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Finite elements with mesh refinement for
elastic wave propagation in polygons

Fabian Müllera∗ and Christoph Schwaba

Error estimates for the space-semidiscrete Finite Element approximation of solutions to initial boundary value problems

for linear, second-order hyperbolic systems in bounded polygons G ⊂ R2 with straight sides are presented. Using recent
results on corner asymptotics of solutions of linear wave equations with time-independent coefficients in conical domains,

it is shown that continuous, simplicial Lagrangian Finite Elements of uniform polynomial degree p ≥ 1 with either suitably
graded mesh refinement or with bisection tree mesh refinement towards the corners of G, achieve the (maximal) asymptotic

rate of convergence O(N−p/2), where N denotes the number of degrees of freedom spent for the Finite Element space
semidiscretization. In the present analysis, Dirichlet, Neumann and mixed boundary conditions are considered. Numerical

experiments which confirm the theoretical results are presented for linear elasticity. Copyright c© 0000 John Wiley & Sons,
Ltd.
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1. Introduction

The regularity of strongly elliptic, second order systems of partial differential equations in polygonal and polyhedral domains G

has been studied for several decades, starting with the work by Kondrat’ev [22] and Maz’ya and Plamenevskĭı [31]. We refer to

Maz’ya and Rossmann [32] for a recent account of these results, and in particular also to [12], [3], [4], [33] for regularity shifts in

polyhedral domains G in R3. There, also a comprehensive list of references to further results is provided. In essence, full elliptic

regularity shifts in scales of Sobolev spaces with weights that vanish at the singular support of the solutions are now available in

2 and 3 spatial dimensions.

It is by now well-known that regularity results in scales of Sobolev spaces with weights allow to recover optimal convergence

rates for Finite Element Methods (FEM) with local mesh refinement in the vicinity of corners; we refer to Raugel [37] and

Babuška et al. [1, 2], and Băcuţă et al. [5] and to the references there for so-called graded meshes, and, more recently, to [16]

and the references there for simplicial meshes with bisection tree refinements produced by Adaptive Finite Element Methods

(AFEMs).

In the past decade, shift theorems in weighted Sobolev spaces for solutions of initial-boundary value problems for linear, second

order Wave equations in polygons G ⊂ R2 and in certain domains G ⊂ R3 have been obtained by B. A. Plamenevskĭı and
collaborators in [36, 17, 18, 19] for the acoustic Wave equation and [20, 21, 30] for a more general class of linear, second-order

hyperbolic PDEs.

Based on these results, we established optimal convergence rates for the FEM semi-discretization of the acoustic Wave equation

in [34]. Using a “method of lines” approach with Lagrangian nodal Finite Elements of uniform polynomial degree p ≥ 1 and
on regular, simplicial meshes in G, we proved that with an appropriate local refinement towards all vertices of G, optimal

convergence rates can be obtained for the space semi-discrete formulation. The proof in [34] exploited specific properties of the

corner singularities of the Laplacian in two space dimensions. Generalizations of these analytical results for a wide class of linear,

second order Wave equations with strongly elliptic spatial operator have been proved by Plamenevskĭı et al. in [21, 20] and [30].

aSeminar for Applied Mathematics, Rämistrasse 101, 8092 Zurich, Switzerland
∗Correspondence to: Seminar for Applied Mathematics, Rämistrasse 101, 8092 Zurich, Switzerland. E-mail: fabian.mueller@math.ethz.ch

Contract/grant sponsor: Research of Ch. Schwab supported by the European Research Council under Advanced Grant ERC AdG 247277. Research

of F. Müller supported by the Swiss National Science Foundation under Grant No. SNF 200021 149819/1

Math. Meth. Appl. Sci. 0000, 00 1–16 Copyright c© 0000 John Wiley & Sons, Ltd.
Prepared using mmaauth.cls [Version: 2009/09/02 v2.00]



Mathematical
Methods in the
Applied Sciences F. Müller, Ch. Schwab

Operators of this type typically turn up in the modelling of waves propagating in an elastic body. The allowed class of operators

includes the general case of linearized elasticity, and also some dimension reduced models in elasticity.

The goal of the present article is to generalize our results on Finite Element convergence rates with mesh refinement in [34] to

this wider class of operators. We would like to emphasize that we restrict ourselves to the two-dimensional case, i. e. G ⊆ R2.
In three spatial dimensions, the necessary regularity results are only given for a few special cases of geometrical settings.

The outline of the present paper is as follows. In Section 2, we present structural conditions on the elliptic spatial differential

and boundary operators considered in this article, and we also recall its weak formulation. The regularity results obtained by [30]

are briefly reviewed in Section 3, and the results necessary in the present error analysis are collected. Finally, in Section 4, we

introduce two classes of regular, simplicial mesh families with several types of local refinement at the corners of G. We show

that either of these local mesh refinements yields, for space-semidiscrete Finite Element approximations, optimal convergence

rates, i. e. the proposed mesh-refinements compensate for the lack of regularity due to corner singularities. We illustrate our

theoretical results by numerical experiments in Section 5.

Notation which is used in the present paper is as follows: vector fields on the 2 dimensional domain G are always denoted by a

bold face latin letter, e. g. v, while their components are not written in bold face and carry indices, i. e. v := (v1, v2). Moreover,

the differential operator ∂t refers to the derivative w. r. to the time-variable t, while ∂1, ∂2 refer to the space variables x1, x2.

Differential operators such as ∇ and ∆ never involve time derivatives, and if ∆ is applied to a vector field, it is understood to be
applied componentwise.

Moreover, speaking of “convergence rates”, we refer to the (largest) number ̺ ≥ 0, such that as N →∞ (referring e. g. to
the number of degrees of freedom used in the space-discretization or, equivalently, the number of nodes in Lagrangian Finite

Elements), the error (in some norm to be specified) tends to 0 as O(N−̺).

2. Problem formulation

2.1. Geometric setting

Throughout, we denote by G ⊂ R2 an open, connected, polygonal domain, with straight edges ei and corner points ci ,
i = 1, . . . ,M, enumerated in counterclockwise orientation along ∂G (with cyclic repetition for i > M and i < 1) and such

that {ci} = ei ∩ ei−1; here, subscripts i are understood modulo M. We collect all corners ci in the set C =
⋃M
i=1{ci}. We assume

that the boundary ∂G is a union of two disjoint subsets Γ̄D and Γ̄N such that ∂G = Γ̄D ∪ Γ̄N , and such that each edge ei entirely
belongs either to Γ̄D or to Γ̄N . This can be assumed wlog. It is moreover necessary to assume, since a change of boundary

condition on a straight edge induces a singularity of the same type as a polygonal corner. For each i = 1, . . . ,M, let φi ∈ (0, 2π)
denote the interior opening angle of G at ci . The analytic results which we use in the present Finite Element convergence analysis

require that φi < 2π. For φi = 2π, which formally corresponds to a ‘slit’ domain (in which case the boundary ∂G is not locally

Lipschitz at corner ci), the theoretical result required for our analysis does not hold anymore; in particular, a counterexample

can be found in Section 3.1 of [21]. Nevertheless, as we show in the numerical experiments in §5, the general conclusions seem
to extend also to this limiting case (possibly with logarithmic terms which are not resolved by the numerical studies which are

reported in §5 of the present paper).
For the treatment of evolution equations, we introduce the (open) time integration interval I := (0, Tmax), with finite, given

time-horizon 0 < Tmax <∞, as well as the corresponding open space-time cylinder Q := G × I.

2.2. Strong formulation

We consider a linear, second order, hyperbolic system of PDEs in G. Specifically, the spatial differential operators are the linear,

second-order operators A(x) : v 7→ A(x)v := ((A(x)v)i) 1≤i≤2, defined by

(A(x)v)i :=
2∑

j,k,l=1

∂j

(

akli j (x) ∂lvk

)

, (1)

with time-independent coefficient functions akli j (x) which are subject to the conditions

akli j ∈ C∞(Ḡ) ∀ 1 ≤ i , j, k, l ≤ 2 , (2)

akli j = a
i j
kl = a

kl
j i ∀ 1 ≤ i , j, k, l ≤ 2 , (3)

∃c > 0 : ∀ 0 6= ξ = (ξi j)1≤i ,j≤2 = (ξj i)1≤i ,j≤2 : essinfx∈G
∑

i ,j,k,l a
kl
i j (x)ξi jξkl

∑

i ,j (ξi j)
2 ≥ c . (4)

Condition (4) is referred to as strong ellipticity of A (see e. g. [40, Definition 10.4]). It is necessary in order to apply the results
by Matyukevich and Plamenevskĭı from [30], see the Equation (17) there. Given a vector field f = (f1, f2) ∈ C0(Ī;L2(G)2), as well
as initial data u0(x) ∈ H1(G) such that u0(x)|ΓD = 0 and u1(x) ∈ L2(G), the complete strong formulation of the initial boundary
value problem for the second order hyperbolic wave equation reads:

(
∂2t −A(x)

)
u(x, t) = f(x, t) ∀(x, t) ∈ Q, (5)

2 Copyright c© 0000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 0000, 00 1–16
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supplied with initial conditions

u(x, 0) = u0(x) ∀x ∈ G, ∂tu(x, 0) = u1(x) ∀x ∈ G . (6)

On ∂G × I, we consider mixed boundary conditions. To specify these, we partition the boundary ∂G into two open, disjoint pieces
ΓD and ΓN , as described in Section 2.1. We assume that |ΓD| ≥ 0, |ΓN | ≥ 0, i. e. we admit in particular the pure (homogeneous)
Dirichlet and pure (homogeneous) Neumann boundary conditions. We consider the mixed boundary conditions

u(x, t) = 0 ∀x ∈ ΓD, t ∈ I,
Nu(x, t) = 0 ∀x ∈ ΓN , t ∈ I ,

(7)

where N denotes the Neumann boundary operator, defined formally by

(Nu(x, t))i :=
2∑

j,k,l=1

νj(x) a
kl
i j (x) ∂luk(x, t) , i = 1, 2 , (8)

where ν(x) = (νj(x))j=1,2 is the outward unit normal vector defined for almost every x ∈ ∂G.
The homogeneous Dirichlet boundary conditions in (7) are understood in the sense of trace, and the Neumann boundary

conditions in (7) will be considered in the sense of distributions in a suitable weak formulation of the initial boundary-value

problem. In (7), the Dirichlet (resp. Neumann) boundary condition are considered void in the case that |ΓD| = 0 (resp. |ΓN | = 0).

2.3. Linear Elastodynamics

Linear operators of the form (1) satisfying (2-4) describe wave propagation in a linearly elastic body. In the particular case

where the reference configuration occupies a 2-dimensional, bounded domain, the coefficients akli j of the operator coincide with

the coefficients of the compliance tensor which appears in Hooke’s law as the factor relating the linearized stress and strain

tensors. By the usual assumptions made in linearized elasticity, (3) and (4) are fulfilled. However, (2) obviously fails to hold for

heterogeneous media, where the akli j may have discontinuities.

For details about the deduction of the governing equations in linearized elasticity, we refer to [9], [25], or [7, Chapter VI] and

[39, Chapter 6], where the discretization by Finite Elements of these equations is reviewed.

2.4. Weak formulation

Following, for example, [13, Chap. XVIII, §5], we state a variational formulation of the initial boundary value problem which is
to be discretized. To present it, we assume that |ΓD| > 0. The homogeneous Dirichlet boundary conditions then motivate the
definition of the following space:

V := {v ∈ H1(G)2 : v|ΓD ≡ 0} . (9)

The continuity of the trace operator implies that V ⊂ H1(G)2 is a closed, linear subspace. With (9), and setting H = L2(G)2,
we consider the abstract evolution triplet V ⊂ H ≃ H∗ ⊂ V ∗, i. e. we identify H with its own dual space H∗. A formal application
of the second Green’s formula for the elliptic spatial operator A yields the following weak variational formulation of the initial
boundary value problem (5 - 7) which is a particular case of the abstract “Problème (P1)” in [13, Chap XVIII, Par. 5.1.3].

Find u ∈ H1(I; V ) ∩H2(I; V ∗), such that for all t ∈ I and ∀v ∈ V
(∂2t u(·, t), v) + a(u(·, t), v) = (f(·, t), v)H

(u(·, 0), v)H = (u0, v)H ,
∂t(u(·, 0), v)H = (u1, v)H ,

(10)

where a(u(·, t), v) :=
∫

G

∑2
i ,j,k,l=1 a

kl
i j (x)∂jui(x, t) ∂lvk(x) dx. Here, the time derivatives are to be understood in the sense of

distributions. Well-posedness of (10) follows from [13, Ch. XVIII, §5.1-4], under the assumptions that a(·, ·) is bilinear (which
is obvious in our case), bounded (follows by the Cauchy-Schwarz inequality) and that there exist constants c1, c2 ∈ R, c1 > 0,
such that the Gårding inequality holds:

∀v ∈ V : a(v, v) ≥ c1‖v‖2V − c2‖v‖2H . (11)

For a(·, ·) as defined in (10), this last requirement is satisfied thanks to [23, Theorem 2].
By the strong ellipticity (4), we even have V -coercivity of a(·, ·), i. e. c2 = 0: for every w ∈ V , there holds

a(w,w) =

∫

G

2∑

i ,j,k,l=1

akli j (x)∂jwi(x) ∂lwk(x) dx

(3)

≥ 1
4

∫

G

∑

i jkl

akli j (x) (∂iwj(x) + ∂jwi(x)) (∂kwl(x) + ∂lwk(x)) dx

(4)

≥ c

4

∫

G

∑

i j

(∂jwi + ∂iwj)
2 dx ≥ cC(G,ΓD)‖∇w‖2L2(G) ,

(12)
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where in the last step, we have used the first Korn inequality with a constant C(G,ΓD) > 0. Since |ΓD| > 0, we obtain V -
coercivity of a(·, ·) using the first Poincaré inequality [40, Theorem 7.6]. In the case that |ΓD| = 0, Korn’s inequality is still valid
in a quotient space of H1(G)2: it is well-known that for v ∈ H1(G)2, a(v, v) = 0 if and only if v ∈ R, where

R := {G ∋ x 7→Mx+ b : M = −M⊤, b ∈ R2} ,

which is, for displacements in in space dimension d = 2, a 3-dimensional, linear space. Accordingly, we introduce the factorspace

V := H1(G)2 ∩R⊥ ≃ H1(G)2/R ,

and the so-called second inequalities of Korn and of Poincaré, respectively, (see, eg., [10, Theorem 2.3]) imply once more the

V -coercivity of a(·, ·).

2.5. An abstract regularity result

In the case of a coercive, symmetric and bounded bilinear form a(·, ·), a regularity shift in the t-variable can be obtained by
separation of variables. It is a generalization of a result by Doḿınguez and Sayas who investigated the case where A = ∆ and
of homogeneous initial data, in [14, Appendix A].

As we require this regularity for various function spaces in G, we work in an abstract framework which contains the ‘usual’ weak

formulation as a special case. To this end, let V ⊆ H ⊆ V ∗ denote an evolution triplet over R in the sense of [40, Definition
17.1], i. e. V is a reflexive real Banach space, H is a real Hilbert space and there is a continuous inclusion ι : V →֒ H such that

ι(V ) ⊆ H is dense. As stated before, we identify H ≃ H∗.

Theorem 2.1 Let the inclusion V ⊆ H be compact, and let a : V × V → R be a bounded, symmetric, coercive bilinear form on
V . Moreover, let f ∈ C0(Ī;H) and u0 ∈ V, u1 ∈ H be a-priori given data. Then, the (abstract) evolution equation

Find u : Ī → H, s. t.

∂2t (u(t), v)H + a(u(t), v) = (f (t), v)H ∀ v ∈ V, t ∈ Ī ,
u(0) = u0 ,

∂tu(0) = u
1 ,

(13)

admits a unique solution u which lies in the space

C2(Ī; V ∗) ∩ C1(Ī;H) ∩ C0(Ī; V ) . (14)

Proof. Let ‖ · ‖ denote the norm in H and |v | :=
√

a(v, v) for v ∈ V the seminorm in V induced by a(·, ·).
By [40, Theorem 17.11], under the assumptions we made, there exist countably many eigenpairs (λn, wn)n∈N, λn ∈ R, wn ∈ V
of a(·, ·), which are solutions to the spectral problem

a(v, wn) = λn(v, wn)H ∀v ∈ V . (15)

By the spectral theorem for compact operators, we can assume the real eigenvalues to be enumerated according to 0 < λ1 ≤
λ2 ≤ . . . , with the only accumulation point of (λn)n∈N at infinity, and that (wn)n∈N form an orthonormal basis of H so that(
wn√
λn

)

n∈N
constitutes an orthonormal basis of V endowed with the scalar product a(·, ·).

We consider the expansions of u, f , u0, u1 in {wn}n∈N:

u(t) =
∑

n∈N
αn(t)wn, f (t) =

∑

n∈N
fn(t)wn, u

0 =
∑

n∈N
α0nwn, u

1 =
∑

n∈N
α1nwn . (16)

Let us denote ξn :=
√
λn. Using these expansions and orthonormality, Equation (13) can formally be written as a system of

ordinary differential equations in αn(t) (we abbreviate φ̇(t) := ∂tφ(t) and φ̈(t) := ∂
2
t φ(t), where φ(t) is any function in the

t-variable):

α̈n(t) + λnα(t) = fn(t) , αn(0) = α
0
n , α̇n(0) = α

1
n . (17)

It is straightforward to see that the unique solution of (17) is given by

αn(t) = α
0
n cos(ξnt) + ξ

−1
n α

1
n sin(ξnt) +

∫ t

0

ξ−1n sin(ξn(t − τ))fn(τ) dτ , (18)

4 Copyright c© 0000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 0000, 00 1–16
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and by orthonormality, fn(t) = (f (t), wn)H and αn(t) = (u(t), wn)H.

The following formulae for even and odd higher derivatives of αn are formal (since the higher derivatives of fn(t) do not necessarily

exist) and are straightforward to prove by induction over all m ∈ N:

∂2mt αn(t) = (−1)mξ2mn
(

α0n cos(ξnt) + ξ
−1
n α

1
n sin(ξnt) (19)

+

∫ t

0

ξ−1n sin(ξn(t − τ))fn(τ) dτ +
m−1∑

j=0

(−1)m+1+jξ−2(1+j)n ∂2jt fn(t)

)

,

∂2m+1t αn(t) = (−1)mξ2mn
(

−ξnα0n sin(ξnt) + α1n cos(ξnt) (20)

+

∫ t

0

cos(ξn(t − τ))fn(τ) dτ +
m−1∑

j=0

(−1)m+1+jξ−2(1+j)n ∂2j+1t fn(t)

)

.

As an immediate consequence, fn ∈ Cm(Ī;R) for some m ∈ N0 implies that un(t) := αn(t)wn ∈ Cm+2(Ī; V ).
It remains to show that u(t) =

∑

n∈N un(t) converges uniformly as series in the norms of the spaces which appear in in (14).
For n,m ∈ N, n 6= m, we have a(un(t), um(t)) = 0. Moreover,

|un(t)|2 = a(un(t), un(t)) = λnαn(t)2

≤ λn
(

α0n + α
1
nξ
−1
n + ξ

−1
n

∫ T

0

sin(ξn(t − τ))fn(τ) dτ
)2

≤ 3
[

λn
(
α0n
)2
+
(
α1n
)2
+ T

∫ T

0

fn(τ)
2 dτ

]

︸ ︷︷ ︸

=:Mn

.

(21)

By (15) and the orthonormality of {wn}n∈N,

|u0|2 =
∑

n∈N
λn
(
α0n
)2
, ‖u1‖2 =

∑

n∈N

(
α1n
)2
, ‖f (t)‖2 =

∑

n∈N
fn(t)

2 .

Using Beppo Levi’s Theorem, we obtain from (21)

∑

n∈N
|un(t)|2 ≤ 3

∑

n∈N
Mn ≤ 3

[
|u0|2 + ‖u1‖2 + T‖f ;L2(I; V )‖2

]
<∞ ,

which allows us to conclude as in [14, Lemma A.1] that u =
∑

n∈N un converges uniformly as series and its limit belongs to the
space C0(Ī; V ). The uniform convergence implies u(0) = u0 in H.

Next,

‖u̇n(t)‖2 = (u̇n(t), u̇n(t)) = α̇n(t)2

≤
(

ξnα
0
n + α

1
n +

∫ T

0

cos(ξn(t − τ))fn(τ) dτ
)2

≤ 3
[

λn
(
α0n
)2
+
(
α1n
)2
+ T

∫ T

0

fn(τ)
2 dτ

]

= 3Mn ,

(22)

hence, by the same argument, the sequence of partial sums sN :=
∑N
n=1 u̇n converges uniformly to some continuous function

s ∈ C0(Ī;H). Now, since the sequence of functions C1(Ī;H) ∋ rN(t) :=
∑N
n=1 un(t) converges pointwise to u(t) and the sequence

sN = ṙN converges uniformly (for every t ∈ I and in the norm of V ) to s, we have u ∈ C1(Ī;H) and u̇ = s in C0(Ī;H). Additionally,
u̇(0) = u1 (with equality in H), by uniform convergence.

We observe that a(u(t), v) =
∑

n∈N a(un(t), v) for all v ∈ V , t ∈ Ī, hence

−a(u(t), v) + (f (t), v)H =
∑

n∈N
−a(un(t), v) + (fn(t)wn, v)H .

Now, since
N∑

n=1

(ün(t), v) =

N∑

n=1

−a(un(t), v) + (f (t), v)H N→∞−→ −a(u(t), v) + (f (t), v)H ,

the series
∑

n(ün(t), v)H converges uniformly with respect to t ∈ I to a continuous function with values in V ∗.
Since

∑

n u̇n is convergent in H uniformly w. r. to t, it is convergent in V uniformly w. r. to t by the continuous inclusion V →֒ H,

Math. Meth. Appl. Sci. 0000, 00 1–16 Copyright c© 0000 John Wiley & Sons, Ltd. 5
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and it follows that (ü(t), v) + a(u(t), v) = (f (t), v)H and u ∈ C2(Ī; V ∗).
Finally, the fact that the solution u(t) to the equation (13) is unique follows from the linearity of the equation and well-known

energy arguments, see e. g. [15, Theorem 7.3.4] �

In order to apply Theorem 2.1 on our case, we need to see that the situation described in Section 2 satisfies all assumptions made

in 2.1. It is well-known that in polygonal domains, elliptic operators should be seen as operating in weighted Sobolev spaces. In

that sense, the results we will cite do not provide the full regularity in the time-variable t. However, by a uniqueness argument, we

can deduce from Theorem 2.1 using the Gelfand triplet V →֒ L2(G) →֒ H−1(G) with compact inclusions by Rellich’s Theorem
that u(·, t) has C2-regularity with values in H−1(G).
This will be necessary to establish the semidiscrete convergence result.

From now on, the space V will denote again the space defined by (9), and will not be used as an abstract notation in an evolution

triplet, if not explicitly stated.

3. Corner asymptotics of u in polygons

Our goal is to recover quasi-optimal convergence rates for the space-semidiscrete wave equation, discretized in space by the

Lagrangian Finite Elements on locally refined meshes in G. Similar to our analysis for the linear wave equation in [34], and similar

to what is done in the elliptic setting, one possible approach to the analysis of Finite Element convergence rates is based on

asymptotic expansions of the solution in the vicinity of the corners. The corner asymptotics which are required in our context

were obtained in recent years by Plamenevskĭı and coworkers. The case of interest here is covered in [30]. We review it in a form

tailored to our requirements. At each corner ci , we choose a local neighborhood Gi := BRi (ci) ∩ G, where Ri is chosen such that

Ri < min
i ′ 6=i
|ci − ci ′ |/4,

so that the Gi are disjoint, and where BR(x) denotes the open disc of radius R > 0 centered at x.

The analysis of elliptic corner singularities is based on local polar coordinates (ri , ϑi) in Gi centered at ci . Specifically,

by (ri(x), ϑi(x)), we denote polar coordinates centered at corner ci , with ϑi ∈ [0, φi ] oriented counterclockwise, so that
ei = {x ∈ ∂G |ϑi(x) = 0} and ei−1 = {x ∈ ∂G |ϑi(x) = φi}. To extend this local definition from the vicinity Gi of xi to the
entire domain G, observe that for sufficiently small, fixed ε > 0, ri(x) ∈ Hk(Gi\Bε(xi))) for all k ∈ N0. For all k ∈ N0, it can be
extended from Gi to a function (denoted again ri) which is smooth in G\Gi , bounded from above and away from zero. Next, we
define the corner distance function

Ψ(x) :=

M∏

i=1

ri(x) ,

which is equivalent to the function x 7→ ri(x) in the corner vicinity Gi , for any 1 ≤ i ≤ M. Let χ̃ : R+ → [0, 1] be a smooth cut-off
function, such that

χ̃(r) =

{

1 if r ≤ 1
2

0 if r ≥ 1.
At each corner ci , i = 1, . . . ,M, we define local cut-offs χi(x) := χ̃ (ri(x)/Ri) , whose supports are fully contained in Gi .

The regularity theory of [21, 30] is based upon a reformulation of the Initial-Boundary value problem (IBVP) (5) as the

boundary value problem (BVP) in a cylinder (x, t) ∈ G × R:
(
∂2t −A(x)

)
ũ(x, t) = f̃(x, t) ∀(x, t) ∈ G × R, (23)

supplied with the boundary conditions (7). Throughout Section 3, we will denote ũ by u and f̃ by f. As the actual IBVP (5-7)

will not be considered there, this will not generate a conflict of notation.

As is described e.g. in [17, Proof of Thm. 4.1], the corner asymptotics of ũ and u are equivalent. Therefore, the regularity theory

of (23) will automatically lead to the corresponding results about solutions of (5-7).

In order to determine the regularity of (23), we need to Fourier transform the PDE in the time variable t ∈ R. Let γ > 0 be an
arbitrarily chosen, yet fixed, positive real number. Given a vector function w(x, t), x ∈ Ḡ, t ∈ R, its Fourier transformation with
respect to the time variable t, shifted along the imaginary axis to the line R− iγ ∋ τ is defined to be

ŵ(x, τ) := Ft 7→τ [w(x, t)](x, τ) := 1√
2π

∫

R

e−iτtw(x, t) dt .

If u(x, t) is a solution of (23), û(x, τ) is a solution of the transformed equation:

[
−τ2 −A

]
û(x, t) = f̂(x, t) , (24)

and the same boundary conditions (7). As by now, all ingredients of the theory are introduced, we can define the weighted

Sobolev spaces that accomodate a regularity shift for solutions to (5) in polygonal domains.
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Definition 3.1 Let γ > 0 and ω ∈ R be given weight parameters, and let s ∈ N0 be an integer. Let τ = σ − iγ, σ ∈ R, denote
the Fourier parameter defined above.

For s ∈ N0, we define the spaces Hsω(G)2 and Hsω(G, |τ |)2 as completions of C∞0
(
Ḡ \ C

)2
with respect to the norms ‖v;Hsω(G)‖

and ‖v;Hsω(G, |τ |)‖ which are given by

‖v;Hsω(G)‖2 =
s∑

k=0

∫

G

Ψ(x)2(ω+k−s)
∣
∣
∣D
kv(x)

∣
∣
∣

2

dx , ‖v;Hsω(G, |τ |)‖2 =
s∑

j=0

|τ |2j‖v;Hs−jω (G)‖2 . (25)

In the case when s = 0, we write L2ω(G) := H
0
ω(G).

In the analysis of the homogeneous Dirichlet problem, one often uses the notation of the (nonweighted) Sobolev space

H10(G) := {v ∈ H1(G) : v |∂G ≡ 0}. Here, this would give rise to a notational conflict with the choice of ω = 0, s = 1 in the
space Hsω(G). Therefore, we write H

1
ω=0(G) in that case in order to denote the weighted space in the sense of (25).

Furthermore, for s ∈ N0 and ω ∈ R, we define the space V sω (Q; γ)2 as completion of
(
C∞0

((
Ḡ \ C

)
× Ī
))2
with respect to the

following norm:

‖w, V sω (Q; γ)‖ :=
(∫

R

‖ŵ(·, τ);Hsω(G; |τ |)‖2 dσ
)1/2

. (26)

We will use an embedding from [34, Prop. 3.3], adapted to vector-valued functions.

Proposition 3.2 Let q, s, s ′ ∈ N0 and G ⊆ R2 be a bounded polygonal domain.
If, moreover, q + 1 ≥ s + s ′, then for all γ > 0 and ω ≤ −q the following inclusion is continuous:

V q+1ω+q (Q; γ)
2 →֒ Hs(I;Hs

′
(G)2). (27)

The formulation of the results on corner asymptotics of solutions u of (1) - (8) in the vicinity of ci involves an extension operator

X i which is defined by

X iw(x, t) := F−1τ 7→tχi(|τ | x)Ft ′ 7→τw(x, t ′) , i = 1, 2, ...,M . (28)

Here, by χi we denote the cut-off corresponding to ci . These (nonlocal) operators appear in the corner-singularity analysis of

parametric elliptic problems. They can be interpreted as smoothing extension operators outside the corner; see [35, Chap. 11.3]

or the remarks in [30, p. 500] after [30, Thm. 7.5] for details. The weighted spaces V q+1ω+q (Q; γ) appear in the regularity theory of

(5) and also in the following spaces, which have been introduced in [20, §5]. In [30, §7], these spaces have been introduced only
in the case q = 0. The step to higher integer order q > 0 can be done by induction as described before Theorem 3.5 below.

Definition 3.3 Let γ > 0, ω ∈ R and q ∈ N0. For sufficiently smooth functions w of x and of t, we define

‖u;DVNω,q(Q; γ)‖2 :=
M∑

i=1

{∫

R

∥
∥
∥ri(x)

ω−1 ∂t
[

e−γt X iu(·, t)
]

;L2(G)2
∥
∥
∥

2

+

q+2∑

k=1

∫

R

∥
∥
∥ri(x)

ω−2+ke−γt Dk
[

X iu
]

(x, t);L2(G)2
∥
∥
∥

2

dt

}

+ γ2‖u; V q+1ω+q (Q; γ)
2‖2,

and the space DVω,q(Q; γ) as completion of
(
C∞0

((
Q̄ \ C

)
× Ī
))2
w. r. to the norm defined by

‖w;DVω,q(Q; γ)‖2 :=
{∑

i ‖X iw; V q+2ω+q (Q; γ)
2‖2 + ‖w; V q+1ω+q (Q; γ)

2‖2 if |ΓD| > 0,
‖w;DVNω,q(Q; γ)‖2 if Γ = ΓN .

(29)

Analogously, for q ∈ N0 we introduce the space RVω,q(Q; γ) as completion with respect to the norm ‖f ;RVω,q(Q; γ)‖ given by

‖f;RVω,q(Q; γ)‖2 :=

q∑

j=0

γ−2j‖∂ jt f; V q−jβ+q−j(Q, γ)
2‖2

+γ−2(q+1)
∥
∥F−1τ 7→t

[
|τ |1−ω+qFt 7→τ f

]
; V 00 (Q, γ)

2
∥
∥
2
.

(30)

These spaces have been introduced in [20, §7], [18, §7].

Regularity shifts for second order linear wave equations in polygonal and polyhedral domains have been proved in [30] for pure

homogeneous Dirichlet or Neumann conditions. These results can be extended to mixed boundary conditions, i. e. the case where

|ΓD| > 0 and |ΓN | > 0, with an approach which is completely analogous to the techniques in [30] (and in the references therein).
The regularity results in [30] are based on elliptic corner asymptotics of the boundary value problem (1) - (8), upon Fourier-

transforming this problem with respect to the time variable. This way, the elastic Wave equation is transformed to the parametric
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problem (24) with elliptic principal part −A and with a parameter −τ2 ∈ C. For such elliptic problems and for a fixed parameter
τ , the corner asymptotics are well-known, see e.g. the monograph [32] and the references there. The work by Plamenevskĭı et

al., in particular [30], provides uniform bounds of the asymptotics w. r. to the Fourier parameter in the scale of the weighted

Sobolev spaces from Definition 3.1. This allowed them to conclude on the corner asymptotics of the time-dependent problem

(5) by inverse-transformation of the results in the Fourier domain.

For the sake of readability, we restrict ourselves to providing only a short review of the regularity results and notions which we

need for our purposes. However, we would like to stress the fact that the presence of the a-priori chosen parameter γ > 0 is

necessary for the results of Plamenevskĭı et al..

A crucial role for the asymptotical behaviour of u(·, t) near the vertex ci is played by the solutions of a Sturm-Liouville eigenvalue
problem in the angular coordinate ϑi in the vicinity of ci .

Definition 3.4 ([30], Sec. 6.1, pp. 492) For each corner i , we define the operator pencil

C ∋ λ 7→ Ai(λ)[ψ] :=
{

r 2−iλi A
[

r iλi ψ
]

,Biψ
}

,

where Bi denotes the boundary operator at the edges ei−1, ei induced by (7).
It is straightforward to compute a representation of Ai(λ) which is independent of the angular variable ϑi .

Eigenpairs (λ,ψ) of Ai consist of complex numbers λ and smooth functions ψ(ϑi), s.t. Ai(λ)[ψ] = 0.

We refer to [30] and to [32] and, in particular in the two-dimensional case, to [11] and references therein for details. It is shown

in these references that Ai admits a countable number of isolated, in general complex eigenvalues (e. g. [32] and the references

there). We refer to [24] for a general survey of such spectral problems, where Ai is induced by an elliptic operator A.
Moreover, it has been shown that {ℜ (iλµ,i)}µ forms a set of positive (real) numbers. Therefore, we can assume that the
eigenvalues are arranged in a way such that 0 < ℜiλ1,i ≤ ℜiλ2,i ≤ · · · → ∞.
In the case that ei−1 ∪ ei ⊆ ΓN , an eigenvalue = 0 is possible, but does not appear explicitly in the asymptotics, see [21, 30].

Corner asymptotics of solutions to the elliptic operator A with boundary conditions (7) at ci are power-logarithmic asymptotic
expansions of the form

v(x) := r iλi

k∑

q=0

1

q!
(i ln ri)

q
ψ
(k−q)(ϑi) , (31)

which is a formal solution of the homogeneous boundary value problem

Av(x) ≡ 0 x ∈ Gi , v(x) ≡ 0 x ∈ ∂Gi ∩ ΓD , N [v](x) ≡ 0 x ∈ ∂Gi ∩ ΓN , (32)

if and only if λ is an eigenvalue of Ai and {ψ(0), . . . ,ψ(k−q)} is a corresponding Jordan chain.
It is important to mention that Plamenevskĭı et al. in [30, 36, 17] replace the derivatives w. r. to the cartesian coordinate

functions ∂xi by a scaled version −i∂xi . As an outcome, the eigenvalues of the respective pencils will be multiplied by i. Therefore,
our singular exponents will be denoted by iλ instead of λ, as is the convention in e. g. [12].

Let κ1 ≥ κ2 ≥ · · · ≥ κK ∈ N be partial multiplicities of an (generally complex) eigenvalue λµ,i and let {ψ(0,j)i , . . . ,ψ
(κj−1,j)
i } be a

canonical system of Jordan chains associated to this eigenvalue. At each corner ci , let (ri(x), ϑi(x)) denote the polar coordinates

centered at ci which were introduced above, corresponding to the cartesian coordinate function x. Then the functions

u
(k,j)
µ,i (x) := ri(x)

iλµ,i

k∑

q=0

1

q!
(i ln ri(x))

q
ψ
(k−q,j)
i (ϑi(x)) (33)

form a basis of power-logarithmic, formal particular solutions of the kind (31) of the homogeneous problem in the infinite sector

generated by the edges meeting at xi , which correspond to λµ,i . For each i = 1, . . . ,M, let 1 > ω1,i > ω2,i > . . . be real numbers

in (−∞, 1), such that every line
{λ ∈ C | ℑλ = ωk,i − 1}

contains at least one eigenvalue λµ,i of Ai . The regularity result we need for our purposes is contained in [30, Theorem 7.5].

There, the result is only proved for q = 0. For q > 0, in the Dirichlet case |ΓN | = 0, it has been proved in [20, Theorem 7.5],
[19, Theorem 8.1]. For the case A = ∆, the result for the Neumann case is contained in [18, Theorem 7.4]. In both of these
cases, an induction over q ∈ N leads from the case where q = 0 to the case where q > 0.
The same induction argument can be used to obtain the result from [30] for q > 0. The proof of the induction step is analogous

to the proofs of [20, Theorem 7.5] and [18, Theorem 7.4]. For the sake of simplicity, we do not include the proof here.

Theorem 3.5 Let G be a bounded polygonal domain with M corners and interior opening angles φi ∈ (0, 2π), i = 1, . . . ,M. Let
γ > 0, q ∈ N0, and ω < 1, such that there is no λµ,i with ℑ(λµ,i) = ω − 1. For each 1 ≤ i ≤ M and q, we define

Aq,i := {λµ,i | ℑλµ,i = ωq,i − 1} ,
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which is a finite set, see [30, p. 479] and [36, Prop. 5.2, 2)]. If the data satisfies u0 ∈ V, u1 ∈ L2(G)2, and if f ∈ RVω,q(Q; γ)2,
then the solutions of (5) admit a decomposition of the form

u(x, t) = uω,qr (x, t) +

M∑

i=1

χi(ri)u
ω,q
s,i (x, t), (34)

where the singular functions uω,qs,i (x, t) are given by

uω,qs,i (x, t) :=
∑

µ∈Aq,i

K∑

j=1

κj−1∑

k=0

(

Xi ď
(k,j)
n (t)

)

u
(k,j)
µ,i (x),

with Xi as in (28), where the regular part satisfies u
ω,q
r ∈ DVω,q(Q; γ), and ď (k,j)n (t) ∈ L2(I).

Remark 3.6 If f is not a smooth function in time, ď
(k,j)
n 6∈ H1(I), at least in the nonweighted scale, see [30], or [21, Sec. 5].

Proposition 3.2 yields the following interpretation of this result: choosing suitable parameters ω, q, the solution is represented as

sum of a ”sufficiently smooth” function uω,qr ∈ Hs(I;Hs ′(G)2) and, for each finite order s ′ of Sobolev regularity, a finite number
(depending on that regularity order) of singular terms. If s + s ′ is increased, or if minµ(ℜiλµ,i)→ 0, the parameters ω and q
need to be changed (this can happen if either the interior opening angle increases up to 2π, or the material properties modelled

by the operator coefficients akli j (x) are modified), such that u
ω,q
s,i contains more (but still finitely many) terms.

With a suitable choice of an evolution triplet, this result can be combined with Theorem 2.1 to conclude higher regularity of the

ď
(k,j)
n (t).

4. Convergence Rates of Space-semidiscretization

In this section, we show that quasi-optimal convergence rates of FEM can be obtained using the solution decomposition furnished

by Theorem 3.5. We recall two ways of mesh refinements, one by a-priori graded refinement and one that results in a hierarchical

mesh family from a bisection-tree refinement algorithm presented in [16]. Comparisons of adaptive and graded mesh refinements

were carried out recently in the paper [27].

4.1. A-priori graded, regular simplicial meshes

Let K0 = conv{(1, 0), (0, 0), (0, 1)} be the unit triangle. On K0, we construct a parametric family of meshes which are graded
towards the vertex (0, 0) so as to ensure an optimal rate of convergence of Lagrange interpolating Finite Elements of order

p ≥ 1. Later, the polygonal domain G can be written as a finite union of isometric, orientation-preserving images of K0, hence
the graded mesh can be mapped isometrically to G, with a local refinement towards the corners (we refer to [34] for a more

detailed description).

Given an integer m ≥ 2 and a so-called grading parameter β ≥ 1, define

Figure 1. Graded meshes with parameters n = 5 and β = 2. Left: The mesh on the reference patch K0. Right: Mesh graded towards the reentrant corner on

the L-shaped domain which is obtained by composition of six affine images of the reference mesh.

zl :=

(
l

n

)β

∈ [0, 1], l = 0, 1, . . . , m .
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The nodes of the mesh that lie on the rectangular edges of K0 are (zl , 0) and (0, zl), l = 0, . . . , m. Then, being dl the diagonal

joining (zl , 0) and (0, zl), we divide dl uniformly into l + 1 points. This defines all the nodes of a so-called β-graded mesh

Tm,β(K0) on K0.
We assume that {TN : N ∈ N ⊆ N} denotes a regular family of simplicial meshes with meshwidth h. Given a polynomial degree
p ∈ N, we obtain a sequence of conforming finite element spaces, denoted by

VN := V ∩ Sp,1(G; TN)2 .
The dimension dim(VN) is finite and tends to ∞, as h → 0. Function classes that afford optimal approximation rates on this
class of meshes are weighted Sobolev spaces which are defined as follows:

Definition 4.1 Let G ⊆ R2 be a bounded polygon with a finite number M of corners ci ∈ ∂G.
Let δ ∈ R, and s ≥ s0 ∈ N0. We define the weighted Sobolev space Hs,s0δ (G) as the completion of C∞(Ḡ \ C) with respect to
the norm

‖v ;Hs,s0δ (G)‖2 := ‖v ;Hs0−1(G)‖2 +
s∑

k=s0

∫

G

Ψ(x)2(δ+k−s0)|Dkv(x)|2 dx
︸ ︷︷ ︸

=:|v ;Hs,s0
δ
(G)|2

(35)

The case s0 = 2 and 0 ≤ δ < 1 is of particular interest for spatial approximation with continuous, piecewise linear Finite Elements
on regular triangulations of G. We cite two properties of Hs,2δ (G), proved in [2] and [39], respectively.

Proposition 4.2 Let G, r and ϑ be as in Definition 4.1, δ ∈ [0, 1), and s ≥ 2. Then there hold the following assertions.
1. The inclusion Hs,2δ (G) →֒ C0(Ḡ) is continuous.

2. Let T0 ∈ R2 be a nondegenerate triangle with (0, 0) as a vertex and meshwidth hT0 . Then, for every 0 ≤ δ < 1, there
exists a constant C(δ) > 0 such that ∀v ∈ H2,2δ (T0):

‖v − I1v ;H1(T0)‖ ≤ Ch1−δT0 ‖v ;H
2,2
δ (T0)‖ , (36)

where I1 denotes the linear, nodal interpolant in the three vertices of T0.

In our case, the singularities (for a fixed time t and up to the finite Sobolev regularity p + 1 accessed by the Finite Element

approximation) at a fixed corner ci are decribed by finite sums of vector fields with coefficients of the form rλi (log ri)
qΦ(ϑi),

where ℜλ > 0. Hence, the λ with smallest real part ℜλ appearing in the sum dictates the regularity of the solution. Now suppose
that (r, ϑ) are the polar coordinates centered in (0, 0). A straightforward computation shows that the function rλΦ(ϑ) lies in

Hp+1,2δ (T0), for δ > 1−ℜ(λ) for all p ∈ N. Hence, we can use the following result in K0 proved in [34]:

Proposition 4.3 Let δ ∈ [0, 1), p ∈ N, v ∈ Hp+1,2δ (K0), and

β > max

{

1,
p

1− δ

}

.

Consider a β-graded mesh family Tm,β(K0) on the reference patch K0 with total number N of vertices behaving as N :=
#Tm,β(K0) m→∞−→ ∞.
Then, there exists a constant C > 0 which is independent of v and N, such that

min
w∈Sp,1(K0,Tm,β(K0))

‖v − w ;H1(K0)‖ ≤ CN−p/2 ‖v ;Hp+1,2δ (K0)‖, N →∞ . (37)

From these observations, we immediately obtain the following result.

Theorem 4.4 Let p ∈ N, G ⊆ R2 be a bounded polygon and let
δi > 1−ℜ(iλµ,i), i = 1, . . . ,M, and δ := max

i
δi ,

for all µ such that uω,qµ,i 6∈ Hp+1(G) and where the λµ,i are as given in Definition 3.4. Given mesh grading parameters
βi > max

{

1, p
1−δi

}

and m ∈ N, we construct a sequence (Tm,β(G))m∈N of β-graded meshes which is conforming, shape-regular,
and consists

1. at each corner ci of finitely many copies of βi -graded meshes graded towards ci ,

2. in G \⋃i Gi of a quasi-uniform mesh, conforming with the graded mesh in the corner patches Gi at the patch boundaries
∂Gi ∩ G.

For each 0 ≤ δ < 1 and v ∈ Hp+1,2δ (G), there is a constant C > 0, independent of v and N := #Tm,β(G), such that

min
w∈Sp,1(G,Tm,β(G))

‖v − w ;H1(G)‖ ≤ CN−p/2‖v ;Hp+1,2δ (G)‖ .

Note that N →∞ and minT∈Tm,β(G) h(T )→ 0, as m →∞.

10 Copyright c© 0000 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 0000, 00 1–16
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4.2. Regular simplicial meshes with binary tree structure

One major disadvantage of a-priori β-graded meshes is that they are not nested, in general. As an alternative, one can proceed

similarly as in the construction of adaptive meshes produced by AFEM in course of local refinement of a given initial mesh.

As we do not want to elaborate on adaptive FEM here, we use the a-priori knowledge of singularity structure of the solutions

to design an approximation process. Specifically, we consider a local refinement procedure which produces by mesh-bisection

typically used in adaptive Finite Elements a sequence of bisection tree refinements which yields optimal convergence rates in

space. This question has been considered by Gaspoz and Morin in [16] and we briefly review their results here: denote by

REFINE MARKED(T ,M) a procedure that bisects all “marked” elements contained in a listM of the initial triangulation T .
Given a nondegenerate simplex (z0, z1, z2) in a regular, initial triangulation of G to be refined, we proceed by recursive bisection,

i. e. the edge connecting z0 and z2 is bisected (let z̄ be its midpoint) and a new edge (z1 z̄) is introduced. If z̄ is a hanging node,

we bisect the adjacent simplex by the same procedure until it comes to an end. The local vertex numberings of the children of

the simplex (z0, z1, z2) are defined as (z̄ , z0, z1) and (z1, z2, z̄) such that for consecutive application of the bisection procedure

on the children, it is always the recently introduced edge (z1 z̄) which is bisected again. Therefore, this refinement procedure

is called the “newest vertex bisection”. Complexity estimates have been proved, as well as the fact that the output of this

procedure has the same shape-regularity constant as the input, i. e. the initial mesh. Moreover, one can analyze this procedure

via binary trees, which is a powerful tool for e. g. AFEM, see [16] and references therein.

Definition 4.5 Let G ⊆ R2 be a bounded polygonal domain with a given conforming triangulation T0. Let p ∈ N. Let λ > 0 be
a positive real number (it corresponds to the real parts of iλµ,i). Then, the following algorithm takes as input a regular initial

triangulation of G, an upper bound ε > 0 for the local meshsize, a singular exponent λ > 0, the local polynomial degree p ∈ N,
and returns a shape-regular, conforming simplicial refinement of T0.
Tε = REFINE(T0, ε, λ, p)
T := T0
M := {T ∈ T ; hT > ε}
% global refinement

WHILE M 6= ∅
M := {T ∈ T ; hT > ε}
T = REFINE MARKED(T ,M)
END

% local graded refinement

K :=
⌈
− p+1

λ
log2(ε)− 1

⌉

l := 1

WHILE l < 2K + 1

M :=

{

T ∈ T ; hT > ε2
− l(p+1−λ)
2(p+1) and mini dist(ci , T̄ ) ≤

√
2
−l
}

T = REFINE MARKED(T ,M)
l := l + 1

END

RETURN Tε := T

Remark 4.6 The preceding approximation algorithm was presented in [16, Section 4.2]. For details, we refer to this reference

and references therein.

The first part of REFINE bisects all elements T whose width hT is greater than the threshold ε. Afterwards, this quasi-uniform

refinement is graded towards each corner.

The refinement process is steered by p and λ in the formula for the number of refinements K. The integer K can be viewed as

refinement intensity. It becomes larger as p increases, or as ε or λց 0.

The main result about this class of meshes is

Theorem 4.7 ([16, Theorem 5.1]) Let G ⊆ R2 be a bounded, polygonal domain with interior opening angles φi ∈ (0, 2π],
i = 1, . . . ,M at the corners ci of the polygon G. Let p ∈ N, λ := min{ℜ(λµ,i)}, and let v(x) be a function which can be
decomposed into v = v0 +

∑M
i=1

∑K
k=1 v

(i)
k , such that v0 ∈ Hp+1(G) and such that the following conditions are satisfied for all

i = 1, . . . ,M:

∀x ∈ Gi : |Dkv (i)k (x)| . Ψ(x)λ−k for k ∈ {0, 1, . . . , p + 1} . (38)
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Then, there exists a constant C > 0 depending only on the conforming initial triangulation T0 and on the domain G, such that
for any tolerance ε > 0 as in Definition 4.5 and for Tε := REFINE(T0, ε, λ, p),

‖v − Ipv ;H1(G)‖ ≤ C(#Tε − T0)−p/2 .

4.3. Quasioptimal convergence rates for the space-semidiscrete problem

Including both types of mesh refinements cited in the two preceding subsections, let {TN}N be a shape-regular, conforming
simplicial triangulation family of G such that for a finite set (to be determined) of singular functions uω,qs,i , we have quasi-optimal

approximation w. r. to the spatial variable, i. e. there exists a constant C > 0 such that for all N, there holds

‖uω,qs,i − Ipuω,qs,i ;H1(G)2‖ ≤ CN−
p
2 , (39)

being Ip the Clément-interpolant of local polynomial degree p. We know from Proposition 3.2 and Theorem 3.5, that we

can choose (ω, q) such that uω,qr ∈ Hs(I;Hs ′(G)2). Let u(x, t) be the solution of (10). We consider solutions uN(x, t) of the
following space semidiscrete initial boundary value problem of (10) which results from the classical “Method-of-Lines” approach

to time-domain wave propagation problems, and which is given by

Find uN ∈ C0(Ī; VN) such that ∀v ∈ VN and t ∈ I :
∂2t (uN(·, t), v) + a(uN(·, t), v) = (f(·, t), v) , (uN , v) = (u0, v) , ∂t (uN(·, 0), v) = (u1, v) ,

(40)

where VN := S
p
0(G, TN) ∩ V denotes the finite-dimensional space of continuous piecewise polynomials of total degree at most p

on the regular, simplicial triangulation TN of the domain G. At this point, we can collect the results obtained so far in our main
result:

Theorem 4.8 Let d = 2, p ∈ N, γ > 0, and assume that f ∈ RVω,q(Q; γ) ∩ C0(Ī;L2(G)), and u0 ∈ V, u1 ∈ L2(G). Moreover, let
u(x, t) be the solution of (5) with |ΓD| > 0, and uN(x, t) the solution of (40) obtained on a mesh family {TN}N that satisfies
(39), and let (ω, q) such that DVω,q(Q; γ) →֒ L2ω(Ī;H

p+1(G)).

Then, there exists a constant C > 0 (depending on T and on p), such that for every t ∈ Ī holds

‖u(·, t)− uN(·, t);H1(G)2‖+ ‖∂tu(·, t)− ∂tuN(·, t);L2(G)2‖

≤ C
{

‖u0 − u0,h;H1(G)2‖+ ‖u1 − u1,h;L2(G)2‖

+N−p/2
[

‖u(·, t);Hp+1(G)2‖+ ‖∂tu(·, t);Hp+1(G)2‖

+

∫ t

0

‖∂2t u(·, s);Hp+1(G)2‖ ds
]}

.

(41)

Proof. The proof is analogous to that of Theorem 5.4 in [34].

Given p ∈ N, we decompose u into u(x, t) = uω,qr (x, t) +
∑M
i=1 χi(ri)u

ω,q
s,i (x, t) using Theorem 3.5, where ur (·, t) ∈ Hp+1(D) at

each time t ∈ I, and the finite sum of χiuω,qs,i is approximated with optimal convergence order using either Theorem 4.4 or
Theorem 4.7.

Let us assume that u ∈ C2(Ī;L2ω+q(G)) and postpone the proof of this regularity for a moment. An argument similar to [38]
shows that if u is a C2-function in time as under this assumption, the convergence rate in N only depends on the maximal ̺ > 0

such that there exists a constant c > 0 such that, as N →∞, there holds

inf
vN∈VN

‖u(k,j)µ,i (x)− vN‖ ≤ CN−̺/2 .

By the assumption made on the mesh family (TN)N , either Theorem 4.4 or Theorem 4.7 implies that ̺ = p.
It remains to show that the regularity of u in the t-variable is C2(Ī). To this end, let us check the requirements of Theorem 2.1.

For ω > 0, L2ω(G) is a Hilbert space with scalar product (w, v)ω :=
∫

G
Ψω(x)2w(x)v(x) dx.

By [6, Theorem 4.2], for all ω, q > 0, the embeddings Hsω(G) →֒ L2ω(G) are compact for all s ≥ 0. Hence, Hq+1ω+q(G) →֒ L2ω+q(G) ≃
L2ω+q(G)

∗ →֒ Hq+1ω+q(G)
∗ is a valid choice for the evolution triplet. Moreover, since |ΓD| > 0, a(·, ·) is coercive, Equation (3)

implies that a(·, ·) is symmetric and a(·, ·) is obviously bilinear. Therefore, we can use Theorem 2.1 and the assumption that
f ∈ C0(Ī;L2ω+q(G)2) to conclude that u ∈ C2(Ī;Hq+1ω+q(G)∗)2. �

5. Numerical Experiments

To verify the performance of the FEM semidiscretization on locally refined meshes numerically, we use a space-time discretization

with continuous, piecewise linear FEM in space, combined with the (unconditionally stable) Crank-Nicolson scheme with constant
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Figure 2. An example of a domain type on which our tests have been performed.

timestep. The timestep ∆t is chosen sufficiently small, such that the contribution of the time discretization error to the total

discretization error (which was numerically estimated in the presented numerical results) in the Bochner Norm of L2(I;H1(G)2)

is negligible.

We simulate the propagation of elastic waves for a series of meshes with decreasing meshsize. For each run, we compute a

reference solution obtained by four more refinements and the same ∆t. This allows us to compute a viable estimator for the

space discretization error in the L2(I;H1(G)2)-Norm. Once the errors are collected for all meshes, we compute an empirical

convergence rate by a linear fit through the natural logarithms of the data sets containing the numbers of d.o.f. and the errors.

Given an angle α ∈ [π, 2π), the polygon G = Gα is chosen to be a conical subset of the unit square (0, 1)2 with vertex c1 := ( 12 , 12 ),
such that one edge of the cone goes through (1, 1

2
). The other edge abutting at c1 is chosen s.t. the interior opening angle at

c1 equals α. Hence, we compute on a domain with one non-convex and five convex corners. See Figure 2 for an illustration.

On the edges abutting at c1, we impose homogeneous Dirichlet conditions, while on the other edges, homogeneous Neumann

conditions are set.

The volume forcing function, as well as the initial condition on the first time derivative are set to be zero: f ≡ 0 ≡ u1, whereas
the initial condition on u(·, 0) is set to be

(u0)1,2(x1, x2) = ψ( 14 ,
1
2 );0.2
(x1)ψ( 14 ,

1
2 );0.2
(x2) ,

with ψ given by ψx0;r := exp

(

−
(

1−
(
x−x0
r

)2
)−1
)

1[x0−r,x0+r ](x), denoting 1S the characteristic function on a subset S ⊆ R.
In other words, we observe the evolution of a compactly supported smooth wave in the absence of body forces acting on the

body G, which is fixed at the two edges where Dirichlet boundaries are given.

Solutions are computed on a uniform mesh family and on a mesh family obtained by bisection refinement as described in Theorem

4.7.

As discussed in Remark 4.6, the number of refinement layers towards any vertex can be measured by K and tends to infinity as

ℜiλµ,i ց 0. For a general operator A meeting the assumptions (2-4), there is no closed-form formula for the singular exponents
iλµ,i . In [11], Costabel and Dauge proposed an efficient method to compute the ℜiλµ,i by numerical computation of the zeros
of a certain determinant.

In our experiments, we have not computed the values of the singular exponents. The convergence tests on locally mesh families

obtained by calls of REFINE(T0, ε, λ, p) were carried out with various input parameters λ. After computation of the empirical
convergence rate, we compared it with the expected optimal rate and run the test again with a mesh obtained by passing a

smaller λ to REFINE. This is repeated until we have reached a λ∗ for which a call of REFINE with smaller λ < λ∗ does not improve
the empirical convergence rate.

The material is assumed to be homogeneous (i. e. the elastic moduli are assumed to be constant in G) and isotropic, i. e.

A[u] = µ∆u+ (λ+ µ)∇ (∇ · u) ,

where λ, µ ∈ R such that min(µ, λ+ µ) > 0, are the Lamé-constants.
The numerical experiments have been performed using the DOLFIN [29] and FEniCS [28] libraries in Python.

5.1. Test 1: Influence of α on the convergence rates

We run the procedure described above with piecewise linear Finite Elements (i .e., p = 1) on a series of (Gαj )j=1,2,3 with α1 = π,

α2 =
π
2
, α3 := 0.9 · 2π and investigate the convergence rates which result on locally refined meshes and a quasi-uniform mesh

family.

On a uniformly refined mesh family, we get suboptimal convergence rates as depicted in Figure 3. However, on the locally refined

meshes obtained as in Section 4.2, the optimal convergence order O(N−1/2) (see e. g. [8, Thm. 4.4.4]) is obtained for all the
angles. The resulting convergence rates are listed in Table 1. As is well-known from the elliptic setting (see, e. g., [37, 2, 5]), the

Math. Meth. Appl. Sci. 0000, 00 1–16 Copyright c© 0000 John Wiley & Sons, Ltd. 13
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Figure 3. Numerical results for the test problem on uniform meshes: using the same compliance tensor, the convergence rate decreases as α tends to 2π. For

α = π, Gα is convex and therefore, u(·, t) ∈ H2(G) at, all times t. This is reflected in the experiment in the fact that the convergence rates are already optimal
for a uniform mesh family. The relative error in the norm ‖ ◦ ‖L2(I;H1(G)2) is plotted versus the uniform mesh size h, which behaves asymptotically as O(N

− 12 ).

In the numerical results which are reported here, we used a fixed timestep of size ∆t = 10−7 and Tmax = 0.5.

Table 1. Results of Test 1: As the optimal convergence rate is 0.5, the experiment confirms that judicious local mesh grading

towards the corners of the domain can recover the optimal convergence rates afforded by continuous, piecewise linear Finite

Element spatial discretization.

α empirical convergence rate

1.25π 0.5036

1.5π 0.5155

1.75π 0.4988

1.98π 0.4955

mesh-grading must be stronger for increasing interior corner angles. For a complexity estimate of the Finite Element Method in

the presence of such local refinement, and for the complexity of the bisection tree refinement itself, we refer again to [16] and

the references there.

5.2. Test 2: Convergence rates on graded Meshes

As a second test, we repeat the procedure of Test 1 with piecewise linear FEM on a graded mesh family obtained by so-called

κ-refinement, as introduced by Băcuţă et al. in [5].

These mesh families are related to the idea of grading towards the corners we briefly reviewed here in Section 4.1. The construction

of the mesh depends on various parameters.
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Table 2. Results of Test 2.

α empirical convergence rate

1.25π 0.4918

1.5π 0.5003

1.75π 0.4832

1.98π 0.4891

It has been proven in [5, Thm. 4.2] that choosing the “right” set of parameters, a function v(x) ∈ Hp+1,2δ (G) gets approximated

with optimal convergence rate O(hp) = O(N−p/2) (as h → 0 or N →∞) by Finite Elements with piecewise polynomial degree
p †.
An efficient implementation of linearly graded meshes on polygonal domains has been made available by Li and Nistor under the

name LNG FEM, see [26] for a detailed description of the software.

We repeat the previous experiment on mesh families obtained by κ = 0.1 towards all the vertices. As expected, the optimal

convergence rates are obtained also using these meshes. The empirical convergence rates are listed in Table 2.

The discretization in time is done identically as in Subsection 5.1 for Test 1.
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