p
− 1, (5.51)

where M is the cardinality of the downward closed set ΛM and Ceq is independent of M .

Proof Given any y ∈ U , the global approximation error of the solution q(y) ∈ X can be split into

||q(y)− qJ,h,N (y)||X ≤ ||q(y)− qJ(y)||X
︸ ︷︷ ︸

truncation

+ ||qJ(y)− qJ,h(y)||X
︸ ︷︷ ︸

high-fidelity

+ ||qJ,h(y)− qJ,h,N (y)||X
︸ ︷︷ ︸

reduced basis

, (5.52)

which represents the truncation error, the high-fidelity discretization error and the RB approximation
error. The three terms can be bounded as in Proposition 5.1, Theorem 5.5, Theorem 5.9, respectively.
Application of the triangular inequality to (5.52) leads to the global error estimate (5.50). As for the
integration error, we have

||E[q]− E[SΛM
qJ,h,N ]||X ≤ ||E[q]− E[qJ,h,N ]||X + ||E[qJ,h,N ]− E[SΛM

qJ,h,N ]||X , (5.53)

where the first term can be bounded by (5.50). As the solution qJ,h,N solves the reduced problem
(4.10), which satisfies Assumption 1 in the reduced spaces XN and YN , so that the second term is
bounded as in Theorem 5.3. Therefore, the estimate (5.51) follows. �

Let ΘJ(y), ΘJ,h(y), Θ̃J,h,N (y) denote the approximate of the Bayesian posterior density Θ(y)
by dimension truncation, high-fidelity discretization and RB approximation with correction (4.32),
respectively. Then we have the following result.

Theorem 5.12 Given any y ∈ U , there holds the following a priori error estimate

|Θ(y)− Θ̃J,h,N (y)| ≤ CΘ,pJ
−s + CΘ,τh

τ + CΘ̃N
−2s, s =

1

p
− 1, (5.54)

where the constant CΘ is independent of J , h or N . Moreover, the integration error is bounded by

|E[Θ]− E[SΛM
Θ̃J,h,N ]| ≤ CΘ,pJ

−s + CΘ,τh
τ + CΘ̃N

−2s + CeΘM
−s, s =

1

p
− 1 . (5.55)

Similar results hold for the approximations of the QoI Ψ and E[Ψ], with errors in the norm ‖ ◦ ‖Z .
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Proof Given any y ∈ U , the global approximation error of the density Θ(y) is split into

|Θ(y)− Θ̃J,h,N (y)| ≤ |Θ(y)−ΘJ(y)|
︸ ︷︷ ︸

truncation

+ |ΘJ(y)−ΘJ,h(y)|
︸ ︷︷ ︸

high-fidelity

+ |ΘJ,h(y)− Θ̃J,h,N (y)|
︸ ︷︷ ︸

reduced basis

. (5.56)

The third term in the bound for the reduced basis error is estimated as in (5.38). To bound the first
term, we write

|Θ(y)−ΘJ(y)| = | exp(−Φ(y))− exp(−ΦJ(y))| (5.57)

where the Bayesian potential Φ : U → R is defined in (2.4). The dimension-truncation of the Bayesian
potential is given by

ΦJ(y) =
1

2

(
(δ −O(qJ(y)))

⊤Γ−1(δ −O(qJ(y)))
)
≥ 0 . (5.58)

For every y ∈ U , the dimension-truncation error for ΦJ can be expressed as

|Φ(y)− ΦJ(y)| =
∣
∣(−δ +O(q(y)) +O(qJ(y)))

⊤Γ−1(O(q(y)−O(qJ(y)))
∣
∣

≤ CΦ|O(q(y)−O(qJ(y))| ,
(5.59)

where the constant CΦ is bounded by

CΦ ≤
(

|δ|+ 2
||f ||Y′

β
||O||X ′

)

· |Γ−1| . (5.60)

With the dimension truncation error bound (5.4), we obtain the first term in (5.54) with constant

CΘ,p = CΦC̃Cp||O||X ′ . (5.61)

The second term of high-fidelity error can be bounded similarly by using (5.19), with the constant
CΘ,τ given by

CΘ,τ = CΦC||f ||Y′
t
||O||X ′

t′
. (5.62)

The integration error estimate (5.55) can be derived following the proof of Theorem 5.11. �

Remark 5.5 The total computational cost of approximating Θ(y) for any y ∈ U and E[Θ] by the
high-fidelity–reduced basis–sparse grid scheme is dominated, when h is very small, by the solution of
the N high-fidelity problems to construct the N -dimensional reduced basis spaces.

We consider the approximation error of the posterior measure in Hellinger distance defined as

dHell(π,π
′) :=




1

2

∫

U

(√

dπ

dπ0
−
√

dπ′

dπ0

)2

dν





1/2

. (5.63)

Theorem 5.13 The global approximation error for the posterior measure is bounded as

dHell(π
δ, πδJ,h,N,M ) ≤ C(CΘ,pJ

−s + CΘ,τh
τ + CΘ̃N

−2s + CeΘM
−s) , (5.64)

where the constant C does not depend on J, h,N,M and is given explicitly in the proof; for sufficiently
large values of J,N,M and sufficiently small h, ZJ,h,N,M > 0 and the approximate posterior measure
πδJ,h,N,M is given by

dπδJ,h,N,M
dπ0

(y) =
ΘJ,h,N (y)

ZJ,h,N,M
. (5.65)

Proof From the definition of the Hellinger distance we have

(
dHell(π

δ, πδJ,h,N,M )
)2 ≤ I1 + I2 , (5.66)
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where

I1 =
1

Z

∫

U

(
√

Θ(y)−
√

ΘJ,h,N (y)

)2

π0(dy) ; (5.67)

and

I2 =
(

Z−1/2 − Z
−1/2
J,h,N,M

)2
∫

U

ΘJ,h,Nπ0(dy) . (5.68)

The first term can be bounded by

I1 ≤ 1

Z

∫

U

(
√

Θ(y) +
√

ΘJ,h,N (y)

)−2

π0(dy)||Θ−ΘJ,h,N ||2L∞(U). (5.69)

As the potential Φ is bounded from above for any δ by its definition (2.4), with δ finite Q0-almost
surely, there exists cδ > 0 such that

√

Θ(y) ≥ cδ and
√

ΘJ,h,N (y) ≥ cδ. More explicitly, we have

cδ = exp

(

−1

4
|Γ−1|max

{(

|δ|+ ||f ||Y′

β
||O||X ′

)2

,

(

|δ|+ ||f ||Y′

βh
||Oh||X ′

)2
})

(5.70)

As also the normalization constant Z > 0 (since its integrand Θ(y) ≥ c2δ > 0 uniformly with respect
to y), we have

I1 ≤ C1||Θ−ΘJ,h,N ||2L∞(U) ≤ C1(CΘ,pJ
−s + CΘ,τh

τ + CΘ̃N
−2s)2, s =

1

p
− 1 , (5.71)

where C1 = 2c−2
δ /Z. As for the second term I2, we have

I2 ≤ max(Z−3, Z−3
J,h,N,M )|Z − ZJ,h,N,M |2

≤ C2(CΘ,pJ
−s + CΘ,τh

τ + CΘ̃N
−2s + CeΘM

−s)2, s =
1

p
− 1 ,

(5.72)

where C2 = max(Z−3, Z−3
J,h,N,M ). This completes the proof. �

6 Numerical experiments

We consider a boundary value problem in the two dimensional physical domain D = (0, 1)2: given
y ∈ U , find q(y) ∈ H1

0 (D) such that

{

−div(u(y)∇q(y)) = f in D,

q(y) = 0 on ∂D,
(6.1)

where homogeneous Dirichlet boundary condition is prescribed over the entire boundary for simplicity.
For the high-fidelity approximation, we use finite element method with piecewise linear polynomial
basis on a uniform mesh of size h = 2−n, n ∈ N+. The diffusion coefficient of the problem (6.1) is
described by the affine parametric function (2.5). We assume that theK (K = k2, k ∈ N+) observation
data are given by Gaussian convolutions (signifying, for example, sensors such as transducers) of the
forward solution at randomly sampled parameters y ∈ U ,

ok(q) = Gauss(q;xk, rk) :=

∫

D

1√
2πrk

exp

(

− (x− xk)
2

2r2k

)

qdx, (6.2)

where the locations x1, . . . , xK are uniformly distributed inside the domain D and the width r1 =
· · · = rK is such that an rk ball about xk is contained in D. The covariance operator of the gaussian
observation noise η is chosen as Γ = σ2I, being I the K ×K identity matrix.

In the numerical experiment, we select the bases in the affine diffusion coefficient field (3) to be
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locally supported in the equal sized subdomains Dj ⊂ D, j ∈ J; more explicitly,

ψ0 = 1 and ψj(x) = 0.95j−αχDj
(x), j ∈ J,

where χDj
is the characteristic function supported in the subdomain Dj ; 1 <α ∈ R+ is a scaling

parameter.

6.1 Sparse grid approximation error

To test the SG approximation error for both the interpolation of the density Θ(y) and Z, we use
both the interpolation and integration error indicators Ei and Ee defined in (3.14) and (3.15). The
interpolation and integration errors are computationally estimated by evaluating Ei(A ) and Ee(A )
defined in (3.16). We specify the meshwidth h = 2−5, the number of observations K = 9, the width
r1 = 0.1, and observation noise covariance Γ = σI with standard deviation σ = 0.01, the index set
J = {1, . . . , 64} and scaling parameter α = 2. The realization of the parameters yj , j ∈ J, is randomly
sampled from the uniform distribution U(−1, 1). The maximum number of interpolation points to
construct the generalized SG is limited in all experiments by 104.
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Figure 6.1: Interpolation error estimate (a) and integration (b) error estimate with respect to the
number of indices (left) and number of PDE solves (right) with the generalized SG constructed by
integration error indicator (0) and interpolation (1) error indicator.

Figure 6.1 displays the decay of the interpolation and integration error estimates Ei(A ) with respect
to the number of indices (left) and the number of interpolation nodes or PDE solves (right) with the SG
constructed by two different error indicators. From the comparison, the interpolation error indicator
appears to better steer the SG construction for interpolation in that it leads to faster convergence of
the interpolation error, at least in the particular example considered here. In contrast, the comparison
also shows that the integration error indicator affords better steering of the adaptive SG construction
for integration. Moreover, the decay of interpolation error estimate with respect to the number of
indices in this example appears to be better than the rate M−s with s = 1/p−1 = α−1 = 1 provided
by the theoretical upper bound: we observe a convergence of approximately M−s with respect to
the number M of PDE solves, which supports Remark 5.1. The empirical integration error estimate
indicates the convergence rate M−2, which is however underestimated by the a priori error estimate
M−1 in Theorem 5.3.

6.2 High-fidelity approximation error

The previous experiments were carried out with a high-fidelity Galerkin FEM based on a uniform
quadrilateral mesh of meshwidth h = 2−5. To verify the convergence of the high-fidelity PG dis-
cretization error and to verify that the number of reduced bases is substantially independent of the
PG discretization parameter, we perform a sequence of runs for a fixed value of the parameter, and
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with mesh sizes h = 2−n, n = 4, 5, 6, 7, 8. We monitor the error |Oh(qh(ȳ))−Oh̄(qh̄(ȳ))| with h̄ = 2−8

and ȳ the parameter instance from the previous section in the SG approximation error test.
The left part of Figure 6.2 displays the convergence of the piecewise linear finite element approx-

imation error with a least-squares fitted convergence rate h−2.13. The tolerance is set to ǫt = 10−7

and the maximum number of nodes in the SG as 1000 to construct the reduced spaces. The number
of reduced bases with respect to the mesh size is displayed on the right part of Figure 6.2, which
increases by 7 from a very coarse mesh (1/h = 16) to a mesh of size 1/h = 32, and only by 1 from
1/h = 32 to 1/h = 64. It does not change any more when refining the mesh from 1/h = 64 to
1/h = 128. This observation confirms the fact that once the high-fidelity PG approximation is suffi-
ciently fine, the number of reduced bases depends essentially on the dimension of the exact parametric
solution manifold rather than on the dimension of the high-fidelity space. Therefore, we expect to
preserve the low-dimensional RB approximation when the high-fidelity degree of freedom becomes so
large that solving high-fidelity problem at many (millions or more) samples becomes computationally
unaffordable, whereas it is favorable to solve the high-fidelity problem at a limited number (tens or a
few hundreds) of samples in order to construct reduced spaces and solve the corresponding reduced
problems at all the other (millions or more) samples.
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Figure 6.2: Left: decay of finite element error |Oh(qh(ȳ))−Oh̄(qh̄(ȳ))| with respect to the mesh size
(1/h); right: the number of reduced bases (constructed with tolerance 10−7) with respect to 1/h.

6.3 Reduced basis approximation error

We first test the effectivity of the a posteriori error estimate (the dual-weighted residual) (4.28)

effectivity =
△Θ
N (y)

|Θh(y)−ΘN (y)| , (6.3)

which is computed pointwise at all nodes in the sparse grid. The tolerance in the adaptive greedy
algorithm 3 is set as ǫt = 10−8. The left part of Figure 6.3 shows the true error and the effectivity, from
which we can observe that the effectivity is very close to one, i.e. △Θ

N is very close to the true error,
which is uniformly smaller than the tolerance ǫt = 10−8. We also plot the ratio E2/E1 between the
errors E2 = |Θh(y)− Θ̃N (y)| and E1 = |Θh(y)−ΘN (y)| for the approximates Θ̃N and ΘN , shown in
the right part of Figure 6.3, which demonstrates that correction of the approximate posterior density
ΘN by the dual-weighted residual substantially improves the accuracy of the Θ̃N in (4.32).

In another test, we use different tolerances ǫt for the construction of reduced spaces in order to
demonstrate the accuracy of the RB approximate Θ̃N and its integration. We set ǫt = 10−4, 10−5, 10−6

for the interpolation construction and ǫt = 10−5, 10−7, 10−9 for the integration construction. The
convergence rate indicated by the interpolation error estimator and the integration error estimator
are displayed in Figure 6.4. As the tolerance decreases, the RB approximation error likewise decreases
such that the RB output converges to the high-fidelity output. Also, as the tolerance decreases, the
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Figure 6.3: Left: true error (top) and effectivity (bottom); right: the effect of correction E2/E1.

number of reduced bases increases for both interpolation and integration (particularly for integration
in this test case as the number of reduced bases becomes relatively large). To choose proper tolerances
for the construction of the RB spaces, since the number of reduced bases remains essentially unchanged
when increasing the number of high-fidelity degrees of freedom, we may first construct RB spaces based
on a low-fidelity approximation (with fewer degrees of freedom), and subsequently choose a suitable
tolerance for construction of the reduced spaces based on the high-fidelity model.
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Figure 6.4: Decay of interpolation (left) and integration (right) error estimates at different tolerances.

In a new numerical experiment, we study the convergence of the RB approximation error with
respect to the number of reduced bases. In the first part of the experiment, we set the parameter
dimension as 64 and in the second part, we set it as 256. The reduced spaces are constructed by the
greedy Algorithm 2 with the tolerance ǫt = 10−16, Nmax = 100, and the training set Σtrain consisting
of 1000 randomly samples. The reduced relative error for the output Θ(y) is taken as the maximum in
a test set Σtest consisting of another 100 randomly samples, i.e. maxy∈Σtest

|Θh(y)−ΘN (y)|/ΘN (y).
The decay of the RB approximation error is displayed in Figure 6.5, where on the left we can observe
an asymptotic algebraic convergence rate N−1.58 for the first 32 bases and N−5.14 for the last 68
bases in the 64 dimensional approximation, while on the right we observe an asymptotic algebraic
convergence rate N−1.80 in the 256 dimensional approximation. The algebraic convergence behavior
confirms the theoretical prediction given in section 5.4, however, the convergence rate N−1.58 for the
64 dimensional case and N−1.80 for 256 dimensional case demonstrates faster convergence than the
theoretical prediction with convergence rate N1−α = N−1, being the scaling parameter α = 2. The
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convergence rate N−5.14 is higher than the theoretical prediction for the 64 dimensional approximation
is due to all 64 dimensions having been sufficiently “resolved” by the 32 bases (with relative error
around 10−5) and the remaining 68 bases provide faster approximation.
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Figure 6.5: Decay of RB approximation error with respect to the number of reduced bases; left: 64
dimensions, EOC for the first 32 bases and the remaining 68 bases; right: 256 dimensions.

We run the same experiment by using the corrected output (4.32), which is expected to be more
accurate than the value without correction. As expected, the convergence rate is larger, roughly
twice the rate in Figure 6.5 (3.17 compared to 1.58, and 3.00 compared to 1.80), which demonstrates
the quadratic effect (5.38). Therefore, by using the corrected output, we can achieve more accurate
approximation with error decay of approximately N−3 compared to the decay of polynomial interpo-
lation error of order N−1 in Figure 6.1. This also explains why a much smaller number of reduced
bases is enough to accurately reconstruct the SG interpolation in Figure 6.4. The same experiment is
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Figure 6.6: Decay of RB approximation error with the primal-dual corrected output (4.32); left: 64
dimensions, EOC for the first 32 bases and the other 68 bases; right: 256 dimensions.

also run to test the RB error of the QoI Ψ in (2.22) with φ(u(y)) = G(y), ie. the observation of the
forward solution, in 256 dimensions. Figure 6.7 shows the convergence rates of the RB errors without
(left) and with (right) correction by the primal-dual error estimation approach, from which we can
observe similar approximation property of RB for QoI to RB for the posterior density.
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Figure 6.7: Decay of RB error for QoI without (left) and with (right) correction in 256 dimensions.

6.4 Sensitivity w.r. to the noise realizations η

We perform two numerical experiments in order to study the robustness of the computationally deter-
mined reduced bases with respect to observation noise realizations used during their construction. In
both tests we construct the reduced spaces using a relative error estimate based on the dual-weighted

residual, △(2)
N (y)/ΘN (y), and set the tolerance as 10−5. In the first test we use the same variance σ

of the observation noise covariance Γ = σ2I and ten random noise samples to numerically construct
the reduced bases. Our numerical results on the number of reduced bases constructed individually at
each of the noise samples are displayed on the left part of Figure 6.8. The results indicate that in
this example, the variation of the number of reduced bases with respect to observation noise samples
practically irrelevant, in the considered range of observations.

Moreover, when using reduced bases constructed from one noise sample (the last sample on the
left part of Figure 6.8) to evaluate the density ΘN (y) at a different observation noise sample (here
the first sample), the relative error estimate remains mostly smaller than or very close to the preset
tolerance at all of the 10000 parameter samples (nodes on the SG), as can be observed from the right
part of the Figure 6.8. Therefore, the reduced bases are rather robust with respect to the realization
of the random noise. Once constructed at some noise sample, the reduced bases can be directly used
for other new observations.

In the second test, we consider the dependence of the number of reduced bases on the standard
deviation of the observation noise. We specify σ = σ̄2n, σ̄ = 0.01 (the value used in the preceding
tests), n = 2, 1, 0,−1,−2,−3,−4,−5,−6, for the observation noise covariance operator Γ and con-
struct reduced bases individually at each standard deviation (the N (0,Γ) gaussian observation noise
being randomly sampled according to Γ = σI, σ = σ̄2n). From the left part of Figure 6.9 we can
see that the number of reduced bases evidently increases when the standard deviation σ decreases
and becomes stable as σ → 0. The right part of Figure 6.9 shows the relative error estimate at the
standard deviation σ = σ̄2−6, evaluated by the reduced bases constructed from observation noise
sampled with noise covariance Γ = σI with σ = σ̄22. In contrast to the previous test, the estimated
error increases, but still remains close to the prescribed tolerance for many parameter samples. This
observation suggests that when decreasing the observation noise covariance, it is necessary to enrich
the reduced bases in order to preserve the same approximation accuracy.

6.5 Dependence on the location and the number of sensors in O
We consider two cases of the influence of the sensors to the number of reduced bases: the locations
xk ∈ D in (6.2) of the sensors and the number of the sensors. In the first case, we assume only one
sensor (K = 1) located in nine different positions, (x1, x2) = (m/4, n/4) where m,n = 1, 2, 3, the
index of the sensor being given by 3(n− 1) +m. We construct the reduced bases with relative error
estimate and error tolerance 10−5 as before. The number of reduced bases at different locations is
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Figure 6.8: Left: the number of reduced bases at ten different noise samples; right: the relative
error estimate at one noise sample evaluated by the reduced bases which were optimized from an
independent noise sample
.
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Figure 6.9: Left: the number of reduced bases at σ = σ̄2n, n = 2, 1, 0,−1,−2,−3,−4,−5,−6; right:
the relative error estimate at σ = σ̄2−6 evaluated by the reduced bases constructed from σ = σ̄22.

displayed in Figure 6.10, from which we can observe that the number of reduced bases varies in a
large extent depending on the location of the sensor.

As n increases from 1 to 3 (corresponding to j increasing in J), the number of reduced bases
increases for all m = 1, 2, 3. In the second case, we set the number of sensors K = n2, n =
1, 3, 5, 7, 9, 11, 13, 15, 17. When increasing the number of sensors, more reduced bases are constructed,
particularly when the number of sensors, K, is small; the number of reduced bases appears to become
stable once the number K of sensors is sufficiently large, as shown on the right part of Figure 6.10.
This is evidence that the solution manifold is well approximated by the reduced space.

7 Concluding remarks

We proposed and analyzed reduced basis acceleration of the deterministic Bayesian inversion algo-
rithms. For forward models given by linear and affine-parametric operator equations with uncertain
distributed parameters and for general Petrov-Galerkin discretizations (covering, in particular, mixed
variational formulations of elliptic and parabolic PDEs with uncertain coefficients), we established the
best N -term convergence rate for the RB approximation of the parametric forward solution and the
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Figure 6.10: Dependence of the number of reduced bases on the location (x1, x2) = (m/4, n/4), index
= 3(n− 1) +m, of one sensor (left) and on the number of sensors K = n2, n = 1, 3, . . . , 17 (right).

posterior density, independent of the dimension of the parameter space.
In particular, by numerically solving appropriate dual problems derived from the Fréchet-derivative

of the parametric, deterministic Bayesian posterior density, and by correcting the posterior density
evaluation with the corresponding dual-weighted residual, we obtained quadratic convergence of the
RB approximation for the (nonaffine and nonlinear) posterior density (as compared to the N -width
for the forward solution). We present numerical experiments which confirm the theory and indicate
its practical relevance, in particular dramatic reduction of cost in computational Bayesian inversion
and evaluation of the related QoIs.

We carried out an analysis of the a-priori error estimate for the combined error, ie., with dimension
truncation, PG high-fidelity discretization, SG interpolation and integration, and RB approximation.
The theoretical error bounds of each error contribution were tested individually in numerical experi-
ments for a model diffusion problem with uncertain, distributed diffusion coefficient. Our theoretical
a-priori error bounds were found to be sharp for the high-fidelity discretization and the SG inter-
polation. The experiments also revealed that the bounds for RB approximation and for the SG
integration (one order underestimate from N−s−1 to N−s) can likely be improved; To balance the
error contribution from each approximation, heuristic strategies to estimate and control the various
error components by sharp a posteriori error estimate are required. Particular difficulties arise from
(1) the balance of the RB approximation error and of the high-fidelity PG discretization error (the
former being measured with respect to the high-fidelity PG discretized quantities), (2) the balance
of the RB approximation error with the SG integration error because the former is measured in the
worst case while the latter is in average. Accurate and efficient algorithms for a combined adaptation
will be addressed elsewhere.

Additional challenges towards the application of our algorithms for more complex engineering
problems are due to nonaffine structure of the uncertainty/the random field with respect to the
parameters/random variables, for instance for shape uncertainty or in the presence of log-normal
random field; often, the forward models are, in addition, nonlinear. E.g. nonlinear, hyperbolic
conservation laws, geometric or material nonlinearity in computational mechanics, nonlinear scattering
theory, etc. The present theory will generalize, provided the nonlinearities are analytic. For problems
with finite smoothness in parameters and/or solutions, all algorithms are immediately applicable.
However, as the presently obtained error bounds rely on holomorphic parameter dependence of forward
maps and Bayesian posterior density, convergence rates for finite parametric regularity are to be
addressed.
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