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Abstract

In a continuation of recent work on Besov regularity of solutions to elliptic PDEs in Lipschitz
domains with polyhedral structure, we prove an embedding between weighted Sobolev spaces
(Kondratiev spaces) relevant for the regularity theory for such elliptic problems, and Triebel-
Lizorkin spaces, which are known to be closely related to approximation spaces for nonlinear
n-term wavelet approximation. Additionally, we also provide necessary conditions for such
embeddings.
As a further application we discuss the relation of these embedding results with results by
Gaspoz and Morin for approximation classes for adaptive Finite element approximation, and
subsequently apply these result to parametric problems.
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1 Introduction

Ever since the emergence of (adaptive) wavelet algorithms for the numerical computation of solu-
tions to (elliptic) partial differential equations there was also the interest in corresponding rates for
n-term approximation rates, since these may be seen as the benchmark rates the optimal algorithm
(which at each step would calculate an optimal n-term approximation) would converge with.
Later on, this question was seen to be closely related to the membership in a certain scale of Besov
spaces. More precisely a famous result by DeVore, Jawerth and Popov [12] characterizes certain
Approximation classes for approximation with respect to Lp(D)-norms as Besov spaces Brτ,τ (D)

with 1
τ = r

d + 1
p , where r/d is the rate of the best n-term approximation.

In another famous article Dahlke and DeVore [4] later used this result to determine n-term approx-
imation rates for the solution of Poisson’s equation on general Lipschitz domains. This was done
by proving that the solution of −∆u = f belongs to Besov spaces Brτ,τ (D) for parameters r < r∗,

where r∗ depends on the Lipschitz-character of the bounded domain D ⊂ R
d, the dimension d

and the regularity of the right-hand side f . In subsequent years this result was extended to more
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general elliptic operators [5], and for special domains more precise values for r∗ were determined
[6, 7, 10].

Recently, in [17] the point of view of these investigations was changed slightly: Instead of concen-
trating on the fixed scale of spaces Brτ,τ (D) mentioned before, an embedding of weighted Sobolev
spaces (a scale of function spaces adapted to elliptic problems on polygonal or polyhedral domains)
into such Besov spaces was looked for, which allows the desired optimal approximation rate n−m/d.
This lead to conditions when solutions to elliptic problems belong to Besov spaces Bm+1

τ,∞ (D) with
1
τ >

m
d + 1

2 , i.e. spaces which are compactly embedded into H1(D).

The original aim of this paper was to study certain limiting situations in the conditions obtained
for such embeddings, which would have lead necessary and sufficient conditions for solutions to
elliptic problems to belong to such regularity spaces which in turn would allow for the desired n-
term approximation rate n−m/d. While the method presented here does not work in these limiting
cases, we were able to give a new proof for a very similar embedding result (into slightly smaller
spaces), under the same condition as in [17]. Moreover, these conditions can be seen to be already
optimal by considering some basic (typical) representatives in the respective function spaces.

Meanwhile, Gaspoz and Morin [15] obtained a counterpart of the result of DeVore, Jawerth and
Popov for adaptive Finite element approximation. They proved a direct estimate for approximation
of functions from Besov classes Bsτ,τ (D) with 1

τ >
s
d +

1
p , and supplemented this by corresponding

Inverse Theorems. While not as sharp a characterization as for wavelet approximation, in this
way a link between Besov regularity and Approximation classes for this type of Finite element
approximation has been established. In a second part of this paper we will slightly extend their
results using real interpolation, and combine these approximation results with our regularity results
for elliptic problems.

As another application of our embedding results, we want to treat parametric elliptic problems.
In recent years these problems got increasing attention as they particularly arise from rewrit-
ing problems with random inputs (coefficients) into deterministic problems with countably many
parameters. As a particular aspect, these parametric problems were seen to admit very high (an-
alytic) regularity w.r.t. the dependence on these parameters, which subsequently is exploited to
derive and analyze approximation schemes either based on sampling (stochastic collocation) or
on expanding the parametric solution into series of tensorized orthogonal polynomials (general-
ized polynomial chaos). Since generally neither the expansion coefficients nor the samples can
be computed exactly, but only as solutions of PDEs, also the spatial regularity and its interplay
with the parametric regularity needs to be known in the analysis of approximation schemes to
predict possible convergence rates. Our embedding results for Besov and Triebel-Lizorkin spaces
then bridge the gap between the known analyticity of the parametric solution as a mapping taking
values in (weighted) Sobolev spaces on the one hand, and the results on adaptive approximation
on the other hand.

The article is organized as follows. In Section 2, we will recall the necessary definitions of wavelet
systems and related characterizations of Triebel-Lizorkin and Besov spaces as well as n-term ap-
proximation results, followed by the definition of weighted Sobolev spaces (Babuska-Kondratiev
spaces) and regularity results for elliptic PDEs in that scale. In Section 3, particular functions and
their membership to all these scales of function spaces are considered, which leads to necessary
conditions on embeddings between Kondratiev spaces and Besov-/Triebel-Lizorkin spaces.

Section 4 is the main part: Here we present two new proofs for sufficient conditions for embedding
into Triebel-Lizorkin spaces. The first one is based on wavelet decompositions and estimates for
versions of the classical Hardy-Littlewood maximal operator. While the second one is restricted
to the case of polygons in d = 2 or smooth cones in higher dimensions, its use of only localization
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arguments is so far the most basic approach. Its main adavantage consists in the observation
that no longer any splitting in interior and boundary terms is needed, and thus also no additional
information about those boundary terms. In Section 5, we first extend the results of Gaspoz and
Morin on approximation spaces of adaptive Finite element approximation by means of the real
method of interpolation, and then combine these results with the regularity results for elliptic
problems and the embeddings into Triebel-Lizorkin spaces. Finally, in Section 6 we transfer the
embedding and approximation results for single elliptic problems to parametric ones.

2 Basic definitions and State of the art

In this section we will fix some notations corresponding to the used wavelet system, recall the
definitions of the relevant function spaces, and formulate the regularity and n-term approximation
results used later on.

2.1 Wavelets

We are not interested in utmost generality pertaining to the used wavelet system. Instead, for sim-
plicity we will stick to Daubechies’ Wavelets, the generalization to compactly supported biorthog-
onal wavelets constituting Riesz-bases being immediate.

Let φ be a univariate scaling function and η the associated wavelet corresponding to Daubechies’
construction, where the smoothness of φ and η and the number of vanishing moments for η are
assumed to be sufficiently large. Let E denote the nontrivial vertices of [0, 1]d, and put

ψe(x1, . . . , xd) =

d∏

j=1

ψej (xj) , e ∈ E ,

where ψ0 = φ and ψ1 = η. Then the set

Ψ′ = {ψe : e ∈ E}

generates via shifts and dyadic dilates an orthonormal basis of L2(R
d). More precisely, denoting

by D = {I ⊂ R
d : I = 2−j([0, 1]d + k), j ∈ Z, k ∈ Z

d} the set of all dyadic cubes in R
d, then

{
ψI : I ∈ D, ψ ∈ Ψ′

}
=
{
ψI = 2jd/2ψ(2j · −k) : j ∈ Z , k ∈ Z

d , ψ ∈ Ψ′
}

forms an orthonormal basis in L2(R
d). Denote by Q(I) some dyadic cube (of minimal size) such

that suppψI ⊂ Q(I) for every ψ ∈ Ψ′. Then we clearly have Q(I) = 2−jk+2−jQ for some dyadic
cube Q.

As usual D+ denotes the dyadic cubes with measure at most 1, and we put Λ′ = D+ × Ψ′.
Additionally, we shall need the notation Dj = {I ∈ D : |I| = 2−jd}. Then we can write every
function f ∈ L2(R

d) as

f = P0f +
∑

(I,ψ)∈Λ′

〈f, ψI〉ψI .

Therein P0f denotes the orthogonal projector onto the closed subspace S0, which is the closure in
L2(R

d) of the span of the function Φ(x) = φ(x1) · · ·φ(xd) and its integer shifts Φ(· − k), k ∈ Z
d.
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Later on it will be convenient to include Φ into the set of generators Ψ′ together with the notation
ΦI := 0 for |I| < 1, and ΦI = Φ(· − k) for I = k + [0, 1]d. Then we can simply write

f =
∑

(I,ψ)∈Λ

〈f, ψI〉ψI , Λ = D+ ×Ψ , Ψ = Ψ′ ∪ {Φ} .

Remark 1. If not explicitly stated otherwise convergence of wavelet expansions is always under-
stood in S′(Rd), the space of tempered distributions, or in some Lp(R

d), 1 < p < ∞ (since all
relevant spaces will be embedded into Lp(R

d)).

2.2 Triebel-Lizorkin spaces

Besov spaces are nowadays established as being closely related to many approximation schemes,
starting with approximating periodic functions by trigonometric polynomials (where they actually
first emerged in the works of Besov 1959/60), free-knot spline approximation (see [11]), n-term
wavelet approximation and most recently adaptive Finite element schemes [15]. However, Triebel-
Lizorkin spaces might (at least in some cases) be even closer to the respective approximation
spaces. This will be made clear in the following subsections.
We shall only discuss the necessary facts and properties of these scales of function spaces. For
more details on the history, definitions and properties we refer to the monographs by Triebel
[25, 26, 27]. Instead of the usual (fourieranalytic) definition we will introduce them via their
wavelet characterization.
Let 0 < p, q < ∞ and s > max(0, d( 1

min(p,q) − 1)). Then a function v ∈ Lp(R
d) belongs to the

Triebel-Lizorkin space F sp,q(R
d) if, and only if

‖v|F sp,q(R
d)‖ := ‖P0v|Lp(R

d)‖+

∥∥∥∥∥

( ∞∑

j=0

∑

(I,ψ)∈Dj×Ψ

2j(s+
d
2 )q|〈v, ψI〉|

qχI(·)

)1/q
∣∣∣∣∣Lp(R

d)

∥∥∥∥∥ <∞ .

Therein the function χI stands for the characteristic function of the cube I. Note that up to
equivalent quasi-norms we can replace the cubes I by the cubes Q(I); similarly we can replace
cubes with vertices on the grid 2−jZd by cubes with centers in 2−jk, k ∈ Z

d. For parameters
q = ∞ we shall use the usual modification (replacing the sums by suprema), i.e.

‖v|F sp,∞(Rd)‖ =

∥∥∥∥∥supj≥0
sup

(I,ψ)∈Dj×Ψ

2j(s+
d
2 )|〈v, ψI〉|χI(·)

∣∣∣∣∣Lp(R
d)

∥∥∥∥∥ <∞ .

The corresponding characterization for Besov spaces is easier (which in turn is the reason why they
are more commonly used): If 0 < p, q ≤ ∞ and s > max(0, d( 1p − 1)), then a function v ∈ Lp(R

d)

belongs to the Besov space Bsp,q(R
d) if, and only if

‖v|Bsp,q(R
d)‖ := ‖P0v|Lp(R

d)‖+

(
∞∑

j=0

2j(s+d(
1
2−

1
p
))q

( ∑

(I,ψ)∈Dj×Ψ

|〈v, ψI〉|
p

)q/p)1/q

<∞ ,

with suprema instead of sums if p and/or q is infinite.
We shall use the notation Asp,q(R

d) if a statement refers to both Besov and Triebel-Lizorkin spaces
alike.
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Apart from these spaces on R
d, for our main interest in boundary value problems for elliptic PDEs

we also need to consider function spaces on domains. The easiest way to introduce these is via
restriction, i.e.

Asp,q(D) :=
{
f ∈ D′(D) : ∃ g ∈ Asp,q(R

d) , g
∣∣
D

= f
}
, ‖f |Asp,q(D)‖ = inf

g|D=f
‖g|Asp,q(R

d)‖ .

Alternative (different or equivalent) versions of this definition can be found, depending on possible
additional properties for the distributions g (most often referring to their support). We refer to
the monograph [28] for details and references.
A final important aspect of Triebel-Lizorkin spaces are their close relations to many classical
function spaces. For our purposes, we particularly mention the identities F sp,2(R

d) = Hs
p(R

d) and

Hm
p (Rd) = Wm

p (Rd), 1 < p < ∞, m ∈ N, s ∈ R, which for Lipschitz domains D transfer to the
respective scales of function spaces on D.

2.3 Babuska-Kondratiev spaces

As mentioned in the introduction our interest stems from elliptic boundary value problems such
as (2.1) below. It is nowadays classical knowledge that the regularity of the solution depends not
only on the one of the coefficient A and right-hand side f , but also on the regularity/roughness
of the boundary of the considered domain. While for smooth coefficients A and smooth boundary
we have u ∈ Hs+2(D) for f ∈ Hs(D), it is well-known that this becomes false for more general
domains. In particular, if we only assume D to be a Lipschitz domain, then it was shown in [18]
that in general we only have u ∈ H3/2 for the solution of the Poisson equation, even for smooth
right-hand side f . This behaviour is caused by singularities near the boundary.
To obtain similar shift theorems as for smooth domains, a possible approach is to adapt the function
spaces. To compensate possible singularities one includes appropriate weights. For polyhedral
domains, this idea has lead to the following definition of the Babuska-Kondratiev spaces Kma,p(D):
If the function u admits m weak derivatives, we consider the norm

‖u|Kma,p(D)‖p =
∑

|α|≤m

∫

D

|ρ(x)|α|−a∂αu(x)|p dx ,

where a ∈ R is an additional parameter, and the weight function ρ : D −→ [0, 1] is the smooth
distance to the singular set of D. This means ρ is a smooth function, and in the vicinity of the
singular set it is equal to the distance to that set. In 2D this singular set consists exactly of the
vertices of the polygon, while in 3D it consists of the vertices and edges of the polyhedra. In case of
mixed boundary conditions the singular set further includes points where the boundary conditions
change (which can be interpreted as vertices with interior angle π), and for interface problems
points where the interface touches the boundary, respectively in higher dimensions. Note that in
general polygonal domains need not to be Lipschitz, i.e. the definition of the Kondratiev spaces
and some related regularity results allow for cracks in the domain, which in turn corresponds to
vertices with interior angle 2π. In case p = 2 we simply write Kma (D).
Within this scale of function spaces, a regularity result for boundary value problems for elliptic
PDEs can be formulated as follows, see [1] and the references given there:

Proposition 1. Let D be some bounded polyhedral domain without cracks in R
d, d = 2, 3. Con-

sider the problem
−∇

(
A(x) · ∇u(x)

)
= f in D , u|∂D = 0 , (2.1)
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where A = (ai,j)
d
i,j=1 is symmetric and

ai,j ∈ Wm
∞ =

{
v : D −→ C : ρ|α|∂αv ∈ L∞(D) , |α| ≤ m

}
, 1 ≤ i, j ≤ d .

Let the bilinear form

B(v, w) =

∫

D

∑

i,j

ai,j(x)∂iv(x)∂jw(x)dx

satisfy

|B(v, w)| ≤ R‖v|H1(D)‖ · ‖w|H1(D)‖ and r‖v|H1(D)‖2 ≤ B(v, v)

for some constants 0 < r ≤ R < ∞. Then there exists some a > 0 such that for any m ∈ N0,
any |a| < a and any f ∈ Km−1

a−1 (D) the problem (2.1) admits a uniquely determined solution

u ∈ Km+1
a+1 (D), and it holds

‖u|Km+1
a+1 (D)‖ ≤ C ‖f |Km−1

a−1 (D)‖

for some constant C > 0 independent of f .

We restrict ourselves in this presentation to this simplified situation. In the literature there are
further results of this type, either treating different boundary conditions, or using slightly different
scales of function spaces, see [19, 20, 21].
We finally shall add a comment on the possible domains D: While before and also in the sequel we
will only refer to polyhedral domains, the analysis carries over without change to Lipschitz domains
with polyhedral structure. Domains with polyhedral structure were seen to be a natural relaxation
of polyhedra, for example replacing the flat faces of polyhedra by smooth surfaces. For precise
definitions we refer to [8, 21]. As we shall see in the proofs, the only fact needed about the boundary
∂D are certain combinatorial aspects (counting the number of relevant wavelet coefficients), and
these remain unchanged so long as the boundary remains Lipschitz; moreover, also Proposition 1
holds for this more general setting.

2.4 n-term approximation

The (error of the) best n-term approximation is defined as

σn
(
u;Lp(D)

)
= inf

Γ⊂Λ:#Γ≤n
inf
cγ

∥∥∥∥u−
∑

γ=(I,ψ)∈Γ

cγψI

∣∣∣∣Lp(D)

∥∥∥∥ ,

i.e. as the name suggests we consider the best approximation by linear combinations of the basis
functions consisting of at most n terms. To study relations between decay properties of this
quantity and certain function spaces, we shall further define related Approximation spaces. We
define Aα

q (Lp(D)), α > 0, 0 < q ≤ ∞ to consist of all functions f ∈ Lp(D) such that

‖u|Aα
q (Lp(D))‖ =

( ∞∑

n=0

(
(n+ 1)ασn

(
u;Lp(D)

))τ 1

n+ 1

)1/q

, 0 < q <∞ , (2.2)

or

‖u|Aα
∞(Lp(D))‖ = sup

n≥0
nασn

(
u;Lp(D)

)
,
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respectively, are finite. Then a well-known result of DeVore, Jawerth and Popov [12] may be
formulated as

As/d
τ (Lp(R

d)) = Bsτ,τ (R
d) ,

1

τ
=
s

d
+

1

p
. (2.3)

However, when discussing the optimal convergence rate for adaptive algorithms this result is slightly
stronger than required. We are rather interested in conditions on u that simply guarantee a certain

decay rate, i.e. we are interested in the larger spaces A
s/d
∞ (Lp(R

d)).

We cite two further results. The first one [9, Theorem 7] incorporates the influence of the bounded
domain D: If s > d( 1τ − 1

p ) for 0 < τ ≤ p, 1 < p <∞, then

σn
(
u;Lp(D)

)
. n−s/d‖u|Bsτ,q(D)‖ , u ∈ Bsτ,q(D) , (2.4)

independent of the microscopic parameter q. In view of the elementary embedding

Bsp,u(D) →֒ F sp,q(D) →֒ Bsp,v(D) , 0 < p <∞ ,

which holds if, and only if u ≤ min(p, q) and max(p, q) ≤ v, this approximation result immediately
transfers to spaces F sp,q(D). Similar estimates are true for approximation in the energy norm, i.e.
in the norm of the space H1(D), and more generally in the norm of W 1

p (D),

σn
(
u;W 1

p (D)
)
. n−(s−1)/d‖u|Bsτ,q(D)‖ , u ∈ Bsτ,q(D) . (2.5)

At last, the following result [16] demonstrates that the scale of Triebel-Lizorkin spaces is even
closer to the approximation spaces than Besov spaces: For s > 0 and 1 < p <∞, we have

F sτ∗,∞(Rd) →֒ As/d
∞ (Lp(R

d)) ,
1

τ∗
=
s

d
+

1

p
.

Moreover, this space F sτ∗,∞(Rd) is maximal in the sense that if any other Besov or Triebel-Lizorkin

space is embedded in A
s/d
∞ (Lp(R

d)), then it is already embedded in F sτ∗,∞(Rd).

In other words: To obtain optimal conditions for approximability of functions from Kondratiev
spaces (and thus solutions of elliptic PDEs) we should turn our attention to conditions on embed-
dings of these spaces into Triebel-Lizorkin spaces Fmτ∗,∞(D).

3 Some basic representatives

In this section we shall consider some special functions and determine parameters a, m and p or s,
τ and q, such that they belong to spaces Kma,p(D) or Asτ,q(D), respectively. The resulting conditions
on the parameters will lead to necessary ones for embeddings Kma,p(D) →֒ Asτ,q(D).

More precisely, we will study to which spaces the functions

fβ,γ(r, θ) = gβ,γ(r)Θ(θ) = η(r)rβ(− log r)−γΘ(θ) , β ∈ R, γ ≥ 0 ,

belong, where η is a smooth cut-off function around x = 0, Θ is another sufficiently smooth
function, and the origin is a vertex of some polygon D ⊂ R

2. To determine whether fβ,γ belongs
to Kma,p(D) we only have to consider its behaviour sufficiently near the origin (if the support of
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η is small enough), i.e. a subdomain where we can assume η(x) ≡ 1. Then, switching to polar
coordinates, all partial derivatives ∂αfβ,γ are of the form

∂αfβ,γ(r, θ) =

|α|∑

j=0

rβ−|α|(− log r)−γ−jΘj,α,β,γ(θ)

with smooth functions Θj,α,β,γ(θ). Weighted integration then yields

∫

D

∣∣∣∣ρ(x)
|α|−a

|α|∑

j=0

rβ−|α|(− log r)−γ−jΘj,α,β,γ(θ)

∣∣∣∣
p

dx .

∫ r0

0

rp(β−a)
|α|∑

j=0

(− log r)p(−γ−j)r dr ,

which is finite if either p(β − a) + 1 > −1 or p(β − a) + 1 = −1 and p(−γ − j) < −1 for all
0 ≤ j ≤ |α|. Hence we find

Lemma 3.1. fβ,γ ∈ Kma,p(D) if, and only if either β > a− 2/p or β = a− 2/p and γ > 1/p.

Remark 2. For us, requiring a ≥ 0 will always be a quite natural restriction, since in this case
finiteness of the natural norm in the Kondratiev spaces already implies that the function belongs to
Lp(D).

This we shall now compare with the corresponding result for Besov and Triebel-Lizorkin spaces.

Lemma 3.2 (Runst/Sickel 96). Let D be a smooth cone in R
d. Then the function gβ,γ belongs

to Bsτ,q(D) if

• γ > 0: either s < d
τ + β or s = d

τ + β and qγ > 1,

• γ = 0: either s < d
τ + β or s = d

τ + β and q = ∞.

The function gβ,γ belongs to F sτ,q(D) if

• γ > 0: either s < d
τ + β or s = d

τ + β and τγ > 1,

• γ = 0 and s < d
τ + β.

Comparing both lemmata leads to the following statement about necessary conditions for the
existence of embeddings.

Theorem 1. Let m ∈ N, a ∈ R, 1 < p < ∞ and s ∈ R, 0 < τ < ∞, 0 < q ≤ ∞, and let
D ⊂ R

d be a polytope. Then in case m > a the continuous embedding Kma,p(D) →֒ Fmτ,q(D) implies
the condition

0 < m− a < (d− δ)
(1
τ
−

1

p

)
, (3.1)

and for m ≥ a we still find

m− a < (d− δ)
(1
τ
−

1

p

)
or m− a = (d− δ)

(1
τ
−

1

p

)
and q ≥ p . (3.2)

Moreover, an embedding Kma,p(D) →֒ Bmτ,q(D) also yields (3.2). Therein δ stands for the dimen-
sion of the singular set of D. These results extend to domains D which can be represented as
diffeomorphic deformations of polytopes.
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Proof . Step 1: Let D be a smooth cone. Starting with purely polynomially decaying functions,
we first find that gm−2/τ,0 6∈ Amτ,q(D) gives an explicit counterexample for Kma,p(D) 6 →֒ Amτ,q(D) for

arbitrary 0 < q ≤ ∞ as long as m− a > 2( 1τ − 1
p ).

The case of equality m − a > 2( 1τ − 1
p ) is more delicate. Here the functions gm−2/τ,1/q show

Kmp,a(D) 6 →֒ Bmτ,q(D) for 0 < q < p. Moreover, the functions gm−2/τ,1/τ finally yield Kmp,a(D) 6 →֒
Fmτ,q(D) for arbitrary 0 < q ≤ ∞, as long as τ < p, i.e. m > a.
Step 2: For the case δ > 0, using suitable cut-off functions we can always restrict the considera-
tions to a (sufficiently small) neighborhood of a single component of the singular set (an edge in
polyhedra, or a (d − 2)-face in a polytope). In this neighborhood, essentially the same examples
can be used. In d = 3 and for some edge along the x3-axis, simply multiply the d = 2-version with
some smooth function in one variable x3, accordingly in higher-dimensional situations.

Corollary 1. For the adaptivity scale we find that an embedding Kma,p(D) →֒ Bmτ,τ (D) with 1
τ =

m
d + 1

p implies a > δ
dm.

The following (simple) reasoning shows that these conditions already seem to be optimal. We
restrict ourselves here to two-dimensional polygons, and shall employ the splitting u = ureg+using
of solutions of elliptic PDEs into a regular part ureg ∈ Hm+1(D) (i.e. for the right-hand side of the
equation we have f ∈ Hm−1(D)) and a singular part using ∈ Hs(D) for some 3

2 < s ≤ 2 depending
on the interior angles of the domain D. Dahlke [6] showed that the singular part belongs to all
spaces Bατ,τ (D), where 1

τ = α
d + 1

2 with arbitrary α > 0. Now standard embeddings yield

ureg ∈ Hm+1(D) →֒ Fm+1
τ,2 (D) as well as using ∈ Bm+1

τ,τ (D) →֒ Fm+1
τ,2 (D) .

This implies u ∈ Fm+1
τ,2 (D) for 1

τ = m+1
d + 1

2 . However, since we started with a right-hand side

f ∈ Hm−1(D) instead of Km−1
a−1 (D) this does not give any direct information on embeddings of

Kondratiev spaces (and, as we have seen above, for the case of equality the embedding indeed does
not hold).
Some results on sufficient conditions for embeddings into Besov spaces had already been presented
in [17]. In the next section, we particularly consider embeddings into spaces Fmτ,∞(D).

4 Regularity in Triebel-Lizorkin spaces

In this section we will show that the necessary condition obtained above is also essentially sufficient,
i.e. while our method requires a (relatively mild) additional assumption, that one will be fulfilled
in the applications we have in mind.
We start with recalling a basic estimate for the wavelet coefficients.

Lemma 4.1. Let u ∈ Kma,p(D). We put ρI = infx∈Q(I) ρ(x). Then it holds for all cubes I with
ρI > 0 and Q(I) ∩D 6= 0

|〈ũ, ψI〉| ≤ c1|I|
m
d
+ 1

2−
1
p ρ−m+a
I

( ∑

|α|=m

∫

Q(I)

|ρ(x)m−a∂αũ(x)|pdx

)1/p

=: c1|I|
m
d
+ 1

2−
1
p ρ−m+a
I mI .

where ũ is the Stein extension of u to the whole of Rd.
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Proof . The proof is (essentially) already contained in the original work of Dahlke and DeVore [4].
We include it here for completeness’ sake. Due to the vanishing moments of the wavelets we find

〈ũ, ψI〉 = 〈ũ− P, ψI〉

for all polynomials P of total degree less than m. Then a standard Whitney-estimate implies

∣∣〈ũ, ψI〉
∣∣ ≤ ‖ψI |Lp′(Q(I))‖ · ‖ũ− P |Lp(Q(I))‖ . |I|m/d|ũ|Hm(Q(I))| · |I|

1
2−

1
p

Finally, the Hm-seminorm can be estimated by ρ−m+amI .

Remark 3. (i) The boundedness of the Stein extension operator E for Kondratiev spaces was
discussed in detail in [17]. We shall work here with a slight modification: Let D0 be some bounded
open domain such that

D0 ⊃
⋃

I:Q(I)∩D 6=∅

Q(I) ,

i.e. D0 covers all supports of wavelets which have a nonempty intersection with D. Then let
ũ = ϕEu, where ϕ is a smooth function with compact support and ϕ(x) = 1 for all x ∈ D0. This
choice of ũ clearly does not change the estimate in Lemma 4.1.
(ii) In this context, we always interpret ρ as being defined on the whole of R

d, with otherwise
the same properties: It is the regularized distance to the singular set S in the sense of Stein [23,
Chapter VI] (there a construction for arbitrary closed subsets of Rd is given), but capped to take
values in [0, 1].

To proceed, for j ≥ 0 let Λj ⊂ Λ be the set of all pairs (I, ψ) with |I| = 2−jd, and for k ≥ 0 let
Λj,k = {(I, ψ) ∈ Λj : k2−j ≤ ρI < (k + 1)2−j}. Then we note that for every (I, ψ) ∈ Λj,k with
k > 0 we have ρ(x) ∼ ρI for every x ∈ Q(I), since the diameter of Q(I) is itself of the order 2−j .
With this observation we can re-interpret the estimate for the wavelet coefficients to obtain

|I|−
m
d
− 1

2 |〈ũ, ψI〉|χQ(I)(x) . |I|−
1
p ρ(x)−m+amI ≡ ρ(x)−m+a|I|−1/pmIχQ(I)(x) (4.1)

for all x ∈ Q(I)). Thus we already arrived at terms which appear in the quasi-norm of Fmτ,∞(D).
The precise result now can be formulated as follows.

Theorem 2. Let u ∈ Kma,p(D), and let ũ be its Stein-extension. Moreover, define the operator
Preg by

Pregu =
∑

(I,ψ):ρI>len(I)

〈ũ, ψI〉ψI ,

where len(I) = |I|1/d denotes the side-length of the cube I. Then Preg : Kma,p(D) → Fmτ,∞(D) is

bounded whenever m− a < (d− δ)( 1τ − 1
p ).

Proof . We put gI(x) = |I|−1/pmIχQ(I)(x), and note that the summation in the definition of Preg

ranges over
⋃
j≥0

⋃
k>0 Λj,k. Then taking the pointwise supremum in (4.1) and applying Hölder’s

inequality results in

‖Pregu|F
m
τ,∞(D)‖ ∼

(∫

D

(
sup

(I,ψ)∈Λ0

|I|−
m
d
− 1

2 |〈ũ, ψI〉|χQ(I)(x)

)τ
dx

)1/τ
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.

(∫

D0

(
sup

(I,ψ)∈Λ0

ρ(x)−m+agI(x)

)τ
dx

)1/τ

≤

(∫

D0

(
ρ(x)−m+a

) p(1−ε)τ
p(1−ε)−τ dx

) p(1−ε)−τ

p(1−ε)τ
(∫

D0

sup
(I,ψ)∈Λ0

gI(x)
p(1−ε)dx

) 1
p(1−ε)

.

(4.2)

Step 1: We shall show that the first integral in (4.2) is finite if, and only if m− a < (d− δ)( 1τ −
1

p(1−ε) ). To this end we note that we can find finitely many open neighbourhoods Uj covering

D0 such that on each Uj the distance function ρ is either bounded from below away from 0, or
equivalent to the distance of one vertex, or equivalent to the distance to some edge. In other words:
It is sufficient to consider this integral on cones, where the weight function is either the distance
to the vertex or the distance to the axis (clearly, the third case for bounded ρ−1 is trivial).
Consider first the case, where ρ is the distance to the vertex. Then we can switch to polar
coordinates, and we find

(∫

D0

(
ρ(x)−m+a

) p(1−ε)τ
p(1−ε)−τ dx

) p(1−ε)−τ

p(1−ε)τ

∼

(∫

Ω

∫ R

0

(
r−m+a

) p(1−ε)τ
p(1−ε)−τ rd−1dr dS

) p(1−ε)−τ

p(1−ε)τ

,

where Ω ⊂ Sd−1, and dS is the surface measure in Sd−1. The integration over Ω simply amounts

to a constant, and the r-integral is finite if, and only if (−m+ a) p(1−ε)τ
p(1−ε)−τ + d− 1 > −1, which is

equivalent to the condition stated in the beginning with δ = 0.
Similarly we can argue in case of a cone and ρ being the distance to its axis. Switching to cylinder
coordinates we have

(∫

D0

(
ρ(x)−m+a

) p(1−ε)τ
p(1−ε)−τ dx

) p(1−ε)−τ

p(1−ε)τ

∼

(∫

Ω

∫ H

0

∫ R(z)

0

(
r−m+a

) p(1−ε)τ
p(1−ε)−τ rd−2dr dz dS

) p(1−ε)−τ

p(1−ε)τ

,

Inserting R(z) = cz eventually leads to the condition (−m+ a) p(1−ε)τ
p(1−ε)−τ + d− 2 > −1, and thus to

the initial one with δ = 1.
We finally note that the stated condition can always be fulfilled as a consequence of the assumption
m− a < (d− δ)( 1τ − 1

p ), if ε > 0 is chosen sufficiently small.

Step 2: For the second term in (4.2) we find

∫

D0

sup
(I,ψ)∈Λ0

gI(x)
p(1−ε)dx =

∫

D

(
sup

(I,ψ)∈Λ0

χQ(I)(x)
1

|I|

∫

Q(I)

|ρ(y)m−a∂αũ(y)|pdy

)1−ε

dx

∼

∫

D0

(
sup

(I,ψ)∈Λ0: x∈Q(I)

1

|Q(I)|

∫

Q(I)

|ρ(y)m−a∂αũ(y)|pdy

)1−ε

dx

≤

∫

D

(
sup

cube Q∋x

1

|Q|

∫

Q

|ρ(y)m−a∂αũ(y)|pdy

)1−ε

dx

≡

∫

D0

(
MD0

(
|ρm−a∂αũ|p

)
(x)
)1−ε

dx .

(∫

D

|ρ(x)m−a∂αũ(x)|pdx

)1−ε

.

Therein MD0 denotes a version of the classical Hardy-Littlewood maximal operator, where the
supremum is restricted to cubes contained in the domain D0. The last line then follows from
Lemma 4.2 below.
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Lemma 4.2. Let D ⊂ R
d be a bounded domain and 0 < r < 1. Then the restricted Hardy-

Littlewood Maximal operator MD is bounded as a mapping from L1(D) into Lr(D), i.e.

‖MDf‖Lr(D) ≤ Cr‖f‖L1(D) , f ∈ L1(D) .

Recall that the maximal function Mf of some function f ∈ L1(R
d) is never integrable on R

d, and
generally also fails to be integrable on bounded domains (it only holds Mf ∈ L(logL)(D)). This
lemma acts as a surrogate for this failure.

Proof . In view of the trivial pointwise estimate MDf(x) ≤ Mf(x) the classical weak-type (1, 1)
estimate yields

∣∣{x ∈ D :MDf(x) > t}
∣∣ ≤

∣∣{x ∈ R
d :Mf(x) > t}

∣∣ ≤ C1

t
‖f‖L1(D) ,

where we identify a function f ∈ L1(D) with its zero-extension to R
d. On the other hand, we

trivially have for the restricted Maximal operator

∣∣{x ∈ D :MDf(x) > t}
∣∣ ≤ |D| ,

i.e. the weak-type estimate is only relevant for t ≥ t0 := C1

|D|‖f‖L1(D). Then we obtain

‖MDf‖
r
Lr(D) = r

∫ ∞

0

tr−1
∣∣{x ∈ D :MDf(x) > t}

∣∣ dt

≤ r

∫ ∞

t0

tr−1C1

t
‖f‖L1(D)dt+ r

∫ t0

0

tr−1|D| dt

= C1
r

1− r
tr−1
0 ‖f‖L1(D) + tr0|D| =

Cr1 |D|1−r

1− r
‖f‖rL1(D) .

This proves the claim.

Remark 4. Comparing with Theorem 1 it is clear that the condition on the parameters in The-
orem 2 is essentially optimal, at least as long as 0 ≤ a < m. For m = a the method fails, and this
can be easily demonstrated explicitly.
It is well-known that the Maximal function Mf is never integrable for any nontrivial function
f ∈ L1(R

d). While one reason for this failure (the global support of the Maximal function) can be
circumvented by considering the restricted Maximal operator MD, the local problems for singularity
functions which are only just integrable, still remain for functions f = ρm−a∂αu, |α| = m, u ∈
Kma,p(D).
For simplicity, we consider the situation of D being an unbounded cone in R

2 (this can be transferred
to bounded cones by multiplying with suitable cut-off functions). Moreover, we take m = a = 1 and
p = 2, i.e. we consider the space K1

1(D).
Consider the function Fγ(x) = (− log r)γφ(θ). We assume the function φ to be Lipschitz (i.e. it
admits a bounded weak derivative). Then we find for the weak gradient

|fγ(x)|
2 = |∇Fγ(x)|

2 = γ2r−2(− log r)2γ−2|φ(θ)|2 + r−2(− log r)2γ |φ′(θ)|2.

This is integrable on D if, and only if γ < −1/2. Moreover, we have r−1Fγ ∈ L2(D) under exactly
the same condition. Thus we have Fγ ∈ K1

1(D) for suitable functions φ.
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Now, consider the Maximal functions MD|fγ |
2. Integrating over an annulus Ar,R with center in 0

and radii 0 < r < R yields
∫
Ar,R∩D |fγ |

2dx ∼
∫ R
r
ρ−1(− log ρ)2γdρ = (− log ρ)2γ+1|Rr . Hence the

Maximal function can be estimated from below by r−2(− log r)2γ+1 near the origin (choose R = 2r;
while we integrated here over annuli instead of cubes, the estimate does not change when integrating
over cubes contained in such annuli with r ∼ 2−j). This in turn is integrable if, and only if γ < −1.
Hence for all values −1 ≤ γ < −1/2 we have Fγ ∈ K1

1(D), but MD|∇Fγ |
2 fails to be integrable.

To get a full embedding result, we still need to consider the boundary terms, i.e. the wavelets ψI
with (I, ψ) ∈ Λj,0, for which we might have ρI = 0. These terms form the operator Psing,

Psingu =

∞∑

j=0

∑

(I,ψ)∈Λj,0

〈ũ, ψI〉ψI .

In [17] it was shown that this operator maps Bsp,q(D) into B
s+(d−δ)( 1

τ
− 1

p
)

τ,q (Rd), and we now want
to consider its mapping properties in the Triebel-Lizorkin scale. The following result shows that
there is no counterpart to this result for the Triebel-Lizorkin scale.

Lemma 4.3. Let s ≥ 0, 0 < τ < p <∞ and 0 < q ≤ ∞. Consider the operator

P̃singu =
∞∑

j=0

∑

λ∈Λj,0

uλψI ,

where u ∈ F sp,q(R
d) is decomposed as u =

∑
λ=(I,ψ)∈Λ uλψI with convergence in Lp(R

d). Then

there exists a function u ∈ F sp,q(D) such that ‖P̃singu|F
s+(d−δ)( 1

τ
− 1

p
)

τ,q̃ (Rd)‖ = ∞ for all 0 < q̃ ≤ ∞.

As a consequence if we start with functions u ∈ F sp,q(D), the best possible result is

Psing : F sp,q(D) → B
s+(d−δ)( 1

τ
− 1

p
)

τ,max(p,q) (Rd) , (4.3)

where we simply combined the elementary embedding F sp,q(D) →֒ Bsp,max(p,q)(D) with the result

for Besov spaces from [17].

Proof . For simplicity, we consider only the case δ = 0, the general case follows by an easy mod-
ification. Moreover, let the vertex be the origin. Then we put uj ≡ u(ψ,Ij) = 2−j(s+d/2)j−α2jd/p

for some fixed ψ ∈ Ψ and Ij = 2−j [0, 1]d, j ≥ 1. Furthermore, we put Ej = Ij \ Ij+1. Then we can
calculate directly, using the disjointness of the sets Ek,

‖P̃singu|F
s
p,q(R

d)‖p =

∫

Rd

(∑

j≥1

|2j(s+d/2)ujχIj (x)|
q

)p/q
dx

=

∫

Rd

(∑

k≥1

∑

1≤j≤k

|j−α2jd/p|qχEk
(x)

)p/q
dx

=

∫

Rd

∑

k≥1

( ∑

1≤j≤k

|j−α2jd/p|q
)p/q

χEk
(x)dx ∼

∑

k≥1

k−αp2jd2−jd ,
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which is finite if, and only if α > 1/p. Note that this result is independent of the microscopic
parameter q. A completely analogous calculation shows

‖P̃singu|F
s+(d−δ)( 1

τ
− 1

p
)

p,q̃ (Rd)‖τ ∼
∑

k≥1

k−ατ .

Thus choosing 1
p < α ≤ 1

τ gives the desired example.

Both results on Preg and Psing are summarized in the following theorem.

Theorem 3. Let 1 < p < ∞, m ∈ N and a, s ≥ 0. Moreover, let D ⊂ R
d be a Lipschitz domain

with polyhedral structure. Assume min(a, s) > δ
dm. Then there exists τ∗ < τ0 ≤ p such that for all

τ < τ0 we have an embedding

Kma,p(D) ∩Bsp,∞ →֒ Fmτ,∞(D) →֒ Am/d
∞ (Lp(D)) .

Proof . If a > δ
dm then we have m− a < d−δ

d m = (d− δ)( 1
τ∗

− 1
p ). Since this inequality is strict,

it remains true for τ sufficiently close to τ∗. In view of Theorem 2 this takes care of the regular
part of u ∈ Kma,p(D) ∩ Bsp,∞(D). For the singular part we can argue similarly as s > δ

dm ensures

m < s + (d − δ)( 1τ − 1
p ) for τ sufficiently close to τ∗. Hence we can use (4.3) together with the

embedding B
s+(d−δ)( 1

τ
− 1

p
)

τ,∞ (D) →֒ Fmτ,∞(D).

Remark 5. We want to emphasize that the above condition min(a, s) > δ
dm generally is optimal:

In view of Lemma 4.3 s = δ
dm is impossible, and similarly, for a = δ

dm by Theorem 1 the embedding
Kma,p(D) →֒ Fmτ∗,∞(D) becomes false.

In case of solutions to elliptic PDEs the additional condition needed for the boundary terms is
naturally satisfied, at least on polygons in d = 2.

Corollary 2. Let D be a polygon, and let the assumptions of Proposition 1 be satisfied. If
0 ≤ a < a, then for every f ∈ Km−1

a−1 (D) the solution u ∈ Km+1
a+1 (D) also belongs to Fm+1

τ,∞ (D).

Proof . In view of the relation K1
1(D) ∩ {u : u|∂D = 0} = H1

0 (D), for a ≥ 0 we thus always
have u ∈ H1(D) = B1

2,2(D) →֒ B1
2,∞(D). Then simply apply the embedding from Theorem 3 for

Km+1
a+1 (D).

In the case d ≥ 3 we obtain a relation between a and m, and also assertions on the Sobolev
regularity of the solution come into play. Both can easily obtained from Theorem 3.

5 Adaptive Finite element approximation

5.1 Approximation classes for Finite element methods

In a recent article Gaspoz and Morin [15] established a connection between Besov classes and
certain adaptive Finite element methods strikingly similar to the well-known one for n-term wavelet
approximation by DeVore, Jawerth and Popov. We shall briefly describe these results.
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The starting point is an initial triangulation T0 of some polyhedral domain D, and T denotes the
family of all conforming, shape-regular partitions of D obtained from T0 by refinement using bisec-
tion rules (these in turn correspond to the newest-vertex bisection in two dimensions). Moreover,
VT denotes the finite element space of continuous piecewise polynomials of degree at most r, i.e.

VT =
{
v ∈ C(D) : v|T ∈ Pr for all T ∈ T

}
.

A benchmark for adaptive Finite element algorithms, choosing the optimal triangulation after a
given number of refinements, is the quantity

σFEN
(
u;Lp(D)

)
= min

T ∈T:
#T −#T0≤N

inf
v∈VT

‖u− v‖Lp(D) , 0 < p <∞ ,

which may be interpreted as a counterpart of the error of the best n-term wavelet approximation.
One of the main results of [15] then consists in a direct estimate,

σFEN
(
u;Lp(D)

)
≤ C N−s/d‖u|B̃sτ,τ (D)‖ , (5.1)

where 0 < p < ∞, 0 < s ≤ r + 1
τ∗
, τ∗ = min(1, τ), 1

τ < s
d + 1

p . Therein the Besov classes B̃αp,p
are introduced as subspaces of Lp(D) via finite differences, hence they differ from the previously
defined spaces Bαp,p for p ≤ 1 and α ≤ d( 1p − 1).

We shall use a reformulation of this result in terms of Approximation classes. Similar to (2.2) we
define spaces Aα

q,FE(Lp(D)), α > 0, 0 < q ≤ ∞ by requiring

‖u|Aα
q,FE(Lp(D)) =

( ∞∑

n=0

(
(n+ 1)ασFEn

(
u;Lp(D)

))τ 1

n+ 1

)1/q

<∞ , 0 < q <∞ (5.2)

as well as

‖u|Aα
∞,FE(Lp(D))‖ = sup

n≥0
(n+ 1)ασFEn

(
u;Lp(D)

)
<∞ .

Using these approximation spaces, the estimate (5.1) is equivalent to an embedding B̃sτ,τ (D) →֒

A
s/d
∞,FE(Lp(D)).

Furthermore, there is also an inverse theorem, [15, Theorem 2.5], which can be stated as

A
s/d
τ,FE

(
Lp(D)

)
→֒ B̃sτ,τ (D) ,

1

τ
=
s

d
+

1

p
.

Corresponding results are also available when the error is measured in some space B̃αp,p(D) instead

of Lp(D), in particular for B̃1
2,2(D) = H1(D).

5.2 Application to elliptic PDEs

We shall now use interpolation arguments to extend the above direct estimate to spaces B̃sτ,∞(D),
and afterwards combine this with our embedding result for weighted Sobolev spaces and regularity
results for elliptic PDEs to obtain error bounds for Finite element algorithms for this class of
problems.
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It is a basic property of Approximation spaces that this scale of spaces is closed under the real
method of interpolation. More precisely, for arbitrary 0 < s0 6= s1 < ∞, 0 < q, q0, q ≤ ∞ and
0 < Θ < 1 we have

(
As0
q0(Lp),A

s1
q1(Lp)

)
Θ,q

= As
q(Lp) , s = (1−Θ)s0 +Θs1 .

This result is independent of the particular approximation scheme (i.e. it holds for n-term ap-
proximation, adaptive Finite element approximation and beyond). For details we refer, e.g., to
the monograph [13], and more information on interpolation theory can be found in [24, 2]. On the
other hand, interpolation results for Besov spaces are known as well. For our purposes, we shall
need the following relation, see [14]: If s0 6= s1 > 0, 0 < τ < ∞ and arbitrary 0 < q0, q1 ≤ ∞ it
holds (

B̃s0τ,q0(D), B̃s1τ,q1(D)
)
Θ,q

= B̃sτ,q(D) , s = (1−Θ)s0 +Θs1 .

Both results now shall be applied for q = ∞. Then the interpolation property yields the embedding

B̃sτ,∞(D) =
(
B̃s0τ,q0(D), B̃s1τ,q1(D)

)
Θ,∞

→֒
(
A
s0/d
q0,FE

(Lp),A
s1/d
q1,FE

(Lp)
)
Θ,∞

= A
s/d
q,FE(Lp) ,

which proves the desired estimate

σFEN
(
u;Lp(D)

)
≤ C N−s/d‖u|B̃sτ,∞(D)‖ , (5.3)

under the same restrictions on p, s and τ as before.

Theorem 4. Let D ⊂ R
d be a bounded Lipschitz domain with polyhedral structure. Further, let

1 < p <∞, m ∈ N and min(a, s) > δ
dm. Then, given an initial triangulation T0, for every function

u ∈ Kma,p(D) ∩Hs
p(D) and for every N ∈ N there exists a triangulation TN with #TN −#T0 ≤ N

such that the corresponding Finite element space VN = VTN
(continuous piecewise polynomials of

degree r ≥ m) satisfies

inf
v∈VN

‖u− v |Lp(D)‖ ≤ C N−m/d‖u | Kma,p(D) ∩Hs
p(D)‖ ,

where the constant C is independent of u and N .

This is simply a combination of the above approximation result (Equation (5.3)) and the embedding
from Theorem 3, together with the elementary embedding Fmτ,∞(D) →֒ Bmτ,∞(D) and (due to

1 < p <∞) the identity B̃mτ,∞(D) = Bmτ,∞(D) →֒ Lp(D).
Finally, we can combine this approximation result with regularity results for elliptic PDEs. For
simplicity, we restrict ourselves here to the case d = 2. Then the following theorem results imme-
diately from combining Proposition 1, Theorem 3 and (5.3).

Theorem 5. Let D ⊂ R
2 be a polygon. Moreover, let the assumptions of Proposition 1 be

satisfied. Then for all |a| < a and all functions f ∈ Km−1
a−1 (D) the unique solution to the problem

(2.1) belongs to the space Fmτ,2(D). Furthermore, given an initial triangulation T0, for every N ∈ N

there exists a triangulation TN with #TN −#T0 ≤ N such that the corresponding Finite element
space VN = VTN

satisfies

inf
v∈VN

‖u− v |Lp(D)‖ ≤ C N−m/d‖f | Km−1
a−1 (D)‖ ,

where the constant C is independent of u and N .
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6 Application to parametric problems

In this final section we shall apply our results to parametric problems. More precisely, we shall
consider problems

−∇
(
A(y)∇u(y)

)
= f(y) in D ,

u(y) = 0 on ∂DD ,

∇A
ν u(y) = g(y) on ∂ND ,

(6.1)

where A = (ai,j)
d
i,j=1 and ai,j : U −→ L∞(D) are given fixed mappings with D being a bounded

Lipschitz domain in R
d and parameter domain U = [−1, 1]N, i.e. the countable cartesian product of

intervals [−1, 1], either interpreted as the unit ball of ℓ∞(N) or as the compact subset of the Frechet
space R

N (i.e. equipped with the product topology). Moreover, the boundary ∂D is partitioned
into the Dirichlet part ∂DD and a Neumann part ∂ND. With ∇A

ν u we denote the co-normal
derivative of u,

∇A
ν u(x, y) =

d∑

i,j=1

νiai,j(x, y)∂ju(x, y) , x ∈ ∂ND , y ∈ U ,

where ν is the outward unit normal in x ∈ ∂ND. In other words: For every fixed parameter y ∈ U
we have an elliptic problem similar to the one discussed in Proposition 1, for which an analogous
shift-theorem is valid. In addition to the spatial regularity, i.e. regularity w.r.t. the variable x ∈ D,
we now can also discuss regularity w.r.t. y ∈ U . The following result has been proved in [22].

Proposition 2. Let D ⊂ R
d be a domain with polyhedral structure. Assume f : U → Km−1

a−1 (D),

g : U → K
m−1/2
a−1/2 (D) and A : U → Wm

∞(D)d×d to be analytic. Suppose

0 < r|ξ|2 ≤ ess inf
x∈D

ξ⊤A(x, y)ξ ≤ ess sup
x∈D

ξ⊤A(x, y)ξ ≤ R|ξ|2 , ∀ξ ∈ R
d \ {0} ∀y ∈ U . (6.2)

Then for every y ∈ U the solution of the problem (6.1) exists, and it is analytic as a mapping from
U into Km+1

a+1 (D).

Note that the precise meaning of “analyticity” and its consequences depend on the topology chosen
on U , but it always includes the following: For every finite set E ⊂ N, J = |E|, E = {j1, . . . , jJ},
we put yE = (yj1 , . . . , yjJ ), F = N \ E, and split y = (yE , yF ). Then for every choice of yF , the
function uE(z) = u(z, yF ) is analytic on [−1, 1]J (in the usual sense of analytic functions in several
variables). We will refer to this as “analytic in every finite choice of variables.”
Subsequently, this property implies estimates on derivatives, and thus also on Taylor coefficients,
and coefficients in expansions w.r.t. several systems of orthogonal polynomials on U . Below
we will concentrate on Taylor coefficients and power series, but all results can immediately be
transferred to Legendre and Chebyshev series. We refer again to [22] for related notions and
further references. By F = {ν ∈ N

N
0 : | supp ν| < ∞} we denote the set of multiindices with finite

support, supp ν = {j ∈ N : νj 6= 0}. Moreover, we put with E = supp ν, J = |E|,

∂νu(y) =
∂JuE

∂y
νj1
j1

· · · ∂y
νjJ
jJ

(yE) ,

yν =
∏
j∈supp ν y

νj
j , and |ν| =

∑
j≥1 νj , ν! =

∏
j∈N

νj !.
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Proposition 3. Let f , g and D fulfill the assumption of the previous proposition. Assume A is
of the special form

A(y) = ψ +
∑

j≥1

yjψj , ψ ∈ Wm
∞(D) , {ψj}j∈N ⊂ Wm

∞(D) .

Further assume (
‖ψj |W

m
∞(D)‖

)
j∈N

∈ ℓp(N)

for some 0 < p ≤ 1. Then A : U ⊂ ℓ∞(N) → Wm
∞(D) is well-defined and analytic.

Now further suppose A fulfills condition (6.2). Then u : U → Km+1
a+1 (D) is analytic for all |a| < a.

Moreover, for its Taylor coefficients tν = 1
ν!∂

νu(0), ν ∈ F , we find

(
‖tν |K

m+1
a+1 (D)‖

)
ν∈F

∈ ℓp(F) .

Finally, it holds

u(y) =
∑

ν∈F

tνy
ν , y ∈ U , (6.3)

with absolute and uniform on U convergence in the norm of Km+1
a+1 (D).

In view of our embedding results, the natural question now becomes whether we can replace
Km+1
a+1 (D) in these results by appropriate Besov or Triebel-Lizorkin spaces. Here we will give an

answer to this question, but only in case δ = 0: While Theorem 3 can be applied also for δ > 0,
this would involve either restrictions on m, or we would have to apply results on the Hs-regularity
of elliptic problems for s > 1, which is beyond the scope of the present work. Recall that due
to K1

1(D) ∩ {U |∂D = 0} = H1
0 (D) the above proposition for m = a = 0 particularly includes an

assertion about analyticity w.r.t. H1
0 (D).

• Applying Theorem 3 and Corollary 2 we now immediately obtain conditions on a such that u(y)
belongs to Fm+1

τ,∞ (D), and particularly for a ≥ 0 we can choose τ > τ∗,
1
τ∗

= m+1
d + 1

2 .

To conclude analyticity of u : U → Fm+1
τ,∞ (D), we recall that the mapping (T, u) 7→ Tu itself is

analytic as a mapping from L(X,Y ) × X into Y , where L(X,Y ) is the space of bounded linear
operators from the Banach space X into another Banach space Y . Hence applying a fixed bounded
linear operator to some analytic mapping preserves analyticity. This will be used with the operators
Preg and Psing. Unfortunately, in our case the target space of these operators is no longer a Banach
space. However, the notion of analyticity in every finite choice of variables is still preserved: This
notion is equivalent to the existence of Frechèt derivatives (for functions in a finite number of
complex variables), which clearly remains true after applying a bounded operator.
• The second aspect is the summability of the Taylor coefficients: The direct method as used in
previous works, in particular applying Cauchy’s integral formula, does no longer work. While the
formula still holds in the sense of a Pettis integral (which is rather immediate, due to the fact
that the Besov and Triebel-Lizorkin spaces considered here have a separating dual) and also as a
Bochner-type integral in the sense of Vogt [29], both variants do not yield suitable estimates for
the integral. However, a far more simpler approach already does the job: Once more applying
Theorem 3, now to tν ∈ Km+1

a+1 (D), yields

‖tν |F
m+1
τ,∞ (D)‖ . ‖tν |K

m+1
a+1 (D)‖ ,

and accordingly for the ℓp(F)-quasi-norm.
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• Finally, we can also consider the respective Taylor series. Again, an application of Theorem 3
suffices to transfer the (uniform) convergence from Km+1

a+1 (D) to Fm+1
τ,2 (D). However, note that the

notion of absolute convergence changes in quasi-Banach spaces. It is well-known that for every
quasi-norm on some quasi-normed space X there is an equivalent r-norm, i.e. a quasi-norm which
satisfies ‖f + g‖r ≤ ‖f‖r + ‖g‖r. Choosing this r ≤ 1 as large as possible, a series

∑
j≥1 fj

converges absolutely w.r.t. this r-norm if, and only if
∑
j≥1 ‖fj‖

r < ∞. Since the usual quasi-

norm on Fm+1
τ,2 (D) is a τ -norm (and r = τ is already the optimal choice), the power series (6.3)

converges absolutely in Fm+1
τ,2 (D) only if p ≤ τ .

Theorem 6. Let the assumptions of Proposition 3 be fulfilled. Further assume m−a < d( 1τ −
1
2 ).

Then for every finite choice of variables the mapping u : U → Fm+1
τ,2 (D) is analytic. Moreover,

for its Taylor coefficients we find
(
‖tν |F

m+1
τ,2 (D)‖

)
ν∈F

∈ ℓp(F). The power series (6.3) converges

uniformly on U in the quasi-norm of Fm+1
τ,2 (D), and in case p ≤ τ it converges absolutely for every

y ∈ U .

After discussing the regularity of the parametric mapping, we shall consider the implications to
approximating the parametric solutions by partial sums of the power series, and particularly also
with only approximately known expansion coefficients. A similar discussion can be found in [3,
Section 8], and we will only give the necessary modifications of these arguments.
We want to approximate u(y) =

∑
ν∈F tνy

ν by
∑
ν∈Λ t̃νy

ν , where |Λ| ≤ N , and t̃ν is a Finite
element or wavelet approximation of tν . When directly (naively) approximating the power series
and estimating the error, we only obtain

∥∥∥∥u(y)−
∑

ν∈Λ

tνy
ν

∣∣∣∣F
m+1
τ,2 (D)

∥∥∥∥
τ

≤
∑

ν∈F\Λ

‖tν |F
m+1
τ,2 (D)‖τ ≤ N−τ/p+1

( ∑

ν∈F\Λ

‖tν |F
m+1
τ,2 (D)‖p

)τ/p
,

where the last step is due to Stechkin, if we choose the index set Λ to correspond to the N
largest coefficients. However, the situation is much more favorable, if we measure the error in the
H1

0 (D)-norm: This time we obtain
∥∥∥∥u(y)−

∑

ν∈Λ

t̃νy
ν

∣∣∣∣H
1
0 (D)

∥∥∥∥ ≤

∥∥∥∥u(y)−
∑

ν∈Λ

tνy
ν

∣∣∣∣H
1
0 (D)

∥∥∥∥+
∥∥∥∥
∑

ν∈Λ

tνy
ν −

∑

ν∈Λ

t̃νy
ν

∣∣∣∣H
1
0 (D)

∥∥∥∥

≤ N− 1
p
+1
∥∥(‖tν‖H1

0 (D))ν∈F

)∥∥
ℓp(F)

+
∑

ν∈ΛN

∥∥tν − t̃ν
∥∥
H1

0 (D)

≤ N− 1
p
+1
∥∥(‖tν‖H1

0 (D))ν∈F

)∥∥
ℓp(F)

+ c
∑

ν∈Λ

(Nν)
−m/d‖tν |F

m+1
τ,2 (D)‖ .

Therein Nν stands for the number of degrees of freedom used to calculate the approximation of
tν ; i.e. either tν is an Nν-term approximation w.r.t. some suitable wavelet system on D, or
it is an adaptive Finite element approximation obtained from a triangulation with at most Nν
refinements as compared to the initial one. Balancing Nν against the size of the coefficient, and
further balancing both error contributions (i.e. approximation by partial sums, and approximating
the coefficients within the partial sum) against each other, the final outcome can be formulated as
follows:

Theorem 7. Under the assumptions of Proposition 3 and Theorem 6 there exists an adaptive
wavelet or Finite element approximation ũ(y) ∈

{∑
ν∈Λ cνy

ν : cν ∈ H1
0 (D), |Λ| ≤ N

}
of the
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parametric solution u(y) of (6.1) such that

sup
y∈U

‖u(y)− ũ(y)|H1
0 (D)‖ . N

−min( 1
p
−1,m

d
)

dof sup
y∈U

‖f(y)|Km−1
a−1 (D)‖ .

7 Conclusions

We have given a new approache for proofs of embeddings between weighted Sobolev spaces (Kon-
dratiev spaces), which appear in the regularity theory for solutions of (elliptic) PDEs on piecewise
smooth domains, and Triebel-Lizorkin spaces, which together with Besov spaces are closely re-
lated to adaptive approximation schemes. This was based on estimates of wavelet coefficients and
Maximal inequalities.

Moreover, we were able to show that the conditions for this embedding, as well as related regularity
results for elliptic PDEs, were optimal by considering suitable representative functions. Ultimately,
the embeddings were applied to obtain conditions for the optimal approximation rate N−m/d for
adaptive approximation of solutions to elliptic PDEs by either wavelet or Finite element methods,
and subsequently also to parametric problems.
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