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Abstract. Computational Bayesian inversion of operator equations with distributed uncertain input
parameters is based on an infinite-dimensional version of Bayes’ formula established in [31] and its nu-
merical realization in [27, 28]. Based on the sparsity of the posterior density shown in [29], dimension-
adaptive Smolyak quadratures afford higher convergence rates than MCMC in terms of the number M
of solutions of the forward (parametric operator) equation [27, 28]. The error bounds and convergence
rates obtained in [27,28] are independent of the parameter dimension (in particular free from the curse
of dimensionality) but depend on the (co)variance Γ > 0 of the additive, Gaussian observation noise

as exp(bΓ−1) for some constant b > 0. It is proved that the Bayesian estimates admit asymptotic ex-
pansions as Γ ↓ 0. Sufficient (nondegeneracy) conditions for the existence of finite limits as Γ ↓ 0 are
presented. For Gaussian priors, these limits are related to MAP estimators obtained from Tikhonov
regularized least-squares functionals. Non-intrusive identification of concentration points and curva-
ture information of the posterior density at these points by Quasi-Newton (QN) minimization of the
Bayesian potential with SR1 updates from [7,14] is proposed. Two Bayesian estimation algorithms with
robust in Γ performance are developed: first, dimension-adaptive Smolyak quadrature from [27, 28]
combined with a novel, curvature-based reparametrization of the parametric Bayesian posterior den-
sity near the (assumed unique) global maximum of the posterior density and, second, extrapolation
to the limit of vanishing observation noise variance. For either approach, we prove convergence with
rates independent of the number of parameters as well as of the observation noise variance Γ. The
generalized Richardson extrapolation to the limit Γ ↓ 0 due to A. Sidi [30] is justified by establishing
asymptotic expansions wr. to Γ ↓ 0 of the Bayesian estimates. Numerical experiments are presented
which indicate a performance independent of Γ on the curvature-rescaled, adaptive Smolyak algorithm.
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1. Introduction

The problem of efficient computational methods of Bayesian inversion of partial differential equations has
attracted considerable attention in statistics in the context of “large data”, and in computational science in
recent years; we refer to [21, 23, 31] and the references there. While, historically, numerical analysis focused
on finite-dimensional, parametric problems, recent years have seen a heightened interest in numerical treat-
ment of partial differential equations (PDEs) with “distributed uncertainty”, ie. with random field inputs.
Here, upon choosing an (unconditional) base of the space X of admissible uncertain input data, the Bayesian
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inversion and estimation formally becomes an infinite-dimensional, parametric deterministic quadrature prob-
lem, with quadrature understood against the Bayesian posterior measure. Under appropriate sparsity and
smoothness of the Bayesian posterior density, deterministic, dimension-adaptive quadrature approaches have
been shown to achieve higher convergence rates than the widely used MCMC methods; we refer to [27, 28]
and the references there. It is well-known, however, that the Bayesian posterior exhibits concentration effects
for small observation noise covariance Γ; in high-dimensional parameter spaces, which commonly arise in
problems with uncertain, distributed input data, most contributions to the Bayesian estimate therefore stem
from a “small” subset of the parameter space. This subset is, generally, data dependent, and its efficient com-
putational localization is key to efficient computational Bayesian inversion. For example, in MCMC methods
it appears in connection with the so-called “burn-in” period of the samplers.

To develop efficient numerical teatment of concentrating posterior densities in the sparse, dimension-
adaptive deterministic quadrature methods from [27, 28] is the purpose of the present paper. We propose to
numerically identify loci of posterior concentration in parameter spaces by Quasi-Newton methods with sym-
metric rank-1 (SR1) update, [7] applied to the (co)variance-weighted Bayesian misfit functional. These meth-
ods afford locally superlinear convergence of iterates and Hessians. We prove that the second order information
on the Bayesian posterior density at the MAP point obtained from these methods upon regular termination
allows for posterior “desingularization” via curvature-based reparametrization of the posterior which, in con-
junction with dimension-adaptive Smolyak quadratures as in [27, 28], affords convergence of the numerical
Bayesian estimates which is robust with respect to the observation noise variance Γ. We also establish novel
asymptotic expansions of the Bayesian estimate with respect to observation noise variance Γ. The asymptotic
expansions developed in this paper generalize the results in [22] for the linear Gaussian case to nonlinear
forward problems.

The outline of this paper is as follows: in §2 we present (nonparametric) Bayesian estimation problems
on function space for operator equations with Lipschitz dependence on distributed uncertainty u ∈ X, a
separable Banach space admitting an unconditional base. To this end, we recapitulate the formalism of
[27, 28] whereby the Bayesian estimate can be expressed as a formally infinite-dimensional integral wr. to
the Bayesian posterior density. §3 addresses the case when the observation noise (co)variance Γ ↓ 0. Under
nondegeneracy assumptions on the (co)variance-weighted LSQ functions, the Bayesian estimate admits a
finite (possibly weak, cp. [9, Sec.3]) limit which equals the QoI evaluated at a so-called MAP point y0 in
the (possibly infinite-dimensional) parameter domain. §3 presents an asymptotic analysis which reveals, in
particular, the need for the numerical solution of a nonlinear, high-dimensional (co)variance-weighted least-
squares problem to determine the Γ = 0 limit as well as its asymptotic expansion with respect to Γ. §4
uses the structure of the leading terms in the asymptotic expansion of the Bayesian estimate to develop a
curvature-rescaling coordinate transformation at the MAP point. We prove that under some nondegeneracy
assumption, our approach removes the posterior concentration as Γ ↓ 0. The asymptotic expansions obtained
in §3 also justify a new (generalized) “extrapolation to the limit” approach developed in §4.3, which can be
combined with curvature rescaling. The required second order information at a MAP point y0 can be obtained
“for free” by Quasi-Newton methods with symmetric updates (reviewed, for the reader’s convenience, in
Appendix C in §10) which exhibit superlinear convergence also of 2nd derivative information in work that
is polynomially-scaling w.r. to the dimension J of the parameter space (under appropriate assumptions).
The asymptotic expansion of the Bayesian estimate w.r. to small covariances justifies the use of generalized
Richardson extrapolation to small observation (co)variance Γ, and its stable, algorithmic realization by the
T-transformation based on [30]. In §5 numerical experiments are presented which confirm the theoretical
results. Appendix A in §8 collects known results on Laplace’s method for the asymptotic analysis of integrals
depending on a parameter, and Appendix B in §9 establishes the compactness of the Hessian, for bounded
parameter ranges and uniform prior π0. Appendix C in §10 collects known information on QN methods with
symmetric rank-1 (SR1 for short) updates, and Appendix D in §11 lists hyper-spherical polar coordinates.
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2. Bayesian Inversion of Operator Equations

We consider a class of Bayesian inverse problems for partial differential equations (PDES) with “dis-
tributed” uncertain input data u taking values in infinite-dimensional spaces, in the setting outlined in [10,31].
We admit forward models of possibly countably-parametric operator equations depending on an uncertain
datum u taking values in a separable Banach space X. Assuming an unconditional base {ψj}j∈J of X, we

parametrize the uncertain datum u ∈ X via a (possibly countably infinite) sequence y = (yj)j∈J of parameters.

2.1. Bayesian Inversion in Infinite Dimension

By G : X → R we denote a “forward” response map from the separable Banach space X of uncertain,
distributed parameters u into some state (Banach) space X of responses. We assume given observation data
δ taking values in a second (Banach) space Y (which will be assumed, throughout the present paper, to be

isomorphic to RK). We equip X, Y and X with norms ‖ · ‖X , ‖ · ‖Y and with ‖ · ‖X , respectively. Consider the
operator equation with uncertain datum u ∈ X: given f ∈ Y ′, find q ∈ X such that

Given u ∈ X, find q ∈ X : A(u; q) = f (1)

where the uncertain operator A(u; ·) ∈ L(X ,Y ′) is assumed to be boundedly invertible, at least locally for
uncertain input data u sufficiently close to a nominal input u0 ∈ X, ie. for ‖u − u0‖X small enough. Then, for
any instance of the uncertainty u and for known forcing f ∈ Y ′, the response q, ie. the solution q ∈ X of the
forward problem (1) is the image of a map G : X ×Y ′ to X , ie.

q = G(u; f ) ∈ X .

We omit the dependence of the response on f and simply write q = q(u) = G(u) for the uncertainty-to-

solution map G(·). We also assume given a bounded, linear observation functional O(·) : X → Y = RK.

Specifically, O(·) is a bounded linear observation operator on the space X of system responses, ie. O ∈ (X ′)K,
the dual space of the space X of system responses. Note that we assume that there are a finite number K of

observables, constituting (for each realization of u) a measurement vector taking values in Y = RK, where we

equip RK with the Euclidean norm, denoted by | · |.
In this setting, we wish to predict computationally an expected (under the Bayesian posterior) system re-

sponse of the QoI, conditional on given, noisy measurement data δ. Specifically, we assume the data δ to
consist of observations of QoI system responses corrupted by additive, centered Gaussian noise, ie.

δ = O(G(u)) + η ∈ Y (2)

where η ∈ Y = RK is Gaussian observation noise and where the observation functional is O(·) = (ok(·))
K
k=1 ∈

(X ′)K. In the present paper, we assume that the noise process η is Gaussian, ie. a random vector η ∼ N (0, Γ),
for a positive definite covariance operator Γ on RK (ie., a symmetric, positive definite K ×K covariance matrix

Γ) which we assume to be known. We define the uncertainty-to-observation map G = O ◦ G : X → Y = RK so
that

δ = G(u) + η = (O ◦ G)(u) + η : X 7→ L2
Γ(Y; gΓ) (3)

where L2
Γ(Y; gΓ) denotes random vectors taking values in Y = RK which are square integrable with respect

to the centered Gaussian measure gΓ on Y with positive definite covariance matrix Γ > 0. In view of Bayes’
formula (eg. [10, Thm. 3.3]), we define the least-squares functional (also referred to as “potential” in [10,
31], or as “mismatch” resp. “misfit” functional in the literature, eg. [2]) ΦΓ : X × Y → R by ΦΓ(u; δ) =
1
2 R(u)⊤Γ−1R(u), where the residual R at data δ and at an instance u ∈ X of the uncertain parameter is

R(u) := G(u)− δ = (O ◦ G)(u)− δ .
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For observation noise (co)variance Γ > 0, the Bayesian potential ΦΓ(u; δ) : X × Y → R takes the form

ΦΓ(u; δ) =
1

2
R(u)⊤Γ−1R(u) =

1

2

(

(δ − (O ◦ G)(u))⊤Γ−1(δ − (O ◦ G)(u))
)

.

In [31], [10, Section 3.2], an infinite-dimensional version of Bayes’ rule is shown to hold in the present setting.
It states that, under appropriate continuity conditions on the uncertainty-to-observation map G = (O ◦G)(·) :

X 7→ Y = RK and the prior measure π0 on the space X of uncertain parameters u, the posterior distribution

µδ of the random variable δ|u is absolutely continuous with respect to the prior π0. In particular, then, the
Radon-Nikodym derivative of the Bayesian posterior wr. to the prior measure admits a bounded density ΘΓ

wr. to the prior π0 on X.

2.2. Uncertainty Parametrization

We parametrize the uncertain datum u in the forward equation (1). In parametric statistical estimation, u is
a (low-dimensional) vector containing a few unknown parameters (yj)j∈J, for a finite index set J = {1, 2, ..., J}

with small cardinality J so that X ≃ R J . In the present context of PDEs, u ∈ X, an infinite-dimensional,
separable Banach space is of interest in which case J = N. Then, we assume that there exists a Schauder
base {ψj}j∈J of X such that, for some “nominal” value 〈u〉 ∈ X of the uncertain datum u, and for some

coefficient sequence y = (yj)j∈J (uniquely associated with u − 〈u〉 ∈ X) the uncertainty u is parametrized by
the sequence y in the sense that there holds

u = u(y) := 〈u〉+ ∑
j∈J

yjψj ∈ X (5)

with unconditional convergence. We refer to u − 〈u〉 as “fluctuation” of u about the nominal value 〈u〉 ∈ X.
So far, the parametrization (5) is deterministic. In the case of a uniform prior, in order to place (2), (5) into the
(probabilistic) Bayesian setting of [31], we introduce (after possibly rescaling the fluctuations) a “reference”

parameter domain U = [−1, 1]J = ∏j∈J[−1, 1], and equip this countable cartesian product of sets with the

product sigma-algebra B =
⊗

j∈J B
1, with B1 denoting the sigma-algebra of Borel sets on [−1, 1]. On the

measurable space (U,B) thus obtained, we introduce a probability measure π0 (which will serve a Bayesian

prior in what follows), and which we shall choose as π0 =
⊗

j∈J
1
2 λ1 with λ1 denoting the Lebesgue measure

on [−1, 1]. Then (U,B, π0) becomes (as countable product of probability spaces) a probability space on the
set U of all sequences of coefficient vectors y in the uncertainty parametrization (5). The uncertain datum
u in (5) becomes a random field, with π0 charging the possible realizations of u. As indicated in [5, 27, 29],
analyticity of uncertainty parametrization (5) with respect to the parameter sequence y can be used to derive sparsity
results for this posterior. In the case of a Gaussian prior, a parametrization of the form (5) of the Gaussian
random field can be obtained via a Karhunen-Lo‘eve expansion, where (yj)j∈J is an iid sequence of N (0, 1)
random variables. We refer to [31, Chapter 6] and the references therein for details.

Throughout the remainder of this paper, we will assume that the uncertain input u in the forward problem (1) is
parametrized as in (5). Accordingly, and with slight abuse of notation we write R(y) and G(y) in place of
R(u(y)) and of G(u(y)), respectively.

2.3. Forward Models

We recapitulate classes of abstract, countably-parametric operator equations considered in [27,28]. Through-
out, we denote by X and Y two separable and reflexive Banach spaces over R (for some of the technical
arguments which follow, we shall require also extensions of these spaces to Banach spaces over the coefficient
field C; we shall use these without distinguishing these extensions notationally) with (topological) duals X ′

and Y ′, respectively. By L(X ,Y ′), we denote the set of bounded linear operators A : X → Y ′. Via the Riesz
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representation theorem, we associate to each A ∈ L(X ,Y ′) in a one-to-one correspondence a bilinear form
(with Y 〈·, ·〉Y ′ denoting the Y × Y ′-duality pairing) via a(v, w) :=Y 〈w, Av〉Y ′ for all v ∈ X , w ∈ Y .

2.3.1. Affine-parametric operator equations. Uniform prior π0

The assumption on affine parametrization of the distributed system uncertainty by the sequence y =
(yj)j∈J ∈ U of (possibly countably many) parameters results in a parametric operator equation of the form

A(y) = A0 + ∑
j∈J

yj Aj ∈ L(X ,Y ′) . (6)

Here, either J = {1, 2, ..., J} for some J < ∞ or J = N. In the latter case, the forward models admit dimension
truncations with error bounds which are addressed in §2.4 ahead.

In (6), y = (yj)j∈J can be, for example, an i.i.d sequence of real-valued random variables yj ∼ U (−1, 1), A0

is a “nominal operator” (representing the non-perturbed system) and {Aj}j∈J ⊂ L(X ,Y ′) denotes a sequence

of “fluctuations” about the “nominal operator”A0 = A(0). Affine parameter dependences (6) result when
the unknown u in (5) is modelled as random field via its Karhunen-Loève expansion in X (or in a closed
subspace X′ ⊂ X).

In order for the sum in (6) to converge, we impose the following assumptions on the sequence {Aj}j≥0 ⊂
L(X ,Y ′).

Assumption 2.1. The operator family {Aj}j≥0 ∈ L(X ,Y ′) in (6) satisfies:

(1) The “nominal” or “mean field” operator A0 ∈ L(X ,Y ′) is boundedly invertible.
(2) The “fluctuation” operators {Aj}j≥1 are small relative to A0 in the following sense: there exists a constant

0 < κ < 1 such that

∑
j∈J

bj ≤ κ < 1 , where bj := ‖A−1
0 Aj‖L(X ,X ) , (7)

(3) (p summability) For some 0 < p < 1, the operators Bj are p-summable, in the sense that with the sequence

b = (bj)j∈J as in (7) holds

‖b‖
p

ℓp(J)
= ∑

j∈J

b
p
j < ∞ . (8)

Condition (7) (and, hence, Assumption 2.1) is sufficient for the bounded invertibility of A(y), uniformly

with respect to the parameter sequence y ∈ U = [−1, 1]J. The next result from [28] makes this precise.

Theorem 2.1. Under Assumption 2.1, for every realization y ∈ U of the parameters, the affine parametric operator
family A(y) is boundedly invertible, uniformly with respect to the parameter sequence y ∈ U: for every f ∈ Y ′ and for
every y ∈ U, the parametric operator equation

find q(y) ∈ X : a(y; q(y), v) = 〈 f , v〉Y ′×Y ∀v ∈ Y

admits a unique solution q(y) = (A(y))−1 f which is uniformly bounded over U, ie.

sup
y∈U

‖q(y)‖X ≤
‖ f ‖Y ′

µ
.

In the case that the observation functional O : X → Y = RK comprises K continuous, linear functionals ok ∈ X ′,
k = 1, . . . , K, then

∀y ∈ U : |G(y)| = |O(q(y))| ≤
‖ f ‖Y ′

µ

(

K

∑
k=1

‖ok‖
2
X ′

)
1
2 .

The forward maps q : U → X and G : U → RK are globally Lipschitz and admit analytic continuations wr. to
the parameters yj into the complex domain. Specifically (see [29, Lemma 3.3, Theorem 3.4]) if q and q̃ are solutions
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of (1) with the same right hand side f with operators A(y) and A(y′), respectively, then the forward solution map

y → q(y) = (A(y))−1 f is Lipschitz as a mapping from U into X , ie. there exists a constant C > 0 (depending only
on κ and π0 in Assumption 2.1) such that for every y, ỹ ∈ U holds

‖q(y)− q(ỹ)‖X ≤ C‖y − ỹ‖ℓ∞‖ f ‖Y ′ .

Moreover, the uncertainty-to-observation map U ∋ y → G(y) := (O ◦ q)(y) is globally Lipschitz as a mapping from

ℓ∞(N) into Y = RK, in the sense that

|G(y)− G(ỹ)| ≤ C
(

K

∑
k=1

‖ok‖
2
X ′

)
1
2 ‖y − ỹ‖ℓ∞(J)‖ f ‖Y ′ .

The prototypical example for (6) is the linear, elliptic diffusion problem

−∇ · (u(x, y)∇q) = f in D, q(·, y)|∂D = 0 . (9)

Here, D ⊂ Rd is a bounded Lipschitz domain, f ∈ L2(D) a known, deterministic source term, and the
uncertain diffusion coefficient u is given by the affine-parametric function

u(x, y) = a(x, y) := ā(x) + ∑
j≥1

yjψj(x) (10)

where ā, ψj ∈ C0,α(D) for some 0 < α < 1, and |yj| ≤ 1 so that y = (yj)j≥1 ∈ U. Convergence of (10) for
y ∈ U is ensured by assuming that for some 0 < p ≤ 1

b = (bj)j≥1 ∈ ℓ
p(N), bj := ‖ψj‖C0,α(D) ,

ie. we have (5) with X = C0,α(D). Uniform (with respect to the parameter vector y) inf-sup conditions are
implied by uniform ellipticity of (9). This, in turn, is is ensured by imposing that there exist constants µ0 > 0
and 0 < κ < 1 such that

0 < µ0 ≤ ess inf
x∈D

ā(x) , κ := ‖b‖ℓ1(N) < 1 . (11)

Further instances of the possibly nonlinear operator equations admissible in the present theory can be found
in [4, 5, 18–20].

2.3.2. Lognormal Diffusion Models. Gaussian Prior π0.

Gaussian priors arise, for example, in UQ for subsurface flow problems, with unknown permeability

coefficient u, J = N and U = RJ, cp. eg. [3], [10, Section 3.4]. In a bounded Lipschitz domain D ⊂ Rd, we
consider once more the diffusion problem (9), with

u(x, y) = exp(a), (12)

with a(x, y) an isotropic, Gaussian random field in D as in (10). Condition (11) is not required. The prior π0

is the normalized, centered Gaussian measure π0 = N (0, B−θ) on U = RN. If B = −∆ denotes the Dirichlet

Laplacian on D, the covariance operator Γ = B−θ is a trace class operator on the Hilbert space H = L2(D) if

θ > d/2. If J = {1, ..., J} and U = R J , ie. if the parameter space dimension J is finite, θ = 0 is admissible (for

finite J, Γ = I is trace-class, and the prior π0 = N (0, I) on U = R J is admissible). In [9], Bayesian posterior
consistency for the MAP estimator, which can be defined as the minimiser of an Onsager-Machlup functional
on the Cameron-Martin space of the prior in the infinite dimensional case, is established. In both the small
noise limit and large sample size limit, the Map estimator for Gaussian prior π0 is shown in [9] to concentrate
on the truth.
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2.4. Dimension Truncation

The uncertainty parametrization (5) renders the forward map A(u; q) parametric, which we express by
writing A(y; q) := (A(u; q))|u=u(y). We consider now the case J = ∞, ie., that J = N, so that A(y; q) depends

on the sequence y = (yj)j∈N of countably many variables. The asymptotic analysis based on Laplace’s

method requires the dimensional truncation of the forward map to a finite number J < #(J) of parameters, ie.
we replace u ∈ X in (5) by its J-term truncation

u(J) = 〈u〉+
J

∑
j=1

yjψj ∈ X . (13)

We assume that these truncations converge towards u ∈ X in the norm of X, for every u ∈ X, at rate s > 0:
there exists C(s) > 0 such that for all J and for every admissible uncertainty u ∈ X0 ⊂ X there holds

‖u − u(J)‖X ≤ CJ−s . (14)

Under the assumption that the dependence of the forward operator A(u; q) on the uncertain parameter u ∈ X
is Lipschitz, ie. there exists L > 0 such that for u1, u2 ∈ X0

sup
q∈X

‖A(u1; q)− A(u2; q)‖Y ′

‖q‖X
≤ L‖u1 − u2‖X ,

then, choosing u1 = u ∈ X0 as in (5) and u2 = u(J) as in (13), we find that for given f ∈ Y ′ the corresponding

solutions q = (A(u; ·))−1 f and q(J) = (A(u(J); ·))−1 f satisfy the estimate

‖q − q(J)‖X ≤ CJ−s (15)

where C > 0 is possibly different from the constant in (14). We therefore note that in the ensuing developments, it
suffices to assume that the uncertain input u ∈ X is parametrized according to (13) with a sufficiently large, but finite
number J of parameters.

2.5. Parametric Bayesian Posterior Density

Motivated by [27, 29], the basis for the presently proposed, adaptive deterministic quadrature approaches
for Bayesian estimation via the computational realization of Bayes’ formula is a parametric, deterministic
representation of the derivative of the posterior measure with respect to the uniform prior measure π0. The
prior measure π0 in §2.3.1 being uniform, for this prior we admit in (5) sequences y which take values in the

parameter domain U = [−1, 1]J. In the lognormal case in §2.3.2, we admit as priors π0 ∼ N (0, C) Gaussian

measures on U = RN with trace class covariance operator C. As explained in §2.2, this leads to parametric,
deterministic forward problems in the probability space

(U,B, π0) .

With the parameter domain U as in (2.5) the parametric forward map Ξ : U → RK is given by

Ξ(y) = G(u)
∣

∣

∣

u=〈u〉+∑j∈J yjψj

.

The mathematical foundation of Bayesian inversion is Bayes’ theorem. It addresses the structure of the
mathematical expectation of the QoI φ, over all realizations of the uncertain datum u which are distributed
according to the prior π0, given data δ. We present a version of it, from [10,31] and, in its parametric version,
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from [29]. To do so, we view U as unit ball in ℓ∞(J), the Banach space of bounded sequences taking values
in U.

Proposition 2.2. Assume that Ξ : Ū → RK is bounded and continuous. Then πδ(dy), the distribution of y ∈ U given
δ, is absolutely continuous with respect to π0(dy), ie.

dπδ

dπ0
(y) =

1

ZΓ

ΘΓ(y)

with the parametric Bayesian posterior ΘΓ given by

ΘΓ(y) := exp
(

−ΦΓ(u; δ)
)

∣

∣

∣

u=〈u〉+∑j∈J yjψj

, (16)

where the Bayesian potential ΦΓ is as in (4) and the normalization constant Z is given by

ZΓ = Eπ0 [1] =
∫

U
ΘΓ(y)π0(dy) . (17)

In computational Bayesian inversion we are concerned with computational approximation of a “most
likely” system response φ : X → S for given (noisy) observation data δ. The QoI φ may take values in a Banach
space S (possibly distinct from the space Y of observations).

With the QoI φ we associate the parametric map

ΨΓ(y) = ΘΓ(y)φ(u) |u=〈u〉+∑j∈J yjψj

= exp
(

−ΦΓ(u; δ)
)

φ(u)
∣

∣

∣

u=〈u〉+∑j∈J yjψj

: U → S .
(18)

Then the Bayesian estimate of the QoI φ, given noisy data δ, takes the form

Eµδ
[φ] =

Z′
Γ

ZΓ

=
1

ZΓ

∫

y∈U
ΨΓ(y)π0(dy)

=
1

ZΓ

∫

y∈U
exp

(

−ΦΓ(u; δ)
)

φ(u)
∣

∣

∣

u=〈u〉+∑j∈J yjψj

π0(dy)
(19)

where we introduced the integral

Z′
Γ :=

∫

y∈U
ΨΓ(y)π0(dy) =

∫

y∈U
exp

(

−ΦΓ(u; δ)
)

φ(u)
∣

∣

∣

u=〈u〉+∑j∈J yjψj

π0(dy) .

We observe that for the examples (with either uniform or Gaussian prior π0 on U), it has been shown
in [10, Thms. 4.6, 4.7] that the estimate (15) of the impact of dimension-truncation (13) is inherited by the
Bayesian estimate (19).

Based on (19), in [27,28] we approximated Z′
Γ and ZΓ which, in the parametrization with respect to y ∈ U,

take the form of infinite-dimensional integrals with respect to the uniform prior π0(dy). In [27, 28], we
proposed the use of dimension adaptive Smolyak quadrature to the numerical evaluation of the integrals ZΓ

and Z′
Γ. We emphasize that the very definitions (17) and (19) imply that 0 < Γ ≪ 1 entails concentration of

the posterior density ΘΓ in (16).

3. Asymptotic Analysis of ZΓ, Z′
Γ as Γ ↓ 0

We are interested in Bayesian prediction (19) in the case that the (co)variance Γ of the (assumed Gaussian)
noise η in the observation data δ in (2) concentrates, ie. when Γ ↓ 0. This will induce concentration of
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the density (18) in u. Based on the integral representation (19), (17), and bearing in mind the definition (4)
of the Bayesian potential, the asymptotic behaviour as Γ ↓ 0 of the Bayesian estimate (19) follows from an
asymptotic analysis of the integrals ZΓ and Z′

Γ in (19) by Laplace’s method which we present next; necessary
results and references are collected for convenience in §8.

Throughout, we assume that (possibly after dimension-truncating the parameter space as in §2.4) that J < ∞.

We distinguish the cases K = 1 (in which case we set Γ−1 = λ so that Γ ↓ 0 corresponds to λ → ∞) in
Propositions 8.3 - 8.4, and finite K > 1, observing that the so-called large sample size limit K → ∞ can be
related, at least in the Gaussian case, to the limit Γ ↓ 0 (cp. [9, Sec.4.1]). We assume that the forward map
has been dimensionally truncated to a finite number J < ∞ of parameters as in §2.4 and there exists a unique
maximum of the Bayesian potential at y0. It can be easily shown that the assumption on the uniqueness of the

maximizer implies K ≥ J (by considering the linear uncertainty-to-observation map G(y) = Ay, A ∈ RK×J).
We point out that, for computational purposes, the integrals ZΓ and Z′

Γ in (19) are expressed in terms of
the Lebesgue measure dy on the parameter domain U . Then, the integral in the lognormal case is over the
Bayesian density

Θ(y) = exp
(

−ΦΓ(u; δ)
∣

∣

u=〈u〉+∑
J
j=1 yjψj

−
1

2
‖y‖2

2

)

.

assuming a truncated parametrization of the uncertain datum u of the form (13) with normally distributed
parameters yj, j = 1, . . . , J, ie. the prior π0 = N (0, I). In order to unify notation for the ensuing asymptotic
analysis, we introduce the parameter θ, where θ = 0 corresponds to the uniform case, θ = 1 to the normally
distributed case.

3.1. Γ ↓ 0, Case K = J = 1

Since K = 1, the variance Γ of the Gaussian observation noise is a real-valued random variable and we use
the Laplace asymptotics with large parameter λ = Γ−1 > 0.

Both integrals ZΓ and Z′
Γ in (19) are of the same type; comparing (19) with integrals of the form F(λ) =

∫

U φ(y) exp[λS(y)]dy in order to use Laplace’s method (cf. Appendix A in §8, we find

λS(y) = −
1

Γ

(

Φ1(y; δ) +
θ

2
Γ‖y‖2

2

)

(20)

with Φ1(y; δ) = 1
2

(

(δ − (O ◦ G)(u))⊤(δ − (O ◦ G)(u))
)

, so that −2ΓS(y) = ‖r(y)‖2
2 + θΓ‖y‖2

2 where r(y) :=
G(y)− δ denotes the scalar residual of the data δ wr. to the uncertainty-to-observation map G(y), and where

θ = 0 for uniform prior π0 and θ = 1 for π0 = N(0, I). In (20), ‖y‖2
2 denotes the euclidean norm in R J

(we remark that in the infinite-dimensional case, ‖y‖2
2 is to be replaced by the Cameron-Martin norm of u,

cp. [10, Section 4.3]). To verify the assumptions of Proposition 8.3, we calculate

S′(y) = −r(y)r′(y)− θΓy , S′′(y) = −
{

r′(y)r′(y) + r(y)r′′(y) + θΓ
}

. (21)

Based on the expressions (21), we see that, in the uniform case, ie. θ = 0, y0 ∈ int(U) is critical wr. to S()
if either r(y) = 0 or if r′(y) = 0. The former, compatible case corresponds to an exactly solvable inversion,
where the observed data is reproduced exactly for some realization u(y0) ∈ X of the uncertainty. In the latter,
incompatible case, we have

∃y0 ∈ int(U) : r(y0) 6= 0, r′(y0) = 0, sgn(r(y0))r
′′(y0) > 0 . (22)

We remark that due to the definition r(y) = O(q(y)) with O(·) ∈ X ′ and δ being independent of y, we find

r′(y) = O(q′(y)), r′′(y) = O(q′′(y)) .
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The second differential r′′(y) requires knowledge of the Hessian D2
y(G(u(y); f )) of the solution map for the

forward problem. Under the assumption that there exists a unique, nondegenerate maximizer y0 ∈ int(U),
sufficient conditions are

S(y0) ≤ 0, S′(y0) = 0, S′′(y0) < 0 . (23)

In particular, then, all assumptions of Proposition 8.3 hold, and both integrals, ZΓ and Z′
Γ, admit asymptotic

expansions (50) as Γ ↓ 0. The explicit form (51) of the principal term of the asymptotics allows to infer

Theorem 3.1. Assume that G(·) and δ are such that the Assumptions of Proposition 8.3 hold; in particular, that the
potential (20) satisfies conditions (22) - (23). Then, for uniform prior π0, the Bayesian estimate in (19) admits an
asymptotic expansion

Eπδ
[φ] =

Z′
Γ

ZΓ

∼ ã0 + ã1Γ + ã2Γ2 + .... Γ ↓ 0 , (24)

where ã0 = φ(y0) so that

Eπδ
[φ] =

Z′
Γ

ZΓ

= φ(y0)(1 + o(1)), Γ ↓ 0 . (25)

The latter relation (25) remains valid in the case of a Gaussian prior π0.

Proof. In the nondegenerate case, with uniform prior π0, the parameter range is bounded, θ = 0 in (20) and

(22) - (23) hold. Proposition 8.3 allows to infer that as λ = Γ−1 → ∞, both integrals ZΓ and Z′
Γ in (19) admit

asymptotic expansions (50). The explicit form (51) of the principal term of the asymptotics then implies

that the quotient allows to infer that as λ = Γ−1 → ∞, both integrals ZΓ and Z′
Γ in (19) admit asymptotic

expansions

exp(−Γ−1S(y0))ZΓ ∼ ΓJ/2 ∑
k≥0

akΓk , exp(−Γ−1S(y0))Z′
Γ ∼ ΓJ/2 ∑

k≥0

a′kΓk

as Γ ↓ 0. In particular, these quantities depend continuously on Γ ∈ [0, Γ0] for some Γ0 > 0. From the theorem
on quotients of asymptotic expansions ( [12, Thm. I.3.1 item 3.]), there holds the asymptotic expansion

Eπδ
[φ] =

Z′
Γ

ZΓ

=
exp(−Γ−1S(y0))Z′

Γ

exp(−Γ−1S(y0))ZΓ

∼ ∑
k≥0

ãkΓk ,

and from the explicit form (51) follows ã0 = a′0/a0 = φ(y0).
In the Gaussian case, the parameter domain is unbounded and θ = 1 in (20), so that the function S depends

(linearly) on λ = Γ−1. Since J = 1, the function S is the regularized least-squares functional

S(y) = −
1

2

[

‖r(y)‖2
2 + Γ‖y‖2

2

]

.

This function has, for Γ > 0, a nondegenerate maximum at y0(Γ). This assumption allows to derive a result:
let y0, Γ0 denote the (nondegenerate) maximiser of the function S. Then, in a neighbourhood U(Γ0) of Γ0,
exists a continuously differentiable function y0(Γ) with y0(Γ0) = Γ0 and y0(Γ) is a strict local maximizer of
S(y) for all Γ ∈ UΓ0

. Hence, as Γ ↓ 0, the maximum of S(y) remains in a fixed, compact subset of R. We may
then apply Proposition 8.2 to conclude (25) in the Gaussian case. �

The results (24), (26) show that despite the generally exponential growth wr. to Γ ↓ 0 in the asymptotics (50), (53)
for either of the constants ZΓ and Z′

Γ, (which we remark in passing shows that the exponential dependence on
1/Γ in the Smolyak quadrature error bounds in [28] can, in general, not be improved), the Bayesian estimate
(19) given by Z′

Γ/ZΓ has a finite one-sided limit as Γ ↓ 0 which, in case that the Hessian S′′(y0) is nondegenerate and
unimodal at the critical point y0 ∈ int(U) of the residual r(y0) in (20), equals the QoI φ evaluated at this point.
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For Bayesian potentials ΦΓ(y; δ) which attain a unique, global minimum at y0 ∈ int(U) which is degener-
ate, ie. where the Hessian S′′(y0) has a nontrivial nullspace, then, for every finite truncation dimension J as
in §2.4, there exist N(J) ∈ N and rk(J) ∈ Q such that

Eπδ
[φ] =

Z′
Γ

ZΓ

=
a00[φ]

a00[1]
(1 + o(Γ)) as Γ ↓ 0 , (26)

where a00[φ], a00[1] denote the leading terms in the asymptotic expansions (53) of Z′ and of Z, respectively,
which are independent of Γ (but depend on δ and on J).

3.2. Γ ↓ 0, Case 1 < K ≤ ∞

The asymptotic analysis in the case K > 1 many observables are available is analogous: for uniform prior
π0, the asymptotic expansion follows from Proposition 8.3, and for Gaussian prior, the relation (25) is a
consequence of the general result [9, Thm. 3.5] which covers also the case K = ∞.

Consider now a finite number 1 < K < ∞ of observables. Then Γ ∈ RK×K is the symmetric and (assumed)

positive definite covariance matrix of the observation noise η ∈ RK. It can therefore be diagonalized:

Γ = PMP⊤, M = diag{γ1, ...γK}, 0 < γ1 ≤ ... ≤ γK, P⊤P = 1 . (27)

In the following, we will assume that the covariance matrix of the noise is of the form Γ = γI, ie. γ = γ1 =
. . . = γK. The case when all eigenvalues of Γ tend to zero at the same rate, ie. when γK ↓ 0 while γK/γ1

remains bounded, is analogous to the case Γ = γI. Various intermediate cases (eg. with the γk tending to
zero at different rates) will not be elaborated here.

Since K > 1, the residual of the data δ wr. to the uncertainty-to-observation map R(y) = G(y)− δ ∈ RK is
a K-vector with component residuals rk(y), k = 1, ..., K. In place of (20) we now choose in Proposition 8.3

S(y) = −ΦΓ(y; δ)− θ
1

2
‖y‖2

2 = −
1

2
R(y)⊤Γ−1R(y)− θ

1

2
‖y‖2

2

= −
1

γ

(

1

2
R(y)⊤R(y)− θ

1

2
γ‖y‖2

2

)

.

Under the assumption of a unique, nondegenerate maximizer y0 ∈ int(U), y0 satisfies the sufficient condi-
tions given by (23) and (24) of Theorem 3.1 holds also in this case. Note that this assumption implies that
J ≥ K.

The asymptotic expansions (24), (26) in Theorem 3.1 show that the Bayesian estimate (19) converges, in
the zero observation noise limit and for nondegenerate critical points, to the QoI φ at critical points y0 of
the parameter sequence y. These parameters, in turn, can be determined numerically from the data by the
solution of a nonlinear least-squares problem (for the potential ΦΓ) rather than by numerical integration.

Moreover, Theorem 3.1 shows that in the limit Γ = 0 the Bayesian estimate (19) behaves numerically as
quotient of infinite quantities which admits a finite limiting value at Γ = 0. This suggests that the deter-
ministic quadrature approach of [27, 28] for the evaluation of ZΓ, Z′

Γ becomes numerically unstable as Γ ↓ 0.
To deal with positive, but small observation noise variance Γ, therefore, the quadrature algorithms must be
modified in order to remain numerically stable. As suggested by the asymptotic expansions (24) and by the
explicit form (25) of its leading term, the numerical treatment of the limit Γ ↓ 0 will require addressing the
deterministic, nonlinear least-squares problem

min
y∈U

ΦΓ(y; δ) + θ/2‖y‖2
2 , (29)

where θ = 0 in the uniform case, and θ = 1 in the Gaussian case. The minimization problem (29) is generally
ill-conditioned for countably-parametric operator equations with uniform prior, as considered in §2.3.1. In
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the lognormal case discussed in §2.3.2, the minimizer of (29) depends on Γ, generally. It corresponds to
a Tikhonov regularized solution of the nonlinear least-squares problem miny∈U ΦΓ(y; δ) and converges, as
Γ ↓ 0, to a MAP estimator (see, eg., [9], [21, Chap. 3.1.1] and [10, Section 2.2] for more details on the MAP
estimator and its relation to regularized, deterministic least-squares minimization problems).

4. Numerical Analysis of Small Observation Noise Covariance Γ

We analyze Bayesian inversion for positive, but possibly small observation noise (co)variance Γ > 0. We
also assume throughout that the Hessian S′′(y0) of the Γ-scaled least-squares functional

S(y) = −ΓΦΓ(y; δ) (30)

defined in (20), (28) is nondegenerate, negative definite, uniformly with respect to 0 < Γ < 1. Then, the asymp-
totic analysis of §3 applies (see §8.3 for remarks on the degenerate case (26)) and Quasi-Newton Iterations
with symmetric updates as in [7,14] produce locally superlinearly convergent approximations of both, critical
point y0 of S and of its Hessian S′′

yy(y0) (see §10 and Proposition 10.1 for details). The point y0 is known

to be related to a MAP estimate, in the Gaussian case (see [10, Section 4.3]). We therefore assume that upon
termination of the QN-SR1 algorithm 10.1, (59), the point y0 and the Hessian S′′

yy(y0) of the Bayesian potential Φ are

available. Then, from (50), (51), upon termination of the QN process the leading term of the asymptotic expansion
(50) in the Γ ↓ 0 limit is accessible for both ZΓ and Z′

Γ in (19). Also, since S(y) is either independent of Γ (for
uniform prior) or depends linearly on it (Gaussian prior), the performance of the QN method is independent of Γ.

We propose two computational strategies which are robust with respect to vanishing observation noise
(co)variance: first, we exploit knowledge of y0 and S′′(y0) to “precondition” sparse, adaptive and determin-
istic Smolyak quadratures proposed in [27, 28]: these are, in the uniform case, based on the midpoint rule
as lowest order quadrature rule and in the Gaussian case on the lowest Gauss-Hermite quadrature formula.
Thus, shifting the coordinate origin to y0 will identify the dominant contribution to the posterior expectation
in the first sweep of the dimension-adaptive Smolyak algorithm. For small values of Γ, however, the high cur-
vatures in the shifted posterior density due to the concentration entails excessive refinements of the adaptive
quadratures in all concentrating coordinates. To achieve uniform performance of Smolyak algorithm with
respect to observation noise Γ > 0, we propose reparametrization of the posterior density near MAP-points
y0 of posterior concentration based on its converged QN Hessian prior to running the adaptive Smolyak
algorithm. In this way, the integrand functions in the adaptive Smolyak quadrature scheme are unimodal,
with maximum at y = 0, and curvatures which are bounded independently of Γ.

We remark that inclusion of curvature information on the Bayesian potential ΦΓ near concentration points
of the posterior also increases efficiency of MCMC methods; we do not detail this aspect here, and refer to,
eg., [16, 23] for details.

Second, the asymptotic expansions (24) and (26) justify (generalized) Richardson extrapolation to the limit of
zero observation noise. In this case, Γ is treated as a algorithm-parameter as follows: for data δ with given,
small observation noise variance Γ ≥ 0, compute (in parallel) estimates (19) for several, synthetic, large values
of Γ, and extrapolate to 0 ≤ Γ ≪ 1. We add that this extrapolation process is also relevant for the large
observation limit K → ∞ (cp. [9, Sec.4]).

4.1. Curvature Rescaling

We develop the approach in the (notationally less involved) case of K = 1 observation functional. We
apply Proposition 8.3 with S as in (20), (28). We assume in (27) that γ = Γ > 0 and initially for uniform
prior π0. Then, S(y) in (30) is independent of Γ. A QN method with symmetric update (cp. §10) will converge
superlinearly and will, upon termination, yield the (unique by Assumption 2. of Proposition 8.3) maximum
point y0 of S(y) in U and the (positive) definite Hessian approximation HS ∼ −S′′(y0) (cp. Prop. 10.1)
at y0. Due to the use of symmetric QN updates (cp. eg. (59) in Algorithm 10.1 and Assumption 2. of
Proposition 8.3), then, the Hessian HS is symmetric positive definite, and the total work required by QN for
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S(y) in (30) scales polynomially in J (updating the inverse of the SR1 approximation using the Sherman-
Morrison formula leads to a performance similar to the BFGS algorithm, eg. discussed in [13]) uniformly
with respect to Γ (as S(y) in (30) is either independent of Γ or depends linearly on it). Denote by −µj with
0 < µ1 ≤ µ2 ≤ .... ≤ µJ−1 ≤ ... ≤ µJ < 0 its eigenvalues (enumerated in decreasing order of absolute
magnitude and counting multiplicity), and by Q the J × J orthogonal matrix of its J eigenvectors, ie.

HSQ = −QMJ , MJ := diag{|µ1|, ..., |µJ |} . (31)

We next perform an affine change of variables y = ϕ(x̌) in S(y) such that y0 = ϕ(0) and such that the Hessian
of (S ◦ ϕ)(x̌) is diagonal:

(D2
x(S ◦ ϕ))(0) = M = diag{|µ1|, ..., |µJ |} .

With V̌ := Q⊤(U − {y0}) we change variables to find

∫

U
exp(λS(y))φ(y)dπ0(y) =

∫

V̌
ǧ(x̌)dπ0(x̌) , (32)

where ǧ(x̌) := exp(λS(y0 + Qx̌))φ(y0 + Qx̌).

By the orthogonality of Q, the integration domain V̌ is a rotated and translated unit (wr. to the measure

π0) cube. The transformed function Š(x̌) := S(y0 + Qx̌) is independent of Γ and analytic in a vicinity of
x̌ = 0; we therefore have

Š(x̌) = S(y0) +
1

2
x̌⊤Q⊤S′′

yy(y0)Qx̌ + O(‖x̌‖3
2) = S(y0)−

1

2
x̌⊤Mx̌ + O(‖x̌‖3

2)

with O(·) being uniform w.r. to Γ.

By Proposition 8.3 applied to the transformed integral (32), therefore, for λ = Γ−1 ≫ 1 the transformed
integrand function g(x̌) in (32) will depend on the coordinate x̌j to leading order (as the affine coordinate

change in (32) will reach the normal form (52) only up to higher order terms) as exp(−Γ−1|µj|x̌
2
j /2). The

ordering (31) of the µj then implies that the strongest “concentration” of the integrand function g(x̌) as Γ ↓ 0

occurs in coordinate x̌1 at x̌1 = 0, on scale Γ−1/2|µ1|
1/2. This suggests curvature-rescaling

x̌ := Γ1/2M−1/2x , g(x) := ǧ(Γ1/2M−1/2x) . (33)

Theorem 4.1. Under the above assumptions, in particular the nondegeneracy of the Hessian S′′
yy and the analyticity of

the parametric forward maps for uniform prior π0, the curvature rescaling transformation

y = ϕ(x) := y0 + Γ1/2QM−1/2x (34)

yields a transformed posterior density g(x) := exp(Γ−1(S ◦ ϕ)(x))(φ ◦ ϕ)(x) that is analytic in a neighborhood of

x = 0 ∈ R J . Upon transformation, the size of its domain of analyticity is independent of 0 < Γ ≤ 1. In this domain,
the derivatives of the rescaled posterior density admit analytic regularity estimates which are uniform with respect to Γ.

Proof. As π0 is uniform, both φ(y) and S(y) are independent of Γ and analytic. Since the affine change of

variables ϕ̌ is independent of Γ, also the functions Š(x̌) = S(y0 + Qx̌) and φ(y0 + Qx̌) are analytic w.r. to

x̌ in a neighborhood V̌ of x̌ = 0 which is independent of Γ. There, Š admits the convergent power series
representation

Š(x̌) = S(y0)−
1

2
x̌⊤Mx̌ + ∑

k≥3
∑

|α|=k

tα x̌α , (35)
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where all coefficients tα := 1
α! (Dα

x̌ Š)(0) are independent of Γ. Multiplying (35) with Γ−1 and inserting (33)
results in

(S ◦ ϕ)(x)

Γ
=

S(y0)

Γ
−

1

2
x⊤x + Γ1/2







∑
k≥3

Γ(k−3)/2 ∑
|α|=k

tα(M−1/2x)α







. (36)

Here, the power series in parentheses converges uniformly w.r. to Γ ≤ 1 for x ∈ M1/2V̌ and, as Γ ↓ 0,

Γ−1(S ◦ ϕ)(x) tends to a quadratic. All x-derivatives of the rescaled integrand function exist and are bounded
uniformly with respect to Γ. Moreover, the convergence radius of the power series in parentheses increases
with decreasing Γ. An analogous power series argument shows that the QoI (φ ◦ ϕ)(x) is analytic with respect
to the curvature-rescaled coordinates x, with domain of analyticity that is even increasing as Γ ↓ 0. �

4.2. Curvature-rescaled adaptive Smolyak quadrature

The preceding observations motivate curvature rescaled, adaptive Smolyak quadrature. Given a tolerance

parameter τ > 0, and λ = Γ−1 > 0, define the closed intervals Ij(τ, λ) := {xj ∈ R : exp(−λµjx
2
j /2) ≥ τ},

j ∈ J. The Ij are bounded intervals centered at xj = 0 which are nested by the ordering (31) of the µj:
I1 ⊆ I2 ⊆ ... ⊆ IJ ⊆ .... Define

J∗(τ, λ) :=

{

0 if {j ∈ J|Ij(τ, λ) ⊂ V} = ∅ ,
max{j ∈ J|Ij(τ, λ) ⊂ V} otherwise .

(37)

Notice that J∗(τ, λ) is monotonically increasing for decreasing τ at fixed λ = Γ−1.
If J∗ = 0, there is no coordinate in which the integrand function f (x) in the transformed integral (32) over

V is concentrating. If J∗ > 0, the integrand function in the transformed integral (32) over V concentrates

numerically (at threshold τ) near xj = 0 in the coordinates x1, ..., xJ∗ . Accordingly, if U = [−1, 1]J , prior to
application of the adaptive Smolyak quadrature algorithm, we rescale the integration coordinates according
to

x̂j := xjξ j, ξ j :=

(

µj/Γ

2| ln τ|

)1/2

, j = 1, ..., J∗

and set x̂j := xj for j > J∗. Then, truncate the integration domains to Ij(τ, λ) for dimensions j = 1, ..., J∗:

Vτ := ∏
1≤j≤J∗

Ij(τ, λ)× ∏
j>J∗

Vj .

For the resulting truncation error holds the error bound

∣

∣

∣

∣

∫

V
f (x)dπ0(x)−

∫

Vτ

f (x)dπ0(x)

∣

∣

∣

∣

≤ π0(V\Vτ) sup
y∈U

‖φ(y)‖S ≤ τ sup
y∈U

‖φ(y)‖S .

The variable metric adaptive Smolyak quadrature algorithm consists in applying the adaptive Smolyak algorithm
from [28] to the rescaled integrand function where coordinates (y1, ..., yJ∗) are transformed with (34).

Remark 4.2. The proof of Theorem 4.1 shows that, asymptotically as Γ ↓ 0, at any fixed, finite truncation
dimension J, the posterior density will concentrate in all coordinates yj, j = 1, ..., J.

The (cp. §9) compactness of the Hessian S′′
yy(y0) implies that, generically, {|µj|}j≥1 accumulates at 0 for

increasing J. Hence, for every fixed Γ > 0 there exists a crossover dimension J∗(Γ) such that µj/Γ ≤ 1 for all

j ≥ J∗. The spectrum of the Hessian S′′
yy(y0) thus quantifies the (finite!) dimension of the parameter space

where the Bayesian posterior can concentrate.

Theorem 4.1 implies that the curvature-rescaling (34) in conjunction with the adaptive Smolyak quadra-
tures from [27, 28] in rescaled coordinates for ZΓ and Z′

Γ will converge independently of Γ.
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4.3. Extrapolation to vanishing observation noise variance Γ = 0

The previous regularizations required nondegeneracy of the Hessian at the critical point y0 ∈ U. We
therefore present an alternative approach which avoids explicitly accessing curvature information, which
is mathematically justified for both, regular as well as degenerate Hessians S′′(y0) and which is based on
Richardson extrapolation to the limit of vanishing observation noise variance Γ.

The corresponding asymptotic expansions (26) with respect to Γ ↓ 0 which are based on using Propositions
8.3 and 8.4. Precisely, only the existence of an asymptotic expansion such as (50) is used, and Richardson
extrapolation to (possibly vanishing) observation variance Γ ≥ 0 is performed. We present the details, for
simplicity only in the case K = 1, following [30].

4.3.1. Generalized Richardson Extrapolation

Let B(Γ) : R> 7→ R be a scalar function of a continuous variable Γ > 0, defined on 0 < Γ ≤ Γ0 < ∞.
Assume that there exist constants B and βk, k = 1, 2, ..., which are independent of Γ and functions ̺k(Γ)
which form an asymptotic sequence in the sense that

̺k+1(Γ) = o(̺k(Γ)) as Γ ↓ 0

and assume that B(Γ) admits the asymptotic expansion

B(Γ) ∼ B +
∞

∑
k=1

βk̺k(Γ) as Γ ↓ 0 . (38)

For a strictly monotonically decreasing sequence Γ0 > Γ1 > Γ2 > .... in (0, Γ0] with 0 = limk→∞ Γk and for
each pair (j, q) of positive integers, define the sequence β̄0, β̄1, ..., β̄q as solution of the linear system of q + 1

equations for the q + 1 unknowns β
jq
0 , ..., β

jq
q which is given by

B(Γl) =
q

∑
k=0

β
jq
k ̺k(Γl) , j ≤ l ≤ j + q . (39)

Then the β
jq
0 obtained in (39) are approximations of limΓ↓0 B(Γ); specifically, there holds (cp [30, Thm. 2.2]):

Proposition 4.3. Assume that B(Γ) admits the expansion (38). Then, for some monotonically decreasing sequence
{Γk}k≥1, accumulating at Γ = 0 such that

lim
l→∞

̺k(Γl+1)

̺k(Γl)
= ck 6= 1 and cj 6= ck for j 6= k , (40)

for every q ∈ N fixed, the β
jq
0 and B = limΓ↓0 B(Γ) in (39) satisfy

β
jq
0 − B ∼ βq+1

[

q

∏
i=1

(

βq+1 − βi

1 − βi

)

]

̺q+1(Γj) as j → ∞ . (41)

Under condition (40), {β
jq
0 }j≥1 tends to B faster than {β

j,q−1
0 }j≥1, ie.

β
jq
0 − B

β
j,q−1
0 − B

= O

(

̺q+1(Γj)

̺q(Γj)

)

= o(1) as j → ∞ .
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4.3.2. Numerical extrapolation to zero observation noise covariance

Comparing the preceding result on generalized Richardson extrapolation with the asymptotic expansions

(24) in the regular case (where, according to Theorem 3.1, we have ̺k(Γ) = Γk), we see immediately that in
the regular case (24), Assumption (40) is satisfied.

Proposition 4.4. Assume that G(·) and δ are such that all Assumptions of Proposition 8.3 hold. Then, for the

monotonically decreasing sequence (Γk)k≥1 with Γk = h0ρk, 0 < ρ < 1, h0 > 0, Assumption (40) is fulfilled.

Proof. In the nondegenerate case, Theorem 3.1 and (24) imply ̺k(Γ) = Γk. Therefore, there holds

lim
l→∞

̺k(Γl+1)

̺k(Γl)
= lim

l→∞
(

Γl+1

Γl
)k = ρk

< 1 .

Therefore, the assumptions of Proposition 4.3 are satisfied, and (41) holds. �

Even without explicit knowledge of coefficients and exponents in the asymptotic expansions (24), we may
therefore apply (39) in order to extrapolate to the limit Γ ↓ 0 as follows.

Given one set of data δ, the Bayesian estimate (19) is approximated numerically for a sequence Γ = {Γk}
K
k=1

of synthetic (ie. not based on the experimental data) variances in observation noise which decrease monotonically.
Owing to numerical instability in the quadrature evaluation of ZΓ and Z′

Γ in (19) for positive, but small
observation noise covariance Γ, the sequence Γ should be chosen as {Γk}k≥1:

Γ : Γk = 2−k+1 (geometric sequence) . (42)

We note in passing that other sequences with slower than geometric decrease (42) are infeasible even in the
nondegenerate case, as they violate the stability conditions in [30].

To avoid ambiguity in the notation of the observational noise and of the artificial noise, we will denote in
the following the variance in the additive Gaussian noise η in the measurement data δ in (2) by Γobs. Extrap-
olation to the limit Γ = 0 then proceeds in the usual fashion, ie. by interpolating the Bayesian predictions Z′

Γk

computed for different values of k with a high order polynomial, and evaluating at the actual given variance
Γobs ≥ 0.

The extrapolation approach is also viable for small, positive observation noise variance Γobs > 0 for which a direct
quadrature evaluation would be infeasible due to concentration phenomena.

Extrapolation to small observation noise Γobs ≥ 0 is based on:

a) for one given set of data δ, the Smolyak quadrature algorithm can be executed separately and in
parallel for each synthetic observation variance Γk,

b) the integrand functions which are to be evaluated in the adaptive Smolyak quadrature approximation
of the integral(s) ZΓk

and Z′
Γk

in (19) depend on Γk only via the Bayesian potential ΦΓk
in (4). Therefore,

given a set of quadrature points in U, one numerical evaluation of the uncertainty-to-observation map G(·)
per quadrature point is necessary to compute all quadrature approximations ZΓk

and Z′
Γk

in (19).

While the generalized Richardson extrapolation to the limit is mathematically justified by the asymptotic
expansions (24), (26) and by the analysis in [30], we remind that the present setting will require their use for
positive, small but fixed observation noise covariance Γobs > 0; the next result is analogous to (41).

Proposition 4.5. Assume that the quantity B(Γ) ∈ C([0, Γ0])∩ Cq+1(0, Γ]) for some integer q ≥ 1 and that it admits

an asymptotic expansion (38) with ̺k(Γ) = Γj as in (24) for the Bayesian estimate in the nondegenerate case.
For a sequence of (synthetic) observation noise covariances 1 = Γ0 > Γ1 > .... > Γj > ... > Γj+q ≫ Γobs ≥ 0

(which Γk are algorithmic parameters unrelated to the given observation noise variance Γobs) with q ≥ 1 fixed and

with Γj+q (substantially) larger than the actual observation noise covariance Γobs ≥ 0, compute the coefficients (β
jq
k )

q
k=0
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in (39). Then, there holds the asymptotic error bound

|B(Γobs)−
q

∑
k=0

β
jq
k ̺k(Γobs)| = O(|Γj − Γobs|

q+1) .

Here, the constant implied in O() depends on q and on B(Γ), but is independent of j.

Proof. For Γobs = 0, the assertion is Proposition 4.3. We may therefore assume that Γobs > 0. The continuity
B ∈ C([0, Γ0]) and the monotonicity of the sequence {Γk}k≥0 imply that for q ≥ 1, and for every q + 1

tuple {Γk}
j+q
k=j, there is a unique interpolation polynomial πq(Γ; {Γk}

j+q
k=j) which interpolates B(Γ) in the tuple

{Γk}
j+q
k=j. For the interpolation error at the point Γobs holds

B(Γobs)− πq(Γobs; {Γk}
j+q
k=j) =

B(q+1)(ξ)

(q + 1)!
ωq+1(Γobs) , ξ ∈ conv{Γobs, Γj, Γj+1, ..., Γj+q}

with ωq+1(x) = ∏0≤k≤q(x − Γj+k). We point out that the error representation remains valid in the case (of

main interest to us) that Γobs 6∈ conv{Γk}
j+q
k=j. Since, for 0 ≤ Γobs < Γj+q < ... < Γj ≤ Γ0, this polynomial

satisfies the error representation, we may estimate

|B(Γobs)− πq(Γobs; {Γk}
j+q
k=j)| ≤

1

(q + 1)!
‖B(q+1)‖L∞(Γobs ,Γj)

|Γj − Γobs|
q+1

and the assertion follows for Γobs > 0. The preceding argument remains valid even for Γobs = 0 which con-
cludes the proof. For the limiting case Γobs = 0, (41) gives a more detailed information about the asymptotic
behaviour. �

5. Numerical Experiments

We consider the model parametric elliptic boundary value problem

−div(u∇p) = f in D := [0, 1] , p = 0 in ∂D , (43)

with f (x) = 100 · x. The diffusion coefficient is assumed to be affine-parametric, ie.

u(x, y) = 0.15 + y1ψ1(x) + y2ψ2(x) ,

with J = 2, J = {1, 2}, 〈u〉 = 0.15, ψ1(x) = 0.1 sin(πx), ψ2(x) = 0.025 cos(2πx) and with yj ∼ U [−1, 1], j ∈ J.
The forward problem is numerically solved by a finite element method using continuous, piecewise linear

shape functions on a uniform mesh with meshwidth h = 2−8. The quantity of interest φ is assumed to be
the solution of the forward problem at the midpoint of the domain and we assume that the solution of the
forward problem can be observed at x = 0.25 and x = 0.75, ie. the observation operator O consists of Kobs

system responses at Kobs = 2 observation points at x = 0.25 and x = 0.75. The goal of computation is, for
given (noisy) data δ,

δ = G(u) + η ,

with η ∼ N (0, Γ) and G : X → RKobs , with Kobs = 2NK − 1 , NK = 2, the expectation of the observed solution
of the forward model, ie. our aim is to approximate

Z′ =
∫

U
exp

(

−Φ(u; δ)
)

φ(u)
∣

∣

∣

u=〈u〉+∑
2
j=1 yjψj

µ0(dy) ,
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with the normalization constant Z given by

Z =
∫

U
exp

(

−Φ(u; δ)
)

∣

∣

∣

u=〈u〉+∑
2
j=1 yjψj

µ0(dy) ,

so that the expectation of interest is given by Z′/Z. The noise η = (ηj)j=1,...,Kobs
is assumed independent

and identically distributed. The concentration effect of the posterior and numerical instability of the adaptive

Smolyak quadrature schemes is due to the covariance Γobs = γI with γ = 0.252.
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Figure 1. Contour plot of the posterior density ΦΓobs
with observational noise Γobs = 0.52 I

(left), Γobs = 0.252 I (middle) and Γobs = 0.052 I (right). The concentration of the posterior as
well as its anisotropy are clearly visible.

We observe a strong concentration effect of the posterior density and identify a unique maximizer of
the posterior in the interior of the parameter domain, cp. Figure 1. Further decrease of the parameter
γ controlling the synthetic covariance of the observational noise clearly exhibits the asymptotic behavior
according to Theorem 3.1. Figure 1 shows the consistent concentration of the posterior around the reference
parameter value used to generate the (synthetic) measurement data.

The first strategy which we will apply to overcome the difficulties arising from the concentration effect
in the small noise setting will be the curvature rescaling regularization, ie. the Smolyak quadrature will be
preconditioned by shifting the origin to the maximizer of the posterior and by rescaling the integrand using
second order information at the extremal point. The maximizer y0 of the posterior density ΘΓobs

(y) in (16) is
computed by minimizing

1

2
(δ − G(u))⊤(δ − G(u))

∣

∣

∣

u=∑
2
j=1 yjψj

using a trust-region Quasi-Newton approach with SR1 updates as described in §10. The trust-region sub-
problems are iteratively solved by a CG-Steihaug method [26]. The results presented in Proposition 10.1
ensure (locally superlinear) convergence of SR1 updates to the Hessian of the potential. The approximated

Hessian HSR1 is diagonalized HSR1 = QMQ⊤ and the integrand is regularized by the curvature-rescaling
transformation (34), ie.

y → y0 + Γ1/2
obs QM−1/2z , z ∈ RJ . (44)
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Figure 2. Contour plot of the posterior density with observational noise Γobs = 0.252 I (left),
contour plot of the transformed posterior (middle) and truncated domain of integration of
the rescaled Smolyak approach in the original coordinate system (right) with τ = 0.16.

The transformed posterior shown in Figure 2 suggests that the most significant contributions of the pos-
terior can be captured by a quadratic approximation, consistent to the analysis presented in §3. Thus, the
preconditioned Smolyak quadrature is expected to converge with rates independent of the observational
noise covariance Γobs.
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Figure 3. Comparison of the estimated (absolute) error curves using the Smolyak approach
(Clenshaw-Curtis points) for the original integrand (gray) and the transformed integrand
(black) for the computation of ZΓobs

(left) and Z′
Γobs

(right) with observational noise Γobs =

0.252 I.

Comparing the estimated, absolute error curves using the Smolyak approach for the original integrand and
the transformed integrand, shown in Figure 3, we observe that the error indicator of the Smolyak algorithm
fails. This leads to a too early stopping of the Smolyak algorithm, which is a well known problem of the
greedy-type strategy for integrands concentrated on a small region of the integration domain. The Smolyak
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algorithm applied to the transformed integrand shows a fast convergence, as expected, and comparison to a
reference solution computed by a full tensor grid based on Clenshaw-Curtis points of order 14 gives a relative
error of 8.28036e − 4.

Next, we discuss the extrapolation method presented in §4.3. We therefore consider the following synthetic
variance sequence

γ : γk = 2−(k−1) 1 ≤ k ≤ K = 11 , (45)

so that Γk = γk I in the observation noise. The conditional expectation Eµδ
[φ] is approximated by extrapolation

to the zero observation variance limit of the Bayesian estimates for the synthetic observation noise variances
Γk = γk I. Ie., we construct a sequence of synthetic noise variances Γk and apply the Smolyak quadrature to

approximate the sequence E
µδ

Γk
[φ]; we then extrapolation the resulting sequence of Bayesian estimates to the

observation noise variance 0 ≤ Γobs << 1 by Richardson extrapolation.
Choosing large, synthetic variances Γk regularizes posterior densities, but to estimate the Bayesian quantity

by extrapolation, the computation of Bayesian estimates also for small synthetic variances is needed. To avoid
the issues of the error estimator caused by the concentration effects, the greedy strategy is enforced to iterate
for a prescribed number of iterations. Figure 4 shows the (absolute) error curves of the adaptive Smolyak

algorithm with same data δ, for synthetic observational noise variance Γk = 2−(k−1), where the error in each
iteration is computed by a tensor grid reference solution.
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Figure 4. Comparison of the (absolute) error curves using adaptive Smolyak quadrature
(Clenshaw-Curtis points) for the computation of the quantities ZΓk

(left) and Z′
Γk

(right) with

synthetic noise variances Γk = 2−(k−1).

Considering the asymptotic expansion (24) of the Bayesian estimate

Eµδ
[φ]

Z′
Γ

ZΓ

∼ a0 + a1Γ1 + a2Γ2 + ....

with a0 = φ(y0), (generalized) Richardson extrapolation yields the following result, cp. Table 1. Extrapolation

is based the geometric sequence gk := 2−(k−1).
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# Synthetic Variances Γ1 , . . . , Γk

1 0.02070011
2 0.01193666 0.00317320
3 0.00612788 0.00031911 0.00063226
4 0.00277697 0.00057394 0.00087162 0.00090582
5 0.00112845 0.00052006 0.00050210 0.00044932 0.00041888
6 0.00043617 0.00025612 0.00016814 0.00012043 0.00009850 0.00008817
7 0.00017238 0.00009141 0.00003651 0.00001770 0.00001086 0.00000803 0.00000676
8 0.00007256 0.00002726 0.00000588 0.00000150 0.00000042 0.00000008 0.00000004 0.00000010
9 0.00003256 0.00000743 0.00000082 0.00000010 0.00000001 0.00000001 0.00000001 0.00000001 0.00000001
10 0.00001531 0.00000195 0.00000013 0.00000003 0.00000002 0.00000002 0.00000002 0.00000002 0.00000002 0.00000002
11 0.00000739 0.00000052 0.00000037 0.00000002 0.00000002 0.00000002 0.00000002 0.00000002 0.00000002 0.00000002 0.00000002

Table 1. Relative errors for extrapolation to the zero observation variance Γobs. Reference
value from direct overintegration using tensor product quadrature.

The next example is the model parametric elliptic boundary value problem (43) with lognormal diffusion
coefficient (12) defined as

ln(u(x, y)) = y1ψ1(x) + y2ψ2(x) ,

with J = 2, J = {1, 2}, ψ1(x) = 0.1 sin(πx), ψ2(x) = 0.025 cos(2πx) and with yj ∼ N (0, 1), j ∈ J. Under
the assumption that the random variables yj are independent, the prior π0 is given by the two-dimensional

Gaussian measure N (0, I) on R2, ie. the parameter domain is U = R2. Before discussing further details, we

remark that the unbounded parameter domain U = R J violates the requirements for the Laplace asymptotics
in Section 8. The exponential decay of the Gaussian density as |y| → ∞ and nondegeneracy of the potential
Φ in (20) allow the “localization” of the argument in the proof of Proposition 8.3 to a compact subset Ũ ⊂
U = R2.

We adopt the setting of the uniform test case, ie. the solution is computed by a finite element method using
continuous, piecewise linear ansatz functions on a uniform mesh in the spatial domain D with meshwidth
h = 2−8 and we assume that the observation operator O consists of Kobs = 2 system responses ok(·) (being
point evaluations at x = 0.25 and x = 0.75, respectively) and the quantity of interest φ is defined as the
solution of the forward problem at x = 0.5.

For given (noisy) data δ as in (3) with η ∼ N (0, Γobs) and G : X → RKobs , with Kobs = 2, we are interested
in the behaviour of the posterior density

Θ(y) = exp
(

−ΦΓobs
(u; δ)

∣

∣

∣

u=∑
2
j=1 yjψj

−
1

2
‖y‖2

2

)

,

where the extra term 1
2‖y‖2

2 is due to the Gaussian prior density wr. to dy. The covariance Γobs is assumed to

be of the form Γobs = γI with γ = 0.012, cp. Figure 5.
To apply the curvature rescaling regularization, we solve the following minimization problem

min
y∈R2

1

2

(

(δ − G(u))⊤Γ−1
obs(δ − G(u)

∣

∣

∣

u=∑
2
j=1 yjψj

) + ‖y‖2
2

)

by the trust-region Quasi-Newton approach with SR1 updates. The nondegeneracy of S at y0 implies locally
superlinear convergence of both, function values and Hessian, of the potential at the extremal point y0. The
Hessian is used to regularize the integrand by the curvature-rescaling (44). Due to the unbounded parame-
ter domain, for the Gaussian prior, there is no additional approximation error introduced by truncation of
parameter domains while rescaling the integrand.
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transformed posterior

Figure 5. Contour plot of the posterior density with observational noise Γobs = 0.012 I (left),
the minimizer of the potential (middle) and contour plot of the transformed posterior (right).
Asymptotically spherical level-lines of the rescaled posterior density are in agreement with
Theorem 4.1 and (35).

Similar to the uniform case, we observe an almost quadratic behavior of the posterior, cp. Figure 5, which
suggests, due to the curvature preconditioning, convergence of the Smolyak algorithm independent of the
observational noise covariance Γobs.
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Figure 6. Comparison of the estimated (absolute) error using the Smolyak approach (Gauss-
Hermite points) for the original integrand (gray) and the transformed integrand (black) for

the computation of ZΓobs
(left) and Z′

Γobs
(right) with observational noise Γobs = 0.012 I.

Figure 6 confirms that curvature rescaling (34) of the integrand functions prior to adaptive Smolyak quad-
rature restores robust w.r. to Γobs convergence, in accordance with Theorem 4.1.

To further reduce the number of quadrature points, we exploit the knowledge of y0 and Theorem 4.1, (36),
which implies asymptotically, as Γ → 0, quadratic behaviour of the rescaled posterior densities. We propose
a quadrature scheme in spherical polar coordinates: discretizing the radial coordinate by the Gauss-Laguerre
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abscissas of order 2 and the angular coordinate by a trapezoidal rule with 3 grid points, the relative error of

the quantity Eµδ
[φ] is below 3e − 5 and the quadrature effort is reduced to 6 forward simulations, cp. Figure

7.
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Contour plot of the transformed posterior, 2 meas. at 0.25 and 0.75, λ=0.0001
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Figure 7. Contour plot of the transformed posterior with observational noise Γobs = 0.012 I
and the quadrature points resulting from integration in polar coordinates (trapezoidal rule,
Gauss-Laguerre).

Note that the use of the trapezoidal rule for the angular integral is specific to the case J = 2 parameters.

For J ≥ 3, we propose approximation of the angular integral over S J−1 by adaptive Smolyak quadrature
based on tensorized Gauss-Jacobi rules in hyperspherical coordinates as indicated in Appendix D, §11.

Finally, we discuss the extrapolation method based on the sequence of synthetic variances defined in (45).
Figure 8 indicates the convergence rate of the adaptive Smolyak algorithm with same data δ, for synthetic

observational noise variance Γk = 2−(k−1).
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Figure 8. Comparison of the estimated (absolute) error using adaptive Smolyak quadrature
(Gauss-Hermite points) for the computation of the quantities ZΓk

(left) and Z′
Γk

(right) with

synthetic noise variances Γk = 2−(k−1).
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As the Smolyak algorithm fails to converge for small synthetic observational noise variances (Γ7, . . . , Γ11),
only the first six approximated values of the normalization constant Z and the quantity Z′ are used for the
extrapolation based approach. Figure 8 plots the corresponding values for the quantities Zk, Z′

k and the

resulting approximated values of the conditional expectations E
µδ

Γk
[φ] are shown in Figure 9.
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Figure 9. Approximated values of the quantities ZΓk
and Z′

Γk
(left) and the conditional

expectation E
µδ

Γk
[φ] (right) with observational noise Γk, k = 1, . . . , 7.

Using as reference value the approximation of Eµδ
[φ] computed by curvature-rescaled, adapative Smolyak

quadrature (with absolute error tolerances 1e − 10), the results of the extrapolation based on (24) are summa-
rized in Table 2.

# Synthetic Variances Γ1 , . . . , Γk

1 0.00864275
2 0.00828207 0.00792139
3 0.00763215 0.00698223 0.00666917
4 0.00657289 0.00551363 0.00502409 0.00478908
5 0.00511237 0.00365186 0.00303127 0.00274658 0.00261041
6 0.00350889 0.00190542 0.00132327 0.00107927 0.00096812 0.00091514
7 0.00212986 0.0007508 0.00036607 0.00022921 0.00017254 0.00014688 0.00013468

Table 2. Romberg table of the relative errors for the extrapolation to the zero observation
variance Γobs.

Due to the convergence problems of the adaptive Smolyak quadrature caused by the concentration in the
posterior densities in the presence of small observation noise covariance Γk, we additionally use the curvature-
rescaling of the densities to enhance the convergence of the adaptive Smolyak quadrature for the sequence
of synthetic noise variances Γk. We verify the performance of the extrapolation strategy. Specifically, for each
value of the variance, we compute the optimal parameters of the least-squares problem and rescale accord-
ingly. Figure 10 shows the improvement in convergence gained by the “curvature-rescaling” preconditioning
of the adaptive Smolyak quadrature.
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Figure 10. Comparison of the estimated (absolute) error using the (curvature-
preconditioned) adaptive Smolyak approach (Gauss-Hermite points) for the computation of
the quantities ZΓk

(left) and Z′
Γk

(right) for various synthetic observation noise variances Γk.

The approximated values of the normalization constant ZΓk
, k > 7 and the quantity Z′

Γk
, k > 7 are used to

construct the sequence of conditional expectations E
µδ

Γk
[φ]. The numerical results are presented in Table 3.

# Synthetic Variances Γ1 , . . . , Γk

1 0.00864275
2 0.00828207 0.00792139
3 0.00763215 0.00698223 0.00666917
4 0.00657289 0.00551363 0.00502409 0.00478908
5 0.00511237 0.00365186 0.00303127 0.00274658 0.00261041
6 0.00350889 0.00190542 0.00132327 0.00107927 0.00096812 0.00091514
7 0.00212986 0.00075083 0.00036597 0.00022921 0.0001725 0.00014688 0.00013468
8 0.00116504 0.00020022 0.00001669 0.00003321 0.00005071 0.00005791 0.00006116 0.00006270
9 0.00057981 0.00000542 0.00007397 0.00008692 0.00009050 0.00009179 0.00009233 0.00009257 0.00009269
10 0.00025547 0.00006885 0.00090000 0.00009227 0.00009265 0.00009271 0.00009273 0.00009273 0.00009273 0.00009273
11 0.00009002 0.00007544 0.00007763 0.00007586 0.00007477 0.00007419 0.00007390 0.00007375 0.00007368 0.00007364 0.00007362

Table 3. Romberg table of the relative errors for the extrapolation to the zero observation
variance Γobs.

In summary, rescaling of the posterior densities (16), (18) in the Bayesian estimate (19) based on second
order information at the extremum of these (assumed unimodal) posterior densities to “precondition” the
adaptive Smolyak quadrature leads to a significant improvement of the convergence properties. In particular,
under a dimension truncation and a nondegeneracy assumption, this “curvature-rescaling” of the posterior
renders the adaptive Smolyak quadrature approach robust in the limit of vanishing observation noise covari-
ance. The extrapolation approach per se does not require the solution of an additional minimization problem
and shows satisfactory approximation results in the considered test example, cp. Table 3. However, the
extrapolation method requires the approximation of the normalization constant ZΓ and of the quantity Z′

Γ

for several large, synthetic variances Γk monotonically decreasing to zero. Computing these estimates could
be done in parallel. Without curvature-based rescaling, extrapolation in general will encounter numerical
stability problems for small observation noise covariances Γk, as observed in Figure 8.
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To investigate the performance of the preconditioned Smolyak approach when the posterior concentrates
only in a (lower-dimensional) subspace (determined, for example, by dominant eigenspaces of the Hessian
of S(y0)), we consider Bayesian inversion of the model parametric elliptic boundary value problem (9), as
defined above, in the 5-parameter setting

ln(u(x, y)) =
5

∑
j=1

ψj(x)yj ,

with ψj(x) = 0.1/2j−1 sin(2j−1πx), j = 1, 3, 5, ψj(x) = 0.1/2j−1 cos(2j−1πx), j = 2, 4 and with yj ∼
N (0, 1), j ∈ J = {1, . . . , 5}. The eigenvalues of the approximated Hessian of the Bayesian potential by
QN with SR1 updates indicate that the posterior concentrates in 2 coordinates. According to the strategy
discussed in §4.1, we shift the origin to the minimizer of the posterior density, rotate the coordinate system
and rescale the 2 integration coordinates to remove the degeneracy of the integrand. The results of the pre-
conditioned Smolyak method compared to the performance of the Smolyak applied to the original integrand
is shown in Fig. 11
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Figure 11. Comparison of the estimated (absolute) error using the Smolyak approach
(Gauss-Hermite points) for the original integrand (gray) and the transformed integrand
(black) for the computation of ZΓobs

(left) and Z′
Γobs

(right) with observational noise Γobs =

0.012 I, J = 5.

6. Discussion and Conclusions

We presented an adaptive quadrature approach to high-dimensional, parametric Bayesian inversion. The
proposed approach is based on a deterministic representation of the posterior densities, as a holomorphic
function of possibly countably many parameters.

We propose the use of QN methods with symmetric low-rank updates to identify computationally MAP
points as well as second order information on the Bayesian posterior density at these points. We proposed,
based on this computed second order information and a given observation noise covariance Γobs > 0 a notion
of numerical concentration dimension of the Bayesian posterior. This information is used to effect a change of
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coordinates which we proved to resolve the concentration of the posterior: the curvature-based coordinate
change renders all derivatives of the rescaled Bayesian posterior density bounded independently of the obser-
vation noise covariance Γ, so that dimension-adaptive Smolyak quadratures applied to the rescaled posterior
converge independently of the observation noise covariance Γ.

We also established, under certain nondegeneracy assumptions of the covariance weighted least-squares
potential, an asymptotic expansion of the Bayesian estimate with respect to vanishing observation noise
(co)variance Γobs. We use this asymptotic expansion as basis for an extrapolation of the Bayesian estimate to
the limit which reduces estimates for small noise covariances to a few, possibly parallel, computations for
larger, synthetic covariances for one given set of data δ. Via posterior consistency, these methods are also
relevant in the large observation number limit, an aspect that is not discussed here in detail (cp. [9, Sec.4]).
We also remark that the possibility of reparametrization the posterior to alleviate ill-conditioning due to, eg.,
concentration effects, has been suggested in [24], albeit with a different approach related to optimal transport.

The present analysis did not account for discretization errors in the forward problems which can, in general,
not be solved in closed form. Only discretizations of the forward problems are computationally accessible.
This introduces an additional discretization error into the estimates of ZΓ, Z′

Γ defined in (19).
Generalized Richardson extrapolation in the case of degenerate asymptotics (26) is not applicable as soon as

log(Γ)-terms are present, as then even geometric sequences {Γj}j≥0 of synthetic variances violate the stability
condition (40) in case that (53) holds with N > 0. For N = 0 in (53), however, geometric synthetic observation
noise covariance sequences {Γj}j≥0 will result in a stable extrapolation scheme for the leading term in (26),
even without explicit knowledge of the exponents rk ∈ Q.
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8. Appendix A: Laplace’s Method

The asymptotic structure of integrals of the form

F(λ) =
∫

U
φ(y) exp[λS(y)]dy (46)

as the parameter λ → ∞ is obtained by Laplace’s method. In (46), U is a bounded domain in R J , with
parameter dimension J < ∞, and y = (y1, ..., yJ) ∈ U, λ ∈ R is a parameter and S(y) is a sufficiently smooth,
real-valued function.

We are interested in the asymptotic behaviour of F(λ) for λ → ∞, having in mind λ = Γ−1. We first
consider the nondegenerate case, and address briefly the degenerate case in §8.3. The proof is, in fact,
recursive by dimension with the recursion based on the one-dimensional result from [12, Chap. II.2.1] for
parametric integrand functions; we present this case first.

8.1. Parametric One-dimensional Case

Consider the asymptotic behaviour of integrals of the form

F(λ, α) =
∫ b

a
f (x, α) exp(λS(x, α))dx , λ → ∞ , (47)
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where α = (α1, ..., αk) ∈ Rk is a parameter vector. If the function S(x, α) admits for every fixed parameter

α ∈ G ⊂ Rk from some bounded parameter domain G a unique, nondegenerate maximum x0(α) ∈ I := [a, b]
and if, for every α ∈ G the point x0(α) does not approach ∂I, the Laplace asymptotics hold uniformly (w.r. to
α ∈ G). Specifically, assume

(A1) in (47), f (x, α) and S(x, α) ∈ C(I × G) ∩ C∞(I × G) and S is real-valued for (x, α) ∈ I × G,
(A2) for every fixed α ∈ G the function S(x, α) admits a unique maximum x0(α) ∈ I.
(A3) the maximum x0(α) is nondegenerate uniformly w.r. to α ∈ G:

∀α ∈ G : −Sxx(x0(α), α) ≥ δ0 > 0 .

For all α ∈ G holds x0(α) ∈ [a′, b′] ⊂ [a, b] for some fixed a < a′ < b′ < b.

Proposition 8.1. ( [12, Thm. II.2.1]) Assume (A1) - (A3). Then the function F(λ, α) in (47) admits the asymptotic
expansion

F(λ, α) ∼ exp(λS(x0, α))
∞

∑
j=0

cj(α)λ
−j−1/2, λ → ∞ , (48)

where the coefficients cj, j = 0, 1, 2, ... are given by

cj(α) =
Γ(j + 1/2)

(2j)!

(

d

dx

)j
[

f (x, α)

(

2(S(x0, α)− S(x, α))

(x − x0(α))2

)−j−1/2
]

x=x0(α)

.

The first term in the asymptotic expansion (48) reads (O(·) uniform w.r. to α ∈ G)

F(λ, α) =

(

2π

−λSxx(x0(α), α)

)1/2

× exp(λS(x0(α), α))
[

f (x0(α), α) + O(λ−1)
]

.

In the context of lognormal Gaussian models, as considered in §2.3.2, there arise improper integrals where
the function S(y) in (20) depends generally (analytically) on Γ at Γ = 0 (cp. (29)). In place of (47), we consider
therefore the asymptotics of

F(λ) =
∫ a(λ)

−a(λ)
f (x, λ) exp[S(x, λ)]dx , λ → ∞ (49)

where λ, a, f and S are real-valued, smooth functions. We assume that for all λ, S(·, λ) has a unique, global
maximum at x0(λ) which is nondegenerate, ie.

S′
x(x0(λ), λ) = 0 , S′′

xx(x0(λ), λ) < 0

Proposition 8.2. ( [12, Thm.II.2.2]) Assume that there exists a real-valued function µ(λ) > 0 with µ(λ) → ∞ as
λ → ∞ such that, as λ → ∞, in (49) holds

S′′
xx(x, λ) = S′′

xx(x0(λ), λ)[1 + o(1)],

f (x, λ) = f (x0(λ), λ)[1 + o(1)]

uniformly w.r. to x ∈ U(x0(λ)) where

U(x0(λ)) := {x : |x − x0(λ)| ≤ µ(λ)|S′′
xx(x0(λ), λ)|−1/2} ⊂ R .
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Then, as λ → ∞, there holds

∫

U(x0(λ))
f (x, λ) exp[S(x, λ)]dx =

(
√

−
2π

S′′
xx

f exp[S]

)

|x=x0(λ)
[1 + o(1)] .

8.2. Nondegenerate Case in finite Dimension J > 1

We assume that φ is real-valued (ie. S = R; all assertions hold verbatim when the QoI φ : U 7→ S takes
values in a Banach space S) and uniform prior π0.

Proposition 8.3. (cp. [12, Thm. II.4.1]) Consider F(λ) as in (46) under the assumptions

1. φ, S ∈ C(U; R) with U a bounded domain in R J , J < ∞,

2. max{S(y) : y ∈ U} is attained only at one isolated point y0 ∈ int(U),

3. S ∈ C3(Bε(y0)) for a closed ball at y0 of radius ε > 0 so small that Bε(y0) ⊂ U,
4. the maximum at y0 is nondegenerate.

Then there holds, as λ → ∞, the asymptotic expansion

exp[−λS(y0)]F(λ) ∼ λ−J/2
∞

∑
k=0

akλ−k . (50)

In particular, as λ → ∞ the leading term a0 in (50) has the exact representation

F(λ) = exp[λS(y0)](2π/λ)J/2 φ(y0)
√

|det(S′′(y0))|
(1 + O(λ−1)) . (51)

Here, S′′(y0) ∈ R
J×J
sym denotes the (negative definite) Hessian of S(y) at y0.

Proof. The proof is recursively by dimension, using the asymptotic expansion in Proposition 8.1 of paramet-
ric, univariate integrals. The argument elucidates the curvature rescaling preconditioning in §4.1, so that we
indicate here the derivation of (51). Choosing ε > 0 sufficiently small, we partition the domain U of inte-
gration in (46) into U = Bε(y0) + (U\Bε(y0)) =: Bε(y0) + Vε and we may write the integral (46) accordingly
as F(λ) = Fε(λ) + Gε(λ) with Fε defined as in (46) but with the domain of integration being Bε(y0) in place

of U. Using that y0 is the global maximum of the integrand function in U, there exists δ′ > 0 (depending
on ε > 0 and on S but independent of λ > 0) such that |Gε(λ)| = O(exp(λ(S(y0) − δ′))) for all λ > 0.
This integal, being of (exponentially) lower asymptotic order as λ → ∞, will not contribute to (51). Thus
the asmptotics of F(λ) as λ → ∞ in turn is completely determined by Fε(λ). To prove (51), we perform a

C3-diffeomorphic change of variables x = ϕ(y) for all y ∈ Bε(y0) such that a) ϕ(y0) = y0, b) ϕ′(y0) = 1, c)

ϕ(Bε(y0)) = B̃ε(y0) ⊂ U and such that

(S ◦ ϕ)(x) = S(y0) +
1

2

J

∑
j=1

µjx
2
j . (52)

Here, µj < 0 are the eigenvalues of the Hessian S′′
yy at y0 (which are negative according to assumptions 2.

and 4.). The existence of a C3-diffeomorphism ϕ with (52) (which, like the function S(y), is independent of
λ) follows from the Morse Lemma by Assumption 3. Changing variables in the integral Fε(λ), gives

Fε(λ) = exp(λS(y0))
∫

B̃ε(y0)
exp

(

λ

2

J

∑
j=1

µj(xj)
2

)

(φ ◦ ϕ)(x)(Dy ϕ)(x)dx .
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Next, we choose 0 < ε′ < ε such that the axiparallel (wr. to the coordinates x) cube C(y0; ε′) ⊂ B̃ε(y0), and

we split as before Fε(λ) = F1
ε (λ) + G1

ε (λ). The asymptotics as λ → ∞ are dominated by F1
ε (λ) which takes

the form

F1
ε (λ) = exp(λS(y0))

∫

|x1|<ε′/2
exp(λµ1

x2
1

2
)Υ(x1)dx1

where, with the notation x′ = (x2, x3, ..., xJ),

Υ(x1) :=
∫

|x′ |∞<ε′/2
exp

(

λ

2

J

∑
j=2

µj(xj)
2

)

(̺ ◦ ϕ)(x)(Dy ϕ)(x1; x′)dx′ .

As λ → ∞, the Laplace asymptotics Proposition 8.1 for the univariate integral apply to F1
ε (λ). This yields

F1
ε (λ) = exp(λS(y0))λ

−1/2Υ(y0,1)(1 + O(λ−1)) .

Iterating this reasoning for Υ(y0,1) which is a J − 1-dimensional integral of the same type J − 1 times implies
(50). An analysis of the spherical integral in polar-coordinates finally yields (51) (see [12, Prop. 4.1]). �

8.3. Degenerate Case

The nondegeneracy of S′′(y0) is essential for the validity of the asymptotic expansion (50) and for obtaining
the explicit formula (51). Based on the (generic) compactness of the Hessian in the countably-parametric
setting (cp. §9), for large, finite truncation dimension J, the parametric Hessian will generically degenerate.
In the case when Assumption 4. in Proposition 8.3 does not hold, (51) becomes invalid, but a generalization
of (50) can be established. The result is less explicit than (50).

Proposition 8.4. Under assumptions 1. - 3. of Proposition 8.3, there exists N ∈ N and constants akl ∈ R such that
for λ → ∞, for F(λ) as in (46) there holds the power-logarithmic asymptotics

exp(−λS(y0))F(λ) ∼
∞

∑
k=0

(

N

∑
l=0

aklλ
−rk (log λ)l

)

. (53)

Here, rk ∈ Q with J/2 ≤ r0 ≤ r1 < ... < rs with rs → ∞ as s → ∞.

For the proof, we refer to [12, Section II.3.4]. The derivation and justification of (53) is considerably more
involved than the classical asymptotics (50) as its proof is based on “resolution of singularities” [1] (see
also [12, Thm. II.4.3]). We also remark that, contrary to (50), to date the leading term a00 in (53) is not known
in closed form, in general, and the exponents rk ∈ Q in (53) depend on J.

9. Appendix B: Compactness of the Hessian for uniform prior π0

For uniform prior π0 on the parameter sequences y with bounded ranges, ie. U = [−1, 1]N, we investigate
the Hessian S′′(y) in (20), (21). At a critical point y0 ∈ int(U) we have r′(y0) = 0 so that we find, in the case
(22) of incompatible data, ie. when ΦΓ(y0, δ) > 0, since G depends linearly on f

S′′(y0) = −r(y0)r
′′(y0) = −r(y0)O(G′′(y0)) = −r(y0)O(q′′(y0)) . (54)

For the following result, we assume

J = N, X is a separable Hilbert space and(ϕ)j∈N is a countable ONB .
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Then, X is isomorphic to the sequence space ℓ2(N) and we may identify, via the ONB (ϕ)j∈N, any bounded,

linear operator B ∈ L(ℓ2(N), ℓ2(N)) with the associated bi-infinite matrix (Bij)i,j∈N given by Bij = 〈ϕi, Aϕj〉X .

In particular, the Hessian (D2
uq)(u) ∈ X × X 7→ X is associated with the bilinear mapping ℓ2(N)× ℓ2(N) 7→

X induced by the bi-infinite matrix (∂2
yiyj

q(y))i,j∈N ∈ XN×N.

Proposition 9.1. Assume that the set of uncertainties is contained in a separable Hilbert space X with X-ONB (ϕj)j∈N.

Assume further that the distributed parameters u ∈ X admit the representation (5) with |yj| ≤ 1 and ψj = cj ϕj where,
for some C, η > 0, there holds the bound

∀j ∈ N : cj := ‖ψj‖X ≤ Cj−1−η . (55)

Then, for every y ∈ U, and for every observation functional O(·) ∈ X ′, the bi-infinite matrix (O((∂2
yiyj

q)(y)))i,j∈N

corresponding to the second differential (D2
uG)(u) of the uncertainty-to-observation map with u as in (5) induces a

compact operator on ℓ2(N).

Proof. Fix y ∈ U arbitrary. The assumed X orthonormality of the basis (ϕj)j∈N of X and the (isometric)

identification of X with ℓ2(N) implies that it remains to verify that the bi-infinite Hesse matrix H(y) :=
(O((∂2

yiyj
q)(y)))i,j∈N can be approximated, in norm, by a sequence (H J(y))J∈N of matrices of finite rank J.

Since there holds, for every B ∈ L(ℓ2(N), ℓ2(N)) and for every x ∈ ℓ2(N), ‖Bx‖ℓ2(N) ≤ ‖B‖F‖x‖ℓ2(N)

with the “Frobenius-norm” ‖ ◦ ‖F given by ‖B‖2
F = ∑i,j |Bij|

2 (which majorizes the induced spectral-norm),

it is sufficient to approximate H(y) in ‖ ◦ ‖F by a sequence {H J}J∈N ⊂ L(ℓ2(N), ℓ2(N)) of operators whose

ranks are bounded by J. To this end, we choose H J as finite sections of the bi-infinite matrix H, ie.

H J
ij(y) :=

{

Hij(y) = (∂2
yiyj

G)(y) = O((∂2
yiyj

q)(y)) , 1 ≤ i, j ≤ J

0 else

and estimate, for y ∈ U,

‖H(y)− H J(y)‖2
F = ∑

i,j>J

|(Hij − H J
ij)(y)|

2 ≤ ‖O‖2
X ′ ∑

i,j>J

‖∂2
yiyj

q(y)‖2
X .

Using that there exists C > 0 such that for every y ∈ U

‖∂2
yiyj

q(y)‖X ≤ Ccicj ∀i, j ∈ N (56)

we find with the assumption (55) on the size of cj that

‖H(y)− H J(y)‖2
F ≤ C2‖O‖2

X ′ ∑
i,j>J

i−2(1+η) j−2(1+η) .

We set i = r cos θ, j = r sin θ and majorize by a Riemann integral,

‖H(y)− H J(y)‖2
F . ‖O‖2

X ′

∫ ∞

r=J

∫ π/2

θ=0
r−2−2η

(

1

(sin θ)2+2η
+

1

(cos θ)2+2η

)

rdrdθ

. ‖O‖2
X ′

∫ ∞

r=J
r−1−2ηdr

for every η > 0, which implies the bound

sup
y∈U

‖H(y)− H J(y)‖F . ‖O‖X ′ J−η J → ∞ . (57)
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Remark 9.2. Condition (55) implies that the sequence c = (cj)j≥1 ∈ ℓp(N) for 1/(1 + η) < p < 1, ie. for
η < 1/p − 1 which, for small η > 0, is close to the minimal condition p = 1 for the parametrization (5) to
remain meaningful. Compare to condition (8) in (iii) of the affine perturbation Assumption 2.1. We also note

that the truncation H J(y) of the Hessian corresponds to J-term truncation of the uncertainty parametrization

(5). When (5) is obtained by a Karhunen-Loève expansion, therefore, H J contains the curvature information
of the forward mapping restricted to its J principal components with (57) providing a quantitative bound on

the truncation error, resp. on the curvature information contained in the omitted part H − H J . Also note the
analogy of the bound (57) with (13), (14).

Remark 9.3. Compactness of the Hessian has been observed to play a crucial role for the efficiency of compu-
tational Bayesian inversion in several applications recently; we refer to [23, Sections 4.3 and 4.4] for numerical
evidence and to [2] for an analogous compactness result in inverse shape problems in 2-d, acoustic scattering;
both these applications are covered by Proposition 9.1.

10. Appendix C: Quasi-Newton Posterior Curvature Analysis

Based on the Theorems in §3.1, 3.2 and on the compactness result Proposition 9.1, in the regular case
discussed in Proposition 8.3, the zero observation noise variance limit of the Bayesian estimate (19) is, upon
dimension-truncation, governed by a finite-dimensional, nonlinear least-squares (LSQ) problem

S(y)
!
= max ⇐⇒ f (y) := ‖r(y)‖2

2
!
= min (58)

where S(y) is as in (20), (28), and where the max resp. min is to be taken over y ∈ U. In the present section,
we review Quasi-Newton methods for the numerical determination of a maximizer y0 of S(y). In order to use
the proposed asymptotics in the case of small observation noise, we are interested in the optimal point y0 as
well as in the second order derivative information S′′(y0). Due to these requirements, standard approaches
like Gauss-Newton or Levenberg-Marquardt methods are not feasible as they rely on an approximation of the

second order derivatives S′′(y0) given by (21) with −r′(y)r′(y)⊤, ie. the second summation term is neglected
which leads to a good approximation of S′′(y0) in the small residual case. Due to possibly large residuals
in the incompatible case, this approach is not valid for the application of interest. Here, we will focus on
Quasi-Newton methods combined with symmetric rank-1 Hessian updates (“QN-SR1” for short) and review
results on superlinear convergence of iterates of both, parameter values and Hessians, to the critical points
and the metric tensor (ie., to y0 resp. to S′′(y0)) from [7].

Throughout we place ourselves under the assumptions 1. - 4. of Proposition 8.3. We assume, in particular, that
the parametric forward problem has been dimensionally truncated to parameter domain of finite dimension J as outlined
in §2.4. We also assume that, due to assumption 4. of Proposition 8.3 and due to (54), that for every value J of the
truncation dimension, the Hessian S′′

0 (y0) of the Bayesian potential for the dimensionally truncated forward model is
nondegenerate with y0 ∈ intU. Under these assumptions, we recall from (25), (20) that for every J < ∞, the
limit Γ ↓ 0 is determined by the nonlinear least-squares problem (58).

The preceding assumptions ensure that the Hessian S′′
0 (y0) for the dimensionally truncated forward model

is nondegenerate. As a consequence of the p-sparsity assumption (iii) of Assumption 2.1 which, by Proposi-

tion 9.1, implies compactness of the Hessian O(D2
uq))(y), for large, finite truncation dimension J, the corre-

sponding dimensionally truncated Hessians H J(y) will, in general, be positive definite, but near degenerate.
To overcome the ill-posedness of the finite dimensional optimization problems, we propose a preconditioned
trust-region strategy which furthermore yields the necessary globalization of the Quasi-Newton method.
Based on the results presented in Proposition 9.1, the size of the updates in each component is controlled
according to (56), cp. Remark 10.2. Efficient methods for the numerical solution of (58) have been developed
over the past decades; we refer to [11, Chap. 10] and the references there. In the context of inverse problems
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for operator equations with uncertain, distributed parameters, we refer to [2] and the references there. One
key question in (Quasi-) Newton approaches for the solution of the least-squares problem is the acquisi-
tion of first and second order derivative information, in particular on the Hessian S′′(y). It is also crucial in
determining the nature of the asymptotic expansion in Proposition 8.3. An efficient alternative to finite differ-
encing is the adjoint technique, which allows to compute gradients with a computational effort independent
of the number of unknown parameters J, cp. eg. [15, 17]. Second order derivatives may be evaluated either
directly from the (discretized) variational definition in the PDE (see, eg. [17, 23]), or, as we shall now next,
be ‘accumulated’ during a Quasi-Newton iteration in S(y) for the computation of y0. As is well-known, the
quadratic and superlinear convergence of Newton- and Quasi-Newton methods for the numerical solution
of (58) depend crucially on second derivative information of the function to be minimized. In particular,
QN methods do not require explicit information about the objective functions’ Hessians and, for SR1 [7] and
PSB [14] rank-1 updates, generate sequences {Hk}k≥0 of approximate Hessians which will converge super-
linearly with the iterates to the true Hessian S′′(y0). Basic results on this are [14] and [7, Thm.2, eqn. (36)].
We show in Theorem 4.1 that the curvature information produced as a “byproduct” during the QN iteration for the
determination of y0 can be exploited to achieve Γ-independent performance of adaptive Smolyak (and other) quadrature
algorithms for positive, but small observation noise variance Γ > 0. This finding is consistent with recent
work [16, 23] where QN updates have been found to accelerate burn-in and achieve variance reduction in
MCMC methods.

We recapitulate next the main results on the Hessian approximation; to do so, we place ourselves under

the assumptions 1. - 4. of Proposition 8.3. Then QN methods construct, based on a starting point y(0) ∈ U

which is sufficiently close to the global minimum y0 of f a sequence {y(k)}k≥0 which converges to y0 at least
superlinearly, ie.

y0 = lim
k→∞

y(k), ‖y0 − y(k)‖2 ≤ C‖y0 − y(k−1)‖s
2

for all k ≥ k0 ≥ 1 and some C > 0 and s > 1 independent of k.

Algorithm 10.1. Given y(0) ∈ U sufficiently close to y0, repeat until convergence

Step 1: Set k = 0, H0 := I and compute g0 = ∇ f (y(0)).
Step 2: Find a direction vector sk.
Step 3: Set

y(k+1) := y(k) + sk ,

and compute

gk+1 := ∇ f (y(k+1)), x(k) := gk+1 − gk .

Step 4: update Hk to a new matrix Hk+1, such that rank(Hk+1 − Hk) = 1.
Step 5: set k := k + 1 and go to Step 2.

In Step 4, we consider the symmetric rank-1 (SR1) update

Hk+1 := Hk +
rks⊤k
r⊤k sk

(59)

with rk := xk − Hksk.
QN methods with SR1 updates are known to produce function values and approximate Hessians which

converge superlinearly locally, ie., near nondegenerate extrema of the objective function.

Proposition 10.1. ( [7]) Assume that

(AS.1) f (y) ∈ C2,
(AS.2) H(y) = f ′′(y) is Lipschitz,
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(AS.3) the sequence {y(k)}k≥0 converges to a limit point y∗,
(AS.4) the sequence {sk}k≥0 is uniformly linearly independent, ie. there exists k0 ∈ N such that for all k ≥ k0 the

matrices

S∗
k :=

(

sk

‖sk‖
, ...,

sk+J−1

‖sk+J−1‖

)

are nonsingular

where {y(k)}k≥0 is a sequence of iterates generated by Algorithm 10.1 with SR1 update (59). Assume also that for all k
there holds

|r⊤k sk| ≥ c1‖rk‖‖sk‖ ,

with c1 ∈ (0, 1). Then, there exists a constant c > 0 such that, for k ≥ k0,

‖Hk+J+1 − H(y0)‖ ≤ cǫk,

where, for m ≥ 1 we defined ǫk := max{‖y(l)−y0‖ : k ≤ l ≤ k+ J + 1}, and there holds limk→∞ ‖Hk − H(y0)‖ = 0.
If, moreover, for sufficiently large k,

‖y(k+1) − y0‖ ≤ c‖y(k) − y0‖, then ‖Hk+m+1 − H(y0)‖ ≤ c‖y(k) − y0‖ .

ie., for these values of k holds superlinear convergence of the accumulated SR1 updated Hessians.

The stated results follow from [7, Thm. 2, Cor. 3, Cor.4]. We mention that assumption (AS.4) above
corresponds to the (stronger) assumption (AS.4b) in [7]. In what follows, we apply the QN Algorithm 10.1
with SR1 update (59) to

min
y∈U

ΦΓ(y; δ) .

Remark 10.2. The updates in Step 3 in Algorithm 10.1 are computed by a trust region strategy leading to

a globalization of the Quasi-Newton method, ie. to obtain the new iterate y(k+1), we seek a solution of the
following subproblem

min f (yk) + g⊤k s +
1

2
s⊤Hks s.t. ‖s‖ ≤ ∆k , (60)

where ∆k > 0 is the trust-region radius. We refer to [8] for details on trust-region methods. In particular,
we consider a weighted norm in (60) of the form ‖Ds‖ ≤ ∆k with a nonsingular, diagonal and positive
scaling matrix D in order to overcome the inherently present ill-posedness of the underlying least-squares
problem due to the compactness of Hessians shown in Proposition 9.1. Based on the bounds on the second
order derivatives given in (56), we propose D := diag(c2

1, . . . , c2
J ) reducing the effects of poor scaling, cp. [26,

Chapter 4,10].

We note that the smoothness assumption (AS.2) is satisfied due to the Bayesian potential being a qua-
dratic functional of the uncertainty-to-observation map, and due to the analytic dependence of q(y) on the
coordinates of y.

Due to the local nature of the convergence result Proposition 10.1, we always assume that the starting point
of our iteration is feasible and sufficiently close to y0.

Remark 10.3. Under the assumption of the existence of a unique nondegenerate minimizer y0 ∈ intU and
of a starting point sufficiently close to y0 ∈ intU, we may omit the box constraints on the parameter y and
consider the unconstrained optimization problem min f (y). In the case y ∈ ∂U where the box constraints are
active at y0 a nonlinear programming problem

min f (y) s.t. − 1 ≤ yj ≤ 1, j = 1, . . . , J



TITLE WILL BE SET BY THE PUBLISHER 35

needs to be solved. In [6], a SR1 QN method with projection to the feasible set in each iteration is proven to
converge superlinearly.

Remark 10.4. Under the nondegeneracy assumption, Proposition 10.1 implies superlinear local convergence
of iterates and updated Hessians. For large dimension J, termination of the QN iteration could well be
reached in less that J iterations. In this case, the rank of the converged QN Hessian could be used as an
estimate of the effective concentration dimension J∗ of the posterior at the MAP point.

11. Appendix D: Adaptive Smolyak Quadrature in Spherical Polar Coordinates

The asymptotic analysis presented in §3 ensures that, in the limit Γ ↓ 0, only terms up to order 2 of

the parametric posterior density contribute to the Bayesian estimate Eµδ
[φ]. This asymptotically spherical

behavior of the posterior density upon rescaling could be clearly observed in the numerical results, cp. Fig.
2 and Fig. 5. Theorem 4.1 also indicates that the curvature rescaled posterior density is an analytic function
of the parameters, with uniform (w.r. to Γobs > 0) domain of analyticity.

For Gaussian prior π0, however, we found that the Smolyak algorithm based on Gauss-Hermite quadrature
could not exploit this behavior due to an additional transformation factor arising from the weight function

exp(−0.5‖z‖2), ie. to compute the Bayesian estimate Z′/Z with

Z = C
∫

R J
exp(−

1

2
‖δ − G(QM− 1

2 z + y0)‖
2
Γ) exp(−

1

2
‖QM− 1

2 z + y0‖
2)dz ,

and

Z′ = C
∫

R J
φ(QM− 1

2 z + y0) exp(−
1

2
‖δ − G(QM− 1

2 z + y0)‖
2
Γ) exp(−

1

2
‖QM− 1

2 z + y0‖
2)dz ,

a factor exp(0.5‖z‖2) exp(−0.5‖z‖2) needs to be introduced

Z = C
∫

R J
exp(−

1

2
‖δ − G(QM− 1

2 z + y0)‖
2
Γ)

× exp(−
1

2
‖QM− 1

2 z + y0‖
2) exp(0.5‖z‖2) exp(−0.5‖z‖2)dz

= C
∫

R J
exp(−

1

2
‖δ − G(QM− 1

2 z + y0)‖
2
Γ) exp(−

1

2
‖QM− 1

2 z + y0‖
2)

× exp(0.5‖z‖2)µ0(dz) ,

which will not preserve the asymptotically quadratic w.r. to z posterior density. This effect is illustrated
in Fig. 12 showing the transformed posterior of the diffusion problem with lognormal coefficients (J = 2)
discussed in §5, cp. 5.
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Figure 12. Plots of the transformed posterior density with additional weight function

exp(0.5‖z‖2), observational noise Γobs = 0.012 I. The asymptotically spherical level-lines of
the rescaled posterior density, cp. 5, are not preserved due to an additional transformation
factor arising from the use of Gauss-Hermite quadrature formulas.

In concentration dimension J∗ = 2, we found numerical integration in polar coordinates able to exploit
the asymptotic behavior of the posterior density, as illustrated in Fig. 7. We will generalize this idea in the
following to the case of posterior concentration in J∗ > 2 concentration variables. Specifically, we propose

an adaptive Smolyak algorithm on the sphere S J∗ tailored to exploit the analytic structure of the curvature-
rescaled posterior density. We are interested in the computation of improper integrals of the form

∫

R J
f (z) exp(−

1

2
‖ϕ(z)‖2)dz , (61)

where ϕ denotes the curvature-rescaling transformation (cp. (34)) ϕ(z) = y0 + Γ
1
2 QM− 1

2 z. Introducing
spherical polar coordinates θ1, θ2, . . . , θJ−1, r defined by

z1 = r
J−1

∏
i=1

sin θi

zj = r cos θj−1

J−1

∏
i=j

sin θi , j = 2, . . . , J

with 0 ≤ θ1 ≤ 2π, 0 ≤ θj ≤ π, j = 2, . . . , J − 1 and 0 ≤ r < ∞, (61) can be transformed to

∫ ∞

0

∫ π

0
. . .
∫ π

0

∫ 2π

0
J(θ, r) f (θ, r) exp(−

1

2
‖ϕ(θ, r)‖2)dθ1dθ2 . . . dθJ−1dr; ,

where θ = (θ1, . . . , θJ−1) and the Jacobian J(θ, r) of the transformation is given by

J(θ1, . . . , θJ−1, r) = r J−1 sin θ2 sin2 θ3 · · · sinJ−2 θJ−1 , (64)

see eg. [25]. Note that the transformation to spherical polar coordinates leads to a tensor-product structure of
the Jacobian and the hierarchical structure with respect to the angles θ1, . . . , θJ−1 is amenable to dimension-
adaptive Smolyak quadrature as described in [27, 28] in the “concentrating variable” yj, j = 1, . . . , J∗ with
1 ≤ J∗ ≤ J (cp. (37) and Remark 4.2). By analogy to the two-dimensional example discussed in §5, we suggest
the trapezoidal rule to integrate with respect to the azimuth angle θ1 and Gauss-Laguerre quadrature to
integrate with respect to the radius r. Specifically, Gauss-Laguerre formulas with weight function r exp(−r),
leading to an additional factor exp(r), which preserves the spherical behavior of the posterior density. We
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remark that the integrand function explicitly depends on the active dimension J∗ via the Jacobian of the
transformation (64). This means that, using an adaptive control of the active dimension in the Smolyak
algorithm, the previous estimate of the Smolyak algorithm has to be corrected by the factor r in the integrand.
This can be done efficiently by storing the forward solutions for each quadrature point, so that there is no need
of recomputing the quadrature points when enlarging the active dimension. In the remaining dimensions

θ2, . . . , θJ−1, we propose to use Gauss-Jacobi formulas based on weights sinj−1 θj =
√

1 − cos2 θj

j−1
for

j = 2, . . . , J − 1.
Using the Gauss-Laguerre formulas with weight functions r exp(−r) and the Gauss-Jacobi formulas as de-

scribed above, we construct an adaptive Smolyak algorithm with dimension dependent quadrature formulas,
optimized to exploit the structure of the integrand based on the asymptotic analysis presented. To determine
the dimension J of the truncated parameter space, ie. the most sensitive parameters with respect to the given
observational data δ, the additional information provided by the Quasi-Newton method with SR1 updates
based on the strategy discussed in §4.1 can be used. The hyperspherical adaptive Smolyak to compute the
Bayesian quantities Z′ and Z can be summarized as follows:

• Use a QN-Algorithm 10.1 with SR1 updates to determine the MAP y0 point and the effective dimen-
sion J∗ based on the eigenvalues of the QN-approximated Hessian.

• Apply the adaptive Smolyak algorithm in hyperspherical coordinates with dimension dependent
quadrature formulas to the integrals Z′ and Z with curvature-rescaled densities to compute the

Bayesian estimate Eµδ
[φ].
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