
Computational Higher Order Quasi-Monte

Carlo Integration

R. N. Gantner and Ch. Schwab

Research Report No. 2014-25

September 2014
Latest revision: September 2015

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland

__

Funding SNF: 149819

Funding ERC: AdG 247277 STAHDPDE

Computational Higher Order
Quasi-Monte Carlo Integration

Robert N. Gantner and Christoph Schwab

Abstract The efficient construction of higher-order interlaced polynomial lattice

rules introduced recently in [6] is considered and the computational performance

of these higher-order QMC rules is investigated on a suite of parametric, high-

dimensional test integrand functions. After reviewing the principles of their construc-

tion by the “fast component-by-component” (CBC) algorithm due to Nuyens and

Cools as well as recent theoretical results on their convergence rates from [Dick,

J., Kuo, F. Y., Le Gia, Q. T., Nuyens, D., Schwab, C.: Higher order QMC Petrov-

Galerkin discretization for affine parametric operator equations with random field

inputs. SIAM J. Numer. Anal. 52(6) (2014), pp. 2676-2702], we indicate algorithmic

aspects and implementation details of their efficient construction. Instances of higher

order QMC quadrature rules are applied to several high-dimensional test integrands

which belong to weighted function spaces with weights of product and of SPOD type.

Practical considerations that lead to improved quantitative convergence behavior for

various classes of test integrands are reported. The use of (analytic or numerical) esti-

mates on the Walsh coefficients of the integrand provide quantitative improvements of

the convergence behavior. The sharpness of theoretical, asymptotic bounds on mem-

ory usage and operation counts, with respect to the number of QMC points N and to

the dimension s of the integration domain is verified experimentally to hold starting

with dimension as low as s = 10 and with N = 128. The efficiency of the proposed al-

gorithms for computation of the generating vectors is investigated for the considered

classes of functions in dimensions s = 10, ...,1000. A pruning procedure for compo-

nents of the generating vector is proposed and computationally investigated. The use

of pruning is shown to yield quantitative improvements in the QMC error, but also to

not affect the asymptotic convergence rate, consistent with recent theoretical find-

ings from [Dick, J., Kritzer, P.: On a projection-corrected component-by-component

construction. Journal of Complexity (2015) DOI 10.1016/j.jco.2015.08.001].

Robert N. Gantner · Christoph Schwab

Seminar for Applied Mathematics, ETH Zürich, Rämistrasse 101, Zürich, Switzerland e-mail:

robert.gantner@sam.math.ethz.ch, e-mail: christoph.schwab@sam.math.ethz.ch

1

robert.gantner@sam.math.ethz.ch
christoph.schwab@sam.math.ethz.ch

2 Robert N. Gantner and Christoph Schwab

1 Introduction

The efficient approximation of high-dimensional integrals is a core task in many

areas of scientific computing. We mention only uncertainty quantification, computa-

tional finance, computational physics and chemistry, and computational biology. In

particular, high-dimensional integrals arise in the computation of statistical quantities

of solutions to partial differential equations with random inputs.

In addition to efficient spatial and temporal discretizations of partial differential

equation models, it is important to devise high-dimensional quadrature schemes that

are able to exploit an implicitly lower-dimensional structure in parametric input data

and solutions of such PDEs. The rate of convergence of Monte Carlo (MC) methods

is dimension-robust, i.e. the convergence rate bound holds with constants independent

of the problem dimension provided that the variances are bounded independent of

the dimension, but it is limited to 1/2. Thus it is important to devise integration

methods which converge of higher order than 1/2, independent of the dimension of

the integration domain.

In recent years, numerous approaches to achieve this type of higher-order conver-

gence have been proposed; we mention only quasi Monte-Carlo integration, adaptive

Smolyak quadrature, adaptive polynomial chaos discretizations, and related methods.

In the present paper, we consider the realization of novel higher-order interlaced

polynomial lattice rules introduced in [6, 11, 10], which allow an integrand-adapted

construction of a quasi-Monte Carlo quadrature rule that exploits sparsity of the

parameter-to-solution map. We consider in what follows the problem of integrating a

function f : [0,1)s→ R of s variables y1, . . . ,ys over the s-dimensional unit cube,

I [f] :=
∫

[0,1)s
f (y1, . . . ,ys)dy1 · · · dys . (1)

Exact computation quickly becomes infeasible and we must, in most applications,

resort to an approximation of (1) by a quadrature rule. We focus on quasi-Monte Carlo

quadrature rules; more specifically, we consider interlaced polynomial lattice point

sets for functions in weighted spaces with weights of product and smoothness-driven

product-and-order-dependent (SPOD) type. Denoting the interlaced polynomial

lattice point set by P = {xxx(0), . . . ,xxx(N−1)} with xxx(n) ∈ [0,1)s for n = 0, . . . ,N− 1,

we write the QMC quadrature rule as

QP [f] :=
1

N

N−1

∑
n=0

f (xxx(n)).

In Section 2 we first define in more detail the structure of the point set P consid-

ered throughout and derive worst-case error bounds for integrand functions which be-

long to certain weighted spaces of functions introduced in [13]. Then, the component-

by-component construction is reviewed and the worst-case error reformulated to

allow efficient computation. The main contribution of this paper is found in Sections

4 and 5, which mention some practical considerations required for efficient imple-

Page:2 job:build/gantner macro:svmult.cls date/time:28-Sep-2015/16:47

Computational Higher Order Quasi-Monte Carlo Integration 3

mentation and application of these rules. In Section 5, we give measured convergence

results for several model integrands, showing the applicability of these methods.

2 Interlaced Polynomial Rank-1 Lattice Rules

Polynomial rank-1 lattice point sets, introduced by Niederreiter in [14], are a modifi-

cation of standard rank-1 lattice point sets to polynomial arithmetic in Zb[x] (defined

in the next section). A polynomial lattice rule is an equal-weight quasi-Monte Carlo

(QMC) quadrature rule based on such point sets. Here, we consider the higher-order

interlaced polynomial lattice rules introduced in [6, Def. 3.6], [7, Def. 5.1] and focus

on computational techniques for their efficient construction.

2.1 Definitions

For a given prime number b, let Zb denote the finite field of order b and Zb[x] the set

of polynomials with coefficients in Zb. Let P ∈ Zb[x] be an irreducible polynomial

of degree m. Then, the finite field of order bm is isomorphic to the residue class

(Zb[x]/P,+, ·), where both operations are carried out in Zb[x] modulo P. We denote

by Gb,m = ((Zb[x]/P)⋆, ·) the cyclic group formed by the nonzero elements of the

residue class together with polynomial multiplication modulo P.

Throughout, we frequently interchange an integer n, 0 ≤ n < N = bm, with its

associated polynomial n(x) = η0 +η1x+η2x2 + . . .+ηm−1xm−1, the coefficients of

which are given by the b-adic expansion n = η0 +η1b+η2b2 + . . .+ηm−1bm−1.

Given a generating vector q ∈ Gs
b,m, we have the following expression for the i-th

component of the n-th point x(n) ∈ [0,1)s of a polynomial lattice point set P:

x
(n)
i = vm

(n(x)qi(x)

P(x)

)
, i = 1, . . . ,s, n = 0, . . . ,N−1,

where the mapping vm : Zb((x
−1))→ [0,1) is given for any integer w by the expres-

sion vm

(
∑

∞
ℓ=w ξℓx

−ℓ
)
= ∑

m
ℓ=min(1,w) ξℓb

−ℓ, and Zb((x
−1)) denotes the set of formal

Laurent series ∑
∞
k=w akx−k with ak ∈ Zb for some integer w.

A key ingredient for obtaining QMC formulas which afford higher-order conver-

gence rates is the interlacing of lattice point sets, as introduced in [1, 2]. We define

the digit interlacing function, which maps α points in [0,1) to one point in [0,1).

Definition 1 (Digit Interlacing Function). We define the digit interlacing function

Dα with interlacing factor α ∈ N acting on the points {x j ∈ [0,1), j = 1, . . . ,α} by

Dα(x1, . . . ,xα) =
∞

∑
a=1

α

∑
j=1

ξ j,ab− j−α(a−1),

Page:3 job:build/gantner macro:svmult.cls date/time:28-Sep-2015/16:47

4 Robert N. Gantner and Christoph Schwab

where by ξ j,a we denote the a-th component of the b-adic decomposition of x j,

x j = ξ j,1b−1 +ξ j,2b−2 +

An interlaced polynomial lattice point set based on the generating vector q∈Gαs
b,m,

whose dimension is now α times larger than before, is then given by the points

{x(n)}bm−1
n=0 with

x
(n)
i = Dα

(
vm

(
n(x)qα(i−1)+1(x)

P(x)

)
, . . . ,vm

(
n(x)qα(i−1)+α(x)

P(x)

))
, i = 1, . . . ,s,

i.e. the i-th coordinate of the n-th point is obtained by interlacing a block of α
coordinates.

2.2 Worst-Case Error Bound

We give here an overview of bounds on the worst case error which are required for

the CBC construction; for details we refer to [6]. The results therein were based on a

“new function space setting”, which generalizes the notion of a reproducing kernel

Hilbert space to a Banach space setting. We also refer to [13] for an overview of

related function spaces.

2.2.1 Function Space Setting

In order to derive a worst-case error (WCE) bound, consider the higher-order unan-

chored Sobolev space Ws,α,γ,q,r := { f ∈ L1([0,1)s) : ‖ f‖s,α,γ,q,r < ∞} which is de-

fined in terms of the higher order unanchored Sobolev norm

‖ f‖s,α,γ,q,r :=

(

∑
u⊆{1:s}

(
γ
−q
u ∑

v⊆u
∑

τττ
u\v∈{1:α}|u\v|

∫

[0,1]|v|

∣∣∣∣
∫

[0,1]s−|v|
(∂

(αααv,τττu\v,000)
yyy f)(yyy) dyyy{1:s}\v

∣∣∣∣
q

dyyy
v

)r/q)1/r

,

(2)

with the obvious modifications if q or r is infinite. Here {1 : s} is a shorthand notation

for the set {1,2, . . . ,s}, and (αααv,τττu\v,000) denotes a sequence ννν with ν j = α for j ∈ v,

ν j = τ j for j ∈ u\v, and ν j = 0 for j /∈ u. For non-negative weights γu, the space

Ws,α,γ,q,r consists of smooth functions with integrable mixed derivatives of orders up

to α with respect to each variable, and Lq-integrable (q ∈ [1,∞]) mixed derivatives

containing a derivative of order α in at least one variable.

This space is called unanchored because the innermost integral over [0,1]s−|v|

in the definition of the norm ‖ ◦ ‖s,α,γ,q,r integrates out the “inactive” coordinates,

i.e. those with respect to which a derivative of order less than α is taken, rather

than “anchoring” these variables by fixing their values equal to an anchor point

Page:4 job:build/gantner macro:svmult.cls date/time:28-Sep-2015/16:47

Computational Higher Order Quasi-Monte Carlo Integration 5

a ∈ [0,1)s. The weights γu in the definition of the norm can be interpreted as the

relative importance of groups of variables u. Below, we will assume either product

structure or so-called SPOD structure on the weights γu; here, the acronym “SPOD”

stands for smoothness-driven, product and order dependent weights, which were first

introduced in [6].

We remark that the sum over all subsets u⊆ {1 : s} also includes the empty set

u= /0, for which we obtain the term γ−r
/0

∣∣∣
∫
[0,1]s f (yyy)dyyy

∣∣∣
r

, which contains the average

of the function f over the s-dimensional unit cube.

2.2.2 Error Bound

The worst-case error eWC(P,W) of a point set P = {yyy(0), . . . ,yyy(b
m−1)} over the

function space W is defined by the following supremum over the unit ball in W :

eWC(P,W) = sup
‖ f‖W ≤1

|I [f]−QP [f]|.

Assume that 1 ≤ r,r′ ≤ ∞ with 1/r+ 1/r′ = 1 and α,s ∈ N with α > 1. Define a

collection of positive weights γ = (γu)u⊂N. Then, by [6, Thm. 3.5], we have the

following bound on the worst-case error in the space Ws,α,γ,q,r,

sup
‖ f‖Ws,α,γ,q,r≤1

|I [f]−QP [f]| ≤ es,α,γ,r′(P),

with the bound for the worst case error es,α,γ,r′(P) given by

es,α,γ,r′(P) =

 ∑

/0 6=u⊆{1:s}

(
C
|u|
α,bγu ∑

ku∈D⋆
u

b−µα (ku)

)r′

1/r′

. (3)

The inner sum is over all elements of the dual net without zero, see [10, Def. 5].

For a number k with b-adic expansion k = ∑
J
j=1 κ jb

a j with a1 > .. . > aJ , we define

the weight µα(k) = ∑
min(α,J)
j=1 (a j + 1) as in [6]. The constant Cα,b is obtained by

bounding the Walsh coefficients of functions in Sobolev spaces, see [3, Thm. 14] for

details. Here, it has the value

Cα,b = max

(
2

(2sin π
b
)α

, max
z=1,...,α−1

1

(2sin π
b
)z

)

×

(
1+

1

b
+

1

b(b+1)

)α−2(
3+

2

b
+

2b+1

b−1

)
. (4)

The bound (3) holds for general digital nets; however, we wish to restrict ourselves

to polynomial lattice rules. We additionally choose r′ = 1 (and thus r = ∞, i.e. the

ℓ∞ norm over the sequence indexed by u ⊆ {1 : s} in the norm ‖ ◦ ‖s,α,γ,q,r). We

Page:5 job:build/gantner macro:svmult.cls date/time:28-Sep-2015/16:47

6 Robert N. Gantner and Christoph Schwab

denote by P̃ a point set in αs dimensions, and use in the following the definition

ω(y) = b−1
bα−b

− b⌊logb y⌋(α−1) bα−1
bα−b

where ω(0) = b−1
bα−b

. Using [6, Thm. 3.9], we

bound the sum over the dual net D⋆
u

in (3) by a computationally amenable expression,

es,α,γ,1(P)≤ Eαs(qqq) =
1

bm

bm−1

∑
n=0

∑
v⊆{1:αs}

v 6= /0

γ̃v ∏
j∈v

ω(y
(n)
j), yyy(n) ∈ P̃, (5)

where y
(n)
j = vm

(
n(x)q j(x)

P(x)

)
depends on the j-th component of the generating vector,

q j(x), and the auxiliary weight γ̃v, v⊆ {1 : αs} depends on the choice of weights γu.

Assume given a sequence (β j) j ∈ ℓ
p(N) for 0< p< 1 and denote by u(v)⊆{1 : s}

an “indicator set” containing a dimension i ∈ {1, . . . ,s} if any of the corresponding

α dimensions {(i−1)α +1, . . . , iα} is in v⊆ {1 : αs}. This can be given explicitly

by u(v) = {⌈ j/α⌉ : j ∈ v}. For product weights, we define

γ̃v = ∏
j∈u(v)

γ j, γ j =Cα,bbα(α−1)/2
α

∑
ν=1

ν!2δ (ν ,α)β ν
j , (6)

and obtain from (5) the worst-case error bound for d = 1, . . . ,αs

Ed(qqq) =
1

bm

bm−1

∑
n=0

∑
u⊆{1:s}
u6= /0

(
∏
j∈u

γ j

)
∑

v⊆{1:d}
u(v)=u

(
∏
j∈v

ω(y
(n)
j)
)
. (7)

For SPOD weights we have

γ̃v = ∑
ννν
u(v)∈{1:α}|u(v)|

|ννν
u(v)|! ∏

j∈u(v)

γ j(ν j), γ j(ν j) =Cα,bbα(α−1)/22δ (ν j ,α)β
ν j

j ,

(8)

for which we obtain

Ed(qqq) =
1

bm

bm−1

∑
n=0

∑
v⊆{1:d}
v 6= /0

∑
ν∈{1:α}|u(v)|

|ν |!
(

∏
j∈u(v)

γ j(ν j)
)(

∏
j∈v

ω(y
(n)
j)
)
. (9)

These two expressions will be the basis of the component-by-component (CBC)

construction elucidated in the next section. We note that the powers of Cα,b arising

in (7) and (9) can become very large, leading to a pronounced negative impact on

the construction procedure (see Section 4.1 below). The constant Cα,b, defined in (4),

stems from bounds on the Walsh coefficients of smooth functions [3].

Page:6 job:build/gantner macro:svmult.cls date/time:28-Sep-2015/16:47

Computational Higher Order Quasi-Monte Carlo Integration 7

3 Component-by-Component Construction

The component-by-component construction (CBC) [12, 18, 19] is a simple but

nevertheless effective algorithm for computing generating vectors for rank-1 lattice

rules, of both standard and polynomial type. In each iteration of the algorithm, the

worst-case error is computed for all candidate elements of the generating vector,

and the one with minimal WCE is taken as the next component. After s iterations, a

generating vector of length s is obtained, which can then be used for QMC quadrature.

Nuyens and Cools reformulated in [15, 16] the CBC construction to exploit the

cyclic structure inherent in the point sets for standard lattice rules when the number

of points N is a prime number. This leads to the so-called fast CBC algorithm based

on the fast Fourier transform (FFT) which speeds up the computation drastically. It

is also the basis for the present construction.

Fast CBC is based on reformulating (7) and (9): instead of iterating over the

index d = 1, . . . ,αsmax, we iterate over the dimension s = 1, . . . ,smax and for each

s over t = 1, . . . ,α . Thus, the index d above is replaced by the pair s, t through

d = α(s−1)+ t and we write

y
(n)
j,i = y

(n)
α(j−1)+i

, j = 1, . . . ,smax, i = 1, . . . ,α. (10)

In order to obtain an efficient algorithm we further reformulate (7) and (9) such that

only intermediate quantities are updated instead of recomputing Ed(qqq) in (7) and (9).

3.1 Product Weights

In the product weight case, we have for t = α the expression

Es,α(qqq) =
1

bm

bm−1

∑
n=0

s

∏
j=1

[
1+ γ j

(
α

∏
i=1

(1+ω(y
(n)
j,i))−1

)]
−1. (11)

We define the quantity Ys(n) = ∏
s
j=1

[
1+ γ j

(
∏

α
i=1(1+ω(y

(n)
j,i))−1

)]
which will

be updated at the end of each iteration over t. To emphasize the independence of

certain quantities on the current unknown component qs,t , we denote the truncated

generating vector by qqqd = (q1, . . . ,qd) or in analogy to (10), qqqs,t = (q1,1, . . . ,qs,t).

We now write Es,t(qqqs,t) = Es−1,α(qqqs−1,α)+ Ẽ(qs,1, . . . ,qs,t), such that (11) can be

used for Es−1,α(qqqs−1,α) during the iteration over t. For t < α , we have

Es,t(qqq) =
1

bm

bm−1

∑
n=0

[
1+ γs

(
t

∏
i=1

(1+ω(y
(n)
s,i))−1

)]
Ys−1(n)−1,

which can be written in terms of Es−1,α(qqqs−1,α) as

Page:7 job:build/gantner macro:svmult.cls date/time:28-Sep-2015/16:47

8 Robert N. Gantner and Christoph Schwab

Es,t(qqq) = Es−1,α(qqqs−1,α)−
γs

bm

bm−1

∑
n=0

Ys−1(n)+
γs

bm

bm−1

∑
n=0

(
t

∏
i=1

(1+ω(y
(n)
s,i))

)
Ys−1(n).

For later use and ease of exposition, we define Vs,t(n) = ∏
t
i=1(1+ω(y

(n)
s,i)), which

satisfies Vs,t(n) =Vs,t−1(n)
(
1+ω(y

(n)
s,t)
)

for t > 1 and Vs,1(n) =
(
1+ω(y

(n)
s,1)
)
. We

also note that Vs,t(0) = (1+ω(0))t =
(

bα−1
bα−b

)t
, since y

(0)
s,t = 0, independent of the

generating vector. This leads to the following decomposition of the error for product

weights

Es,t(qqq) = Es−1,α(qqqs−1,α)+
γs

bm

[
(1+ω(0))t −1

]
Ys−1(0)

+
γs

bm

bm−1

∑
n=1

(Vs,t−1(n)−1)Ys−1(n)

+
γs

bm

bm−1

∑
n=1

ω(y
(n)
s,t)Vs,t−1(n)Ys−1(n), (12)

where only (12) depends on the unknown qs,t through y
(n)
s,t . This reformulation permits

efficient computation of the worst-case error bound Es,t during the CBC construction

by updating intermediate quantities.

3.2 SPOD Weights

The search criterion (9) can be reformulated to obtain [6, 3.43]

Es,t(qqq) =
1

bm

bm−1

∑
n=0

αs

∑
ℓ=1

ℓ! ∑
ν∈{0:α}s

|ν |=ℓ

(s

∏
j=1

ν j>0

γ j(ν j)
)

∑
v⊆{1:d} s.t.

u(v)={1≤ j≤s:ν j>0}

∏
j∈v

ω(y
(n)
j). (13)

For a complete block (i.e. t = α), we write Es,α(qqq) =
1

bm ∑
bm−1
n=0 ∑

αs
ℓ=1 Us,ℓ(n), where

Us,ℓ(n) is given by

Us,ℓ(n) = ℓ! ∑
ν∈{0:α}s

|ν |=ℓ

s

∏
j=1

ν j>0

[
γ j(ν j)

(α

∏
i=1

(
1+ω(y

(n)
j,i)
)
−1
)]

.

Proceeding as in the product weight case, we separate out the Es−1,α(qqqs−1,α) term,

Es,t(qqq) = Es−1,α(qqqs−1,α)

+
1

bm

bm−1

∑
n=0

(t

∏
i=1

(1+ω(y
(n)
s,i))−1

)(αs

∑
ℓ=1

min(α,ℓ)

∑
νs=1

γs(νs)
ℓ!

(ℓ−νs)!
Us−1,ℓ−νs

(n)
)
.

Page:8 job:build/gantner macro:svmult.cls date/time:28-Sep-2015/16:47

Computational Higher Order Quasi-Monte Carlo Integration 9

Defining Vs,t(n) as above and with Ws(n) = ∑
αs
ℓ=1 ∑

min(α,ℓ)
νs=1 γs(νs)

ℓ!
(ℓ−νs)!

Us−1,ℓ−νs
(n),

we again aim to isolate the term depending on the unknown qs,t . This yields

Es,t(qqq) = Es−1,α(qqqs−1,α)+
1

bm

((bα −1

bα −b

)t

−1
)

Ws(0)

+
1

bm

bm−1

∑
n=1

(Vs,t−1(n)−1)Ws(n) (14)

+
1

bm

bm−1

∑
n=1

Vs,t−1(n)Ws(n)ω(y
(n)
s,t), (15)

where only the last sum (15) depends on qs,t through y
(n)
s,t .

The remaining terms can be ignored, since the error E(qqqd−1,z) is shifted by the

same amount for all candidates z ∈ Gb,m. This optimization saves O(N) operations

due to the omission of the sum (14). An analogous optimization is possible in the

product weight case. Since the value of the error bound Esmax,α(qqq) is sometimes a

useful quantity, one may choose to compute the full bounds given above.

3.3 Efficient Implementation

As currently written, the evaluation of the sums (12) and (15) for all possible bm−1

values for qs,t requires O(N2) operations. Following [15], we view this sum as a

matrix-vector multiplication of the matrix

ΩΩΩ :=

[
ω

(
vm

(
n(x)q(x)

P(x)

))]

1≤n≤bm−1
q∈Gb,m

(16)

with the vector consisting of the component-wise product
[
Vs,t−1(n)Ws(n)

]
1≤n≤bm−1

.

The elements of ΩΩΩ depend on n(x)q(x), which is a product of polynomials in Gb,m.

Since the nonzero elements of a finite field form a cyclic group under multiplication,

there exists a primitive element g that generates the group, i.e. every element of Gb,m

can be given as some exponent of g.

By using the so-called Rader transform, originally developed in [17], the rows

and columns of ΩΩΩ can be permuted to obtain a circulant matrix ΩΩΩ perm. Application

of the fast Fourier transform allows the multiplications (12) and (15) to be executed

in O(N logN) operations. This technique was applied to the CBC algorithm in [16];

we also mention the exposition in [8, Ch. 10.3].

The total work complexity is O(αsN logN + α2s2N) for SPOD weights and

O(αsN logN) for product weights [6, Thms. 3.1,3.2]. In Section 5, we show mea-

surements of the CBC construction time that indicate that the constants in these

asymptotic estimates are small, allowing these methods to be applied in practice.

Page:9 job:build/gantner macro:svmult.cls date/time:28-Sep-2015/16:47

10 Robert N. Gantner and Christoph Schwab

3.4 Algorithms

In Algorithms 1 and 2 below, V,W,Y,U(ℓ) and X(ℓ) denote vectors of length N. E is

a vector of length N−1 and Eold,E1,E2 are scalars. By⊙ we denote component-wise

multiplication and ΩΩΩ z,: denotes the z-th row of ΩΩΩ .

Algorithm 1 CBC product(b,m,α,smax,{γ1, . . . ,γs})

Y← 111 ·b−m, Eold← 0

for s = 1, . . . ,smax do

V← 111

for t = 1, . . . ,α do

E1← γs

((
bα−1
bα−b

)t
−1
)
Y(0)

E2← γs ∑
bm−1
n=1

(
V(n)−1

)
Y(n)

E← γsΩΩΩ · (V⊙Y)+(Eold +E1 +E2) ·111
qs,t ← argminq∈Gb,m

E(q)

V← (1+ΩΩΩ qs,t ,:)⊙V

end for

Y←
(
1+ γs(V−1)

)
⊙Y

Eold← E(qs,α)
end for

return qqq,Eold

Algorithm 2 CBC SPOD(b,m,α,smax,{γ j(·)}
s
j=1)

U(0)← 111, U(1 : αsmax)← 000

Eold← 0

for s = 1, . . . ,smax do

V← 111

W← 000

for ℓ= 1, . . . ,αs do

X(ℓ)← 0

for ν = 1, . . . ,min(α, ℓ) do

X(ℓ)← X(ℓ)+ γs(ν)
ℓ!

(ℓ−ν)!U(ℓ−ν)

end for

W←W+ 1
bm X(ℓ)

end for

for t = 1, . . . ,α do

E1←
((

bα−1
bα−b

)t
−1
)
W(0)

E2← ∑
bm−1
n=1

(
V(n)−1

)
W(n)

E←ΩΩΩ · (V⊙W)+(Eold +E1 +E2) ·111
qs,t ← argminq∈Gb,m

E(q)

V← (1+ΩΩΩ qs,t ,:)⊙V

end for

Eold← E(qs,α)
for ℓ= 1, . . . ,αs do

U(ℓ)← U(ℓ)+(V−1)⊙X(ℓ)
end for

end for

return qqq,Eold

Page:10 job:build/gantner macro:svmult.cls date/time:28-Sep-2015/16:47

Computational Higher Order Quasi-Monte Carlo Integration 11

4 Implementation Considerations

4.1 Walsh Coefficient Bound

The definition of the auxiliary weights (6) and (8) contain powers of the Walsh

constant bound Cα,b defined in (4), which for b = 2 is bounded from below by

Cα,2 =
9
2

(
5
3

)α−2
≥ 9

2
. For base b = 2, it was recently shown in [20] that Cα,2 can be

replaced by C = 1. Large values of the worst-case error bounds (7) and (9) have been

found to lead to generating vectors with bad projections. For integrand functions

with small Walsh coefficients, Cα,b may be replaced with a tighter bound C; this will

yield a worst-case error bound better adapted to the integrand and a generating vector

with the desired properties. Since additionally Cα,b is increasing in α for fixed b, this

becomes more important as the order of the quadrature rule increases.

4.2 Pruning

For large values of the WCE, the elements of the generating vector can repeat,

leading to very bad projections in certain dimensions. For polynomial lattice rules, if

qs,k = qs̃,k ∀k = 1, . . . ,α for two dimensions s and s̃, the corresponding components of

the quadrature points will be identical, x
(n)
s = x

(n)
s̃ for all values of n = 0, . . . ,bm−1.

Thus, in the projection onto the (s, s̃)-plane, only points on the diagonal are obtained,

which is obviously a very bad choice. One way this problem could be avoided is to

consider a second error criterion, as in [4]. We propose here a simpler method that

requires only minor modification of the CBC iteration.

To alleviate this effect, we formulate a pruning procedure that incorporates this

observation into the construction of the generating vector. We impose the additional

condition that the newest element of the generating vector is unique, i.e. is not

equal to a previously constructed component of qqq. This can be achieved in the CBC

construction by replacing the minimization of E(qqq) over all possible bm−1 values

of the new component by the restricted version

qd = argmin
z∈Gb,m,

z 6∈{q1,...,qd−1}

E(q1, . . . ,qd−1,z). (17)

This procedure requires d−1 operations in iteration d to check the previous entries of

the vector, or O(α2s2) in total, and thus does not increase the asymptotic complexity.

Alternatively, the indices can be stored in an additional sorted data structure with

logarithmic (in αs) cost for both inserting new indices and checking for membership.

This yields a cost of O(αs log(αs)) additional operations, with an additional storage

cost of O(αs). It was shown in [5] that the presently proposed pruning procedure

preserves the higher order QMC convergence estimates. In the case where the set

of candidates in (17), Gb,m\{q1, . . . ,qd−1}, is empty (which happens e.g. when

Page:11 job:build/gantner macro:svmult.cls date/time:28-Sep-2015/16:47

12 Robert N. Gantner and Christoph Schwab

αsmax > bm− 1), the restriction is dropped. In other words, pruning is applied as

long as it still allows for at least one possible value for qd .

5 Results

We present several tests of an implementation of Algorithms 1 and 2, and of the

resulting higher order QMC quadrature rules. Rather than solving concrete appli-

cation problems, the purpose of the ensuing numerical experiments is a) to verify

the validity of the asymptotic (as s,N→ ∞) complexity estimates and QMC error

bounds, in particular to determine the range where the asymptotic complexity bounds

give realistic descriptions of the CBC construction’s performance; b) to investigate

the quantitative effect of (not) pruning the generating vector on the accuracy and con-

vergence rates of the QMC quadratures, and c) to verify the necessity of the weighted

spaces Ws,α,γ,q,r and the norms in (2) for classifying integrand function regularity. We

remark that, due to the limited space of these proceedings, only few representative

simulations can be presented in detail; for further results and a complete description

of our implementation, we refer to [9].

5.1 Model Problems

For our numerical results, we consider two model parametric integrands designed to

mimic the behavior of parametric solution families of parametric partial differential

equations. Both integrand functions are smooth (in fact, analytic) functions of all

integration variables and admit stable extensions to a countable number of integration

variables. However, their “sparsity” is controlled, as expressed by the growth of their

higher derivatives. The first integrand function belongs to weighted spaces Ws,α,γ,q,r

with the norms in (2) where the weights are of SPOD type [6], whereas the second

integrand allows for product weights. The SPOD-type integrand we consider was first

mentioned in [13], and models a parametric partial differential equation depending

in an affine manner on s parameters y1, . . . ,ys, as considered, for example, in [6]:

fθ ,s,ζ (yyy) =

(
1+θ ·

s

∑
j=1

a jy j

)−1

, a j = j−ζ , ζ ∈ N . (18)

We have the differential ∂ ννν
yyy fθ ,s,ζ (yyy) = (−1)|ννν ||ννν |! f

|ννν |+1

θ ,s,ζ
(yyy)∏

s
j=1(θa j)

ν j , leading to

the bound |∂ ννν
yyy fθ ,s,ζ (yyy)| ≤C f |ννν |!∏

s
j=1 β

ν j

j for all ννν ∈ {0,1, . . . ,α}s and for a C f ≥ 1

with the weights β j given by β j = θa j = θ j−ζ , j = 1, . . . ,s. Additionally, for s→∞,

we have (β j) j ∈ ℓp(N) with p > 1
ζ

and thus α = ⌊1/p⌋+ 1 = ζ . Therefore, by

Theorem 3.2 of [6], we have that an interlaced polynomial lattice rule of order α
with N = bm points (b prime, m≥ 1) and point set PN can be constructed such that

Page:12 job:build/gantner macro:svmult.cls date/time:28-Sep-2015/16:47

Computational Higher Order Quasi-Monte Carlo Integration 13

the QMC quadrature error fulfills

|I [fθ ,s,ζ]−QPN
[fθ ,s,ζ]| ≤C(α,βββ ,b, p)N−1/p, (19)

for a constant C(α,βββ ,b, p) independent of s and N. Convergence rates were com-

puted with respect to a reference value of the integral I [fθ ,s,ζ] obtained with

dimension-adaptive Smolyak quadrature with tolerance 10−14. We also consider

separable integrand functions, which, on account of their separability, trivially belong

to the product weight class. They are given by

gθ ,s,ζ (yyy) = exp

(
θ

s

∑
j=1

a jy j

)
, a j = j−ζ , (20)

and satisfy ∂ ννν
yyy g(yyy) = g(yyy)∏

s
k=1(θak)

νk . Under the assumption that there exists a

constant C̃ > 0 that is independent of s and such that g(yyy)≤ C̃ for all yyy∈ [0,1]s, which

holds here with C̃ = exp(θ ∑
s
j=1 j−ζ), ζ > 1, we have the bound |∂ ννν

yyy gθ ,s,ζ (yyy)| ≤

C̃ ∏
s
j=1 β

ν j

j , for all ννν ∈ {0,1, . . . ,α}s with the weights β j given by β j = θa j = θ j−ζ

for j = 1, . . . ,s. We have the following analytically given formula for the integral

I [gθ ,s,ζ] =
s

∏
j=1

[
jζ

θ

(
exp(θ j−ζ)−1

)]
= exp

s

∑
j=1

log

∞

∑
µ=0

(
θ j−ζ

)µ

(µ +1)!

 , (21)

and have an error bound of the form (19), with a different value for C(α,βββ ,b, p).

5.2 Validation of Work Bound

The results below are based on an implementation of the CBC algorithm in the

C++ programming language, and exploits shared-memory parallelism to reduce

the computation time for large m and s. Fourier transforms were realized using the

FFTW library, with shared-memory parallelization enabled. Timings were executed

on a system with 48 Intel Xeon E5-2696 cores at 2.70 GHz, where at most 8 CPUs

were used at a time. The timing results in Figure 1 show that the work bounds

O(αsN logN +α2s2N) for SPOD weights from [6, Thm. 3.1] and O(αsN logN) for

product weights from [6, Thm. 3.2] are fulfilled in practice and seem to be tight. The

work O(N logN) in the number of QMC points N also appears tight for moderate s

and N.

Page:13 job:build/gantner macro:svmult.cls date/time:28-Sep-2015/16:47

14 Robert N. Gantner and Christoph Schwab

5.3 Pruning and Adapting the Walsh Coefficient Bound

We consider construction of the generating vector with and without application of

the pruning procedure defined in Section 4.2. Convergence rates for both cases can

be seen in Figure 2: for α = 2 no difference was observed when pruning the entries.

Results for the constant Cα,b from (4) as well as for C = 1 are shown; in this

example, adapting the constant C to the integrand seems to yield better results than

pruning. In the case of the integrand (18), this can be justified by estimating the

Walsh coefficients by numerical computation of the Walsh-Hadamard transform. The

maximal values of these numerically computed coefficients is bounded by 1 for low

dimensions, indicating that the bound Cα,b is too pessimistic. For base b = 2 in (4),

it was recently shown in [20] that C = 1.

5.4 Higher-Order Convergence

As can be seen in Figures 3 and 4, the higher-order convergence rates proved in

[6] can be observed in practice for the two classes of tested integrand functions.

To generate the QMC rules used in Figures 3 and 4, the ad hoc value C = 0.1 was

used. We also mention that for more general, non-affine, holomorphic parameter

dependence of operators the same convergence rates and derivative bounds as in [6]

have been recently established in [7]. The CBC constructions apply also to QMC

rules for these (non affine-parametric) problems. The left subgraphs (ζ = 2) show

that higher values of the interlacing parameter α do not imply higher convergence

rates, if the integrand does not exhibit sufficient sparsity as quantified by the norm

(2). The right subgraphs (ζ = 4) in Figures 3 and 4 show that the convergence rate is

indeed dimension independent, but limited by the interlacing parameter α = 2: the

integrand function with ζ = 4 affords higher rates than 2 for interlaced polynomial

lattice rules with higher values of the interlacing parameter α .

The fast CBC constructions [15, 16], as adapted to higher order, interlaced poly-

nomial lattice rules in [6], attain the asymptotic scalings for work and memory with

respect to N and to integration dimension s already for moderate values of s and

N. Theoretically predicted, dimension-independent convergence orders beyond first

order were achieved with pruned generating vectors obtained with base b = 2 and

Walsh constant C = 1. QMC rule performance was observed to be sensitive to overes-

timated values of the Walsh constant Cα,b. The choice b = 2 and C = 1 with pruning

of generating vectors, theoretically justified in [5] and [20], respectively, yielded

satisfactory results for α = 2,3,4 in up to s = 1000 dimensions.

Acknowledgements This work is supported by the Swiss National Science Foundation (SNF)

under project number SNF149819 and by the European Research Council (ERC) under FP7 Grant

AdG247277. Work of CS was performed in part while CS visited ICERM / Brown University in

September 2014; the excellent ICERM working environment is warmly acknowledged.

Page:14 job:build/gantner macro:svmult.cls date/time:28-Sep-2015/16:47

Computational Higher Order Quasi-Monte Carlo Integration 15

100 101 102 103

Number of Dimensions s

102

103

104

105

106

107

C
B

C
 G

e
n
e
ra

ti
o
n
 T

im
e
 [

m
s]

1

2

Generation Time vs. Dimension. θ=1, C=0.1, ζ=4, m=15

α=2

α=3

α=4

(a) SPOD, C = 0.1

100 101 102 103

Number of Dimensions s
102

103

104

105

CB
C

Ge
ne

ra
tio

n
Ti

m
e

[m
s]

1

1

Generation Time vs. Dimension. θ=0.1, C=1, ζ=4, m=15

α=2

α=3

α=4

(b) product, C = 1

100 101 102 103 104 105 106 107

Number of Points N=bm

101

102

103

104

105

106

107

C
B

C
 G

e
n
e
ra

ti
o
n
 T

im
e
 [

m
s]

1

1

Generation Time vs. N. s=100, θ=1, C=0.1, ζ=4

α=2

α=3

α=4

(c) SPOD, s = 100

100 101 102 103 104 105 106 107

Number of Points N=bm

101

102

103

104

105

106

107

C
B

C
 G

e
n
e
ra

ti
o
n
 T

im
e
 [

m
s]

1

1

Generation Time vs. N. s=1000, θ=1, C=0.1, ζ=4

α=2

α=3

α=4

(d) product, s = 1000

Fig. 1: CPU time required for the construction of generating vectors of varying order

α = 2,3,4 for product and SPOD weights with β j = θ j−ζ vs. the dimension s in (a)

and (b) and vs. the number of points N = 2m in (c) and (d).

100 101 102 103 104 105 106 107

Number of Points N=bm

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

Qu
ad

ra
tu

re
 E

rr
or

 |I
[f
]−
Q
[f
]|

1

−2

Error vs. Number of Points N. s=100, θ=0.2, C=Cα,b, ζ=4

QMC, α=2

QMC, α=3

QMC, α=4

QMC (pruned), α=3

QMC (pruned), α=4

(a) C =Cα,b

100 101 102 103 104 105 106 107

Number of Points N=bm

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

Qu
ad

ra
tu

re
 E

rr
or

 |I
[f
]−
Q
[f
]|

1

−2

Error vs. Number of Points N. s=100, θ=0.2, C=1, ζ=4

QMC, α=2

QMC, α=3

QMC, α=4

QMC (pruned), α=3

QMC (pruned), α=4

(b) C = 1

Fig. 2: Effect of pruning the generating vectors: convergence of QMC approximation

for the SPOD integrand (18) with ζ = 4, s = 100, base b = 2 and α = 2,3,4, with

and without pruning. Results (a) obtained with Walsh constant (4). In (b), the Walsh

constant C = 1 and pruning are theoretically justified in [5] and [20], respectively.

Page:15 job:build/gantner macro:svmult.cls date/time:28-Sep-2015/16:47

16 Robert N. Gantner and Christoph Schwab

100 101 102 103 104 105 106 107

Number of Points N=bm

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

Qu
ad

ra
tu

re
 E

rr
or

 |I
[f
]−
Q
[f
]|

1

−2

1

−4

Error vs. Number of Points N. s=100, θ=0.1, C=0.1, ζ=2

α=2

α=3

α=4

(a) s = 100, ζ = 2

100 101 102 103 104 105 106 107

Number of Points N=bm

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

Qu
ad

ra
tu

re
 E

rr
or

 |I
[f
]−
Q
[f
]|

1

−2

1

−4

Error vs. Number of Points N. s=100, θ=0.1, C=0.1, ζ=4

α=2

α=3

α=4

(b) s = 100, ζ = 4

100 101 102 103 104 105 106 107

Number of Points N=bm

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

Qu
ad

ra
tu

re
 E

rr
or

 |I
[f
]−
Q
[f
]|

1

−2

1

−4

Error vs. Number of Points N. s=1000, θ=0.1, C=0.1, ζ=2

α=2

α=3

α=4

(c) s = 1000, ζ = 2

100 101 102 103 104 105 106 107

Number of Points N=bm

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

Qu
ad

ra
tu

re
 E

rr
or

 |I
[f
]−
Q
[f
]|

1

−2

1

−4

Error vs. Number of Points N. s=1000, θ=0.1, C=0.1, ζ=4

α=2

α=3

α=4

(d) s = 1000, ζ = 4

Fig. 3: Convergence of QMC approximation to (21) for the product weight integrand

(20) in s = 100,1000 dimensions with interlacing parameter α = 2,3,4 with pruning.

100 101 102 103 104 105 106 107

Number of Points N=bm

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

Qu
ad

ra
tu

re
 E

rr
or

 |I
[f
]−
Q
[f
]|

1

−2

1

−4

Error vs. Number of Points N. s=100, θ=0.1, C=0.1, ζ=2

α=2

α=3

α=4

(a) ζ = 2

100 101 102 103 104 105 106 107

Number of Points N=bm

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

Qu
ad

ra
tu

re
 E

rr
or

 |I
[f
]−
Q
[f
]|

1

−2

1

−4

Error vs. Number of Points N. s=100, θ=0.1, C=0.1, ζ=4

α=2

α=3

α=4

(b) ζ = 4

Fig. 4: Convergence of QMC approximation for the SPOD weight integrand (18) in

s = 100 dimensions with interlacing parameter α = 2,3,4 with pruning.

Page:16 job:build/gantner macro:svmult.cls date/time:28-Sep-2015/16:47

Computational Higher Order Quasi-Monte Carlo Integration 17

References

1. Dick, J.: Explicit constructions of quasi-Monte Carlo rules for the numerical integration of

high-dimensional periodic functions. SIAM J. Numer. Anal. 45(5), 2141–2176 (electronic)

(2007). DOI 10.1137/060658916.

2. Dick, J.: Walsh spaces containing smooth functions and quasi-Monte Carlo rules of arbitrary

high order. SIAM J. Numer. Anal. 46(3), 1519–1553 (2008). DOI 10.1137/060666639.

3. Dick, J.: The decay of the Walsh coefficients of smooth functions. Bull. Aust. Math. Soc. 80(3),

430–453 (2009). DOI 10.1017/S0004972709000392

4. Dick, J.: Random weights, robust lattice rules and the geometry of the cbcrc algorithm. Nu-

merische Mathematik 122(3), 443–467 (2012). DOI 10.1007/s00211-012-0469-5.

5. Dick, J., Kritzer, P.: On a projection-corrected component-by-component construction. Journal

of Complexity (2015) DOI 10.1016/j.jco.2015.08.001.

6. Dick, J., Kuo, F. Y., Le Gia, Q. T., Nuyens, D., Schwab, C.: Higher order QMC Petrov-Galerkin

discretization for affine parametric operator equations with random field inputs. SIAM J.

Numer. Anal. 52(6) (2014), pp. 2676-2702,

7. Dick, J., Le Gia, Q.T., Schwab, C.: Higher-order quasi-Monte Carlo integration for holomorphic,

parametric operator equations. Tech. Rep. 2014-23, Seminar for Applied Mathematics, ETH

Zürich (2014)

8. Dick, J., Pillichshammer, F.: Digital nets and sequences. Cambridge University Press, Cam-

bridge (2010). DOI 10.1017/CBO9780511761188

9. Gantner, R. N.: Dissertation ETH Zürich (in preparation).

10. Goda, T.: Good interlaced polynomial lattice rules for numerical integration in weighted Walsh

spaces. J. Comput. Appl. Math. 285, 279–294 (2015). DOI 10.1016/j.cam.2015.02.041.

11. Goda, T., Dick, J.: Construction of interlaced scrambled polynomial lattice rules of arbitrary

high order. Found. Comput. Math. (2015) DOI 10.1007/s10208-014-9226-8

12. Kuo, F.Y.: Component-by-component constructions achieve the optimal rate of convergence

for multivariate integration in weighted Korobov and Sobolev spaces. J. Complexity 19(3),

301–320 (2003). DOI 10.1016/S0885-064X(03)00006-2

13. Kuo, F.Y., Schwab, C., Sloan, I.H.: Quasi-Monte Carlo methods for high-dimensional integra-

tion: the standard (weighted Hilbert space) setting and beyond. The ANZIAM Journal 53, 1–37

(2011). DOI 10.1017/S1446181112000077

14. Niederreiter, H.: Random number generation and quasi-Monte Carlo methods, CBMS-NSF

Regional Conference Series in Applied Mathematics, vol. 63. Society for Industrial and Applied

Mathematics (SIAM), Philadelphia, PA (1992). DOI 10.1137/1.9781611970081

15. Nuyens, D., Cools, R.: Fast algorithms for component-by-component construction of rank-

1 lattice rules in shift-invariant reproducing kernel Hilbert spaces. Math. Comp. 75(254),

903–920 (electronic) (2006). DOI 10.1090/S0025-5718-06-01785-6

16. Nuyens, D., Cools, R.: Fast component-by-component construction, a reprise for different

kernels. In: Monte Carlo and quasi-Monte Carlo methods 2004, pp. 373–387. Springer, Berlin

(2006). DOI 10.1007/3-540-31186-6 22

17. Rader, C.: Discrete Fourier transforms when the number of data samples is prime. Proceedings

of the IEEE 3(3), 1–2 (1968)

18. Sloan, I.H., Kuo, F.Y., Joe, S.: Constructing randomly shifted lattice rules in weighted Sobolev

spaces. SIAM J. Numer. Anal. 40(5), 1650–1665 (2002). DOI 10.1137/S0036142901393942

19. Sloan, I.H., Reztsov, A.V.: Component-by-component construction of good lattice rules. Math.

Comp. 71(237), 263–273 (2002). DOI 10.1090/S0025-5718-01-01342-4

20. T. Yoshiki, Bounds on Walsh coefficients by dyadic difference and a new Koksma- Hlawka

type inequality for Quasi-Monte Carlo integration. ArXiv:1504.03175 (2015).

Page:17 job:build/gantner macro:svmult.cls date/time:28-Sep-2015/16:47

Recent Research Reports

Nr. Authors/Title

2014-15 Ch. Schwab
Exponential convergence of simplicial <i>hp</i>-FEM for <i>H</i> ¹-functions
with isotropic singularities

2014-16 P. Grohs and S. Keiper and G. Kutyniok and M. Schäfer
\(\alpha\)-Molecules

2014-17 A. Hiltebrand and S. Mishra
Efficient computation of all speed flows using an entropy stable shock-capturing
space-time discontinuous Galerkin method

2014-18 D. Conus and A. Jentzen and R. Kurniawan
Weak convergence rates of spectral Galerkin approximations for SPDEs with
nonlinear diffusion coefficients

2014-19 J. Doelz and H. Harbrecht and Ch. Schwab
Covariance regularity and H-matrix approximation for rough random fields

2014-20 P. Grohs and S. Hosseini
Nonsmooth Trust Region Algorithms for Locally Lipschitz Functions on Riemannian
Manifolds

2014-21 P. Grohs and A. Obermeier
Optimal Adaptive Ridgelet Schemes for Linear Transport Equations

2014-22 S. Mishra and Ch. Schwab and J. Sukys
Multi-Level Monte Carlo Finite Volume methods for uncertainty quantification of
acoustic wave propagation in random heterogeneous layered medium

2014-23 J. Dick and Q. T. Le Gia and Ch. Schwab
Higher order Quasi Monte Carlo integration for holomorphic, parametric operator
equations

2014-24 C. Sanchez-Linares and M. de la Asunci�on and M. Castro and S. Mishra and J. Šukys
Multi-level Monte Carlo finite volume method for shallow water equations with
uncertain parameters applied to landslides-generated tsunamis

	 Computational Higher Order Quasi-Monte Carlo Integration
	Introduction
	Interlaced Polynomial Rank-1 Lattice Rules
	Definitions
	Worst-Case Error Bound

	Component-by-Component Construction
	Product Weights
	SPOD Weights
	Efficient Implementation
	Algorithms

	Implementation Considerations
	Walsh Coefficient Bound
	Pruning

	Results
	Model Problems
	Validation of Work Bound
	Pruning and Adapting the Walsh Coefficient Bound
	Higher-Order Convergence

	References

