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Abstract

We consider PDE constrained shape optimization in the frame-
work of finite element discretization of the underlying boundary value
problem. We present an algorithm tailored to preserve and exploit
the approximation properties of the finite element method, and that
allows for arbitrarily high resolution of shapes. It employs (i) B-spline
based representations of the deformation diffeomorphism, and (ii) su-
perconvergent domain integral expressions for the shape gradient. We
provide numerical evidence of the performance of this method both
on prototypical well-posed and ill-posed shape optimization problems.

1 Introduction

Physical phenomena are described by mathematical models that link input
and output quantities. An important task in engineering is to find optimal
values of the input so that a target output is minimized. In shape optimiza-
tion the target output depends on the shape Ω of an object. This dependence
is modeled via a shape functional J .

In several relevant applications the shape functional J depends, addition-
ally, on the solution of a boundary value problem (BVP) stated on Ω. In this
case we speak of PDE constrained shape optimization. These optimization
problems are highly non-linear and can rarely be solved analytically. Usually,
one has to content oneself with approximate optimal shapes obtained with
iterative optimization algorithms combined with approximate solutions of
the underlying BVP. Clearly, the quality of the approximate optimal shapes
heavily depends on the choice of the numerical method used to retrieve them.

An accurate method to solve PDE constrained optimization problems has
been developed relying on boundary element method solutions of the under-
lying BVP [16, 17]. However, the bulk of literature considers discretizations
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by means of the finite element method (FEM) [2, 6–8, 18, 23–26, 28]. In this
case we can distinguish between moving-mesh and fixed-mesh methods.

The former discretize an initial guess Ω0 with a mesh and then optimize
the coordinates of the mesh nodes [2, 26, 28]. This is a very delicate task
because the mesh might get distorted or self-intersect as the optimization
routine proceeds [3, 4].

Among the fixed-mesh methods, the two most popular approaches are
level-set methods and free-form deformation methods. In the level-set ap-
proach, the boundary of the optimal domain is represented as the zero-level
of a function [5]. The optimization is then carried out by updating this
function. Again, this is a delicate process because, to identify the boundary
of the optimized domain, the level set function should have steep slope at
the zero-level. However, as the optimization proceeds, it is observed that
level-functions tend to become flat [27].

On the other hand, free-form deformation methods [7, 24] recast the
shape optimization problem as an optimal control problem. Shapes are
parametrized by applying a transformation to the initial guess Ω0. This
transformation is constructed with (piecewise) polynomials defined on a lat-
tice of control points, and optimization is carried out on their coordinates.
This approach allows to preserve the approximation properties of FEM. How-
ever, the infinite dimensional shape optimization problem is replaced with
a counterpart with a fixed small number of control parameters, and the de-
pendence of the quality of the discrete solution on the number of control
parameters is not clear.

We present an algorithm developed to preserve and exploit the approx-
imation properties of FEM, and that allows for arbitrarily high resolution
of shapes. Similar to the free-form deformation approach, we recast the
shape optimization problem as an optimal control problem. Shapes are
parametrized by letting a diffeomorphism act on an initial shape Ω0. Pursu-
ing a Ritz approach, we discretize the diffeomorphism with conforming basis
functions based on cubic B-splines. We show that, under reasonable as-
sumptions, the sequence of optimal discrete solutions converges to the global
minimum as the dimension of the trial space tends to infinity. We also in-
vestigate the impact of FEM approximations in the context of elliptic PDE
constrained shape optimization and formulate a descent method that enjoys
superconvergence in the approximation of the Fréchet derivative. We test the
performance of the proposed method both on a well-posed model problem
stemming from the class of exterior Bernoulli free boundary problems and
on a prototypical ill-posed inverse problem.
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2 Shape optimization in parametric form

Let D ⊂ R
d be bounded and convex domain (hold-all domain), and let Ω0

be a compact subset of D with Lipschitz boundary. We fix ε > 0 and define
the set of admissible shapes as

Uad(Ω0) := {TV(Ω0); TV = I + V , ‖V‖C1(D;Rd) ≤ 1− ε} . (1)

Note that the map TV := I+V is a diffeomorphism whenever ‖V‖C1(D;Rd) < 1
[2, Lemma 6.13]. Let J be a real-valued functional defined on Uad(Ω0), and
let J̃ be defined by

J̃ : B1
1−ε → R ; V 7→ J (TV (Ω0)) .

where Bk
1−ε denotes the closed ball in Ck(D;Rd) of radius 1 − ε centered in

0. The shape optimization problem

inf
Ω∈Uad(Ω0)

J (Ω)

can be recast as
inf

V∈B1
1−ε

J̃ (V) . (2)

Theorem 1. Let J̃ be continuous with respect to the C1(D;Rd)- norm and
restrict the shape optimization problem (2) to

inf
V∈B2

1−ε

J̃ (V) . (3)

Then, there exist a vector field V∗ ∈ C1(D;Rd) so that

J̃ (V∗) = inf
V∈B2

1−ε

J̃ (V) .

Proof. We follow closely [2, Thm 5.12]. The main ingredient is the compact

embedding C2(D;Rd)
c
→֒ C1(D;Rd), which holds for D convex or, more

generally, if “every pair of points x, y ∈ D can be joined with a rectifiable
arc in D having length not exceeding some fixed multiple of |x− y|” [1, Thm
1.34].

A minimizing sequence of (3) is bounded (by definition of the optimiza-
tion problem). Thus, by compactness, we can extract a subsequence that
converges to a limit function V̂ in the C1(D;Rd)-norm. Finally, the continu-
ity assumption on J̃ implies V̂ = V∗.
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Remark 1. The continuity assumption on J̃ in Theorem 1 is fulfilled by
most of the shape functionals considered in literature. For instance, this is
the case for the volume and the surface area shape functionals.

Remark 2. A counterpart of Theorem 1 still holds if the function spaces
C1(D;Rd), C2(D;Rd) are replaced by W 1,∞(Rd;Rd),W 2,∞(Rd;Rd), respec-
tively. However, having approximations by means of the Ritz method in mind,
we restrict our framework to separable spaces.

Remark 3. There is little hope for uniqueness in this framework. Let V∗ be
an optimal solution. If there is a vector field Ṽ 6= I so that Ṽ(∂Ω0) = ∂Ω0

(from the set point of view), then the composition V∗ ◦ (I + Ṽ) is an optimal
solution, too.

Approximate solutions can be obtained easily with a Ritz approach.

Theorem 2. Let {VN}N∈N be a nested sequence of C2(D;Rd)-conforming
trial spaces that satisfies

∪N∈NVN
C2(D;Rd)

= C2(D;Rd) .

Let {V∗
N}N∈N be the sequence of discrete solutions defined by

V∗
N ∈ argmin

VN∈VN∩B2
1−ε

J̃ (VN) . (4)

Then, under the assumptions of Theorem 1, {V∗
N}N∈N is a minimizing se-

quence of J̃ .

Proof. We follow closely the proof of the classic result on the convergence of
Ritz methods given in [19, Sect. 40.1].

Let µ ∈ R be the infimum of (3). Note that µ > −∞. Let a > 0, and let
V ∈ B2

1−ε satisfy

J̃ (V) < µ+ a .

By continuity of J̃ , V can be rescaled so that

‖V‖C2(D;Rd) < 1− ε and J̃ (V) < µ+ 2a .

Let b > 0, and let N = N(b) ∈ N be sufficiently large. Then, there exists a
VN ∈ VN ∩ B2

1−ε that satisfies

‖V − VN‖C2(D;Rd) < b .
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Furthermore, for b = b(a) small enough, it holds

J̃ (VN) < µ+ 3a .

Let V∗
N be defined as in (4). It holds

µ ≤ J̃ (V∗
N) ≤ J̃ (VN) ≤ µ+ 3a .

Since a is arbitrary, it follows

lim
N→∞

J̃ (V∗
N) = µ .

Remark 4. More sophisticated convergence theories can be found in [17,18,
23]. These articles rely on a parametrization of the boundary, and consider
as admissible shapes those that can be reached via a normal perturbation of
the boundary ∂Ω0. In this case, uniqueness of the optimal solution can be
achieved, and a priori convergence rates can be proved.

3 PDE constrained shape optimization

In PDE constrained shape optimization, the goal is to find the domain Ω
that minimizes the functional J (Ω, u) subject to a PDE constraint Au =
f in Ω. Here, A : X(Ω) → X(Ω)∗ denotes a second order X(Ω)-elliptic
operator between the Hilbert space X(Ω) and its dual X(Ω)∗, which are
function spaces on the domain Ω. Similarly as in (2), the shape optimization
problem can be recast in a parametric form relying on the characterization
of admissible domains (1), that is,

inf
V∈B1

1−ε

J̃ (V , u), subject to ÃVu = f̃V in Ω0 . (5)

Both the elliptic operator ÃV : X(Ω0) → X(Ω0)
∗ and the linear functional

f̃V ∈ X(Ω0)
∗ depend on the vector field V and are created in a way so that

u ∈ X(Ω0) is the solution to ÃVu = f̃V in Ω0 if and only if û := u◦T−1
V ∈ X(Ω)

is the solution to Aû = f in Ω.
The idea of recasting both the shape functional and the PDE constraint

on a reference domain is not new to shape optimization. It has already been
used, for instance, in [8,18,25,26], and is, de facto, the standard approach for
shape optimization based on free-form deformations; see [7,24] and references
therein.
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Example 1. The parametric form of the shape optimization problem

inf
V∈Uad(Ω0)

J (Ω, u), subject to −∆u = f in H1
0 (Ω) , (6)

with J (Ω, u) :=
∫

Ω
j(u)dx, j ∈ C1(R) and f ∈ H−1(Ω), reads

inf
V∈B1

1−ε

J̃ (V , u) , subject to (7)

− div(MV gradu) = (detDTV)T
∗
V(f) in H1

0 (Ω0) ,

where the pullback T ∗
V is defined as the composition T ∗

V(f) := f ◦ TV ,

J̃ (V , u) :=

∫

Ω0

j(u)(detDTV)dx , and MV := (detDTV)DT−1
V DT−T

V .

Assuming continuity of the map V 7→ J̃ (V , u) on C1(D;Rd), an approxi-
mate solution of (5) can be obtained as in Theorem 2 by computing

V∗
N ∈ argmin

VN∈VN∩B2
1−ε

J̃ (VN , u), subject to ÃVN
u = f̃VN

in Ω0 (8)

for N large enough. The approximate optimal solution V∗
N must satisfy the

variational inequality [20, Thm 1.48]

dJ̃ (V∗
N , u;Wn − V∗

N) ≥ 0 for all WN ∈ VN ∩ B2
1−ε , (9)

where dJ̃ denotes the Fréchet derivative of J̃ . It can be retrieved with
descent methods, which converge in C1(D;Rd) due to the compactness of
VN ∩B2

1−ε. More details on the algorithm are given in Section 4.

Remark 5. In example 1, a minimizing sequence {V∗
N}N∈N of (8) has a

subsequence {V∗
Ni
}i∈N that converges strongly in the C1(D;Rd)-norm to a

V̂ ∈ C1(D;Rd). Therefore, the ellipticity constants of {ÃVNi
}i∈N are bounded

from below by a constant c > 0. This implies that

‖uṼ − uNi
‖H1(Ω0) → 0 as i → ∞ ,

where uNi
is the solution to ÃVNi

u = f̃VNi
and uṼ is the solution to ÃV̂u = f̃V̂ ,

see [2, Lemma 5.3]. With this result it is easy to show C1(D;Rd)-continuity
of the constraint functional (7).
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4 Algorithm and implementation

We focus on the optimization problem (8). Let Ω0 ⊂ D be an initial guess.
As trial space VN , we choose the space spanned by multivariate B-splines
of degree 3 generated on a regular grid that covers the hold-all domain D;
see [22, Sect. 7.3]. Note that the hold-all domain D can be chosen to have a
simple shape, e.g., a product domain. More precisely, vector fields belonging
to Vn can be written as

VN =
N
∑

i=1

Bi

d
∑

j=1

cjiej , cji ∈ R , (10)

where Bi denotes the i-th multivariate B-spline of degree 3, and ej, j =
1, . . . , d, are basis vectors of Rd.

The trial space VN fulfills the assumptions of Theorem 2: it contains ten-
sorized polynomials by Marsden’s Identity [22, Sect 4.3], and it is C2(D;Rd)-
conforming because multivariate B-splines of degree 3 are twice continuously
differentiable by construction. Moreover, B-splines have compact support
and are polynomial in each grid cell. These two properties are crucial for an
efficient implementation of the algorithm. Finally, using B-splines defined on
a regular grid greatly simplifies the implementation, because the B-splines
Bi are obtained by translating a single “mother” function [22, Sect. 7.3].

As mentioned in Section 3, an approximation of the discrete optimal
solution V∗

N can be retrieved with descent methods, which rely on the Fréchet
derivative dJ̃ of J̃ . Formulas for the Fréchet derivative of J̃ can easily be
derived with the Lagrangian approach described in [20, Sect. 1.6.4]. Note
that this approach is simpler than the Lagrangian approach for deriving the
Eulerian derivative of J (Ω, u) described in [14]; indeed, in the parametric
approach described in Section 3, the function space to which u belongs is
independent of the control parameter V .

Remark 6. The Fréchet derivative of J̃ (·, u) at V evaluated in the direction
W is equal to the Eulerian derivative of J (TV(Ω), u) in the direction W ◦
(T−1

V ), because TV+W = TW◦T−1
V

◦ TV .

Example 2. The Fréchet derivative of J̃ from (7) reads

dJ̃ (V , u;W) =

∫

Ω0

(j(u)− fp)∂W(detDTV)

− grad f · Wp detDTV + grad p · ∂WMV gradu dx ,
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where

∂WMV := det(DTV)
(

tr(DT−1
V DW)DT−1

V DT−T
V

−DT−1
V (DT−T

V DWT +DWDT−1
V )DT−T

V

)

,

∂W(detDTV) := det(DTV)tr(DT−1
V DW) ,

and where p ∈ H1
0 (Ω0) is the solution to an adjoint problem

− div(MV grad p) = −j′(u)(detDTV) in H1
0 (Ω0) .

As Example 2 clearly illustrates, the Fréchet derivative of PDE con-
strained functionals depends on the solution u of the state problem and,
possibly, on the solution p of the adjoint problem. As explicit analytic so-
lution of these boundary value problems are usually not available, one can
replace them with approximate solutions, at the cost of introducing a per-
turbation error when solving the first order optimality condition (9). In
particular, this perturbation error both affects the quality of the descent
solutions and the stopping criteria in Algorithm 1 on page 11.

We consider here approximations by means of the finite element method.
When stated as a volume integral, the map u 7→ dJ̃ (V , u;W) is usually
continuous with respect to the energy norm of u. Therefore, relying on
standard duality techniques, one can expect to observe superconvergence in
the approximation of the operator J̃ (V , u; ·) when the solution u is replaced
by its finite element counterpart uh. The same holds for evaluating the
shape functional J̃ (V , u). In particular, we consider linear Lagrangian finite
elements on quasi-uniform triangular meshes. In this case, it can be shown
that

|dJ̃ (V , u;W)− dJ̃ (V , uh;W)| = C(V)h2‖W‖W 2,4(Rd;Rd) , (11)

where h denotes the width of the finite element mesh and C(V) is a constant
that depens on V and Ω0. On the other hand, we do not observe supercon-
vergence in (11) when dJ̃ is recast as an integration on the boundary ∂Ω0.
We refer to [21] for more details.

The approximate optimal solution V∗
N is computed iteratively with a de-

scent method as illustrated in Algorithm 1 on page 11. The next paragraphs
give a detailed description of the algorithm’s steps.

In Line 12 we compute the descent direction. Since the Fréchet derivative
dJ̃ (V , u; ·) belongs to the dual space of C2(D;Rd), its descent direction is
usually defined as the solution of [20, Page 103]

inf
‖W‖

C2(D;Rd)
=1

dJ̃ (V , u;W) .
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However, such a descent direction may not exist because the space C2(D;Rd)
is not reflexive.

Employing knowledge on the shape Hessian is also not straightforward,
because the second order Fréchet derivative d2J̃ cannot be expected to be
coercive in the C2(D;Rd)-norm. Indeed, for any vector field W tangential to
Ω0 as well as for vector fields with a compact support that does not intersect
∂Ω0, it holds

1

dJ̃ (V , u;W) = 0 and d2J̃ (V , u;W ,W) = 0 .

However, in several situations, the shape Hessian is a positive bilinear form
when evaluated on vector fields with non-zero normal component on ∂Ω0.
For instance, this is the case for the shape functional defined in (6), see [15].
In the seminal work [13] it has been shown that shape optimization problems
admit strict local minima, also called stable minimizers, if the shape Hessian
is also coercive with respect to the H1/2(∂Ω0)-norm of the normal component
of the vector fields, that is,

d2J̃ (V , u;W ,W) ≥ C‖W · n‖H1/2(∂Ω0) , (12)

where n is the normal vector field on ∂Ω0 and C > 0 is a constant independent
of W . Thus, coercivity in the H1/2(∂Ω0)-norm can be used as a criterion to
distinguish between well- and ill-posed shape optimization problems [16].
Therefore, from a theoretical point of view, it is natural to consider the
H1/2(∂Ω0)-representative of the Fréchet derivative, which is unique up to
extensions into the domain D of its values on ∂Ω0 in the normal direction n.
Note that for ill-posed shape optimization problems this choice provides a
regularization in the spirit of regularized sequential quadratic programming
[11].

We consider here descent directions given as H1
0 (D;Rd)-representatives

of the Fréchet derivative, that is, solutions to the linear system of equations

min
‖W‖

H1
0(D;Rd)

=1
dJ̃ (V , u;W) . (13)

By the continuity of the normal Dirichlet trace operator

H1
0 (D;Rd) → H1/2(∂Ω0) , W 7→ W · n|∂Ω0 ,

theH1
0 (D;Rd)-representative of the Fréchet derivative is the uniqueH1

0 (D;Rd)-
extension of the normal values of the H1/2(∂Ω0)-representative.

1The shape gradient dJ̃ (V, u;W) is well-defined for any vector fieldW ∈ W 1,∞(Rd;Rd),
whilst the shape Hessian requires at least W ∈ W 2,∞(Rd;Rd) [14].
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In Line 15 we check that the transformation TV is indeed a diffeomor-
phism. As suggested in [7], we verify that the value of detDTV is bigger than
a threshold value2. This relaxes the restrictive C2(D;Rd)-norm condition in
(4) but still guarantees that the algorithm is well-defined. If min(detDTV)
is too small we reduce the optimization step until TV defines a feasible trans-
formation. Note that the while loop terminates due to the continuity of the
determinant.

Remark 7. It might nevertheless happen that the (continuous) optimal solu-
tion V∗ lies on the boundary of B1

1−ε, and that, however, the value of J̃ (V∗) is
not yet satisfactory for convergence purposes. For instance, this might be the
case when the initial guess Ω0 is poorly chosen. In this situation a remedy is
to select the retrieved shape as initial guess, and to start the algorithm again.
Practically, this can be done by either creating a new mesh of TV∗(Ω0) or
by replacing the transformation TV with the composition TV ◦ TV∗ (exploiting
the fact that the composition of diffeomorphisms is again a diffeomorphism).
This latter approach can be made computationally affordable by simply re-
evaluating all Bi’s on the mapped quadrature nodes; see the next paragraph
on the computational complexity of Algorithm 1. Note also that Theorems 1
and 2 still hold as long as a finite number of compositions is considered.

Finally, in line 8 we guarantee the admissibility of the optimization step
δ according to the Armijo rule [20, Sect. 2.2.1.1].

In each iteration, the computational cost of the algorithm is mainly due
to computing the finite element solution uh in Line 5. Particularly costly
are the assembly of the stiffness matrix and solving the linear system. The
computational complexity of the latter depends only on the dimension of the
finite elements trial space and can be reduced relying on iterative solvers or
multigrid strategies; cf. [6]. On the other hand, the assembly of the stiffness
matrix comprises numerical integration in each triangle and, thus, requires
several calls of the costly matrix function MV , whose entries are given as a
sum of basis functions, and that has to be evaluated in each quadrature point.
A first reduction of this computational cost can be achieved by realizing that,
by the Hadamard-Zolésio structure theorem [14, Thm 2.4], only the B-splines
whose supports intersect ∂Ω0 have to be taken into account. Nevertheless,
we experienced that this is not enough to obtain reasonable computational
times. Therefore, before starting the optimization routine, in Line 3 we pre-
evaluate all B-splines in every quadrature point once and store the values.

2In practice, this condition can be tested only on a finite number of points. In our
implementation we evaluate detDTV on the FE quadrature points.
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Algorithm 1 Gradient method with Armijo rule

1: Select initial design Ω0, optimization step δ, and parameters ε,γ ∈ (0, 1)
2: Initialize VN = 0, V temp

N = 0,
3: Precompute all Bi’s on quadrature nodes
4: for ii = 1, . . . ,MAX ITER do

5: Compute finite element solution uh of ÃVu = f̃V in Ω0

6: Compute J̃ new = J̃ (V temp
N , uh)

7: if ii > 1 and J̃ new − J̃ old > γδdJ̃(VN , uh;V
new
N ) then

8: Update δ = δ/2
9: else

10: Update δ = 2δ
11: Update VN = V temp

N , J̃ old = J̃ new

12: Compute Vnew
N = argminWN∈VN ,‖WN‖H1(D)=1 dJ̃ (VN , uh;WN)

13: end if

14: Set V temp
N = VN + δVnew

N

15: while min(detDTVtemp
N

) < ε do

16: Update δ = δ/2 and set V temp
N = VN + δVnew

N

17: end while

18: end for

Then, in each iteration, these values can be used to drastically reduce the
computational cost of the matrix assembly, because the values of MV can be
computed as linear combinations of the stored data. Additionally, these data
can also be used to speed up both the computation of the descent direction
in Line 12, which requires the evaluation of dJ̃ (V , uh;Biej) for i = 1, . . . , N,
j = 1, . . . , d, the feasibility test in Line 15, and the evaluation of the misfit
functional J̃ in Line 6. Note also that the memory requirement of this
strategy can be reduced by exploiting the compact support property of B-
splines: in each cell, just the B-splines whose support intersects that cell have
to be evaluated on the quadrature points.

5 Numerical experiments

Let Ω0 be an annular domain with internal boundary ∂Ωin and external
boundary ∂Ωout. The set of admissible domains is redefined to comprise
domains obtained by perturbing only the external boundary ∂Ωout, i.e.,

Uad(Ω0) := {TV(Ω0);TV = I + V ,min(detDTV) ≥ ε, suppV ∩ ∂Ωin = ∅} .
(14)
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We consider the shape optimization problem

inf
Ω∈Uad(Ω0)

∫

Ω

(∇u)2 + g2dx subject to







−∆u = 0 in Ω ,
u = 0 on ∂Ωout ,
u = 1 on ∂Ωin ,

(15)

where g is a constant.
Such an optimization problem stems from the class of Bernoulli exterior

free boundary problems, which are used as a benchmark in shape optimiza-
tion because they admit stable minimizers. This is due to the H1/2(∂Ω0)-
coercivity (see Equation (12)) of its Hessian in the optimal shape [16].

The parametric form of (15) reads

inf
Ω∈Uad(Ω0)

∫

Ω0

∇u ·MV∇u+ g2| detDTV |dx (16)

subject to







− divMV gradu = 0 in Ω0 ,
u = 0 on ∂Ωout

0 ,
u = 1 on ∂Ωin

0 ,

where MV := (detDTV)DT−1
V DT−T

V . The Fréchet derivative of the shape
functional in (16) reads

dJ̃ (V , u;W) =

∫

Ω0

∇u · (∂WMV)∇u+ g2(∂W detDTV) dx . (17)

Note that, in contrast to Example 2, formula (17) does not involve the solu-
tion of an adjoint problem [17].

Henceforth, we set g = (1.2ln(2.4))−1, so that the external boundary of
the optimal solution is a circle of radius 1.2 centered in the origin. In all
the experiments, we consider finite element solutions computed with linear
Lagrangian finite elements on quasi-uniform triangular meshes. Integrals in
the domain are computed by a 3-point quadrature rule of order 3 in each
triangle. The boundary of the computational domain is approximated by a
polygon, which will not affect the convergence of linear finite elements [10,
Sect. 10.2]. The optimization step δ is initially set to δ = 0.3 and the
parameter ε to ε = 0.1. Finally, instead of the Armijo rule condition, we just
check that the absolute error does not increase in line 8 of Algorithm 1 on
page 11.

To show that the algorithm proposed in Section 4 is feasible, we select
∂Ωout

0 to be an ellipse with major semi-axis of length 1.5 and minor semi-axis
of length 1.3, whilst ∂Ωout

0 is a circle of radius 0.5 centered in the origin (see
Figure 1). The domain Ω0 is covered with a regular grid of width 0.255 over
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Figure 1: The initial guess Ω0 is covered with a regular grid used to generate
cubic B-splines. Dots indicate the lower left corner of the support of the
active B-splines. The square in the top right corner indicates the support of
a cubic B-spline. A triangular grid is generated on Ω0 to compute the finite
element solution uh.

which the trial space VN is constructed. The finite element solution uh is
computed on the mesh displayed in Figure 1. Despite the coarseness of the
mesh and the low resolution of the B-spline grid, after twelve optimization
steps we already recover a satisfactory approximation of the target boundary;
see Figure 2 (left).

The experiment is repeated for a different initial design (a square with
edges of length 2.06). Again, after twelve steps we recover a satisfactory
approximation of the target boundary; see Figure 2 (right).

Next, we investigate the impact of the finite element approximation on the
retrieved approximate optimal solution. We keep the trial space of B-splines
VN fixed (with width 0.255), and we generate 7 additional meshes through
uniform refinement of the one displayed in Figure 1 (during the refinement
the boundary nodes are projected onto ∂Ω0). Let

err(i) :=

∣

∣

∣
J̃ (V

(i)
N , uh)− J̃min

∣

∣

∣

J̃ (I, uh)
(18)

be the scaled absolute error obtained after i steps of Algorithm 1. In Figure
3 (left) we plot the the evolution of err(i) for each mesh. In Figure 3 (right)
we plot err(60) for each mesh versus its mesh width. We observe an alge-
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Figure 2: Approximate optimal boundary retrieved after twelve iterations
of Algorithm 1 for numerical experiment 1 (left) and 2 (right). Despite the
coarseness of the mesh and the low resolution of the B-spline grid, we recover
a decent approximation (dark gray line) of the optimum (exterior boundary
of the annulus in the middle). Light gray lines indicate the boundary of the
initial guess Ω0.

braic convergence with rate 1.7. We remark that J̃ (V , uh) itself converges
quadratically in the mesh width h (uniformly in V ∈ C2(D;Rd)).

Then, we investigate the impact of the resolution provided by VN on the
approximate optimal solution. We perform the experiment on the fourth
mesh of the previous experiment. In Figure 4 we show the evolution of err(i)

for VN constructed on a regular grid of width 0.51 ( ) and 0.255 ( ).
The former trial space comprises 54 active basis function, whilst the latter
has 152 active basis functions. We see that the resolution of VN affects the
quality of the retrieved approximate optimal solution. However, it is not
easy to guess the optimal resolution of VN . A fine regular grid produces ba-
sis functions with small support, and thus, with higher C1(D;Rd)-norm (for
fixed C0(D;Rd)-norm). This is reflected in smaller values of detTV , because
we drop all B-splines whose support does not intersect ∂Ω0 since they lie in
the kernel of dJ̃ . There is, hence, a trade-off between the resolution of the
spline space and the maximal displacement that it can reproduce. Therefore,
we suggest to pursue an adaptive strategy by starting with a relatively coarse
resolution and, when the iteration stagnates, to embed the so far computed
discrete vector field on a nested space spanned by basis functions generated
on a grid with half the meshwidth [22, Sect. 7.6]. Then, new descent direc-
tions are computed by taking into account only the new basis functions that
intersect the boundary, whilst the ones that do not intersect the boundary
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Figure 3: Left: Evolution of the scaled absolute error (18) on 8 nested meshes
obtained with uniform refinement. Right: Value of scaled absolute error
versus meshwidth at 60th iteration. We observe algebraic convergence with
rate 1.7 (superconvergence).

are kept to provide a smoother decay of the vector field. The evolution of
err(i) for this strategy is displayed in Figure 4 ( ). We see that we are able
to improve the quality of the approximate optimal solution by switching to
a finer space after 10 iterations.

Finally, we test our algorithm on a prototypical ill-posed inverse problem.
Let B be a fixed subdomain of a domain Ω and let ut ∈ L2(B) be a given
target function. The goal is to find the optimal domain that contains B, so
that the shape functional

J (Ω) :=

∫

B

(u− ut)
2dx , subject to −∆u = 1 in H1

0 (Ω) , (19)

attains its minimum.
As explained in [12], elliptic regularity theory implies that the solution u

of the state problem is in H2(Ω) as soon as Ω is of class C2. Therefore, the
range of the operator V 7→ u|B is at most a dense subset of L2(Ω) [9, Thm.
7.2]. Thus, the shape optimization problem (19) is ill-posed. An alternative
exposition of the ill-posedness of (19) from a shape optimization point of
view can be found in [15].

Similar to Example 2, the shape derivative of the shape optimization
problem (19) recast in parametric form reads

dJ̃ (V , u;W) =

∫

Ω0

grad p · ∂WMV gradu− p ∂W(detDTV) dx ,
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Figure 4: Evolution of the scaled absolute error (18) for a coarse ( ) and
a finer ( ) trial space VN . Switching to a finer space after 10 iterations,
it is possible start with a coarse trial space and still retrieve an approximate
solution with good quality ( ).

where u and p are the solutions of

− div(MV gradu) = detDTV in H1
0 (Ω) ,

− div(MV grad p) = −χB2(u− ut) in H1
0 (Ω) .

Note that here the set of admissible shapes reads

Uad(Ω0) := {TV(Ω0);TV = I + V ,min(detDTV) ≥ ε, suppV ∩ B = ∅} .

In particular, we consider only vector fields that vanish on B because the
latter denotes the region of interest and is assumed to be fixed.

The goal of this experiment is to asses the relevance of the regularization
provided by the choice ofH1

0 (D;Rd)-representatives of the Fréchet derivative;
see Equation (13). We set ut(x) := (1.2)2/4 − x · x/4, so that an optimal
domain is the disc centered in 0 with radius 1.2. The region of interest
B is a disc centered in 0 with radius 0.5 whilst the initial domain Ω0 is a
disc centered in 0 with radius 1.3. We decide to start with Ω0 close to the
optimum because we construct the B-splines on a very fine grid in order to
exclude discretization by regularization. To be precise, we set the gridwidth
to 0.051, which corresponds to 729 active B-splines, and thus to 1458 basis
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vector fields; see Equation (10). The finite element mesh has 8001 nodes and
15744 triangles.

In Figure 5 we display the evolution of: the shape functional J ( ), the
minimal value of detDTV on the quadrature points ( ), the optimization
step δ ( ). The graph on the left refers to the H1

0 (D;Rd)-representative
whilst the one on the right to the “Euclidean”-representative3. For a better
comparison, the H1

0 (D;Rd)-representatives have been additionally normal-
ized with respect to the Euclidean norm. When the H1

0 (D;Rd)-metric is
employed, we clearly see that the algorithm succeeds in reconstructing the
target shape (small values of J) and that the descent directions give rise to
feasible transformations (min(detDTV) is bigger than the threshold ε = 0.05)
without making the optimization step δ decay rapidly to 0. From the third
iteration on, updates on δ occur just to fulfill the Armijo rule, as can be
see from the stagnation of the values of J . On the other hand, the opti-
mization step δ has to decrease rapidly to make the transformations TV fea-
sible when the algorithm relies on Euclidean-representatives of the Fréchet
derivative. This drastically slows down the reconstruction of the optimal
shape, and corroborates the regularizing properties provided by the use of
the H1

0 (D;Rd)-metric.

6 Conclusions

We presented a method to compute approximate optimal solutions of elliptic
PDE constrained shape optimization problems. Shapes are identified with
diffeomorphisms and the shape optimization problem is recast as an opti-
mal control problem. The latter is then stated on a finite dimensional trial
space based on cubic B-splines pursuing a Ritz approach. Under reasonable
assumptions, the solution of the finite dimensional problem converges to the
solution of the original problem.

To solve the finite dimensional problem we rely on descent methods. We
employ H1

0 (D;Rd)-representatives of the Fréchet derivative. For well-posed
shape optimization problems, this choice is consistent with the coercivity esti-
mate (12) fulfilled by the shape Hessian. For ill-posed problems, it provides a
regularization in the spirit of regularized sequential quadratic programming.

Superconvergence in the approximation of the Fréchet derivative can be
achieved relying on FE discretizations of the underlying BVP. Numerical ex-
periments show that accuracy in the approximation of the Fréchet derivative
directly affects the quality of the retrieved approximate optimal solution.

3By “Euclidean”-representative we mean that the coefficients in the representation (10)
of the descent direction are set to c

j
i = dJ̃ (V;Biej).
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Figure 5: Evolution for the ill-posed shape optimization problem (19) of: the
shape functional J ( ), the minimal value of det(DTV) on the quadrature
points ( ), and of the optimization step δ ( ) for descent directions
computed with respect to the H1

0 (D;Rd) (left) and the Euclidean metric
(right). Due to the ill-posed nature of the shape optimization problem, the
optimization step δ has to decrease rapidly to make the transformations TV

feasible in absence of regularization.

Finally, we discussed an adaptive strategy based on nested trial spaces to
balance discretization errors due to B-splines approximation of shapes and
FE approximations of the solution of the PDE constraint.
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[11] M. Burger and W. Mühlhuber, Iterative regularization of parame-
ter identification problems by sequential quadratic programming methods,
Inverse Problems, 18 (2002), pp. 943–969.

[12] D. Chenais and E. Zuazua, Controllability of an elliptic equation and
its finite difference approximation by the shape of the domain, Numer.
Math., 95 (2003), pp. 63–99.

[13] M. Dambrine and M. Pierre, About stability of equilibrium shapes,
M2AN Math. Model. Numer. Anal., 34 (2000), pp. 811–834.

19



[14] M. C. Delfour and J.-P. Zolésio, Velocity method and Lagrangian
formulation for the computation of the shape Hessian, SIAM J. Control
Optim., 29 (1991), pp. 1414–1442.

[15] K. Eppler and H. Harbrecht, Coupling of FEM and BEM in shape
optimization, Numer. Math., 104 (2006), pp. 47–68.

[16] , Shape optimization for free boundary problems—analysis and
numerics, in Constrained optimization and optimal control for par-
tial differential equations, vol. 160 of Internat. Ser. Numer. Math.,
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