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Abstract

In this paper we present an overview of a novel method for the numerical solution of linear transport
equations, which is based on ridgelets and has been introduced in [GO14, EGO14]. Such equations arise
for instance in radiative transfer or in phase contrast imaging. Due to the fact that ridgelet systems are
well adapted to the structure of linear transport operators, it can be shown that our scheme operates
in optimal complexity, even if line singularities are present in the solution. After presenting the basic
algorithm, we prove that certain operators are compressible, which is the key to obtain unconditional
convergence results. Finally, we show some applications in radiative transport.
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1 Introduction

In the past two decades, a wide range of multiscale systems have been introduced with lasting impact
in many different fields, starting with wavelets [Dau92] and continuing with ridgelets [Can98], curvelets
[CD05b, CD05a, CDDY06], shearlets [KLLW05, KL12], contourlets [DV05] etc. – the latter three of which
fall into the framework of so-called “parabolic molecules” [GK14], while all of the mentioned systems are
encompassed by the even broader framework of α-molecules [GKKS14].

These systems share the property that they are very well-adapted to representing certain classes of
functions optimally (in the sense of the decay rate of the best N -term approximation) – functions with point
singularities for wavelets, line singularities for ridgelets and curved singularities for parabolic molecules.
Since these classes make up the fundamental phenomenological features of most images in an extremely
diverse set of applications, it is perhaps not surprising, that many of the above-mentioned systems were
originally investigated in view of their properties regarding image processing.

With a certain time-lag, it is becoming apparent that these systems are also very suitable for solving
partial differential equations – again, wavelets were the first in this regard, for example leading to provably
optimal solvers for elliptic equations [CDD01]. For differential equations with strong directional features –
such as transport equations – it is intuitively clear that optimal solvers will need to take these features into
account, however, the development of solvers based on directional systems is still in its infancy.

Following recent results [Gro12], that ridgelets permit the construction of simple diagonal preconditioners
for linear transport equations which arise in collocation-type discretization methods for kinetic transport
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equations (such as radiative transport), we consider the papers [GO14, EGO14] to be a first step towards
establishing directional representation systems as a useful tool for solving PDEs. The present paper proves
results about the compressibility of certain operators that have been left open in [GO14].

Secondly, we present results from [EGO14], where we introduced an FFT-based implementation of a
ridgelet transform: FFRT – Fast Finite Ridgelet Transform. We use this for the numerical solution of
kinetic transport equations arising in radiative transport. Using the preconditioner from [Gro12] for linear
transport equations together with a sparse discrete ordinates method similar to [GS11a], we construct a
solver which mitigates the curse of dimensionality and which results in uniformly well-conditioned linear
systems which can be solved efficiently with CG.

1.1 Radiative Transport Equation

The motivation for this work is the numerical solution of the following model equation, described by the
radiative transport equation (RTE),

Au := ~s · ∇u+ κu = f +

∫

Sd−1

σu d~s′.

It is a steady state continuity equation describing the conservation of radiative intensity in an absorbing,
emitting and scattering medium, see e.g. [Mod13]. We will, however, not treat the scattering operator in
this paper, which can be incorporated through a variety of methods, one of which – the source iteration – we
implemented in [EGO14]. Let us assume that the following quantities are known at all locations ~x ∈ Ω ⊂ R

d

and for all directions ~s ∈ S
d−1 :=

{
~s ∈ R

d : ‖~s‖2 = 1
}
:

• absorption coefficient κ(~x,~s) ≥ κ0 > 0

• source term f(~x,~s) ∈ R

Then, the above equation allows us to find the unknown radiative intensity u as a function Ω× S
d−1 → R.

Although the RTE looks simple, standard numerical techniques for solving it do not perform well for a
number of reasons, mainly:

• The transport term s · ∇u leads to ill-conditioned systems of equations.

• Singularities in the input data may remain in the solution.

• With the dimension of the domain of u being 3 in 2-dimensional physical space and 5 in 3-dimensional
space, the problem is fairly high-dimensional.

These issues make the accurate numerical solution of the RTE very costly or even impossible due to memory
and compute power limitations of today’s hardware.

1.2 Model Problem

We first simplify the problem by removing the scattering operator and fixing the transport direction ~s.
However, we will come back to the full problem once we have developed a solver for this easier problem, and
then use solve the problem with scattering using a collocation approach, which can also be combined with
sparse tensor methods to alleviate the curse of dimensionality.

Therefore, our starting point is the differential operator

A : H~s(Rd) ∋ u 7→ ~s · ∇u(~x) + κ(~x)u(~x) ∈ L2(Rd) (1.1)

with fixed ~s ∈ S
d−1 and a function κ ∈ L∞(Rd) that satisfies κ(~x) ≥ γ > 0, ∀~x ∈ R

d. The space H~s is
defined as follows.
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Definition 1.1. Let ~s ∈ S
d−1, then we define the anisotropic Sobolev space

H~s(Ω) :=
{
f ∈ L2(Ω): (~s · ∇)f ∈ L2(Ω)

}
with norm ‖f‖2H~s(Ω) := ‖f‖2L2(Ω) + ‖(~s · ∇)f‖2L2(Ω).

This space is more easily characterised on the Fourier side,

H~s(Ω̂) :=
{
f̂ ∈ L2(Ω̂) :

〈
~s ·~ξ

〉
f̂(~ξ) ∈ L2(Ω̂)

}
with norm

∥∥f̂
∥∥
H~s(Ω̂)

:=
∥∥〈~s ·~ξ

〉
f̂
∥∥
L2(Ω̂)

,

where 〈x〉 :=
√
1 + |x|2 is the regularised absolute value.

To solve the equation Au = f ∈ L2(Rd), we look for solutions by minimising the L2-residual,

u0 = argmin
v∈H~s

‖Av − f‖L2 . (1.2)

With a variation-of-constants-argument (following [GS11b]), it is not difficult to show the following.

Proposition 1.2 ([GO14]). For every ℓ ∈
(
H~s

)′
there exists a unique u0 ∈ H~s which solves (1.2). Moreover,

the solution is characterised by the variational equation

a(v, u0) = ℓ(v) for all v ∈ H~s, where a(v, u) := 〈Av,Au〉L2 . (1.3)

In particular, well-definedness holds for

ℓf (v) := 〈Av, f〉L2 with f ∈ L2(Rd).

2 Discretization

In our paper we aim to solve (1.2) via solving a discretization of the linear system (1.3). Several ingredients
are needed to render this approach efficient:

(i) Uniform well-conditionedness of the resulting infinite discrete linear system

(ii) Fast approximate matrix-vector multiplication for the discrete operator matrix

(iii) Efficient approximation of typical solutions

There exists several results which essentially state that, whenever (i), (ii) and (iii) are satisfied, then the
linear system (1.3) can be solved in optimal computational complexity [CDD01, Ste03, DFR07].

2.1 Gelfand Frames

For a Gelfand triple (H, L2(Rd),H′), it can be shown that for an operator F : H → H′ which is bounded and
boundedly invertible, induces a symmetric bilinear form a(v, u) := 〈v, Fu〉H×H′ and is elliptic in the sense

that a(v, v) ∼ ‖v‖2H, the equation Fu = f can be discretised (and preconditioned) with a Gelfand frame to
Fu = f , such that the following result holds.

Lemma 2.1 ([DFR07, Lemma 4.1]). The operator F : ℓ2(Λ) → ℓ2(Λ) is bounded and boundedly invertible
on its range. In particular, the system Fu = f is a uniformly well-conditioned infinite linear system.
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2.2 Numerical Solution of the Discrete System

If we were able to compute with infinite vectors, at this point we could simply solve

Fu = f , (2.1)

by using a standard iterative solver such as a damped Richardson iteration

u(j+1) = u(j) − α
(
Fu(j) − f

)
, u(0) = 0.

Due to the well-conditionedness of the matrix F ensured by Lemma 2.1 and the fact that the iterates stay
in ran(F) in each step, it is easy to show that for appropriate damping α the sequence u(j) converges
geometrically to the sought solution u in the ℓ2(Λ)-norm, i.e.

∥∥u− u(j)
∥∥
ℓ2(Λ)

. ρj

for some ρ < 1, depending on the spectral properties of the operator F.
To deal with the fact that we can only compute with finite vectors, we consider how this is done for the

by-now classical wavelet discretisations of elliptic PDEs. The approximative evaluation of the Richardson
iteration utilises the following three procedures:

• RHS[ε, f ] → fε: determines for f ∈ ℓ2(Λ) a finitely supported fε ∈ ℓ2(Λ) such that

‖f − fε‖ℓ2(Λ) ≤ ε;

• APPLY[ε,A,v] → vε: determines for A : ℓ2(Λ) → ℓ2(Λ) and for a finitely supported v ∈ ℓ2(Λ) a
finitely supported vε such that

‖Av − vε‖ℓ2(Λ) ≤ ε;

• COARSE[ε,u] → uε: determines for a finitely supported u ∈ ℓ2(Λ) a finitely supported uε ∈ ℓ2(Λ)
with at most N nonzero coefficients, such that

‖u− uε‖ℓ2(Λ) ≤ ε. (2.2)

Moreover, N . Nmin holds, Nmin being the minimal number of entries with (2.2).

We refer to [CDD01, Ste03, DFR07] for information on the numerical realization of these routines.

2.3 The Problem with ker(F)

For the finite system, the iterates are no longer guaranteed to stay in ran(F) – in particular, errors in the
kernel of the discretisation of F may accumulate. One possible remedy is to apply a projection P with
ker(P) = ker(F) periodically, to eliminate these errors in the kernel.

Assuming the existence of numerical procedures as above and such a projection P, we can formulate
the numerical algorithm [Ste03] to solve the discrete linear system (2.1) up to accuracy ε > 0, given as
Algorithm 2.2 below.

Conditional on the three routines above, we have thus formulated a feasible algorithm for the approximate
solution of (2.1).

2.4 Compressibility

To achieve optimal convergence rates for our problem through the techniques introduced in [CDD01], a key
ingredient is compressibility of the discretised operator equation. Such a property guarantees the existence
of linear-time approximate matrix-vector multiplication algorithms APPLY which are used in the iterative
solution of the operator equation, see [CDD01, Ste03] for more information.
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Algorithm 2.2: Modified Inexact Damped Richardson Iteration

Data: ε > 0, F, f
Result: uε = modSOLVE[ε,F,P, f ]

Let θ < 1
3 and K ∈ N such that 3ρK‖P‖ < θ. i := 0, u(0) := 0, ε0 :=

∥∥P
∥∥∥∥F

∣∣−1

ran(F)

∥∥‖f‖ℓ2(Λ)

while εi > ε do
i := i+ 1;
εi := 3ρK‖P‖εi−1/θ;
f (i) := RHS[θεi/(6αK‖P‖), f ];
u(i,0) := u(i−1);
for j = 1, . . . ,K do

u(i,j) := u(i,j−1) − α
(
APPLY

[
θεi/(6αK‖P‖),F,u(i,j−1)

]
− f (i)

)
;

z(i) := APPLY
[
θεi/3,P,u

(i,K)
]
;

u(i) := COARSE[(1− θ)εi, z
(i)];

uε := u(i);

Definition 2.3. A matrix A is called σ∗-compressible if for every σ < σ∗ and k ∈ N there exists a matrix
A[k] such that

(i) the matrix A[k] has at most αk2
k non-zero entries in each column,

(ii) the following estimate holds
∥∥A−A[k]

∥∥
2
≤ Ck,

in such a way that the sequences (αk)k∈N, (Ck2
σk)k∈N are both summable.

Definition 2.4 ([Ste03, Def. 3.9]). A vector c ∈ ℓ2 is called σ∗-optimal, when for a suitable routine RHS,
for each σ ∈ (0, σ∗) with p := (σ + 1

2 )
−1, the following is valid for cε = RHS[ε, c]:

1. #supp cε . ε−1/σ|c|1/σ
ℓpw

2. The number of arithmetic operations used to compute cε is at most a multiple of ε−1/σ|c|1/σ
ℓpw

.

We can now formulate the main result of [Ste03, Theorem 3.11].

Theorem 2.5 (Convergence of modSOLVE). Assume that for some σ∗ > 0, the matrices F and P are σ∗-
compressible and that for some σ ∈ (0, σ∗) and p := (σ+ 1

2 )
−1, the system Fu = f has a solution u ∈ ℓpw(Λ).

Moreover, assume that f is σ∗-optimal. Then for all ε > 0, uε := modSOLVE[ε,F,P, f ] satisfies

(I) #supp uε . ε−1/σ|u|1/σ
ℓpw(Λ)

,

(II) the number of arithmetic operations to compute uε is at most a multiple of ε−1/σ|u|1/σ
ℓpw(Λ)

.

Furthermore, ‖Pu− uε‖ℓ2(Λ) ≤ ε and so, the recovered approximation (D−1
H undoes the preconditioning, and

G∗
Φ is the frame synthesis operator) satisfies

∥∥u−G∗
ΦD

−1
H uε

∥∥
H . ε.

One crucial assumption in Theorem 2.5 is that P be σ∗-compressible, because for the most obvious choice
– an orthogonal projection – compressibility cannot be verified with current mathematical technology except
in trivial cases [Ste03, DFR07]. However, as we will demonstrate for ridgelets below, other projections can
be carefully constructed hat are in fact compressible.

The line of attack to solve the operator equation (1.2) is now clear: We have to construct a Gelfand frame
Φ for the Gelfand triple

(
H~s, L2, (H~s)′

)
and show that the resulting matrices F and P are compressible.
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2.5 Ridgelet Frames

To this end, in [Gro12], a Parseval frame Φ = (ϕλ)λ∈Λ of ridgelets for H = H~s was constructed. The key to
the construction is a certain set of functions ψj,ℓ ∈ L2(Rd), which form a partition of unity in the frequency
domain, i.e.

(
ψj,ℓ

)
j∈N0, ℓ∈{0,...,Lj} such that

∞∑

j=0

Lj∑

ℓ=0

ψ̂2
j,ℓ = 1. (2.3)

The support Pj,ℓ := supp ψ̂j,ℓ is explicitly given from the construction in (hyper-)spherical coordinates

Pj,ℓ =
{
(r,~θ) : r ∈ [2j−1, 2j+1], distSd−1(~θ,~sj,ℓ) ≤ αj := 2−j+1

}
(2.4)

Definition 2.6. Using (2.3), a tight frame for L2(Rd) is defined by

ϕj,ℓ,~k = 2−
j
2TUj,ℓ

~k ψj,ℓ, j ∈ N0, ℓ ∈ {0, . . . , Lj}, ~k ∈ Z
d,

with T the translation operator, T~yf(·) := f(· − ~y), and Uj,ℓ := R−1
j,ℓD2−j . The rotation Rj,ℓ takes ~sj,ℓ into

the first canonical unit vector ~e1 and Da scales the first element by a. Whenever possible, we will subsume
the indices of ϕ by λ = (j, ℓ, ~k).

Remark 2.7. In d > 3 dimensions, rotations R~s turning ~s into ~e1 are no longer necessarily unique. However,
for fixed R~s, it is always possible [GO14, Lem. A.4] to choose R~s′ such that the following Lipschitz conditions
still holds,

‖R~s −R~s′‖ . distSd−1(~s,~s′). (2.5)

To prove compressibility of F and P, we will need the following assumption on the partition-of-unity.
This is not an undue restriction, as we show in [GO14, Lem. B.1] that this can be satisfied by constructing

ψ̂j,ℓ in a certain way, but still leaving many possibilities to choose the window functions in question.

Assumption 2.8. The ψ̂j,ℓ are constructed in such a way, that for any rotation Rj,ℓ (taking ~sj,ℓ to ~e1), the
pullbacks under the transformation U−⊤

j,ℓ = R−1
j,ℓD2j , have bounded derivatives independently of j and ℓ, i.e.

for ψ̂(j,ℓ)(~η) := ψ̂j,ℓ(U
−⊤
j,ℓ ~η) :

∥∥ψ̂(j,ℓ)

∥∥
Cn ≤ βn, ∀n ≤ N.

With the ridgelet frame Φ in hand we go on to show that Φ is indeed a Gelfand frame for the Gelfand
triple

(
H~s, L2(Rd), (H~s)′

)
. First, we need to find suitable sequence spaces Hd. To this end we introduce the

diagonal preconditioning matrix

Wλ,λ′ =

{
0, λ 6= λ′,

w(λ) := 1 + 2j |~s ·~sj,ℓ|, λ = λ′,
(2.6)

and define the weighted ℓ2-spaces

Hd := ℓ2
W
(Λ) := {c ∈ ℓ2(Λ) : ‖Wc‖ℓ2(Λ) <∞}

and the corresponding isomorphisms

DHd
:

{
Hd → ℓ2(Λ),
c 7→ Wc,

and D∗
Hd

:

{
ℓ2(Λ) → H′

d = ℓ2
W−1(Λ),

c 7→ Wc.

Finally, we have the frame operators

G∗
Φ :

{
Hd → H,
c 7→ Φc,

and GΦ :

{ H′ → H′
d,

f 7→
〈
Φ, f

〉
H′×H,

which are bounded.
Then, as desired, we have the following result:
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Theorem 2.9 ([GO14]). The ridgelet frame Φ as constructed above constitutes a Gelfand frame for the
Gelfand triple

(
H~s, L2(Rd), (H~s)′

)
.

Together with Lemma 2.1, this yields the following.

Theorem 2.10 ([GO14]). With Φ the ridgelet system and A the differential operator defined above, consider
the (infinite) matrix

F := W−1〈AΦ, AΦ〉L2W
−1.

Then the operator F : ℓ2(Λ) → ℓ2(Λ) is bounded as well as boundedly invertible on its range ran(F) =
ran

(
D−1

Hd
GΦ

)
. Furthermore, ker(F) = ker(G∗

ΦD
−1
Hd

).

Proposition 2.11. The matrix
P := W〈Φ,Φ〉L2W

−1

is a projection and satisfies ker(P) = ker(F).

Proof. We begin by writing

P :

{ H → ℓ2(Λ),
f 7→ DHd

GΦG
∗
ΦD

−1
Hd
f.

Then
PPf = DHd

GΦG
∗
ΦD

−1
Hd
DHd

GΦG
∗
ΦD

−1
Hd
f = DHd

GΦG
∗
ΦGΦG

∗
ΦD

−1
Hd
f = Pf,

due to the fact that we have a Parseval frame – i.e. G∗
ΦGΦg = g. Finally, because DHd

GΦ is injective due
to the frame property, we have that ker(P) = ker(G∗

ΦD
−1
Hd

), which matches ker(F) by Theorem 2.10.

2.6 Compressibility of F

The main property left to verify is the compressibility of F and P – however, compressibility is difficult to
verify directly in general. Instead we use the following notion of sparsity for a (possible bi-infinite) matrix
A:

Definition 2.12. Let p > 0. A matrix A =
(
aλ,λ′

)
λ∈Λ,λ′∈Λ′

is called p-sparse if

‖A‖ℓp(Λ)→ℓp(Λ) := max

(
sup
λ′∈Λ′

∑

λ∈Λ

|aλ,λ′ |p, sup
λ∈Λ

∑

λ′∈Λ′

|aλ,λ′ |p
) 1

p

<∞. (2.7)

Then, as a consequence of Schur’s test, one can show:

Proposition 2.13. Assume that A is p-sparse for 0 < p < 1. Then A is 1
2

(
1
p − 1

)
-compressible.

Theorem 2.14 ([GO14]). We consider the frame Φ = (ϕλ)λ∈Λ, satisfying Assumption 2.8 with N = 2n > d
for some n ∈ N, and choose p ∈ R such that 1 ≥ p > d

2n . For the operator A from (1.1), we require
that the absorption coefficient κ has a decomposition κ = γ + κ0 with constant γ > 0, and κ0 satisfying
κ0, κ̂0 ∈ L∞(Rd). Finally, we demand the existence of r0, c0 > 0, such that the decay condition

∣∣κ̂0(~ξ)
∣∣ ≤ c0

|~ξ|q
∀~ξ ∈ R

d : |~ξ| ≥ r0,

is fulfilled for a fixed q > 2d+ 2n+ 3
2 + d−1

p . Then the stiffness matrix for the operator A (with appropriate

preconditioning, see (2.6)) is p-sparse in this frame – in other words,

∥∥∥W−1〈AΦ, AΦ〉L2W
−1

∥∥∥
ℓp(Λ)→ℓp(Λ)

<∞. (2.8)
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Remark 2.15. As we have seen in Proposition 2.13, the smaller p, the better the compressibility. The
theorem is formulated in a way that p is chosen according to the restrictions imposed by d and n – however,
since it is possible to construct window functions of arbitrary smoothness (and thus arbitrarily smooth ψ̂j,ℓ),
the limiting factor for p then becomes the decay rate of κ̂0. In the case that κ̂0 decays faster than any
polynomial (say, exponentially), arbitrarily small p can be achieved (for infinitely smooth ψ̂j,ℓ) – of course
at the cost of exploding constants.

Instead of relying on unverified assumptions about the compressibility of the orthogonal projection, we
can very sparsity (and thus compressibility) for the projection P defined above directly.

Theorem 2.16. Again, let Φ = (ϕλ)λ∈Λ satisfy Assumption 2.8 with N = 2n > d for some n ∈ N, and
choose p ∈ R such that 1 ≥ p > d

2n . Then the projection P is p-sparse in this frame – in other words,

∥∥P
∥∥
ℓp(Λ)→ℓp(Λ)

=
∥∥∥W〈Φ,Φ〉L2W

−1
∥∥∥
ℓp(Λ)→ℓp(Λ)

<∞.

Before we come to the proof, we collect two auxiliary technical results.

Proposition 2.17 ([GO14, Cor. C.3]). For functions f, g ∈ C2n, we have the following estimate for the
Laplacian in d dimensions,

∣∣[∆n
(
fg

)]
(~η)

∣∣ ≤ (4d)n|f(~η)|C2n |g(~η)|C2n ≤ (4d)n‖f‖C2n‖g‖C2n , (2.9)

where |f(~η)|C2n = max0≤r≤2n |f (r)(~η)| is the maximum of all derivatives up to order 2n of f at ~η.

Proposition 2.18 ([GO14, Prop. A.3]). For fixed j′ and ℓ′, the number of Pj,ℓ on scale j that can intersect
Pj′, ℓ′ is bounded as follows

#
{
ℓ ∈ {0, . . . , L} : Pj,ℓ ∩ Pj′, ℓ′ 6= ∅

}
. 2|j−j′|(d−1). (2.10)

Proof of Theorem 2.16. Due to symmetry, we are able to express (2.8) without taking the maximum (cf.
(2.7)),

∥∥P
∥∥p
ℓp(Λ)→ℓp(Λ)

= sup
λ′∈Λ

∑

λ∈Λ

∣∣∣ w(λ)
w(λ′)

〈ϕλ, ϕλ′〉L2

∣∣∣
p

= sup
λ′∈Λ

∑

j∈N0

Lj∑

ℓ=0

∑

~k∈Zd

∣∣∣ w(λ)
w(λ′)

〈
ϕj,ℓ,~k, ϕj′, ℓ′,~k

′

〉
L2

∣∣∣
p

<∞. (2.11)

Step 1 – Transforming the integral: Recalling the definition of the ϕλ, we compute

Pλ,λ′ =
w(λ)

w(λ′)
〈ϕλ, ϕλ′〉L2 =

w(λ)

w(λ′)
〈ϕ̂λ, ϕ̂λ′〉L2

= 2−
j+j′

2
w(λ)

w(λ′)

∫
F
(
ψj,ℓ(~x− Uj,ℓ

~k)
)
F
(
ψj′, ℓ′(~x− Uj′, ℓ′

~k
′
)
)
d~ξ

= cF2
− j+j′

2
w(λ)

w(λ′)

∫
ψ̂j,ℓ(~ξ)ψ̂j′, ℓ′(~ξ) exp

(
2πi~ξ · (Uj,ℓ

~k − Uj′, ℓ′
~k
′
)
)
d~ξ

where cF = (2πi)2.

The transformation Uj,ℓ modifying ~k in the exponential function makes summing ~k difficult, and therefore,

we will transform all the integral by ~ξ = U−⊤
j,ℓ ~η – introducing a factor 2j from the determinant of the Jacobian

and yielding the exponent

2πi~η · (~k − U−1
j,ℓ Uj′, ℓ′

~k
′
) = 2πi~η · (~k − U j,ℓ

j′, ℓ′
~k
′
), where U j,ℓ

j′, ℓ′ := U−1
j,ℓ Uj′, ℓ′ .
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We want to use the representation of ψ̂j,ℓ from Assumption 2.8, which holds for arbitrary rotations R̃j′, ℓ′

taking ~sj′, ℓ′ to ~e1. We choose R̃j′, ℓ′ in Ũj′, ℓ′ := R̃−1
j′, ℓ′D2−j in such a way that (2.5) holds for ~s = ~sj,ℓ and

~s′ = ~sj′, ℓ′ , and unsurprisingly, we set Ũ j,ℓ
j′, ℓ′ := U−1

j,ℓ Ũj′, ℓ′ . Thus,

Pλ,λ′ = cF2
j−j′

2
w(λ)

w(λ′)

∫
ψ̂(j,ℓ)(~η)ψ̂(j′, ℓ′)(Ũ

⊤
j′, ℓ′U

−⊤
j,ℓ ~η)︸ ︷︷ ︸

=:hλ,λ′ (~η)

exp
(
2πi~η · (~k − U j,ℓ

j′, ℓ′
~k
′
)
)
d~η. (2.12)

It should be noted that h-terms does not depend on ~k,~k
′
– however, we have chosen this notation for

reasons of notational brevity.
We now have to show that the sum of (2.12) over all parameters in (2.11) is finite – which we will do for

~k first, then for ℓ and finally for j.

Step 2 – Integration by parts: Even though the exponent is purely imaginary, we cannot estimate the
exponential function by one, as we would then sum constants in ~k. However, a simple calculation shows
∆~η exp(2πi~η · ~y) = −(2π)2|~y|2 exp(2πi~η · ~y), which entails

∆~η exp
(
2πi~η · (~k − U j,ℓ

j′, ℓ′
~k
′
)
)
= −(2π)2

∣∣~k − U j,ℓ
j′, ℓ′
~k
′∣∣2 exp

(
2πi~η · (~k − U j,ℓ

j′, ℓ′
~k
′
)
)
.

Applying Green’s second identity iteratively (boundary terms disappear due to the compact support of hλ,λ′),

we will use this to generate a denominator of sufficient power to be summed over all ~k ∈ Z
d – on the other

hand, this forces us to estimate the derivatives of the remaining factors of the integrands. All differential
operators will be with respect to ~η, which we will not indicate anymore in the following.

Thus, for ~k 6= U j,ℓ
j′, ℓ′
~k
′
,

Pλ,λ′ = cF2
j−j′

2
w(λ)

w(λ′)

(−1)n(2π)−2n

∣∣~k − U j,ℓ
j′, ℓ′
~k
′∣∣2n

∫
∆n

(
hλ,λ′(~η)

)
exp

(
2πi~η · (~k − U j,ℓ

j′, ℓ′
~k
′
)
)
d~η. (2.13)

Step 3 – Estimating the Derivatives: Using (2.9) and Assumption 2.8, we see

∥∥∆nhλ,λ′

∥∥ ≤ (4d)n
∥∥ψ̂(j,ℓ)

∥∥
C2n

∥∥ψ̂(j′, ℓ′)

(
(Ũ j,ℓ

j′, ℓ′)
⊤·
)∥∥

C2n ≤ (4d)nβ2
2n

∥∥Ũ j,ℓ
j′, ℓ′

∥∥2n

which allows us to estimate (2.13), while remembering to keep the support information of terms we estimate
away:

|Pλ,λ′ | . w(λ)

w(λ′)

2
j−j′

2

∣∣~k − U j,ℓ
j′, ℓ′
~k
′∣∣2n

∫

U⊤

j,ℓ
(Pj,ℓ∩Pj′, ℓ′ )

∥∥Ũ j,ℓ
j′, ℓ′

∥∥2n d~η (2.14)

Step 4 – Estimating the transformation: We begin by considering the matrix Rj,ℓR̃
−1
j′, ℓ′ . Denoting the

identity by I, we exploit the orthogonality of the Rj,ℓ and (2.5) to yield

∥∥Rj,ℓR̃
−1
j′, ℓ′ − I

∥∥ =
∥∥R̃j′, ℓ′ −Rj,ℓ

∥∥ . distSd−1(~sj,ℓ,~sj′, ℓ′).

Due the necessary proximity of ~sj,ℓ and ~sj′, ℓ′ (for the intersection Pj,ℓ ∩ Pj′, ℓ′ to be non-empty),

distSd−1(~sj,ℓ,~sj′, ℓ′) ≤ αj + αj′ = 2−j+1 + 2−j′+1, (2.15)

we can finish the estimate,
∥∥Ũ j,ℓ

j′, ℓ′

∥∥ =
∥∥D2jRj,ℓR̃

−1
j′, ℓ′D2−j′

∥∥ =
∥∥D2j−j′ +D2j (Rj,ℓR̃

−1
j′, ℓ′ − I)D2−j′

∥∥

. max(2j−j′ , 1) + 2jdistSd−1(~sj,ℓ,~sj′, ℓ′) . 2|j−j′|.
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Step 5 – Estimating the weights: The factor w(λ)
w(λ′) can be easily estimated, again due to (2.15). Inserting

the definition, we have

1 + 2j |~s ·~sj,ℓ|
1 + 2j′ |~s ·~sj′, ℓ′ |

≤ 1 + 2j |~s ·~sj′, ℓ′ |+ 2j |~s · (~sj,ℓ −~sj′, ℓ′)|
1 + 2j′ |~s ·~sj′, ℓ′ |

≤ 1 + 2j−j′ + 2jdistSd−1(~sj,ℓ,~sj′, ℓ′) . 2|j−j′|,

because
∣∣~s−~s′

∣∣ ≤ distSd−1(~s,~s′) for ~s,~s′ ∈ S
d−1.

Step 6 – Estimating the integral: For j ≥ 1, the transformation U⊤
j,ℓ takes the “frequency tiles” Pj,ℓ

back into a bounded set around the origin,

U⊤
j,ℓPj,ℓ ⊆

[
1

2
cos(αj), 2

]
× P(span{~e1})⊥

(
BRd(0, 4)

)
⊆ BRd(0, 5).

This can be seen from (2.4), as Pj,ℓ is contained in the intersection between a spherical shell (between
radii 2j−1 and 2j+1) and a cone around ~sj,ℓ with opening angle αj = 2−j+1. The rotation in U⊤

j,ℓ = D2−jRj,ℓ

brings the axis of this cone into ~e1. We see that the smallest value of η1 for ~η ∈ U⊤
j,ℓPj,ℓ is 2

−j2j−1 cos(αj) =
1
2 cos(αj) >

1
4 since αj = 2−j+1 ≤ 1 < π

3 for j ≥ 1.
The largest extent perpendicular to ~e1 can be calculated as

2j+1 cosαj sinαj = 2j sin 2αj ≤ 2j · 2αj = 4,

which is what we wanted. Therefore,
∫

U⊤

j,ℓ
(Pj,ℓ∩Pj′, ℓ′ )

d~η . 1. (2.16)

However, we will keep the integrals for now, as the support conveniently encodes the condition that j and
j′, resp. ℓ and ℓ′ have to be close. Applying the other estimates to (2.14), we arrive at

|Pλ,λ′ | . 2|j−j′|(2n+ 3
2
)
∣∣~k − U j,ℓ

j′, ℓ′
~k
′∣∣−2n

∫

U⊤

j,ℓ
(Pj,ℓ∩Pj′, ℓ′ )

d~η

Step 7 – Summing ~k: Thus far, we have omitted the case ~k = U j,ℓ
j′, ℓ′
~k
′
– in fact, to sum over ~k, we need

treat even more elements differently. In order to estimate the term
∣∣~k − U j,ℓ

j′, ℓ′
~k
′∣∣, we choose Kj,ℓ

j′, ℓ′
~k
′ ∈ Z

d

as a (possibly non-unique) closest lattice element to U j,ℓ
j′, ℓ′
~k
′
(for example by rounding every component

to the nearest integer), which may be interpreted as a projection of U j,ℓ
j′, ℓ′
~k
′
onto the lattice Z

d. Then
∣∣Kj,ℓ

j′, ℓ′
~k
′ − U j,ℓ

j′, ℓ′
~k
′∣∣ ≤

√
d
2 , and if we restrict ~k ∈ Z

d such that
∣∣~k −Kj,ℓ

j′, ℓ′
~k
′∣∣ ≥

√
d, it holds that

∣∣~k − U j,ℓ
j′, ℓ′
~k
′∣∣ ≥

∣∣~k −Kj,ℓ
j′, ℓ′
~k
′∣∣−

√
d

2
≥ 1

2

∣∣~k −Kj,ℓ
j′, ℓ′
~k
′∣∣. (2.17)

For ~k ∈ Z
d such that

∣∣~k−Kj,ℓ
j′, ℓ′
~k
′∣∣ <

√
d, we retrace the derivation of all above estimates without the partial

integration, which, in effect, only eliminates the divisor
∣∣~k − U j,ℓ

j′, ℓ′
~k
′∣∣2n (and reduces the implicit constants).

Summing up, this means that

|Pλ,λ′ | . 2|j−j′|(2n+ 3
2
)
∣∣~k − U j,ℓ

j′, ℓ′
~k
′∣∣−2n

∫

U⊤

j,ℓ
(Pj,ℓ∩Pj′, ℓ′ )

d~η =: Zλ,λ′

for
∣∣~k −Kj,ℓ

j′, ℓ′
~k
′∣∣ ≥

√
d, and similarly for

∣∣~k −Kj,ℓ
j′, ℓ′
~k
′∣∣ <

√
d,

|Pλ,λ′ | . 2|j−j′|(2n+ 3
2
)

∫

U⊤

j,ℓ
(Pj,ℓ∩Pj′, ℓ′ )

d~η = Zλ,λ′
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Note that the different cases for ~k are incorporated in the definition of the Z-terms.
The intention now is to prove (2.11) by showing

sup
λ′∈Λ

∑

λ∈Λ

∣∣Pλ,λ′

∣∣p . sup
λ′∈Λ

∑

λ∈Λ

(
Zλ,λ′

)p
<∞.

We begin by summing ~k, which crucially requires the condition p > d
2n ,

∑

~k∈Z
d

∣∣∣~k−Kj,ℓ

j′, ℓ′
~k
′
∣∣∣≥

√
d

1
∣∣~k − U j,ℓ

j′, ℓ′
~k
′∣∣2np

(2.17)

≤
∑

~k∈Z
d

∣∣∣~k−Kj,ℓ

j′, ℓ′
~k
′
∣∣∣≥

√
d

22np
∣∣~k −Kj,ℓ

j′, ℓ′
~k
′∣∣2np

=
∑

~k∈Z
d

|~k|≥√
d

22np
∣∣~k
∣∣2np =: Gd,2np <∞.

The remaining sum over ~k ∈ Z
d :

∣∣~k −Kj,ℓ
j′, ℓ′
~k
′∣∣ <

√
d has at most O(

√
d
d
) terms. Taken together, this

implies

∑

λ∈Λ

∣∣Pλ,λ′

∣∣p .
∑

j∈N0

Lj∑

ℓ=0

2|j−j′|(2n+ 3
2
)p

(∫

U⊤

j,ℓ
(Pj,ℓ∩Pj′, ℓ′ )

d~η

)p

.

Step 8 – Summing ℓ and j: From (2.10), we know how many intersections in ℓ are maximally possible
on scale j. Therefore

∑

λ∈Λ

∣∣Pλ,λ′

∣∣p .
∑

j∈N0

2|j−j′|(2np+ 3p
2
+d−1)

(∫

U⊤

j,ℓ
(Pj,ℓ∩Pj′, ℓ′ )

d~η

)p

.

Finally, because |j− j′| ≤ 1 (and using (2.16)), we have bounded the left-hand side independently of λ′, and
therefore taking the sup doesn’t change anything and the proof is finished.

3 Main results

The results so far allow us to formulate the following corollary to Theorem 2.9, which, in essence, states
that the complexity of modSOLVE is linear with respect to the number of relevant coefficients of the
discretisation.

Corollary 3.1. Assume that f is σ∗-optimal (compare Definition 2.4) and that the system Fu = f has a
solution u ∈ ℓpw(Λ) for σ ∈ (0, σ∗) and p := (σ + 1

2 )
−1. Then the solution uε := modSOLVE[ε,F,P, f ] of

the ridgelet-based solver recovers this approximation rate – i.e.

#supp uε . ε−1/σ|u|1/σ
ℓpw(Λ)

,

and the number of arithmetic operations is at most a multiple of ε−1/σ|u|1/σ
ℓpw(Λ)

.

Finally, the last assumption – that the discretisation of typical solutions are in ℓpw(Λ) – is also satisfied
by the ridgelet discretisation. The proof of this theorem is based on arguments of [Can01] and is the subject
of an upcoming paper [GO15].

Theorem 3.2. For a function u ∈ L2(Rd) such that u, ~s · ∇u ∈ Ht(Rd) apart from discontinuities across
hyperplanes containing ~s. Then W〈Φ, u〉L2 ∈ ℓpw, the weak ℓp-space with p = ( t

d + 1
2 )

−1. This is the best
possible approximation rate for functions in Ht(Rd) (even without singularities!).

3.1 Conclusion

The bottom line is that the presented construction “sparsifies” both the system matrix as well as typical
solutions of transport problems (in the sense of compressibility and N -term approximations, respectively),
which makes it the ideal candidate for the development of fast algorithms, as underscored also by the results
of Corollary 3.1.
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4 Applications

4.1 Discrete Ordinates Method

As outlined in the introduction, we will now construct an algorithm to solve the full transport problem by
collocation in different directions (where we can use our uni-directional solver)1. Therefore, we consider

~s · ∇u+ κu = f, (4.1)

but this time we let ~s ∈ S
1 also be an independent variable such that u, κ, f : Ω × S

1 → R. The discrete
ordinates method (DOM) as outlined in [GS11a, Section 2] solves this problem in the following way:

• Choose some directions {~si}Ns

i=1 ⊂ S
1, Ns ∈ N.

• Solve (4.1) for these fixed directions, yielding the one-directional solutions u′i(x, y).

• Interpolate the (~si, u
′
i) to get a solution u′ for the full domain Ω× S

1.

The approximation error ‖u− u′‖L2(Ω×S1) depends on the quality of the interpolation – which is de-
termined by Ns and the angular smoothness of u – on the one hand, and the error in the uni-directional
solver on the other hand. Balancing these two errors gives a certain base b for choosing Ns ∼ bJ , where,
for example, b = 2

k
3 if the right-hand side f ∈ Hk and linear interpolation is used (with u being sufficiently

smooth in angle). The outlined discrete ordinates method – where the uni-directional solver goes up to scale
J – has complexity O(Ns4

J ) = O
(
(4b)J

)
, which quickly becomes very expensive.

4.2 Sparse Discrete Ordinates Method

In order to mitigate the scaling problem of the (full) discrete ordinates method, the sparse discrete ordinates
method (SDOM) was developed in [GS11a, Section 4]. The main idea is that the highest resolution in radius
does not need the highest resolution in angle, and vice versa. Under suitable smoothness assumptions,
matching decreasing resolution in one with increasing resolution in the other allows to lower the complexity
of the solver to O

(
max(4, b)J

)
, while losing only a logarithmic factor in accuracy compared to the full DOM

(with the highest radial and angular resolutions used for the SDOM), see [GS11a, Lem. 4.3] or [EGO14].
A graphical representation of the SDOM is given in Figure 4.1 for J = 3 and b = 4 – the interpolations

between the green arrows are added, while the interpolation between the red arrows is subtracted. In the
upper row, the lengths of the arrows represent the number of scales that were used whereas their number
and directions indicate how many and which directions are used for angular interpolation. The bottom row
shows in which detail spaces the functions obtained in this way live (the J-arrow denotes increasing frame
size, the S-arrow denotes increasing number of angular interpolation points).

4.3 Source Iterations

Finally, we are able to tackle the complete RTE including the scattering term:

~s · ∇u+ κu = f +

∫

S1

σud~s′

This problem can be solved using the source iteration method, which is:

• Set u′(0)(x, y,~s) = 0.

• For t = 1, ..., T , solve

~s · ∇u′(t) + κu′(t) = f +

∫

S1

σu′(t−1)d~s′

using e.g. the DOM or SDOM based on the basic ridgelet RTE solver.

1A detailed account can be found in [EGO14].
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Figure 4.1: Illustration of the SDOM

The idea of the source iterations is that the u(t) will converge to the true solution u for large enough t –
which is what we observe numerically.

Since three-dimensional functions are difficult to visualize, we will only look at the incident radiation

G[u](x, y) :=

∫

S1

u(x, y,~s) d~s.

Figure 4.2 shows the incident radiation of solutions of to the complete radiative transfer problem with
sources and sinks as in (a) – details below. Subfigures (b), (c) and (d) show the incident radiation for three
different value of the scattering coefficient σ (0, 0.2 and 0.5, respectively). In Figure 4.2a, the f and κ are
illustrated: The red line on the left shows the shape of the source term

f(x, y, ϕ) = e−500 (x−0.15)2−10min{ϕ,2π−ϕ}2

for some constant ϕ. The light blue area in the middle represents the obstacle which corresponds to the
second term in

κ(x, y) = 2 + 18 e−2000 (x−0.4)4−1000 (y−0.5)4 + 98 e−900 (x−0.9)2 .

The last term in κ, shown in dark blue in Figure 4.2a, was introduced in order to avoid that radiation flows
across the y-boundary.
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(a) The parameters of the problem

(b) Solution without scattering

Figure 4.2: (Continued on next page)
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(c) Solution with σ = 0.2 after 10 source iteration steps

(d) Solution with σ = 0.5 after 40 source iteration steps

Figure 4.2: Scattering of radiation around an obstacle for different values of the scattering coefficient σ
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