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Abstract

Two layer Savage-Hutter type shallow water PDEs model flows such
as tsunamis generated by rockslides. On account of heterogeneities in
the composition of the granular matter, these models contain uncertain
parameters like the ratio of densities of layers, Coulomb and interlayer
friction. These parameters are modeled statistically and quantifying the
resulting solution uncertainty (UQ) is a crucial task in geophysics. We
propose a novel paradigm for UQ that combines the recently developed
IFCP spatial discretizations with the recently developed Multi-level Monte
Carlo (MLMC) statistical sampling method and provides a fast, accurate
and computationally efficient framework to compute statistical quantities
of interest. Numerical experiments, including realistic simulations of the
Lituya Bay mega tsunami, are presented to illustrate the robustness of
the proposed UQ algorithm.

Keywords:

finite volume method; shallow water equations; uncertainty quantification; landslides-

generated tsunamis

1 Introduction

Many interesting geophysical phenomena are modeled by systems of nonlinear
hyperbolic and convection dominated partial differential equations (PDEs) such
as the (conservative) shallow water equations, the (non-conservative) two-layer
shallow water equations and their variants. Examples include the propagation
of tsunamis (generated by earthquakes or by rockslides), storm surges, tidal
waves, avalanches and debris flows.

It is well known that solutions of hyperbolic PDEs take the form of waves
that propagate at a finite speed. Furthermore, the solutions might form discon-
tinuities such as shocks, hydraulic jumps, shear layers etc, even when the initial
data are smooth. Thus, it is customary to interpret the solutions of such nonlin-
ear PDEs in the sense of distributions. There are innate difficulties in defining
such weak solutions for systems that are not in the conservation form. For such
systems, special theories such as those in [8] have been proposed. Moreover,
weak solutions are not necessarily unique and further admissibility criteria such
as entropy conditions need to be imposed in order to single out a physically
relevant solution.

Various types of numerical methods have been designed to approximate these
convection-dominated nonlinear hyperbolic PDEs efficiently. Methods such as
finite volume, finite difference and discontinuous Galerkin finite element schemes
are widely used. In particular, the approximation of non-conservative systems
is quite involved as the right jump conditions across discontinuities need to be
approximated [26]. An attractive framework to deal with such problems is the
one of path conservative numerical schemes developed by Pares [25].

Numerical methods to approximate these nonlinear hyperbolic PDEs (or
for that matter any PDE) require inputs such as the initial data, boundary
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conditions and coefficients in the fluxes, sources and viscous (other regulariz-
ing) terms of the PDE. These inputs need to be measured. Measurements are
marked by uncertainty. For instance, one can think of an earthquake generating
a tsunami. In such a situation, the initial conditions are typically estimated
from a very uncertain measurement process. This uncertainty in determining
the inputs to the PDE is propagated into the solution. The calculation of solu-
tion uncertainty, given input uncertainty, falls under the rubric of uncertainty
quantification (UQ). UQ for geophysical flows is vitally important for risk eval-
uation and hazard mitigation.

Although various approaches to modeling input uncertainty exist, the most
popular framework models input uncertainty statistically in terms of random
parameters and random fields. The resulting PDE is a stochastic (random)
PDE. The solution has to be sought for in a stochastic sense and statistical
quantities such as the mean, the variance, higher moments, confidence intervals
and the probability distribution function (pdfs) of the solution are the objects
of interest.

The modeling and computation of solution statistics is highly non-trivial.
Challenges include possibly large number of random variables (fields) to parametrize
the uncertainty and the sheer computational challenge of evaluating statistical
moments that might necessitate a large number of PDE solves. The challenges
are particularly accentuated for hyperbolic and convection-dominated PDEs as
the discontinuities in physical space such as shocks can propagate into stochastic
space resulting in a loss of regularity of the underlying solution with respect to
the random parameters. A very large number of degrees of freedom in stochastic
space might be needed to resolve such irregular functions. See a recent review [1]
for a detailed account of the challenges involved in UQ for hyperbolic problems.

Nevertheless, several numerical methods have been developed for UQ in hy-
perbolic PDEs. See [6, 27, 29, 30, 31, 32]) and the review [1] for details. Meth-
ods include the stochastic Galerkin methods based on generalized Polynomial
Chaos (gPC), stochastic collocation methods and stochastic finite volume meth-
ods (SFVM). Some of these methods (particularly stochastic Galerkin) have the
huge disadvantage of being highly intrusive: existing codes for computing de-
terministic solutions of conservation laws need to be completely reconfigured for
implementation. Furthermore, none of these methods are currently able to han-
dle even a moderate number of sources of uncertainty (stochastic dimensions).

Another class of methods are the so-called Monte Carlo (MC) methods in
which the probability space is sampled, the underlying deterministic PDE is
solved for each sample and the samples are combined to determine statistical
information about the random field. Although non-intrusive, easy to code and to
parallelize, MC methods converge at rate 1/2 as the number M of MC samples
increases. The asymptotic convergence rate M−1/2 is non-improvable by the
central limit theorem.

Therefore, MC methods require a large number of “samples”(with each
“sample” involving the numerical solution of the underlying PDE with a given
draw of parameter values) in order to ensure low statistical errors. This slow
convergence entails high computational costs for MC type methods and makes
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them infeasible for computing uncertainty in complex shallow water flows. We
refer to [21] for a detailed error and computational complexity analysis for the
MC method in the context of scalar conservation laws. This slow convergence
has inspired the development of Multi-Level Monte Carlo or MLMC methods
[16, 17, 18]. In particular, [21] and [22] extend and analyze the MLMC algorithm
for scalar conservation laws and for systems of conservation laws, respectively.
The asymptotic analysis for the MLMC method, presented in [21], showed that
the method allows the computation of approximate statistical moments with
the same accuracy versus cost ratio as a single deterministic solve on the same
mesh.

Although MLMC methods have been successfully employed in compressible
fluid dynamics and magnetohydrodynamics, the application of these methods
to perform UQ in geophysical flows has been limited to a model case of the
shallow water flows modeled by the single layer shallow water equations with
uncertain initial data and bottom topography [23]. It is unclear whether these
methods will be efficient in performing UQ for realistic geophysical flows. The
investigation of this question is one of the core aims of the current article.

Here, we will consider a realistic geophysical scenario of the flow of two super-
posed immiscible layers in which a layer of fluidized granular matter is assumed
to flow within an upper layer of an inviscid fluid (water). This situation is mod-
eled by a two-layer Savage-Hutter type model introduced in [12]. The resulting
PDE is a nonlinear non-conservative hyperbolic system with nonlinear source
terms and can model diverse geophysical phenomena such as tsunamis that are
generated by rockslides. Apart from the initial conditions and the bottom to-
pography, the model is characterized by three crucial parameters, namely the
ratio of the densities of the two layers, the interlayer friction parameter and the
Coulomb friction angle. All three parameters need to be measured. These mea-
surements are highly uncertain given that most granular materials are highly
heterogeneous and need to be modeled statistically. Thus, UQ in the context of
this two-layer shallow water model is the task of determining solution statistics
such as the mean and variance of run-up heights, given the uncertainty in the
layer density ratio, interlayer friction and Coulomb friction angle.

Our main aim in the current paper is to perform an efficient Uncertainty
quantification (UQ) for this two-layer Savage-Hutter model and to validate the
results with realistic data. To this end, we will

• Discretize the Savage-Hutter equations in space-time using the highly ef-
ficient path-conservative IFCP scheme of [13].

• Model the uncertainty in the key parameters such as ratio of the densities
of two layers, the Coulomb friction angle and the interlayer friction by
random variables.

• Adapt the Multi-level Monte Carlo (MLMC) method of [21, 22, 23] to
compute solution statistics efficiently.

• Benchmark the method and results on three test cases of increasing diffi-
culty namely,
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– A one-dimensional submarine landslide over a flat bottom topogra-
phy.

– A one-dimensional laboratory experiment performed by Fritz et. al
in [14] to reproduce the massive run-up Lituaya Bay mega-tsunami
of 1958.

– The two-dimensional Lituya Bay mega tsunami.

To the best of our knowledge, this is the first UQ calculation for a realistic
geophysical flow such as a tsunami generated by a rockslide using the MLMC
methods and demonstrates the power of the judicious combination of efficient
numerical schemes such as the IFCP schemes and the Multi-level Monte Carlo
(MLMC) method in performing realistic large scale UQ simulations.

The rest of the paper is organized as follows: we present the two-layer Savage-
Hutter model in section 2 and the path-conservative IFCP scheme to approx-
imate it in section 3. The Monte Carlo and Multi-level Monte Carlo methods
are described in sections 4, 5 and numerical results are presented in section 6.

2 The Savage-Hutter model

We consider a simplified one-dimensional version of the Savage-Hutter type
model of [12] given by,





∂h1
∂t

+
∂q1
∂x

= 0

∂q1
∂t

+
∂

∂x

(
q21
h1

+
g

2
h21

)
+ gh1

∂h2
∂x

= gh1
dH

dx
+ Sf + Sb1

∂h2
∂t

+
∂q2
∂x

= 0

∂q2
∂t

+
∂

∂x

(
q22
h2

+
g

2
h22

)
+ rgh2

∂h1
∂x

= gh2
dH

dx
− rSf + τ.

(2.1)

Here, the indices 1 and 2 refer to the upper layer (water) and the lower layer
(granular matter such mud, rock etc), respectively. The fluid is assumed to
occupy a straight channel with constant rectangular cross-section and constant
width. The coordinate x ∈ [a, b] refers to the axis of the channel and t is time,
and g is the gravity acceleration. H(x) represents the depth function measured
from a fixed level of reference. Each layer is assumed to have a constant density,
ρi, i = 1, 2 (ρ1 < ρ2), and r = ρ1/ρ2 is the ratio of densities. In order to
model partially fluidized avalanches, we consider a grain layer of density ρs, and
porosity ψ0. We consider that the pores in the grain layer are filled with the
fluid of the upper layer. Then the density of the second layer is defined as

ρ2 = (1− ψ0)ρs + ψ0ρ1. (2.2)
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The unknowns qi(x, t) and hi(x, t) represent the mass-flow and the thickness,
respectively, of the i-th layer at the section of coordinate x at time t. The mean
velocity at each layer is related to qi and hi by ui = qi/hi. The parameter
τ parametrizes the Coulomb friction term (see [12]). In this model, this term
must be interpreted as:

if |τ | ≥ σc ⇒ τ = −g(1− r)h2
q2
|q2|

tan(δ0), (2.3)

if |τ | < σc ⇒ q2 = 0, (2.4)

where σc = g(1− r)h2 tan(δ0), with δ0 > 0 is the Coulomb friction angle.
The terms Sf and Sb1 parametrize the friction terms between the layers

and the bottom topography, respectively. Sb1 follows a Manning law, and Sf is
defined by a quadratic friction term:

Sb1 = −gh1
n21

h
4/3
1

u1|u1|, Sf = cf
h1h2

h2 + rh1
(u2 − u1)|u2 − u1|.

We observe that Sb1 is imposed to be zero if h2 > 0.
Notice that system (2.1) can be written in the following form:

wt + F (w)x +B(w)wx = S(w)Hx + SF (w), (2.5)

where

w =




h1
q1
h2
q2


 , F (w) =




q1
q21
h1

+
q

2
h21

q2
q22
h2

+
g

2
h22



, S(w) =




0
gh1
0
gh2


 , (2.6)

(2.7)

B(w) =




0 0 0 0
0 0 gh1 0
0 0 0 0

grh2 0 0 0


 and SF (w) =




0
Sf + Sb1

0
−rSf + τ


 . (2.8)

The vector w takes values in the set:

O = {[h1, q1, h2, q2]
T ∈ R

4, h1 ≥ 0, h2 ≥ 0}

as the thickness of the layers may vanish in practical applications when one or
the two layers disappear in part of the domain.

Adding to (2.5) the equation Ht = 0, the system can be written in the form

Wt +A(W ) ·Wx = S̃F (W ) (2.9)
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where W is the augmented vector

W =

[
w
H

]
∈ Ω = O × R,

A is the 5× 5 matrix whose block structure is given by:

A(W ) =




A(w) −S(w)

0 0




where A(w) = J(w) +B(w), being J(w) =
∂F

∂w
(w):

A(w) =




0 1 0 0
−u21 + gh1 2u1 gh1 0

0 0 0 1
rgh2 0 −u22 + gh2 2u2


 , (2.10)

and S̃F (W ) is the augmented vector

S̃F (W ) =

[
SF (w)

0

]
.

As mentioned in the introduction, solutions of (2.9) may develop discon-
tinuities and the solution needs to interpreted in the weak sense. However,
on account of the non-conservative form of the equations, the usual notion of
weak solution in the sense of distributions cannot be used. The theory intro-
duced by Dal Maso, LeFloch, and Murat [8] is followed here to define weak
solutions of (2.9). This theory allows one to define the nonconservative product
A(W ) · Wx as a bounded measure provided a family of Lipschitz continuous
paths Φ : [0, 1] × Ω × Ω → Ω is prescribed, which must satisfy certain natural
regularity conditions. Notice that the meaning of the nonconservative products
and thus the concept of weak solution has to be assigned together with the sys-
tem of equations, and its initial/boundary conditions. A detailed description of
how paths can be chosen is discussed in [26]. Here, we consider paths defined
by the family of straight segments.

Finally, the stationary solutions of interest for the above system are those
of water at rest, i.e, u1 = u2 = 0 are given by:





u1 = u2 = 0
h1 + h2 −H = constant
∂x(h2 −H) < tan(δ0),

(2.11)

and, in particular, 



u1 = u2 = 0
h1 + h2 −H = constant
h2 −H = constant

(2.12)

are solutions of system (2.1).
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3 The IFCP numerical scheme

We discretize system (2.1) by dividing the 1D-domain D = [a, b] into L cells or
finite volumes Ii = [xi−1/2, xi+1/2], where ∆x is the length of each cell which,
for simplicity, is assumed to be constant. Let us denote by T the partition of the
domain D by the cells Ii. We denote by wn

i and approximation of the average
of the solution at the i-th cell at time tn = n∆t

wn
i
∼=

1

∆x

∫ xi+1/2

xi−1/2

w(x, tn) dx.

To begin with, we describe the first order numerical scheme that we use: it is a
three-step method, where in the first step, we neglect the friction terms and the
path-conservative IFCP scheme (see [13]) is used. Then, in the other two steps,
the friction terms will be discretized in a semi-implicit manner. We denote the
three steps as follows:

wn
i → w

n+1/3
i → w

n+2/3
i → wn+1

i .

The result of the first step, w
n+1/3
i , is computed using the IFCP scheme, as

follows:

w
n+1/3
i = wn

i −
∆t

∆x

(
Dτ,+

i−1/2(w
n
i−1, w

n
i , Hi−1, Hi) +Dτ,−

i+1/2(w
n
i , w

n
i+1, Hi, Hi+1)

)

(3.1)
where Dτ,±

i+1/2(w
n
i , w

n
i+1, Hi, Hi+1) are fluctuations in a modified IFCP scheme

that takes into account the presence of the Coulomb friction term (see [12, 13])
and are defined as follows:

Dτ,−
i+1/2 =

1

2

(
Ri+1/2 −

(
α0,i+1/2Ĩ

τ
i+1/2 + α1,i+1/2R

τ
i+1/2 + α2,i+1/2Ai+1/2R

τ
i+1/2

))

+FQ(wi), (3.2)

Dτ,+
i+1/2 =

1

2

(
Ri+1/2 +

(
α0,i+1/2Ĩ

τ
i+1/2 + α1,i+1/2R

τ
i+1/2 + α2,i+1/2Ai+1/2R

τ
i+1/2

))

−FQ(wi+1),

where the coefficients αk,i+1/2, k = 0, 1, 2 are defined in terms of the eigenvalues
of the 1D two-layer shallow-water system following [13].

The matrix Ai+1/2 is defined by

Ai+1/2 =




0 1 0 0

gh1,i+1/2 −
(
u1,i+1/2

)2
2u1,i+1/2 gh1,i+1/2 0

0 0 0 1

rgh2,i+1/2 0 gh2,i+1/2 −
(
u2,i+1/2

)2
2u2,i+1/2




(3.3)
with

uk,i+1/2 =

√
hk,i uk,i +

√
hk,i+1 uk,i+1√

hk,i +
√
hk,i+1

,
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and

hk,i+1/2 =
hk,i + hk,i+1

2
, k = 1, 2.

FQ(w) is given by

FQ(w) =

(
q1

q21
h1

q2
q22
h2

)T

.

Ĩτi+1/2 is defined by

Ĩτi+1/2 =





Ĩi+1/2 if |h2,i+1/2 u2,i+1/2| > ∆t σc
i+1/2




µ1,i+1 − µ1,i

q1,i+1 − q1,i
0

q2,i+1 − q2,i


 =




∆i+1/2µ1

∆i+1/2q1
0

∆i+1/2q2


 otherwise

with σc
i+1/2 = g(1− r)h2,i+1/2 tan(δ0) and

Ĩi+1/2 =
(
∆i+1/2µ1 −∆i+1/2µ2 ∆i+1/2q1 ∆i+1/2µ2 ∆i+1/2q2

)T

where µk,i, k = 1, 2 µ1,i = h1,i + h2,i −Hi and µ2,i = h2,i −Hi.
Rτ

i+1/2 is defined by:

Rτ
i+1/2 =

{
Ri+1/2 if |h2,i+1/2 u2,i+1/2| > ∆t σc

i+1/2

FQ(wi+1)− FQ(wi) + P τ
i+1/2 otherwise

where Ri+1/2 is defined by

Ri+1/2 = FQ(wi+1)− FQ(wi) + Pi+1/2,

with

Pi+1/2 =
(
0 gh1,i+1/2∆i+1/2µ1 0 gh2,i+1/2

(
r∆i+1/2µ1 + (1− r)∆i+1/2µ2

) )T

and finally,

P τ
i+1/2 =

(
0 gh1,i+1/2∆i+1/2µ1 0 rgh2,i+1/2∆i+1/2µ1

)T
.

The resulting numerical scheme is explicit, therefore, it is necessary to impose
a CFL (Courant-Friedrichs-Lewy) condition to ensure linear stability of the
scheme. In practice, this condition implies a restriction on the time step given
by:

∆tn = min
i
γ

∆x

max |λi+1/2|
(3.4)

where 0 < γ ≤ 1 and λi+1/2 are the eigenvalues of matrix Ai+1/2.
Finally, we use the modification of the numerical scheme proposed in [3] in

order to deal with wet-dry transitions.
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3.0.1 Second step: computation of w
n+2/3
i

Once w
n+1/3
i has been computed, we define w

n+2/3
i as:

w
n+2/3
i =

(
h
n+1/3
1,i q

n+2/3
1,i h

n+1/3
2,i q

n+2/3
2,i

)T

(3.5)

with q
n+2/3
k,i = u

n+2/3
k,i h

n+1/3
k,i , k = 1, 2, where u

n+2/3
k,i , k = 1, 2, is the solution

of the linear system:





u
n+2/3
1,i = u

n+1/3
1,i + a h

n+1/3
2,i

(
u
n+2/3
2,i − u

n+2/3
1,i

)
−

∆t g n2
1(

h
n+1/3
1,i

)4/3
|un1,i|u

n+2/3
1,i

u
n+2/3
2,i = u

n+1/3
2,i − r a h

n+1/3
1,i

(
u
n+2/3
2,i − u

n+2/3
1,i

) (3.6)

where

a = ∆t
cf

rh
n+1/3
1,i + h

n+1/3
2,i

|un1,i − un2,i|.

Note that (3.6) corresponds to a semi-implicit discretization of the friction
terms Sf (w) and Sb1(w).

3.0.2 Third step: computation of wn+1
i

Finally, once w
n+2/3
i has been determined, we compute wn+1

i by

wn+1
i =

(
h
n+2/3
1,i q

n+2/3
1,i h

n+2/3
2,i qn+1

2,i

)T

(3.7)

where

qn+1
2,i =





| q
n+2/3
2,i |q

n+2/3
2,i

| q
n+2/3
2,i |+ σi ∆t

if |q
n+2/3
2,i | ≥ σi ∆t

0 otherwise

with σi = g(1− r)h
n+2/3
2,i tan(δ0) .

The resulting scheme is exactly well-balanced for water at rest solutions
(u1 = u2 = 0 and µ1 and µ2 constant). Moreover, the scheme is able to
approximate accurately the stationary solutions corresponding to u1 = u2 = 0
, µ1 constant and ∂xµ2 < tan(δ0), i.e, a stationary water at rest solution for
which the Coulomb friction term balances the pressure term in the granular
material (see [12]).

Second order approximations is obtained following the procedure described
in [5], using MUSCL reconstruction of the unknowns µ1, q1, µ2, q2 and H
together with the second order TVD Runge-Kutta method.
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4 Monte Carlo method

4.1 Modeling uncertain inputs

As mentioned in the introduction, it is not possible to measure precisely some
of the parameters present in system (2.1). This is the case of the parameters
related to friction terms or the ratio of densities in a non-homogeneous media.
Here, we consider the term involved in friction between the two layers, cf , the
ratio between densities, r, and the Coulomb friction angle, denoted by δ0.

Uncertainty in input values for these parameters leads to uncertainty in the
solution w of the system (2.5). Therefore, noting by (Ω, F,P) the complete
probability space, w(t, x, ξ), ξ ∈ Ω is the solution of the system

wt(ξ) + F (w)x +B(w, ξ)wx = S(w)Hx + SF (w, ξ). (4.1)

4.2 Monte Carlo finite volume method

In order to approximate the random system of equations (4.1), we need to
discretize the probability space. The simplest sampling method is the Monte
Carlo (MC) algorithm that consists of the following steps:

1. Sample: We draw M independent identically distributed (i.i.d) samples
of ckf , r

k and δk0 with k = 1, 2, . . . ,M from the random fields cf (ξ), r(ξ)
and δ0(ξ).

2. Solve: For each realization ckf , r
k and δk0 the underlying system (2.5)

is solved by the IFCP-FV method described previously. Let the finite
volume solutions be denoted by wk,n

T
, i.e. by cell averages {wk,n

i : Ii ∈ T }
at time level tn,

wk,n
T

(x) = wk,n
i , ∀x ∈ Ii, Ii ∈ T

3. Estimate Statistics: We estimate the expectation of the random solu-
tion field with the sample mean (ensemble average) of the approximate
solution:

EM [wn
T ] :=

1

M

M∑

k=1

wk,n
T
. (4.2)

Higher statistical moments can be approximated analogously. (See [21])

The above algorithm is quite simple to implement. We remark that step 1
requires a (pseudo) random number generator (PRNG). In this work we will use
the Mersenne Twister PRNG [19], which has a period of 219937 − 1. In step 2,
an existing code for finite volume methods can be used. For instance, we will
use the IFCP scheme presented in the previous section. Furthermore, the only
(data) interaction between different samples is in step 3 when ensemble averages
are computed. Thus, the MC is non-intrusive as well as easily parallelizable.
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Although a rigorous error estimate for the MC approximating the two-layer
Savage-Hutter system is currently out of reach, we rely on the analysis for a
scalar conservation law (see [21]) and on the numerical experience with the
MLMC-FV solution of non-linear hyperbolic systems of conservation laws with
random initial data (see [22]) to postulate that the following estimate holds:

‖E[w(·, tn)]− EM [wn
T ]‖L2(Ω;L1(D)) ≤ CstatM

−1/2 + Cst∆x
s. (4.3)

Here, the L2(Ω;L1(D))-norm of the random function f(·, ξ) is defined as

‖f‖L2(Ω;L1(D)) :=

(∫

w∈Ω

‖f(·, ξ)‖2L1(D) dP(ξ)

) 1
2

,

and Cstat, Cst are constants that depend on the domain D, initial condition,
topography, time horizon T and the statistics of random parameters cf (ξ), r(ξ)
and δ0(ξ), in particular, on mean and variance. In the above, we have assumed
that the underlying finite volume scheme converges to the solutions of the de-
terministic system (2.1) at a rate of s > 0. Moreover, in (4.3) and throughout
the following, we adopted the (customary in the analysis of MC methods) con-

vention to interpret the MC samples wk,n
T

in (4.2) as i.i.d. random functions,
with the same law as w. Note that the error estimate for the mean requires that
the solution has finite second moments. Based on the error analysis of [21], we
need to choose

M = O(∆x−2s) (4.4)

in order to equilibrate the statistical error with the spatio-temporal error in
(4.3).

Consequently, it is straightforward to deduce that the asymptotic error vs.
(computational) work estimate is given by (see [21])

‖E[w(·, tn)]− EM [wn
T ]‖L2(Ω;L1(Rd)) . (Work)−s/(d+1+2s)

where d is the space dimension (in this paper d = 1 or d = 2). The above
error vs. work estimate is considerably more expensive when compared to the
deterministic FVM error which scales as (Work)−s/d+1. We see in the situation
of low order s of convergence and space dimension, a considerably reduced rate
of convergence of the MC-FVM, in terms of accuaracy vs. work, is obtained.
On the other hand, for high order schemes (i.e. s >> d + 1) the MC error
dominates and we obtain the rate 1/2 in terms of work which is typical of MC
methods.

5 Multi Level Monte Carlo Finite VolumeMethod

Given the slow convergence of MC-FV, [21] and [22] proposed the Multi-Level
Monte Carlo finite volume method (MLMC-FV). The key idea behind MLMC-
FV is to simultaneously draw MC samples on a hierarchy of nested grids.

The algorithm consists of the following four steps:
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1. Nested meshes: Consider nested meshes {Tl}
∞
l=0 of the spatial domain

D with corresponding mesh diameters ∆xl that satisfy:

∆xl = sup{diam(I) : I ∈ Tl} = O(2−l∆x0), l ∈ N0

where ∆x0 is the mesh width for the coarsest resolution and corresponds
to the lowest level l = 0.

2. Sampling: For each level of resolution l ∈ N0, we draw Ml indepen-
dent identically distributed (i.i.d) samples of cf

k
l , r

k
l and δ0

k
l , with k =

1, 2, . . . ,Ml belonging to the set of admissible parameters for the model.

3. Solving: For each resolution level l and each realization cf
k
l , r

k
l and δ0

k
l ,

the underlying system (4.1) is solved by the IFCP method using mesh Tl.

Let the finite volume solutions be denoted by wk,n
Tl

for the mesh Tl and at
the time level tn.

4. Estimate Solution Statistics: Fix some positive integer L < ∞ corre-
sponding to the highest level. We estimate the expectation of the random
solution field with the following estimator:

EL[w(·, tn)] := EM0
[wn

T0
] +

L∑

l=1

EMl
[wn

Tl
− wn

Tl−1
], (5.1)

with EMl
being the MC estimator

EMl
[wn

T ] :=
1

Ml

Ml∑

k=1

wk,n
T

(5.2)

for the level l. Higher statistical moments can be approximated analo-
gously. (See [21]).

MLMC-FV is non-intrusive as any standard FVM code can be used in step 3.
Furthermore, MLMC-FV is amenable to efficient parallelization as data from
different grid resolutions and different samples only interacts in step 4.

Following the rigorous estimate for error in [21, 22], we consider

‖E[w(·, tn)]−EL[wn
T ]‖L2(Ω;L1(R)) ≤ C1∆x

s
L +C2

{
L∑

l=0

M
−1/2
l ∆xsl

}
+C3M

−1/2
0

(5.3)
Here s again refers to the convergence rate of the deterministic finite volume
scheme and C1,2,3 are constants depending only on the initial data, the param-
eters and the source term. From the error estimate (5.3), we obtain that the
number of samples to equilibrate the statistical and spatio-temporal discretiza-
tion errors in (5.1) is given by

Ml = O(22(L−l)s)
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Notice that the choice of Ml implies that the largest number of MC samples is
required on the coarsest mesh level l = 0, whereas only a small fixed number of
MC samples are needed on the finest discretization levels.

The corresponding error vs. work estimate for MLMC-FV is given by (see
[21, 22])

‖E[w(·, tn)]− EL[wn
T ]‖L2(Ω;L1(R)) . (Work)−s/(d+1) · log(Work), (5.4)

provided s < (d+1)/2. The above estimate shows that MLMC-FV is more effi-
cient than MC-FV. Also, MLMC-FV is (asymptotically) of the same complexity
as a single deterministic FVM solve.

6 Numerical experiments

6.1 Submarine landslide over a flat bottom topography

As a first numerical experiment, we consider the computational domain x ∈
[−5, 5] with transparent boundary conditions at both boundaries, and a flat
bottom topography, specified by H(x) ≡ 2. The initial data for the problem is

h1(x, 0) =

{
2 if |x| ≥ 1

0.5 if |x| < 1
,

h2(x, 0) =

{
0.5 if |x| ≥ 1

1.5 if |x| < 1
,

and
u1(x, 0) = 0, u2(x, 0) = 0.

Hence, our aim is to simulate a submarine landslide as the fluidized granular
matter (rock), denoted by the index 2 will slide under the water surface (denoted
by index 1) and will initiate a flow of the free surface.

As mentioned in the introduction, the key parameters, that of ratio of the
densities of two layers r, the Coulomb angle δ0 and the interlayer friction pa-
rameter cf are uncertain. Here, we assume that these parameters are random
variables that take values from a uniform distribution with following mean val-
ues,

cf = 0.0001, r = 0.5, δ0 = 35◦.

Furthermore the variation is assumed to 40% over the mean for each of the
three uniformly distributed uncertain parameters. Such a variability is fairly
representative of the variability in experiments and observations.

We will perform UQ for the two-layer Savage-Hutter system with the above
uncertain inputs using both the first- and second-order IFCP schemes described
in section 3 to discrete space-time and both the Monte Carlo (MC) as well as
Multi-level Monte Carlo methods, described in sections 4 and 5, respectively, to
discretize the probability space.
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Figure 1: First order MC-IFCP &MLMC-IFCP methods for the submarine landslide.
The mean and standard deviation of the layer heights at t = 0.3 are shown.

The resulting mean and mean ± standard deviation (statistical spread) are
presented in figures 1 and 2. In figure 1, we present statistics of the heights
of both layers at time T = 0.3 using a first-order IFCP scheme (IFCP1) on a
fine mesh of 1024 cells. The scheme is combined with a MC simulation with
M = 1024 samples. Such a choice of sample number is based on the fact that the
MC sample number should be chosen by the formulaM = (∆x)−2s in (4.4). This
reduces to reduces to M = N , with N being the number of cells in the current
simulation as the convergence rate is s = 1/2 for a first-order IFCP scheme.
Similarly, the MLMC method (together with the first-order IFCP scheme) is
based on choosing L = 6 levels of mesh resolution, ranging from N0 = 32 cells
up to N5 = 1024 cells. We choose M5 = 16 samples for the highest level of
resolution.

The statistics for the height of both layers simulated with the second-order
version of the IFCP (IFCP2) scheme, together with MC and MLMC discretiza-
tions of the probability space are presented in figure 2. Again, we choose a fine
mesh resolution of 1024 cells. M = 512 samples are used for the MC-IFCP2
method. As in the first-order case, L = 6 levels of mesh resolution are used to
specify the MLMC-IFCP2 method, ranging from N0 = 32 cells up to N5 = 1024
cells. We choose M5 = 16 samples for the highest level of resolution.

The solution presented in figures 1 and 2 is fairly complicated and consists of
fast moving outer shock waves in both layers, followed by train of slow moving
shocks and rarefactions in each layer. It is interesting to note how the non-
linear evolution equation (2.1) distributes the uniform uncertainty in the three
parameters of interest. As shown in figures 1 and 2, the level of uncertainty in
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Figure 2: Second order MC-IFCP & MLMC-IFCP methods for the submarine land-
slide. The mean and standard deviation of the layer heights at t = 0.3 are shown.

the location as well as amplitude of the fast outer shock waves is rather low.
This is not surprising as these waves depend on the total water depth (which
is determined exactly initially). On the other hand, the inner slow waves con-
tain a significant amount of uncertainty in both their location (speed) as well
as amplitude. It is not possible to resolve this complex distribution of uncer-
tainty by any explicit formulae, given the inherently nonlinear nature of the
governing equations. However, our judicious combination of MC-IFCP as well
as MLMC-IFCP methods is able to accurately quantify uncertainty.

Comparing the sets of methods, we observe that the second-order IFCP
methods resolve the waves more sharply even though the first-order method
is quite competitive. Furthermore, the MC and MLMC methods are fairly
comparable at the same mesh resolution. In order to compare the methods
quantitatively, we compute a reference solution on a fine mesh and with a large
number of samples, and plot the error vs. resolution as well as error vs. runtime
for both the mean and the variance of the outer layer height h1 and display the
results in figure 3. Note that the statistical errors are estimated by a procedure,
first introduced in [21]. As shown in this figure, the second-order IFCP method
is superior in the amplitude of the error (for both mean and variance) than the
first-order method, when combined with both the MC and MLMC discretization
of the probability space. On the other hand, the MC and MLMC methods
(either combined with the first-order or the second-order IFCP scheme) are
very similar when it comes to the amplitude of the error for the same mesh
resolution. The main difference between the methods is discovered when the
computational efficiency, measured in terms of error vs. run-time, is compared.
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Figure 3: Convergence of estimated mean and variance of h1 in the submarine land-
slide at t = 0.3. First and second order comparison of MC-FV-IFCP and MLMC-FV-
IFCP methods.

As seen in figure 3 (right column), the MLMC methods are approximately 60 to
80 times faster than the corresponding MC methods, for the same level of error.
This almost two orders of magnitude gain in efficiency with the MLMC methods
is instrumental in their utility for performing more realistic UQ simulations at
an acceptable computational cost. We consider two such examples below.

6.2 The Lituya Bay mega tsunami

On July 10, 1958, an 8.3 magnitude (on the Richter scale) earthquake, along the
Fairweather fault, triggered a major subaerial landslide into the Gilbert Inlet at
the head of Lituya Bay on the southern coast of Alaska. The landslide impacted
the water at a very high speed generating a giant tsunami with the highest wave
runup in recorded history. The mega-tsunami runup was upto an elevation of
524 m and caused total destruction of the forest as well as erosion down to the
bedrock on a spur ridge, along the slide axis. Many attempts have been made
to understand and simulate this mega tsunami.

6.2.1 A laboratory scale model of Fritz et. al [14]

Based on generalized Froude similarity, Fritz and coworkers constructed a cross
section of Gilbert inlet at 1:675 scale in a two-dimensional physical laboratory
model (L × W × H : 11m, 0.5m and 1m), in order to reproduce the run-up
heights of the Lituya Bay mega tsunami.
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Figure 4: Physical model. Cross section of Gilbert Inlet along slide axis in NE to
SW orientation

physical parameter symbol dimension value
stillwater depth h [m] 122
slide thickness s [m] 92

averaged slide width b [m] 823
landslide impact velocity Vs [m/s] 110

slope angle α [◦] 45

Table 1: Physical considerations for the problem.

In order to reproduce the main features of the slide impact, Fritz and collab-
orators designed a pneumatic landslide generator. As they intended to model
the transition from rigid to granular slide motion, initially, they impulsed the
granular material until the landslide achieves a velocity of 110m/s. This veloc-
ity is the approximate impact velocity between the slide and the water surface
estimated by Fritz et al., assuming free fall equations for the centroid of the
slide. From this instant, the slide is supposed to behave as a granular medium.

In this section, we reproduce numerically the same laboratory experiment:
assuming that 110m/s is a good approximation for the impact velocity of the
slide, an initial velocity for the granular layer has been estimated so that the
computed impact velocity is approximately 110m/s. Corresponding to the
Fritz’s laboratory model (see Figure 4), we consider the following parameters
for our simulations, based on the data provided by Fritz experiment. (See Table
1):

The horizontal bottom topography H(x), and initial condition are given by:
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H(x) =





x+ 22 if x ∈ [−1000, 100],

122 if x ∈ (100, 1198),

−x+ 1320 if x ≥ 1198,

(6.1)

h1(x, 0) =

{
H(x) if H(x) ≥ 0,

0 otherwise,
(6.2)

h2(x, 0) =

{
113 if |x+ 400| < 265,

0 otherwise,
(6.3)

and
u1(x, 0) = 0, u2(x, 0) = 110.

As in the previous numerical experiment, we assume that the three crucial
uncertain parameters take values from a uniform distribution with following
mean values,

cf = 0.0001, r = 0.5, δ0 = 35◦.

Furthermore the variation is assumed to 40% over the mean for each of the three
uniformly distributed uncertain parameters.

Motivated by the fact that the second-order IFCP-MLMC method was the
most efficient computational technique in the first numerical experiment (it was
around two orders of magnitude faster than other methods for the same level of
error in mean and variance, see figure 3), we will simulate the 1-D laboratory
scale model of Fritz et. al [14] using the second-order IFCP-MLMC method.
This method is used with 5 levels of mesh resolution, ranging from N0 = 64
to N0 = 1024 mesh points. The number of samples at the finest level is set as
M4 = 16.

The main quantity of interest for the experiment as well as the computation
is the run-up height, recorded on a headland ramp. The experimental data for
the rune-up height, reported in Fritz el. al [14] is without error bars (statisti-
cal spread). We compare it with the results of the second-order IFCP-MLMC
simulations in figure 5. Bot the mean run-up height as well as the risk region
(statistical spread) are shown in figure 5. The results show excellent qualitative
agreement between experiment and simulation. In particular, the maximum
run-up height as well as its arrival time are almost exactly matching the ex-
perimental data and certainly the experimental data for the maximal run-up
height lies within the statistical spread of the simulation. Furthermore, the
simulation also shows a second run-up caused by reflections of the first incident
wave with the inlet geometry. However, there are quantitative differences, par-
ticularly with respect to the arrival time of the reflected wave. This could be
very well be on account of modeling error (deficiencies of the two-layer Savage-
Hutter model (2.1)) or experimental error (as error bars for the experiment are
not available). Furthermore, the simulation clearly identifies possible sensitivity
windows. In particular, the uncertainty of the second reflected run-up as well as
the build-up to it is identified by the UQ calculation. This is exactly the time
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Figure 5: Tsunami runup record on headland ramp (magenta) (in the laboratory
scale model of Fritz et. al, [14]) vs numerical results (green). Mean & standard
deviation. Second order MLMC-FV-IFCP.

window where the difference between the experimental results and the simula-
tion is highest, indicating the possible sensitivity of the experimental results in
this time period, with respect to the uncertain parameters.

6.2.2 2D Lituya Bay mega-tsunami

The aim of this section is to produce a realistic, detailed and accurate simulation
of the Lituya Bay mega tsunami of 1958, while taking into account uncertainties
in critical parameters such as ratios of layer densities, interlayer friction and
Coulomb friction. We use public domain topo-bathymetric data as well as the
review paper [20] to approximate the Gilbert inlet topo-bathymetry..

Since the underlying domain is two-dimensional, we consider the two-dimensional
version of the two-layer Savage-Hutter model (2.1) as presented in [12] and ap-
proximate it using a two-dimensional extension of the IFCP scheme. For sim-
plicity, we use the first-order IFCP scheme. For fast computations, this scheme
has been implemented on GPUs using the CUDA. This two-dimensional scheme
and its GPU adaptation and implementation using single numerical precision
are described in detail in [11]. The MLMC-FV-IFCP implementation has also
been developed in CUDA, where all the updates of the means and variances
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Figure 6: Mean of the solution at t = 39 s.

Figure 7: Variance of the solution at t = 39 s.

have also been implemented using CUDA kernels.
A rectangular grid of 3,648× 1,264 = 4,611,072 cells with a resolution of

4m× 7.5m has been designed in order to perform this simulation. We compute
with the first order MLMC-FV-IFCP method with L = 4 levels of resolution
and M4 = 16 samples for the highest level, which corresponds to the grid of
4,611,072 cells and constitutes the finest mesh. We allow a 30 % of variability in
the parameters cf , r and δ0. The mean values of these parameters are cf = 0.08,
r = 0.44 and δ0 = 13◦. The CFL number is 0.9. Figures 6-9 show the mean
solution and variance for 39 s. and 120 s.

The maximum runup is reached at 39 s. We can see in Figures 6 and 7 that
the southern propagating part of the initial wave reaches a maximum mean
height of 50-60 m. with a maximum standard deviation of 4-5m.

While the initial wave moves through the main axis of Lituya Bay, a larger
second wave appears as reflection of the first one from the south shoreline. (see
Figures 8 and 9). Both these waves sweep both sides of the shoreline in their
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Figure 8: Mean of the solution at t = 120 s.

Figure 9: Variance of the solution at t = 120 s.
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path. In the north shoreline, the wave reaches between 15-20 m height while in
the south shoreline the wave reaches mean values between 20-30 m assuming a
standard deviation of 1.2-1.5 m height.

The impact times, trimlines and the mean and variances obtained for the
wave heights provided by the simulation are in good agreement with the majority
of observations and conclusions described by [20]. See [10] for more details.
Furthermore, we see that the computed standard deviation on account of the
uncertain parameters is about 5 − 10% of the mean. Compared to the initial
parameter uncertainty of 30% of mean, we see that the nonlinear evolution
has damped the uncertainty and the problem is fairly insensitive or moderately
sensitive to the three uncertain parameters. Thus, it enhances our confidence
in previously reported numerical simulations of this event [10].

The CUDA implementation of the MLMC-FV-IFCP method has been ex-
ecuted on a Tesla K20. For the case of 39 s. we have obtained a runtime of
3120.0 seconds. The MC-FV-IFCP method has also been executed on the same
graphics card with M = 256 samples, reaching a runtime of 30671.5 seconds,
that is, approximately 10 times slower than the MLMC-FV-IFCP method.

7 Conclusion

Many geophysical flows of interest, such as tsunamis generated by rockslides,
avalanches, debris etc are modeled by Coulomb type shallow-water models
of granular flows following the pioneering work of Savage-Hutter [28]. These
models are characterized by model parameters such as ratio of layer densities,
Coulomb friction angle and interlayer friction. The values of these parame-
ters are prone to uncertainty on account of heterogeneous composition of the
granular material. Consequently, the task of quantifying the resulting solution
uncertainty (UQ) is of paramount importance in these simulations.

In this paper, we have presented a novel UQ paradigm by combining a
efficient IFCP numerical scheme that can accurately and robustly discretize
the underlying non-conservative hyperbolic system (2.1) together with a novel,
Multi-level Monte Carlo statistical sampling algorithm. The algorithm is based
on computing on nested sequences of mesh resolutions and estimating statistical
quantities by combining results from different resolutions. The method is fully
non-intrusive, easy to parallelize, fast and accurate. In particular, one can gain
several orders of magnitude in computational efficiency vis a vis the standard
Monte Carlo method.

We test the algorithms on a set of numerical examples that include both
laboratory scale models as well as the realistic two-dimensional models of the
Lituya Bay mega tsunami of 1958. The numerical results clearly indicate that
the MLMC-IFCP framework can approximate statistics of quantities of interest
such as run-up heights, quite accurately and with reasonable computational
cost. There was also qualitative and quantitative agreement with experimental
and observed data. Furthermore, the UQ simulations help in identifying the
sensitivity of simulation outputs to the underlying uncertain parameters. Thus,
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they will enable an effective appraisal of sensitivity and enhance risk analysis
and hazard mitigation.

The current paper served to illustrate the power and utility of the MLMC UQ
paradigm for one realistic set of geophysical problems. Clearly, given the non-
intrusiveness, efficiency and robustness of this method, the paper will hopefully
lead to application of this paradigm for quantifying uncertainty in a wide range
of problems in geophysics.
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