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Entropy stable schemes on two-dimensional unstructured grids

Deep Ray∗ Praveen Chandrashekar † Ulrik S. Fjordholm‡ Siddhartha Mishra §

Abstract

We propose an entropy stable high-resolution finite volume scheme to approximate systems of

two-dimensional symmetrizable conservation laws on unstructured grids. The scheme is constructed

using a judicious combination of entropy conservative fluxes and entropy-stable numerical dissipation

operators. High resolution is achieved based on a piecewise linear reconstruction procedure satisfying

a suitable sign property. The proposed scheme is demonstrated to robustly approximate complex

flow features by a series of benchmark numerical experiments.

1 Introduction

Systems of conservation laws are encountered in numerous fields of science and engineering. Examples
include the shallow water equations of oceanography, the Euler equations of aerodynamics and the MHD
equations of plasma physics. In two space dimensions, a generic system of conservation laws is given by,

∂tU+ ∂xf1(U) + ∂yf2(U) = 0 ∀ x = (x, y) ∈ R
2, t ∈ R

+

U(x, 0) = U0(x) ∀ x ∈ R
2.

(1.1)

The vector of conserved variables is denoted by U : R
2 × R

+ → R
n, while f1, f2 are the Cartesian

components of the flux vector. In particular, for the two-dimensional compressible Euler equations, we
have

U =




ρ
ρu
ρv
E


 , f1(U) =




ρu
ρu2 + p
ρuv

u(E + p)


 , f2(U) =




ρv
ρuv

ρv2 + p
v(E + p)


 (1.2)

where ρ, u = (u, v)⊤ and p denote the fluid density, velocity and pressure, respectively. The quantity E
is the total energy per unit volume

E = ρ

(
1

2
(u2 + v2) + e

)
, (1.3)

where e is the specific internal energy given by a caloric equation of state, e = e(ρ, p). The equation of
state for ideal gas is given by

e =
p

(γ − 1)ρ
(1.4)

with γ = cp/cv denoting the ratio of specific heats.
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It is well known that solutions to systems of conservation laws can develop discontinuities, such as
shock waves and contact discontinuities, in finite time even when the initial data is smooth [5]. Hence,
the solutions of systems of conservation laws are interpreted in a weak (distributional) sense. However,
these weak solutions are not necessarily unique , and must be supplemented with additional conditions,
known as the entropy conditions, in order to single out a physically relevant solution. Assume that for
the system (1.1), there exists a convex function η : Rn → R and functions qi : R

n → R, i = 1, 2 such that

q′i(U) = η′(U)⊤f ′i(U) i = 1, 2. (1.5)

The function η is known as an entropy function, while q1, q2 are the entropy flux functions. Additionally,
V = η′(U) is called the (vector of) entropy variables. Multiplying (1.1) by V⊤ results in the following
additional conservation law for smooth solutions:

∂tη(U) + ∂xq1(U) + ∂yq2(U) = 0. (1.6)

The entropy condition states that weak solutions should satisfy the entropy inequality

∂tη(U) + ∂xq1(U) + ∂yq2(U) 6 0, (1.7)

which is understood in the sense of distributions.
The convexity of η(U) ensures the existence of a one-to-one mapping between U and V, thus allowing

the change of variables U = U(V). The hyperbolic system (1.1) is symmetrized when written in terms
of the entropy variables. In other words, for the transformed system

∂VU∂tV + ∂Vf1∂xV + ∂Vf2∂yV = 0

the Jacobian ∂VU is symmetric positive definite, while ∂Vf1, ∂Vf2 are symmetric. In this direction, we
have the important results due to Godunov [11] and Mock [22], which state that the hyperbolic system
(1.1) is symmetrizable if and only if it is equipped with an entropy function η(U) and corresponding
entropy fluxes q1(U), q2(U).

Although no global existence and uniqueness results for entropy solutions of these systems are cur-
rently available, the entropy conditions do play an important role in providing global stability estimates.
Formally integrating (1.7) in space and ignoring the boundary terms by assuming periodic or no-inflow
boundary conditions, we get

d

dt

∫

R2

η(U)dx 6 0 =⇒

∫

R2

η(U(x, t))dx 6

∫

R2

η(U0(x))dx ∀ t > 0. (1.8)

As η is convex, the above entropy bound gives rise to an a priori estimate on the solution of (1.1) in
suitable Lp spaces [5].

Numerical methods for hyperbolic systems have undergone extensive development over the past few
decades. Finite volume methods, in which the computational domain is divided into control volumes
and a discrete version of the conservation law imposed on each control volume, are very popular. In
particular, (approximate) Riemann solver based numerical flux functions, non-oscillatory reconstructions
of the TVD, ENO, WENO type and strong stability preserving Runge-Kutta methods constitute an
attractive and widely used package for the robust approximation of systems of conservation laws. An
alternative is the use of Runge-Kutta Discontinuous Galerkin (DG) finite element methods [4] together
with limiters to obtain non-oscillatory approximation.

Although many rigorous convergence results for these methods (at least for their first and second
order versions) are known for scalar conservation laws, even in several space dimensions ([19, 18] and
references therein), very few rigorous results are available for schemes approximating systems of con-
servation laws, particularly in several space dimensions. Since obtaining rigorous convergence results of
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numerical approximation to entropy solutions seems out of reach currently, see [10] for a discussion on
this issue, design of entropy stable schemes i.e, numerical schemes that satisfy a discrete form of the
entropy inequality (1.7) is a reasonable goal. Note that entropy stable schemes automatically satisfy an
Lp estimate and provide the only global stability estimates for numerical methods for multi-dimensional
conservation laws.

The construction of entropy stable schemes for systems of conservation laws was pioneered by Tadmor
in [27]. The construction is based on two ingredients – (i) construction of an entropy conservative flux
satisfying a discrete entropy equality, and (ii) addition of suitable dissipation operators to satisfy a
discrete entropy inequality. First-order entropy stable schemes, constructed by the procedure of Tadmor
have been tested by Fjordholm et al. [7] for the shallow-water equations and Roe and Ismail [15] for the
Euler equations and found to be efficient. Arbitrarily high-order entropy conservative fluxes for Cartesian
grids were developed in [20]. However, the design of arbitrary-high order entropy stable schemes was only
carried out recently by Fjordholm et al. in [8]. These so-called TeCNO schemes judiciously combine
high-order entropy conservative fluxes with arbitrarily high-order numerical diffusion operators, based
on piecewise polynomial reconstruction. The reconstructions have to satisfy the sign property at each
interface to ensure entropy stability. It was shown in [9] that the standard ENO reconstruction procedure
does satisfy the sign property. The resulting TeCNO schemes are only available for Cartesian (structured)
grids in several space dimensions. However, many applications of interest, particularly in engineering,
involve domains with complex geometry [6, 16], which can be more easily discretized using unstructured
grids. First-order entropy-stable finite volume schemes for hyperbolic systems on unstructured meshes
have been constructed in [21].

The aim of this paper is to propose an entropy-stable high-resolution finite volume scheme on unstruc-
tured grids in two space dimensions. Our construction involves the combination of entropy conservative
fluxes, also considered in [21], together with a sign property preserving piecewise linear reconstruction.
The rest of the paper is organized as follows. In Section 2 we describe the discretization of the domain
and introduce the general semi-discrete scheme for system of conservation laws. Section 3 introduces the
machinery for construction of entropy conservative and entropy stable schemes. Construction of higher
order entropy stable schemes by the limited reconstruction of scaled entropy variables is also discussed.
Several two-dimensional numerical results are presented in Section 4 to demonstrate the robustness of
the proposed schemes. Concluding remarks are made in Section 5.

2 Discretization

The domain Ω ⊂ R
2 is discretized using triangles T with nodes denoted by i, j, k, etc. For each edge of a

triangle, we define the outward normal vectors with magnitude equal to the length of the corresponding
edge. We use the notation nT

i to describe the outward normal to the edge of T which is opposite to the
vertex i. Furthermore, for each boundary edge e we denote the triangle adjacent to it by Te and the
outward normal to the edge e as ne. These are depicted in Figure 1.

Around each vertex i, the dual cell is constructed by joining the centroids of each adjoining triangle
to the mid-points of its edges. This is known as the median dual cell. The Voronoi dual cells can also be
generated in a similar manner by joining the mid-point of the triangle edges to the circumcenters instead
of the centroids. The dual meshes are depicted in Figure 2. We adopt the vertex-centered approach for
the finite volume schemes discussed below, where the dual cells are chosen as the control volumes and
the solution (cell average) is stored at the nodes.

Using Gauss-Green’s theorem for integration over a polygon, one can easily conclude that the sum of
the outward normals of all the edges is zero. In particular, the outward normals of the triangle T sum to
zero

nT
i + nT

j + nT
k = 0.
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Figure 1: Triangle T and Te with outward normals
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Figure 2: Mesh (a) primary; (b) median dual; Voronoi dual
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Furthermore, we define

nij =

∫

∂Ci∩∂Cj

ñds,

where ñ is the unit normal vector to the faces of dual cell Ci common with the dual cell Cj . The quantity
nij has units of length. The notation j ∈ i will denote the set of vertices j neighbouring the vertex i,
i.e., which are connected to vertex i through an edge.

The semi-discrete finite volume scheme corresponding to (1.1) is given by

dUi

dt
+

1

|Ci|

∑

j∈i

Fij = 0 (2.1)

where Ui is the cell average over the dual cell Ci and Fij = F(Ui,Uj ,nij) is the numerical flux satisfying
the following properties.

1. Consistency:

F(U,U,n) = f(U,n) := f1(U)n1 + f2(U)n2 ∀ U,n.

2. Conservation:

F(U1,U2,n) = −F(U2,U1,−n) ∀ U1,U2,n.

3 Entropy conservative and entropy stable schemes

As mentioned in the introduction, we aim to construct an entropy stable scheme to approximate (1.1).
Following Tadmor [26] and a recent paper [21], the first step is the design of an entropy conservative
scheme as outlined below.

3.1 Entropy conservative scheme

Definition 3.1. The numerical scheme (2.1) is said to be entropy conservative if it satisfies the discrete
entropy relation

dη(Ui)

dt
+

1

|Ci|

∑

j∈i

q∗ij = 0 (3.1)

where q∗ij is a consistent numerical entropy flux.

We introduce the following notation

∆(· )ij = (· )j − (· )i, (· )ij =
1

2
((· )i + (· )j) .

Moreover, we introduce the entropy potential

ψ(U,n) := V(U)⊤F(U,n)− q(U,n)

where q(U,n) := q1(U)n1 + q2(U)n2. The next theorem gives a sufficient condition on the numerical
flux which makes the scheme entropy conservative.

Theorem 3.2 (see [21]). The numerical scheme (2.1) with the flux F∗ is entropy conservative if

∆V⊤
ijF

∗
ij = ψ(Uj ,nij)− ψ(Ui,nij). (3.2)

Specifically, it satisfies (3.1) with numerical entropy flux given by

q∗ij = q∗(Ui,Uj ,nij) = V
⊤
ijF

∗
ij −

1

2
(ψ(Uj ,nij) + ψ(Ui,nij)) .
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Proof. Multiplying (2.1) by the entropy variables Vi, we get

d

dt
η(Ui) = −

1

|Ci|

∑

j∈i

V⊤
i F

∗
ij

= −
1

|Ci|

∑

j∈i

(
Vij −

1

2
∆Vij

)⊤

F∗
ij

= −
1

|Ci|

∑

j∈i

(
VijF

∗
ij −

1

2
(ψ(Uj ,nij)− ψ(Ui,nij))

)

= −
1

|Ci|

∑

j∈i

(
VijF

∗
ij −

1

2
(ψ(Uj ,nij) + ψ(Ui,nij))

)
−

1

|Ci|

∑

j∈i

ψ(Ui,nij)

= −
1

|Ci|

∑

j∈i

q∗ij

where we have used the fact that
∑

j∈i ψ(Ui,nij) = 0 since
∑

j∈i nij = 0.

Harten [13] has shown that the Euler equations are equipped with a family of entropy pairs of the
form

η(U) = −
ρh(s)

γ − 1
, q1(U) = −

ρuh(s)

γ − 1
, q2(U) = −

ρvh(s)

γ − 1

with an additional constraint h′′/h′ < γ−1 to enforce convexity of η. Here s = ln (p) − γ ln (ρ) is the
non-dimensional specific entropy. Hughes et al.[14] have shown that this form of entropy pairs can be
extended to the Navier-Stokes equations, where the symmetrization of the heat conduction term puts the
restriction that h(s) can be atmost affine. A convenient choice which we shall adhere to for the rest of
this paper is

η(U) = −
ρs

γ − 1
, q1(U) = −

ρus

γ − 1
, q2(U) = −

ρvs

γ − 1
. (3.3)

The corresponding entropy variables V are given by

V =




γ−s
γ−1 − β|u|2

2βu
−2β


 (3.4)

where β = ρ/(2p). Next, we briefly describe two important examples of entropy conservative fluxes which
have been designed for the Euler equations.

Example 3.3. Roe and Ismail [15] have constructed a numerical flux for the Euler equations satisfying
(3.2). They introduce the parameter vector

Z =




Z1

Z2

Z3

Z4


 =

√
ρ

p




1
u
v
p



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and write the entropy conservative flux in terms of Z as follows.

F∗
ij =




F ∗,ρ

F ∗,m1

F ∗,m2

F ∗,e


 =




ZnẐ4
Z4

Z1

n1 +
Z2

Z1

F ∗,ρ

Z4

Z1

n2 +
Z3

Z1

F ∗,ρ

F ∗,e




F ∗,e =
1

2Z1

[
(γ + 1)

(γ − 1)
F ∗,ρ + Z2F

∗,m1 + Z3F
∗,m2

]

where
Zn = Z2n1 + Z3n2

and φ̂ij =
φj−φi

ln (φj)−ln (φi)
is the logarithmic average which is well defined for strictly positive quantities φ.

Example 3.4. An entropy conservative flux for the Euler equations, which also preserves kinetic energy
was introduced in [3]

F∗ =




F ∗,ρ

F ∗,m1

F ∗,m2

F ∗,e


 =




ρ̂un
p̃n1 + uF ∗,ρ

p̃n2 + vF ∗,ρ

F ∗,e


 , F ∗,e =

[
1

2(γ − 1)β̂
−

1

2
|u|2

]
F ∗,ρ + u·F∗,m

where

un = un1 + vn2, p̃ =
ρ

2β
.

and ρ̂, β̂ are the logarithmic averages of the respective quantities. The crucial property for kinetic energy
preservation as given by Jameson [17], is that the momentum flux should be of the form Fm = pn+uF ρ

for any consistent approximations for p and F ρ.

3.2 First order entropy stable scheme

The entropy of hyperbolic conservation laws is conserved only if the solution is smooth. However, entropy
is dissipated near discontinuities like shocks, in accordance to the entropy condition (1.7). It is well known
[27] that an entropy conservative scheme, although suitable for smooth solutions, can be very oscillatory
at shocks. Hence, we need to introduce additional dissipation terms to construct entropy stable schemes.

Definition 3.5. The numerical scheme (2.1) is said to be entropy stable if it satisfies the discrete entropy
relation

dη(Ui)

dt
+

1

|Ci|

∑

j∈i

qij 6 0 (3.5)

where qij is a consistent numerical entropy flux.

To dissipate entropy we follow [27, 8] and add entropy variable-based numerical dissipation to the
entropy conservative numerical flux F∗

ij in the form

Fij = F∗
ij −

1

2
Dij∆Vij (3.6)

for a symmetric positive semi-definite matrix Dij , i.e., Dij = D⊤
ij > 0. The diffusion matrix must also

satisfy Dij = Dji to ensure that the numerical flux is conservative.
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Lemma 3.6. The semi-discrete numerical scheme (2.1) with numerical flux given by (3.6) is entropy
stable; specifically, it satisfies the discrete entropy inequality (3.5) with numerical entropy flux given by

qij = q∗ij −
1

2
V

⊤
ijDij∆Vij .

Proof. Multiplying (2.1) by Vi and following the algebraic manipulations similar to those in Theorem
3.2, we get

d

dt
η(Ui) = −

1

|Ci|

∑

j∈i

V⊤
i Fij

= −
1

|Ci|

∑

j∈i

[
q∗ij −

1

2

(
Vij −

1

2
∆Vij

)⊤

Dij∆Vij

]

= −
1

|Ci|

∑

j∈i

qij −
1

4|Ci|

∑

j∈i

∆V⊤
ijDij∆Vij

6 −
1

|Ci|

∑

j∈i

qij

since ∆V⊤
ijDij∆Vij > 0. Moreover it is easy to see that qij as defined in the theorem is a consistent

numerical entropy flux.

3.3 Dissipation operator

In general, any symmetric positive semi-definite matrix Dij can be chosen as the dissipation operator.
However, we shall make a specific choice by referring to Roe’s approximate Riemann solver [25], which
is based on the linearization of the nonlinear conservation law about some average state. The numerical
flux of the Roe scheme has the form

Fij =
1

2
(f(Ui,nij) + f(Uj ,nij))−

1

2
RijΛijR

−1
ij ∆Uij (3.7)

where R is the matrix of eigenvectors of the flux Jacobian ∂Uf(U,n) and Λ is the non-negative diagonal
matrix

Λ = diag
(
|λ1|, . . . , |λn|

)

with λk being the eigenvalues of the flux Jacobian. These matrices are evaluated at the Roe average
state.

The dissipation in (3.7) can be written in terms of the jump in the entropy variables, by linearizing
the jump in the conserved variables as ∆U = ∂VU∆V, where the Jacobian ∂VU is symmetric positive
definite [27]. The eigenvector rescaling theorem of Barth [1] ensures the existence of a scaling of the

eigenvectors R → R̃, such that ∂VU = R̃R̃⊤. The Roe-type flux can thus be re-written as

Fij =
1

2
(f(Ui,nij) + f(Uj ,nij))−

1

2
R̃ijΛijR̃

⊤
ij∆Vij .

This motivates us to choose the Roe-type dissipation operator

Dij = R̃ijΛijR̃
⊤
ij (3.8)

which is clearly symmetric positive semi-definite. For convenience we will drop the (̃.) notation for
the remainder of this paper, where it will be understood that Rij denotes the scaled eigenvectors. The
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i

j

i− 1 j + 1

Figure 3: Stencil for reconstruction

matrices are evaluated at some average state depending on Ui and Uj . To ensure that Fij is conservative
we require thatRij = −Rji. The specific form of the matrices chosen for the Euler equations are described
in Appendix A.

Remark 3.7. The Roe type dissipation operator, as chosen above, is just one of a whole host of alter-
natives when it comes to the choice of numerical dissipation operators [8]. In particular, we can choose
Λ = maxi |λi|I to obtain a Rusanov type dissipation operator. Further examples of polynomial viscosity
operators are provided in [8].

3.4 High-order diffusion operators

For smooth solutions ∆Vij = O(|∆xij |) so that the diffusion term in schemes of the form (3.6) is just first
order accurate. The first order scheme is a consequence of taking the solution to be constant in each cell
and equal to the cell average value. In order to obtain a higher order scheme, we need to appropriately
reconstruct the solution to the cell interfaces. Consider the cell interface between two control volumes Ci

and Cj , as shown in Figure 3. In order to reconstruct the variables from each cell, we require additional
nodes which we refer to as phantom nodes. These can be chosen by extending the line joining vertices i
and j on both sides by a distance equal to the distance between the two nodes.

Corresponding to this particular cell interface, let Vi(x) and Vj(x) be polynomial reconstructions of
the entropy variable in Ci and Cj respectively. We denote the reconstructed values at the cell interface,
and the difference between them by

Vij = Vi(xij), Vji = Vj(xij), JVKij = Vji −Vij (3.9)

where xij is the position vector of the the mid-point between vertices i and j. In order to get a second order
dissipation operator, the polynomial reconstruction in each cell must be at least linear. The following
result ensures that the reconstruction does not destroy entropy stability.

Lemma 3.8 (see [8]). For each pair (i, j), let Rij be non-singular, let Λij be any non-negative diagonal
matrix, and define the numerical diffusion matrix

Dij = RijΛijR
⊤
ij .
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Let Vi(x) and Vj(x) be polynomial reconstructions of the entropy variables in Ci and Cj respectively
such that there exists a diagonal matrix Bij > 0 such that

JVKij =
(
R⊤

ij

)−1
BijR

⊤
ij∆Vij . (3.10)

Then the scheme with the numerical flux

Fij = F∗
ij −

1

2
DijJVKij (3.11)

is entropy stable with numerical entropy flux

qij := q∗ij −
1

2
V

⊤
ijDijJVKij .

Proof. As in the proof of Lemma 3.6, consider (2.1) with the flux defined by (3.11) and multiply it by
the entropy variables Vi to get

d

dt
η(Ui) = −

1

|Ci|

∑

j∈i

V⊤
i Fij

= −
1

|Ci|

∑

j∈i

q∗ij +
1

2|Ci|

∑

j∈Ni

[(
Vij −

1

2
∆Vij

)⊤

DijJVKij

]

= −
1

|Ci|

∑

j∈i

[
q∗ij −

1

2
V

⊤
ijDijJVKij

]
−

1

4|Ci|

∑

j∈i

∆V⊤
ijRijΛijBijR

⊤
ij∆Vij .

Since RijΛijBijR
⊤
ij is symmetric positive semi-definite, we get

d

dt
η(Ui) +

1

|Ci|

∑

j∈i

qij 6 0.

3.4.1 Reconstruction procedure

In order to use Lemma 3.8, we describe a reconstruction procedure that satisfies (3.10). For each cell
interface described by the neighbouring vertices i and j, define the scaled entropy variables Z = R⊤

ijV.
Given the entropy variables {Vi}i, we reconstruct in the scaled entropy variables {Zi}i to obtain the
reconstructed states Zij = Zi(xij) and Zji = Zj(xij). We choose the corresponding reconstructed states
for the entropy variables as

Vij = (R⊤
ij)

−1Zij , Vji = (R⊤
ij)

−1Zji

Thus, the dissipation terms in the flux given by (3.11) can be written in terms of the scaled entropy
variables as

DijJVKij = RijΛijJZKij

The condition given by (3.10) can now be interpreted in terms of the scaled variables as

JZKij = Bij∆Zij

for some diagonal matrix Bij with non-negative entries. Componentwise, this further reduces to a sign
property on the n different components Z of Z:

sign
(
JZKij

)
= sign

(
∆Zij

)
. (3.12)
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3.4.2 Second order reconstruction

We now describe a reconstruction procedure of scaled entropy variables appearing in the dissipation
terms, which satisfies the sign property. In practice we never construct the polynomials Vi(x) but we
directly approximate the interface value of scaled entropy variables. Consider the stencil shown in Figure
3. The scaled entropy variables with respect to the interface between nodes i and j are given by

Zi = R⊤
ijVi, Zj = R⊤

ijVj (3.13)

Assume that the gradients of Z are available at the vertices and define the following differences.

• The forward differences

∆f
ij = ∆Zij , ∆f

ji = Zj+1 − Zj = 2∇hZj · (xj − xi)−∆Zij (3.14)

• The backward differences

∆b
ij = Zi − Zi−1 = 2∇hZi· (xj − xi)−∆Zij , ∆b

ji = ∆Zij . (3.15)

The reconstructed values of Z at the interface are given by

Zij = Zi +
1

2
M
(
∆f

ij ,∆
b
ij

)
, Zji = Zj −

1

2
M
(
∆f

ji,∆
b
ji

)
(3.16)

for each component Z of Z, where we have used the minmod slope limiter function

M(a, b) =

{
smin(|a|, |b|) if s := sign(a) = sign(b)

0 otherwise.

Lemma 3.9. The reconstruction of the scaled entropy variables described by (3.16), (3.14) and (3.15)
satisfies the sign property (3.12).

Proof. Consider

Zji − Zij = (Zj − Zi)−
1

2

[
M
(
∆f

ji,∆
b
ji

)
+M

(
∆f

ij ,∆
b
ij

)]
.

If Zj − Zi > 0, then

M
(
∆f

ij ,∆
b
ij

)
6 ∆f

ij , M
(
∆f

ji,∆
b
ji

)
6 ∆b

ji = ∆f
ij .

Thus,

Zji − Zij > (Zj − Zi)−
1

2

[
2∆f

ij

]
= 0.

Similarly, if Zj − Zi 6 0, then

M
(
∆f

ij ,∆
b
ij

)
> ∆f

ij , M
(
∆f

ji,∆
b
ji

)
> ∆b

ji = ∆f
ij

giving us

Zji − Zij 6 (Zj − Zi)−
1

2

[
2∆f

ij

]
= 0.

Hence, the reconstruction satisfies the sign property.
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Figure 4: (a) Stencil for gradient evaluation at node i, (b) neighbouring triangle T

3.4.3 Computation of gradients

The second-order limited reconstruction described above requires the evaluation of nodal gradients of
scaled entropy variables. We evaluate these gradient as

∇hZi = R⊤
ij∇hVi

where ∇hVi must be numerically approximated. Consider the node i and the set of neighbouring primary
triangular cells denoted by T ∈ i, as shown in Figure 4. The cell-gradients on each neighbouring triangle
T is approximated by

∇hV
T = −

1

2|T |

(
V1 ⊗ nT

1 +V2 ⊗ nT
2 +V3 ⊗ nT

3

)
(3.17)

where X⊗Y =
(
XmYn

)
m,n

denotes the outer product. This approximation is exact for affine functions,

and thus second order accurate. Finally, the gradient at node i is approximated as

∇hVi =

∑
T∈i

|T |∇hV
T

∑
T∈i

|T |
. (3.18)

4 Numerical results

We now present the numerical results of the scheme discussed above on several standard two dimensional
test cases. We introduce the following nomenclature for various schemes that are tested in this section.
The kinetic energy preserving and entropy conservative scheme from Example 3.4 will be referred to as
the KEPEC scheme. The KEPEC scheme with the first order entropy variable based dissipation operator
is termed as the KEPES scheme. The second order limited reconstruction of the scaled entropy variables
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with the KEPES scheme will be referred to as the KEPES-TeCNO scheme. The KEPES scheme with a
pure second order reconstruction of the scaled entropy variables using central undivided differences

Zij = Zi +
1

2

(
∆f

ij +∆b
ij

2

)
, Zji = Zj −

1

2

(
∆f

ji +∆b
ji

2

)

will be called KEPES2. Note that this scheme is not necessarily entropy stable as this unlimited re-
construction need not satisfy the sign property. The original Roe scheme [25] is used for comparison of
numerical results.

The semi-discrete scheme is integrated in time using the explicit Strong Stability Preserving Runge-
Kutta 3-stage scheme (SSP-RK3) method [12]. The Lower-Upper Symmetric Gauss Seidel method (LU-
SGS) [2] is used for implicit time integration, and is preferred for steady problems as it allows larger time
steps. In all test cases we consider the ideal gas with γ = 1.4 except when indicated otherwise.

4.1 Modified shock tube problem

This test case describes a one-dimensional shock tube problem of the Sod type. The primary and the
Voronoi dual meshes used for the simulations are shown in Figure 5. We consider a rectangular domain
[0, 1] × [0, 0.4] and discretize it with 100 nodes in the direction of the flow, and 80 nodes along the flow
cross-section. The left state is given by (ρL, uL, vL, pL) = (1.0, 0.75, 0.0, 1.0) and the right state is given
by (ρR, uR, vR, pR) = (0.125, 0.0, 0.0, 0.1), with the initial discontinuity along x = 0.3. Time integration
is performed using SSP-RK3 with CFL=0.3.

The Roe scheme gives an entropy violating jump in the expansion region where the flow becomes
sonic, as shown in Figure 6. This is not surprising as we have not added any entropy fix to the standard
Roe scheme [25]. However, both the KEPES and KEPES-TeCNO schemes, being entropy stable, do not
suffer from this problem. The comparison in Figure 7 shows that the high-resolution KEPES-TeCNO
scheme is significantly more accurate as compared to KEPES. Convergence is demonstrated in Figure 8,
where the solutions are evaluated using KEPES-TeCNO on three levels of uniform grid refinements, with
the number of vertices along the streamwise direction being N = 100, 200 and 400 respectively.

4.2 Supersonic flow over wedge

This test case involves a weak oblique shock which occurs when a supersonic flow is ‘turned into itself’
due to the presence of a wedge. The wedge is inclined at an angle of 10 degrees to the horizontal. The
farfield Mach number is 2, with slip boundary conditions on the wedge. The mesh has 18848 nodes and
we use median dual cells as control volumes. Time integration is performed using LU-SGS. As can be
seen in Figure 9, the shock profile is quite dissipated with KEPES. But, the minmod reconstruction in
KEPES-TeCNO scheme leads to a much sharper shock profile, that is comparable to the one computed
by the Roe scheme with MUSCL type reconstruction and van Albada limiter.

4.3 Transonic flow past NACA-0012 airfoil

This is an example of a symmetric NACA-0012 airfoil placed in a freestream Mach number of 0.85 and
angle of attack of 2 degrees. The flow develops shocks both on the upper and lower airfoil surfaces. We
compute this flow on a triangular grid by considering the median dual cells, containing 180 points on the
airfoil surface and 20 points on the farfield boundary which is a circle, with a total of 6402 vertices. Time
integration is performed using LU-SGS. The Mach contour plots in Figure 10 show that KEPES-TeCNO
gives much better shock resolution than KEPES, and comparable to the high-resolution Roe-MUSCL
scheme.
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(a) Primal grid

(b) Voronoi dual grid

Figure 5: Grid used for the shock tube problem
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Figure 6: Modified shock tube problem using first order schemes
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Figure 7: Comparison of KEPES and KEPES-TeCNO schemes
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Figure 8: Density plot; grid refinement study with KEPES-TeCNO

(a) KEPES (b) KEPES-TeCNO (c) Roe (MUSCL)

Figure 9: Mach number for supersonic flow over wedge
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(a) KEPES (b) KEPES-TeCNO (c) Roe (MUSCL)

Figure 10: Mach number, 30 equally spaced contours between 0.04 and 1.7
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Figure 11: Pressure coefficient plots of the surface of the airfoil with p∞ = 0.9886, M∞ = 0.85

The pressure coefficient for compressible flows is given by

Cp =
2

γM2
∞

(
p

p∞
− 1

)

where p is the nodal pressure, while p∞ and M∞ are the farfield pressure and Mach numbers respectively.
We consider the nodal values of Cp on the surface of the airfoil, as shown in Figure 11. The x-axis
represents the normalized wingspan, while the y-axis represents the inverted pressure coefficient. Thus,
the upper surface of the wing, which has a much lower pressure distribution as compared to the lower
surface, appears at the top of the plot. There is a sudden change in pressure across the shock that
develops on both surfaces, and is clearly visible in the Cp plots. The area enclosed by the graph in
the plots represents the lift experienced by the airfoil. Again, the high resolution KEPES-TeCNO was
indistinguishable in accuracy with the standard high resolution Roe-MUSCL scheme.

4.4 Supersonic flow past cylinder

Most shock-capturing numerical schemes, except for a few highly dissipative schemes like the Rusanov
scheme, can lead to numerical instabilities, particularly when approximating strong shocks. One of the
most common anomalies is the carbuncle phenomenon [23, 24], which is produced when computing a
supersonic flow past a blunt body such as a circular cylinder. Instead of having a smooth bow shock
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(a) Primal grid (b) Median dual grid (c) Voronoi dual grid

Figure 12: Grid used for supersonic cylinder problem

profile upstream of the cylinder, a protuberance appears ahead of the bow shock along the stagnation
line. This effect seems to be more pronounced the more closely the grid is aligned to the bow shock.

Simulations were performed for the inviscid supersonic flow over a semi-cylinder. The primal triangular
grid and the corresponding median and Voronoi dual meshes are shown in Figure 12. The Voronoi cells
lead to nearly structured type grids and can thus lead to carbuncle problem since the shock will be
aligned with the cell faces to a greater extent than for the median dual cells. At free-stream Mach
number M∞ = 2, KEPES and KEPES-TeCNO give carbuncle free solutions on both median dual and
Voronoi dual meshes, as can be seen in Figure 13. The bow shock is well resolved in each case. Similar
results were observed when the schemes were used to simulate an almost hypersonic flow with M∞ = 20,
as shown in Figure 14.

4.5 Subsonic flow past cylinder

We approximate the near incompressible limit of the Euler equations by considering an inviscid flow over
a full cylinder at a low Mach number of 0.3. The steady state solution has both top-bottom and left-
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(a) KEPES (b) KEPES-TeCNO (c) KEPES (d) KEPES-TeCNO

Figure 13: Density contours for supersonic cylinder, M∞ = 2. (a)-(b) median dual grid; (c)-(d) Voronoi
dual grid

(a) KEPES (b) KEPES-TeCNO (c) KEPES (d) KEPES-TeCNO

Figure 14: Density contours for supersonic cylinder, M∞ = 20. (a)-(b) median dual grid; (c)-(d) Voronoi
dual grid
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(a) KEPES (b) KEPES-TeCNO (c) KEPES2

Figure 15: Mach number, 30 equally spaced contours between 0.001 and 0.7

Scheme Minimum Maximum Percent deviation from s∞
KEPES 2.07147 2.08695 +0.747 % -0.000 %

KEPES-TeCNO 2.07147 2.07208 +0.029 % -0.000 %
KEPES2 2.07139 2.07153 +0.003 % -0.004 %

Table 1: Physical entropy bounds, with freestream s∞ = 2.07147

right symmetry. The first order KEPES solution loses its symmetry due to the excessive dissipation, as
shown in Figure 15. The KEPES-TeCNO does a much better job at preserving the symmetry property,
comparable to the approximate solution given by the unlimited second order KEPES2 scheme.

The flow under consideration is nearly isentropic, that is, the physical entropy of the flow around the
cylinder should be nearly constant. To demonstrate the ability of the schemes to preserve this constancy,
the entropy bounds obtained with each scheme and their percentage deviation from the freestream entropy
value are mentioned in Table 1. We notice that KEPES gives the largest positive deviation, KEPES2 gives
almost negligible positive deviation, while the limited KEPES-TeCNO scheme lies somewhere in between.
Both the entropy stable schemes show no negative deviations (as rigorously shown in this paper), while
the KEPES2 scheme gives almost negligible negative deviation. Although the KEPES2 performs the best
in this scenario, we cannot theoretically prove any stability estimates with it. Moreover, the unlimited
KEPES2 would perform rather poorly in the presence of shocks.

4.6 Step in wind tunnel

This test case is described in [28] and involves an inviscid supersonic flow past a step in a wind tunnel
which is impulsively started, with initial Mach number M = 3. The wind tunnel is one unit length wide
and three unit lengths long. The step is 0.2 unit length high and is located 0.6 unit length from the
left-hand end of the tunnel. At the left boundary, one imposes an inflow boundary condition. The exit
boundary condition on the right has no effect on the flow, because the exit velocity is always supersonic.
Along the top and bottom walls of the tunnel slip boundary conditions are applied. The corner of the
step is the center of a rarefaction fan and hence is a singular point of the flow.

The flow develops several shocks which undergo further reflections. A shock triple point intersection
leads to the formation of a slip line. The grid is adapted to be finer near the corner where the spacing
is of size ≈ 0.002 while the maximum spacing is of size ≈ 0.01. The total number of gridpoints is 70970.
The density contours at time t = 4 are shown in Figure 16 using the KEPEC-TeCNO scheme which is
able to resolve the main features of the flow very accurately.
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Figure 16: Density, 50 contour lines between 0.5 and 7.1 using KEPES-TeCNO at t = 4

5 Conclusions

We consider symmetrizable systems of conservation laws in two space dimensions and design a high-
resolution entropy stable finite volume scheme to approximate them. The underlying computational
domain is discretized using triangles and a finite volume scheme is proposed by combining entropy con-
servative fluxes and numerical dissipation operators, based on piecewise linear reconstruction that enforces
a sign property. A minmod limiter, satisfying the sign property is used. The resulting scheme is

• Entropy stable i.e, satisfies a discrete form of the entropy inequality. Given that the underlying
entropy is strictly convex, the discrete entropy inequality automatically guarantees a bound on the
approximate solutions in L2. To the best of our knowledge, the proposed KEPES-TeCNO scheme
is one of the first high-resolution finite volume schemes that are shown (rigorously) to be entropy
stable on unstructured grids.

• Robust in approximating complex flow features such as strong (supersonic) shocks, shock reflections,
slip lines and near incompressible flows. The robustness of the scheme is demonstrated through a
large number of benchmark numerical experiments that illustrate that the KEPES-TeCNO is at
least as accurate as a standard high-resolution Roe-MUSCL method.

Thus, we design a scheme whose accuracy is at least comparable to existing high-resolution schemes but
at the same time, the proposed scheme has rigorous stability properties. The numerical tests show that
the scheme is able to preserve positivity of density and pressure without any additional treatment on un-
structured grids. The current scheme is restricted to second-order resolution. Even higher-order schemes
are currently being investigated. Future work will present the extension of the proposed methodology to
the Navier-Stokes equations and to three space dimensions.
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Appendix A Roe-type dissipation for Euler equations

The Roe-type dissipation matrix is given by

Dij = R⊤
ijΛijRij
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where

R =




1 1 0 1
u− añ1 u ñ2 u+ añ1

v − añ2 v −ñ1 v + añ2
H − auñ

1
2 |u|

2 uñ2 − vñ1 H + auñ


S

1

2

S = diag
(

ρ
2γ ,

(γ−1)ρ
γ

, p, ρ
2γ

)

Λ = diag
(
|un − a|, |un|, |un|, |un + a|

)
.

In the above expressions, S is the scaling matrix for the eigenvectors, ñ is the unit outward normal on

the faces, uñ = u· ñ, a =
√

γp
ρ

is the speed of sound in air and H = a2

γ−1 + |u|2

2 is the specific enthalpy.

The following average states are used to evaluate the above matrices:

u = uij , ρ = ρ̂ij , p =
ρij

2βij

, a =

√
γ

2β̂ij
. (A.1)

The KEPES scheme (see Section 4) is able to resolve stationary contact discontinuities exactly, if the
speed of sound a in the dissipation operator Dij is evaluated using the expression described in (A.1)
[3].
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