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MULTI-LEVEL MONTE CARLO FINITE VOLUME METHODS

FOR UNCERTAINTY QUANTIFICATION

OF ACOUSTIC WAVE PROPAGATION IN RANDOM

HETEROGENEOUS LAYERED MEDIUM
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Abstract. We consider the very challenging problem of efficient uncertainty
quantification for acoustic wave propagation in a highly heterogeneous, possi-

bly layered, random medium, characterized by possibly anisotropic, piecewise
log-exponentially distributed Gaussian random fields. A multi-level Monte

Carlo finite volume method is proposed, along with a novel, bias-free upscal-
ing technique that allows to represent the input random fields, generated using
spectral FFT methods, efficiently. Combined together with a novel, dynamic
load balancing algorithm that scales to massively parallel computing architec-
tures, the proposed method is able to robustly compute uncertainty for highly
realistic random subsurface formations that can contain a very high number

(millions) of sources of uncertainty. Numerical experiments, in both two and
three space dimensions, illustrating the efficiency of the method are presented.

1. Introduction

1.1. The model. The study of propagation of acoustic waves in heterogeneous
media is of crucial importance to geophysics, particularly in seismic imaging. The
motion of seismic waves is modeled by the linear wave equation, reading as

(1.1) ptt(x, t)− div(c(x)∇p(x, t)) = 0, x ∈ D, t > 0 .

Here, p denotes the acoustic pressure variable and the material coefficient c : D 7→
R+ describes the (positive) speed of sound in a heterogeneous medium at a given
domain point x ∈ D. Throughout this paper we consider domain D to be either
D = R

d (a “Cauchy problem”) or a bounded axiparallel box D = I1×· · ·×Id ⊂ R
d.

We rewrite the Cauchy problem for the wave equation (1.1) as a first-order linear,
hyperbolic system of the form

(1.2)

{

pt(x, t)− div(c(x)u(x, t)) = 0,

ut(x)−∇p(x) = 0,
x ∈ D, t > 0.
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This first-order system of PDEs is the prototypical example for general linear
hyperbolic systems of conservation (balance) laws given by

(1.3)















Ut(x, t) +

d
∑

r=1

∂

∂xr

(

Ar(x)U(x, t)
)

= S(x, t),

U(x, 0) = U0(x),

∀(x, t) ∈ D× R+.

Here, U : D×R+ → R
m denotes the vector of conserved variables, Ar : Rm → R

m

denote linear maps (fluxes), and S : D×R+ → R
m denotes the source term. If the

source term S = 0 (as in (1.2)), the balance law (1.3) is termed a conservation law.
We observe that the wave equation (1.2) is of the form (1.3) with U = (p,u),S ≡

0 and entries (Ar(x))i,j of matrices Ar for i, j = 1, . . . ,m given by

(1.4) (Ar(x))i,j =











−c(x) i = 1, j = r + 1,

−1 i = r + 1, j = 1,

0 else.

The methodology of the present paper also extends to systems (1.3) in general,
polyhedral domains with suitable boundary conditions (which, in the case of (1.1),
allow first order system reformulation (1.2).

Other examples for the linear systems of conservation laws (1.3) are the equations
of linear elasticity and linearized Shallow water equations of oceanography.

Given the lack of explicit solution formulas (particularly for variable coefficients
and in several space dimensions), numerical methods are widely used to approxi-
mate (1.3) and, in particular, the wave equation (1.2). Popular discretization meth-
ods include finite difference, finite volume and discontinuous Galerkin methods, see
[22, 54, 17] and references therein.

1.2. Uncertainty quantification. These numerical methods require the specifi-
cation of the coefficient matrices, initial data, source terms and boundary data as
inputs. However, these quantities are often determined by measurements, which
are typically uncertain and provide only statistical information about the input
data. For instance, in the propagation of acoustic waves in the subsurface, the
wave speeds c(x) in (1.2) depend on the material properties (rock permeability)
of the subsurface medium. The relative scarcity of seismic measurements leads to
statistical descriptions (using available a-priori knowledge) of material properties
of the medium, which then result in uncertain wave propagation speed c(x). The
efficient computation of the resulting solution uncertainty, given the statistical de-
scription of input uncertainty, is the central theme of uncertainty quantification
(UQ).

A necessary prerequisite in UQ is an appropriate mathematical notion of ran-
dom solutions for linear hyperbolic systems. In [47], we recently provided a math-
ematical framework and proofs of existence and uniqueness of these random solu-
tions, including the quantification of their (spatio-temporal and statistical) regu-
larity. There has been tremendous amount of recent interest in devising efficient
UQ methods for PDEs. Among the most popular methods (particularly for ellip-
tic and parabolic PDEs) are the stochastic Galerkin methods based on general-
ized Polynomial Chaos (gPC for short). An incomplete list of references on gPC
methods for uncertainty quantification in hyperbolic conservation laws includes
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[2, 5, 23, 24, 49, 50, 40, 52, 15] and other references therein. Although these de-
terministic methods show some promise, they suffer from the disadvantage that
they are highly intrusive: existing codes for computing deterministic solutions of
balance (conservation) laws need to be completely reconfigured for implementation
of the gPC based stochastic Galerkin methods. An alternative class of methods
for quantifying uncertainty in PDEs are the stochastic collocation methods, see
[55, 25, 53]. In particular, a stochastic collocation method for the wave equation,
even with discontinuous random speed, was recently proposed in [32]. Stochastic
collocation methods are non-intrusive and easier to parallelize than the gPC based
stochastic Galerkin methods. However, the lack of regularity of the solution with
respect to the stochastic variables (the solution can be discontinuous in the stochas-
tic variables if the inputs are discontinuous) impedes efficient performance of both
the stochastic Galerkin as well as the stochastic collocation methods. A variant is
the recently developed stochastic Finite Volume Method [26] which can deal with
low parametric regularity of the computed solution, but is generally not efficient
when there are a large number of sources of uncertainty (resp. a high-dimensional
parameter space). Yet another set of alternative methods, which heavily rely on the
assumed low “effective” number of stochastic dimensions, include adaptive analysis
of variance (ANOVA) [56], proper generalized decomposition (PGD)[6] and Fokker-
Planck-Kolmogorov type [51] techniques. In addition to the assumption that the
“effective” number of sources of uncertainty is low, these methods require very
complex representations of the input random fields, which are in practice are rarely
available and for which the numerical estimation can be computationally expensive.

The afore described methods generally fail to efficiently approximate problems
that either possess low stochastic regularity or a large number of sources of uncer-
tainty or both. In fact, designing efficient methods for UQ in the wave equation
with heterogenous uncertain wave speeds is highly challenging as realistic statis-
tical representations of the underlying heterogenous media, require the use of a
very large number of sources of uncertainty (stochastic dimensions) and result in
wave speed fields with rather low stochastic regularity, which propagates into the
solution.

For such problems, with very low parametric (stochastic) regularity, a class of
viable non-intrusive methods are Monte Carlo (MC) methods. There, the under-
lying deterministic PDE is solved repeatedly for each statistical sample and the
samples are combined to ascertain statistical information. However, robustness of
MC methods with respect to solution regularity comes at the price of a low (and
non-improvable) error convergence rate of 1/2 with respect to the number of sam-
ples: a large number of numerical solves of (1.3) is required. Slow convergence
has inspired the development of Multi-Level Monte Carlo (MLMC) methods. They
were introduced by S. Heinrich for numerical quadrature [19], developed by M.
Giles for Itô SPDE [11], and applied to various SPDEs [3, 8, 12, 34]. In particular,
recent papers [27, 29, 28] extended the MLMC algorithm to nonlinear conserva-
tion laws. Massively parallel simulations of the random multi-dimensional Euler,
magnetohydrodynamics (MHD) and shallow water equations were performed using
novel static and adaptive load balancing techniques [46, 45].

1.3. Aims and scope of the current paper. The concept of random solutions
for linear hyperbolic systems (1.3) was developed and shown to be well-posed in a
recent paper [47]. Furthermore, we also outlined the basic framework of MC and
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MLMC methods for computational uncertainty quantification for (1.3). However,
the numerical examples presented in [47] were rather elementary. Major algorithmic
adaptations are required in order to apply the MLMC method on large scale two
and three dimensional problems with realistic representations of the underlying
uncertainty in the properties of the subsurface. The main aim of the current paper is
to propose these adaptations and extend the MLMCmethod to quantity uncertainty
in such realistic configurations. To this end,

• we consider a realistic statistical description of the random material coef-
ficients c(x), given by a piecewise log-gaussian, anisotropic random field.
Although MLMC methods for stationary problems with a approximate rep-
resentation (via truncated Karhunen-Loève expansions) of isotropic, log-
gaussian rough coefficients were considered in [48, 21], a key aspect of the
current paper deals with the dynamic problem of wave propagation in ran-
dom media when anisotropically correlated, layered log-gaussian statistical
models of the subsurface medium are assumed.

• Although independent identically distributed (i.i.d.) samples for the input
layered log-gaussian permeability field can be efficiently generated using
spectral FFT (Fast Fourier Transform) generator [7, 34, 35, 42], one needs
to suitably couple this approximate representation of a complex random
medium with the MLMC framework in order to keep the computational
cost reasonable. One principal tool developed in the current paper is a
bias-free upscaling technique which allows to efficiently generate identi-
cally distributed realizations of random inputs on several mesh resolutions
without accessing finer resolutions.

• The explicit timestepping used in the pathwise simulations entails, via the
CFL condition, a sample-dependent timestep which, in turn, implies delicate
load-balancing and scaling issues within the MLMC algorithm, particularly
for a very large number of processors. We couple a novel dynamic load
balancing algorithm designed recently by one of the authors in [45] with
the MLMC framework.

Thus, we combine the MLMC method with a novel bias-free, upscaled representa-
tion of input random fields and an adaptive load balancing procedure in the current
paper to obtain a non-intrusive and highly effective computational UQ framework
for the propagation of acoustic waves in realistic, highly heterogenous, possibly
discontinuous, two- and three-dimensional random media.

The rest of the paper is organized as follows. In section 2, we recapitulate the
main theoretical results from [47]: we present the stochastic linear system of conser-
vation laws, define random weak solutions and state the results on their existence
and uniqueness. In section 3, we present the MLMC-FVM algorithm and provide
the asymptotic bounds for error vs. computational work. In section 4, the spectral
FFT generator for log-gaussian, anisotropically correlated layered material coeffi-
cients is presented, together with the bias-free upscaling technique required for the
coupling of the spectral generator to MLMC framework. In section 5, parallel im-
plementation ALSVID-UQ of MLMC-FVM is discussed. In section 6, the acoustic
wave equation (1.2) will be considered in two and three spatial dimensions, with
random log-normally distributed highly heterogeneous layered material coefficients
c(x).
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2. Systems of stochastic linear hyperbolic conservation laws

We fix notation and describe the probabilistic modeling of random inputs and
solution by introducing random fields. Next, several well-posedness results from
[47] are recapitulated and applied to a special case of the acoustic wave equation
(1.2).

2.1. Preliminaries. For the mathematical description of uncertainty in inputs and
solutions of PDEs, as well as for stating convergence results of MC methods, we
place ourselves into the setting of Kolmogorov’s probability theory, and recapitulate
basic terminlogy and notation which is used throughout this paper, from [41].
Uncertain inputs for (1.3) then take the form of random fields with prescribed
probability laws.

Let (Ω,F) be a measurable space, with Ω denoting the set of all elementary
events ω ∈ Ω, and F a σ-algebra of all possible events in our probability model. A
probability measure P on (Ω,F) is a σ-additive set function from Ω into [0, 1] such
that P(Ω) = 1, and the measure space (Ω,F ,P) is called probability space. We
shall always assume, unless explicitly stated, that (Ω,F ,P) is complete. Denoting
a second measurable space by (E,G), an E-valued random field (or random variable
taking values in E) is any mapping X : Ω → E such that the set {ω ∈ Ω: X(ω) ∈
A} = {X ∈ A} ∈ F for any A ∈ G, i.e. such that X is a G-measurable mapping
Ω → E. L(X) denotes the law of X under P,

L(X)(A) = P({ω ∈ Ω : X(ω) ∈ A}) ∀A ∈ G.
The image measure µX = L(X) on (E,G) is called law (or distribution) of X.

Definition 2.1 (Random field). For a separable Banach space E, an E-valued
random field is a (F ,B(E))-measurable mapping Ω → E,

X : (Ω,F) → (E, B(E)).

Lemma 2.2 (Random field norm is a random variable [41]). Let E be a separable
Banach space and let X : Ω → E be an E-valued random field on (Ω,F). Then
the mapping Ω ∋ ω 7→ ‖X(Ω)‖E ∈ R is measurable, i.e. it is a random variable
(Ω,F) → (R,B(R)).

As E is separable, the random field X : Ω → E is Bochner integrable with respect
to the probability measure P on the measurable space (Ω,F),

∫

Ω

‖X(ω)‖E dP(ω) < ∞.

By L1(Ω, E) = L1((Ω,F ,P), E) we denote the set of all (equivalence classes of)
Bochner integrable, E-valued random fields X, equipped with the norm

‖X‖L1(Ω,E) =

∫

Ω

‖X(ω)‖E dP(ω) = E(‖X‖E).

More generally, for 1 ≤ p < ∞, we define Lp(Ω, E) = Lp((Ω,F ,P), E) as the set of
Bochner p-integrable random fields taking values E, equipped with the norm

‖X‖Lp(Ω,E) := (E(‖X‖pE))
1/p

, 1 ≤ p < ∞.
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For p = ∞, we denote by L∞(Ω, E) = L∞((Ω,F ,P), E) the set of all E-valued
random fields which are P-almost surely bounded, equipped with the norm

‖X‖L∞(Ω,E) := ess sup
ω∈Ω

‖X(ω)‖E .

For X ∈ L1(Ω, X), the mathematical expectation (or “ensemble average”) of an
E-valued random field X is well-defined and denoted by E[X].

2.2. Random conservation laws. As the inputs to (1.3) are random fields, so
are the solutions of the balance law (1.3). Statistical moments of the random field
solution such as the expectation E[U] and spatiotemporal correlations (covariance
functions) are typical (deterministic!) quantities of interest. A realization ω ∈ Ω
of the linear system of balance laws (1.3) with random initial data, coefficients and
sources is given by

(2.1)















Ut(x, t, ω) +

d
∑

r=1

∂

∂xr

(

Ar(x, ω)U
)

= S(x, t, ω),

U(x, 0, ω) = U0(x, ω),

∀(x, t) ∈ D× R+ .

Here, the initial data U0 is a L2(D)-valued random field

U0 : (Ω,F) →
(

L2(D),B(L2(D))
)

, Ω ∋ ω 7→ U0(x, ω),

the matrices Ar are (C1(D))m×m-valued random fields,

Ar : (Ω,F) → (C1(D)m×m,B(C1(D)m×m)), Ω ∋ ω 7→ Ar(x, ω),

the source S is a Cb

(

[0, T ],L2(D× R
m)
)

-valued random field,

S : (Ω,F) →
(

Cb

(

[0, T ],L2(D× R
m)
)

,B
(

Cb

(

[0, T ],L2(D× R
m)
)))

,

and the solution U is a Cb([0, T ],L
2(D))-valued random field,

U : (Ω,F) →
(

Cb

(

[0, T ],L2(D)
)

, B
(

Cb

(

[0, T ],L2(D)
)))

, Ω ∋ ω 7→ U(x, t, ω).

In the case of the wave equation (1.2), randomness in the coefficient matrices Ar is
inherited (through relation (1.4)) from the underlying random material coefficients
c(x, ω), modeled as a C1(D)-valued random field,

c : (Ω,F) →
(

C1(D),B(C1(D))
)

, Ω ∋ ω 7→ c(x, ω).

For simplicity of exposition, all definitions and theoretical results will be stated
explicitly only for Cauchy problems with D = R

d. Analogous results are available
for general bounded domains, for instance, for periodic bounded Cartesian domains
D = I1 × · · · × Id.

Following [47], we define the notion of solutions of (2.1), which is a stochastic
extension of conventional definition from [22, 17] of weak solutions for deterministic
case in (1.3).

Definition 2.3 (Random weak solution). A random field U : Ω ∋ ω 7→ U(x, t, ω),
i.e. a measurable mapping from (Ω,F) to C([0, T ],L2

loc(R
d)), is random weak so-

lution to the stochastic conservation law (2.1) on D = R
d if it is P-a.s. a weak
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solution of (1.3) on D = R
d, i.e. U satisfies the variational formulation for all test

functions ϕ ∈ C1
c(R

d × R+) with notation R+ = {t ∈ R : t ≥ 0} and P-a.e. ω ∈ Ω,
(2.2)
∫

Rd×R+

(

U ·ϕt +

d
∑

r=1

ArU · ∂

∂xi
ϕ

)

dx dt+

∫

Rd

U0 ·ϕ|t=0 dx =

∫

Rd×R+

S ·ϕ dx dt.

Next, we specify the notion of hyperbolicity for a general linear system of ran-
dom conservation laws (1.3).

Definition 2.4 (Hyperbolicity). Denote a convex combination of random matrices
Ar(x, ω) by

Pw : Rm × Ω → R
m × Ω, Pw(x, ω) =

d
∑

r=1

wrAr(x, ω), w ∈ S
d−1.

Consider the eigen-decompositions of all possible Pw(x, ω), i.e. for all w ∈ S
d−1,

(2.3)
Pw(x, ω) = Qw(x, ω)Λw(x, ω)Qw(x, ω)−1, Λw(x, ω) = diag(λw

1 , . . . , λw
m)(x, ω),

where Λw(x, ω) are the diagonal matrices containing the eigenvalues λw
1 , . . . , λw

m,
and Qw(x, ω) are the corresponding similarity transformation matrices containing
eigenvectors as columns. The random linear system of conservation laws (2.1) is
P-a.s. hyperbolic [47] if for all x ∈ R

d all eigenvalues λw
1 (x, ω), . . . , λw

m(x, ω) are
real P-a.s. and there exists K(ω) < ∞ such that

(2.4) sup
x∈D, w∈Sd−1

‖Qw(x, ω)−1‖‖Qw(x, ω)‖ ≤ K(ω), ∀P-a.e. ω ∈ Ω.

Next, we present the result from [47] on the well-posedness of (2.1).

Theorem 2.5. In the random linear system of balance laws (2.1) on D = R
d,

assume that the following holds for some k ∈ N ∪ {0,∞}:
(A1) (2.1) is hyperbolic with constant K(ω) < ∞ in (2.4) for P-a.e. ω ∈ Ω, and

(2.5) K̄k = ‖K(ω)‖Lk(Ω,R) < ∞,

(A2) there exist r0, rS ∈ N ∪ {0,∞} and rA ∈ N ∪ {∞} such that for both
p ∈ {2,∞},

(2.6)

U0 ∈ Lk(Ω,Wr0,p(Rd)),

S ∈ Lk(Ω,WrS,p(Rd)),

Ar ∈ L0(Ω,
(

CrA(Rd)
)m×m

),

(A3) each random field Ar, r = 1, . . . , d, is independent of U0 and S on (Ω,F ,P).

Then, for T < ∞, (2.1) admits a unique random weak solution

(2.7) U : Ω → C([0, T ],L2(Rd)), ω 7→ U(·, ·, ω), ∀ω ∈ Ω,

where U(·, ·, ω) is the solution to the deterministic system (1.3). Moreover, ∀t ∈
[0, T ],

(2.8) ‖U(·, t, ω)‖L2(Rd) ≤ ‖K(ω),U0(·, ω), S(·, ω), t‖L2(Rd), P-a.s.,



8 SIDDHARTHA MISHRA, CHRISTOPH SCHWAB, AND JONAS ŠUKYS

(2.9)
‖U‖Lk(Ω,C([0,T ],L2(Rd))) ≤ ‖K,U0,S, t‖Lk(Ω,L2(Rd)) = K̄k‖1,U0,S, t‖Lk(Ω,L2(Rd)),

with the notations (for arbitrary Banach space V )
(2.10)
‖K,U,S, t‖Lk(Ω,V ) := ‖‖K,U,S, t‖V ‖Lk(Ω,R), ‖K,U,S, t‖V := K(‖U‖V +|t|‖S‖V ).
Furthermore, the pathwise regularity of U is given by r̄ = min{r0, rS, rA}, leading
to

(2.11) U ∈ Lk(Ω, C([0, T ],Wr̄,p(Rd))), p ∈ {2,∞}.
For the proof we refer to [47]. This theorem ensures the existence of the statistical
k-th moments [27] of the random weak solution U, provided U0,S ∈ Lk(Ω,L2(Rd))
and K ∈ Lk(Ω).

2.3. Hyperbolicity of the random acoustic wave equation. Next, we briefly
investigate the hyperbolicity of the wave equation (1.1) as a random linear system
of conservation laws (2.1) in order to ensure that the hypothesis (2.5) in Theorem
2.5 holds. Furthermore, we derive a condition on the material coefficient c in order
to attain finite expected maximum wave propagation speeds, i.e. which ensure that
(3.11) holds. We analyze the structure of the matrices Ar in (2.1), which define
a strongly hyperbolic linear system of conservation laws under some conditions on
the statistical properties of the material coefficient c. For brevity of exposition, we
consider the one-dimensional case d = 1. Then, for each ω ∈ Ω and x ∈ D, there
exists an invertible matrix Q(x, ω),

Q(x, ω) =
1√
2

[

1√
c(x,ω)

− 1√
c(x,ω)

1 1

]

,

diagonalizing the matrix A(x, ω) defined in (1.4),

Q(x, ω)A1(x, ω)Q(x, ω)−1 =

[

−
√

c(x, ω) 0

0
√

c(x, ω)

]

.

The maximum wave speed λ(ω) is then given by

(2.12) λ(ω) = ‖
√

c(·, ω)‖C(D).

Since

‖Qx(ω)‖‖Q−1
x (ω)‖ = max{c 1

2 , c−
1
2 } ≤ c

1
2 + c−

1
2 ,

the uniform boundedness

(2.13) c, c−1 ∈ L∞(Ω, C(D))

ensures K̄∞ < ∞. However, assumption (2.13) is overly strict and can be further
relaxed. In particular, for 1≤k < ∞,

(2.14) c
1
2 , c−

1
2 ∈ Lk(Ω, C(D))

implies

Kk(ω) = ‖max{c 1
2 (·, ω), c− 1

2 (·, ω)}‖kC(D) ≤ ‖c(·, ω)‖
k
2

C(D) + ‖c−1(·, ω)‖
k
2

C(D).

Hence c
1
2 , c−

1
2 ∈ Lk(Ω, C(D)) is sufficient to ensure (A1) of Theorem 2.5:

(2.15) K̄k
k = E[Kk(ω)] ≤ ‖c(·, ω) 1

2 ‖kLk(Ω,C(D)) + ‖c− 1
2 (·, ω)‖kLk(Ω,C(D)) < ∞.
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Since the non-zero eigenvalues of Ar ∈ R
m×m are ±

√

c(x, ω), the assumption of
finite expected maximum wave speed λ̄ in (3.11) of the forthcoming subsection 3.1
holds, provided

√
c ∈ L1(Ω, C(D)),

(2.16) λ̄ := E[λ] = ‖√c‖L1(Ω,C(D)) < ∞, for
√
c ∈ L1(Ω, C(D)).

Finally, assumption (A2) in the Theorem 2.5 holds with rA = rc, provided

c ∈ L0(Ω, Crc(D)),

since all non-constant entries in matrices Ar are simply given by the (negated)
coefficient c(x, ω), see (1.4).

3. Multi-Level Monte Carlo Finite Volume method

Next, we aim to design an efficient numerical scheme to approximate solution sta-
tistics for the stochastic balance law (2.1). This entails discretizing spatio-temporal
space D× [0, T ] (for bounded domains D and finite time horizon T < ∞) as well as
the probability space (Ω,F ,P). In the first subsection, we begin with the Finite Vol-
ume Method (FVM) for the spatio-temporal space. Afterwards, we present Monte
Carlo (MC) and a more efficient Multi-Level Monte Carlo (MLMC) sampling type
algorithms for the discretization of the probability space and provide convergence
results.

3.1. Finite Difference and Finite Volume methods. For complicated coeffi-
cient matrices Ar (or material coefficients c in the case of the acoustic wave equa-
tion), exact analytic solutions to deterministic systems of linear balance laws (1.3)
are not available. For continuous U0 and S (then the solution U is also continuous),
conventional Finite Difference methods [17, 54] can be used where the numerical
scheme is obtained by approximating spatial and temporal derivatives in (1.3) using
upwinded difference quotients. For discontinuous U0 and S, (then the solution U

is also discontinuous) we present the Finite Volume Method [22].
Consider a bounded axiparallel domain D = I1 × · · · × Id ⊂ R

d and let T =
T 1 × · · · × T d denote a uniform axiparallel quadrilateral mesh of the domain D,
consisting of identical cells Cj = Cj1 × · · · × Cjd , jr = 1, . . . ,#T r.

Assume mesh widths are equal in each dimension, i.e. ∆x := |I1|
#T1

= · · · = |Id|
#Td

.

Define the approximations to cell averages of the solution U and source term S by

Uj(t) ≈
1

|Cj|

∫

Cj

U(x, t)dx, Sj ≈
1

|Cj|

∫

Cj

S(x)dx.

Then, a semi-discrete finite volume scheme [22] for approximating (1.3) is given by

(3.1) ∂tUj(t) = −
d
∑

r=1

1

∆x

(

Fj+ 1
2
er

− Fj− 1
2
er

)

− Sj,

where numerical fluxes Fr
· are defined by using (approximate) solutions of local

Riemann problems (in direction r) at each cell interface. High order accuracy is
achieved by using non-oscillatory TVD, ENO, WENO methods [16, 18]. At time
steps tn, approximations Un

T = UT (x, t
n) = Uj(t

n) for x ∈ Cj are obtained by SSP
Runge-Kutta methods, where the time step size ∆t is limited by the CFL condition
(with λm being eigenvalues from (2.3)),

(3.2) λmax
∆t

∆x
≤ 1

2
, λmax := max

j
max
m

∣

∣

∣
λm(xj, ω)

∣

∣

∣
.
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Fluxes on the boundary of the computational domain are computed using so-called
ghost cells [22], denoted (in the direction r) by Cj+er

for jr = #Tr and Cj−er
for

jr = 1, which are “outside” of the computational domain D. Periodic bound-
ary conditions can be implemented straight-forwardly by copying ghost cell values
accordingly, i.e. we set

(3.3) Uj+er
= Uj−(#Tr−1)er

, Uj−er
= Uj+(#Tr−1)er

.

In the case of the acoustic wave equation (1.2), perfectly reflecting boundary con-
ditions will also be used. There the acoustic pressure p and velocities u are set
according to

(3.4) pj+er
= pj, uj+er

= −uj; pj−er
= pj, uj−er

= −uj.

Ghost cell values for other remaining domain-dependent input data are set analo-
gously.

Before we proceed with the definition of the MC-FVM scheme, we assume that
an abstract FVM scheme (3.1) satisfies the following assumption.

Assumption 3.1 (FVM). We assume, that under CFL condition (3.2), the ap-
proximate FVM solution Un

T of an abstract FVM scheme (3.1) converges to the
unique weak solution U of the linear system of conservation laws (1.3). Further-
more, if boundary conditions do not introduce additional energy into the solution,
FVM approximation Un

T satisfies the energy inequality

(3.5) ‖UT (·, t)‖L2(D) ≤ K‖U0
T ,ST , t‖L2(D),

and the approximation error converges (as ∆x → 0) with rate s > 0, i.e., there
exists a constant Cs > 0 which is independent of ∆x = ∆x(T ) such that, as
∆x(T ) → 0, the following holds,

(3.6) ‖U(·, t)−UT (·, t)‖L2(D) ≤ Cs∆xstK‖U0,S, t‖Hs(D) .

Here, Hs(D) denotes the Hilbert space W s,2(D)m of s-times weakly differentiable
(equivalence classes of) vector functions with (component-wise) L2(D)-integrable
weak derivatives.

Assumption 3.1 is satisfied by many standard FVM (for small s) schemes with
periodic and reflective boundary conditions, we refer to [13, 14, 17, 22, 54] and
the references therein for further details. In particular, the convergence estimate
(3.6) is known to hold for first-order FVM schemes by results of Kusznetsov (see,
e.g. [10]) with s = 1/2. We also assume s = 1 for second order FVM schemes. In
general, for q-th order (formally) accurate schemes, full convergence order s = q
is achieved for sufficiently smooth solutions with r̄ ≥ q in (2.6), whereas irregular
solutions with shocks (r̄ = 0) converge with order s ≤ 1, equal to only half of the
formal order q, resulting in s = 1/2 or s = 1.

3.2. Monte Carlo Finite Volume method. For the discretization of the sto-
chastic space Ω, we will employ the sampling type methods. We are interested in
the computational estimation of the “mean field” or “ensemble average”, i.e. of
M1(U) = E[U]. To this end, we use the Monte Carlo Finite Volume method (MC-
FVM) to approximate E[U]. It is based on the straightforward idea of generating
independent identically distributed (i.i.d.) samples of the random input data

(3.7) I(ω) = {U0(ω),S(ω),A1(ω), . . . ,Ad(ω)},
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and then performing the FVM simulation for each such sample.

Definition 3.2 (MC-FVM Scheme). The Monte Carlo Finite Volume Method con-
sists of the following three main steps:

1. Sample: Given mesh T , we draw M i.i.d. input data samples IiT with
i = 1, 2, . . . ,M from the random input fields I(ω), which are directly ap-
proximated by piecewise constant functions as described in subsection 3.1.

2. Solve: For each approximated realization IiT of random input data I(ω),
the underlying balance law (1.3) is solved numerically by the Finite Volume
Method (3.1) on mesh T with mesh width ∆x = ∆x(T ). We denote the

solutions by U
i,n
T (x) = Ui

T (x, t
n).

3. Estimate Statistics: We estimate the expectation E[U] of the random
solution field U(·, t, ω) at time t = tn with the sample mean (average) of
the approximate solutions,

(3.8) E[U(·, tn, ω)] ≈ EM [Un
T ] = EM [Un

T (·)] :=
1

M

M
∑

i=1

U
i,n
T (·).

Higher statistical moments of U can be approximated analogously, cp. [27].

The following result from [47] addresses the convergence of MC-FVM as M → ∞
and ∆x → 0.

Theorem 3.3 (MC-FVM convergence). Consider a linear system of conservation
laws (2.1) and assume that the hypothesis of Theorem 2.5 is satisfied with k ≥ 2,
i.e. second moments of the random initial data U0, source S and K exist. Assume
further that we are given a FVM such that (3.2) holds and such that Assumption
3.1 is satisfied; in particular, assume that the deterministic FVM scheme converges
at rate s > 0 as in (3.6). Then, for time t = tn, the MC estimate EM [Un

T (·)](ω)
defined in (3.8) satisfies, for every M , the error bound

(3.9)
‖E[U(tn)]− EM [Un

T ](ω)‖L2(Ω,L2(D)) ≤ Cs∆xs‖K,U0,S, t
n‖L1(Ω,Hs(D))

+M− 1
2 ‖K,U0,S, t

n‖L2(Ω,L2(D)).

where constant Cs denotes the constant in the deterministic a-priori error bounds
(3.6) which is in particular independent of M and ∆x; the norms are as in (2.10).

To equilibrate statistical and spatio-temporal discretization errors in (3.9), we re-
quire the number of Monte Carlo samples to equal (asymptotically)

(3.10) M = O(∆x−2s).

Next, we are interested in the asymptotic behavior of the error (3.9) vs. the com-
putational work of all FVM solves required in (3.8). As emphasized in [47], since
coefficients Ar directly relate to the fastest wave speed λmax via the CFL condition
(3.2), λmax can strongly depend on the particular realizations of the random input
data Ii, for i = 1, . . . ,M . For the remaining sections, we assume that the expected
maximum wave speed λ̄ = E[λmax(ω)] is finite, i.e. we stipulate

(3.11) λ̄ = E[λmax(ω)] < ∞.

Under assumption (3.11), the expected computational work E [Work] for the MC-
FVM estimate (3.8) is likewise finite, and hence the resulting error vs. expected
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computational work E [Work] of the MC-FVM scheme (3.8) with the L2(Ω)-type
error bound (3.9) is given by

(3.12) ‖E[U(tn)]− EM [Un
T ](ω)‖L2(Ω,L2(D)) . E [Work]

− s
d+1+2s .

Notice, that the convergence rate s/(d+1+2s) of MC-FVM scheme is considerably
lower than the convergence rate s/(d+1) of the deterministic FVM scheme. Hence,
the MC-FVM is considerably more expensive than the standard FVM for a deter-
ministic conservation law. As an example, a first order scheme (s = 1/2) leads to a
convergence rate of 1/6 for the MC-FVM as compared to a convergence rate of 1/4
for the standard FVM for a deterministic conservation law. This slow convergence
entails high computational costs for MC type methods. In particular, quantifying
uncertainty with MC methods for systems of conservation laws in several space
dimensions becomes very costly.

3.3. Multi-Level Monte Carlo Finite Volume method. Given the slow con-
vergence of MC-FVM, the multi-level Monte Carlo finite volume method (MLMC-
FVM) was proposed in [47] and in related papers such as [27, 29, 28, 30]. The key
idea behind MLMC-FVM is to simultaneously draw MC samples on a hierarchy
of nested grids, as originally suggested by Mishra and Schwab [27] for the Finite
Volume Method. The key ingredient in the Multi-level Monte Carlo Finite Volume
(MLMC-FVM) scheme is simultaneous MC sampling on different levels of resolu-
tion of the FVM, with level dependent numbersMℓ of MC samples. The Multi Level
Monte Carlo Finite Volume algorithm consists of the following four main steps:

1. Hierarchy of space-time discretizations: Assume that {Tℓ}Lℓ=0 is a
family of nested triangulations of bounded Cartesian domain D,

{Tℓ}Lℓ=0 = {T 1
ℓ × · · · × T d

ℓ }Lℓ=0,

with the mesh widths (for simplicity of exposition, we assume that mesh
widths are equal in each dimension), given by

(3.13) ∆xℓ = ∆x(Tℓ) :=
|I1|
#T 1

ℓ

= · · · = |Id|
#T d

ℓ

= 2−ℓ∆x0, ℓ = 0, . . . , L,

where ∆x0 is the mesh width for the coarsest mesh resolution T0 and corre-
sponds to the lowest level ℓ = 0, and ∆xL is the mesh width for the finest
mesh resolution TL and corresponds to the finest level ℓ = L.

2. Sample: For each level of resolution ℓ = 0, . . . , L, we draw a level-dependent
number Mℓ of i.i.d. random input samples

IiTℓ
= {Ui

0,Tℓ
,Si

Tℓ
, (A1)

i
Tℓ
, . . . , (Ad)

i
Tℓ
}, i = 1, . . . ,Mℓ,

from the input random fields

I(ω) = {U0(ω),S(ω),A1, . . . ,Ad},
and directly approximate them by piecewise constant functions obtained
from cell averaging on mesh Tℓ of computational domain D, as described
in subsection 3.1.

3. Solve: For each resolution level ℓ = 0, . . . , L and for each realization of
the random input data IiTℓ

for i = 1, ...,Mℓ, the resulting deterministic
balance law (1.3) (for this particular realization) is solved numerically by the
Finite Volume Method (3.1) with mesh width ∆xℓ and the corresponding
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level-dependent and realization-dependent time step ∆tℓ given by the CFL
condition (3.2),

(3.14) λi
max

∆tℓ
∆xℓ

≤ 1

2
, ℓ = 0, . . . , L.

We denote the resulting ensemble of FVM solutions by U
i,n
Tℓ

, i = 1, . . . ,Mℓ.
4. Estimate solution statistics: Firstly, we observe that the telescoping

sum holds,

(3.15) E[UTL
] = E[UT0

] +
L
∑

ℓ=1

E[UTℓ
−UTℓ−1

].

The estimate of the expectation of the random solution field is given by
statistically estimating the exact mathematical expectations E[·] for each
term in the sum (3.15) using the Monte Carlo method with a level-dependent
number of samples Mℓ,

(3.16) EL[UTL
(·, tn)] := EM0

[Un
T0
] +

L
∑

ℓ=1

EMℓ
[Un

Tℓ
−Un

Tℓ−1
],

with EMℓ
being the MC-FVM estimator defined in (3.8) for the mesh level

Tℓ. Higher statistical moments of U can be approximated analogously, we
refer to [27].

The following result from [47] addresses the convergence of MLMC-FVM.

Theorem 3.4 (MLMC-FVM convergence). Consider linear system of conservation
laws (2.1) and assume that the hypotheses (A1) - (A3) of Theorem 2.5 are satisfied
with k ≥ 2, i.e. second moments of the random initial data U0, source S and K
exist. Assume further that we are given a FVM such that (3.2) holds and such
that Assumption 3.1 is satisfied; in particular, assume that the deterministic FVM
scheme converges at rate s > 0 as in (3.6). Then, for time t = tn, and for any
sequence {Mℓ}∞ℓ=0 of sample sizes at mesh level ℓ, the MLMC estimate EL[Un

T ](ω)
defined in (3.16) satisfies the following error bound,
(3.17)
∥

∥E[U(tn)]− EL[Un
TL

](ω)
∥

∥

L2(Ω,L2(D))
≤ C∆xs

L‖K,U0,S, t
n‖L1(Ω,Hs(D))

+ 2Cs

(

L
∑

ℓ=1

M
− 1

2

ℓ ∆xs
ℓ

)

‖K,U0,S, t
n‖L2(Ω,Hs(D))

+M
− 1

2

0 ‖K,U0,S, t
n‖L2(Ω,L2(D)),

where Cs > 0 is as in (3.6) and is independent of ℓ, Mℓ and ∆xℓ; norms are as in
(2.10).

The error estimate (3.17) provided in Theorem 3.4 is the key result required to
derive strategies for choosing the number of samples Mℓ for each level ℓ = 0, . . . , L
in the MLMC-FVM estimator (3.17). The principal issue in the design of MLMC-
FVM is the optimal choice of {Mℓ}∞ℓ=0 such that, for each L, an error (3.17) is
achieved with minimal total computational work for MLMC-FVM. We will use the
asymptotically optimized number of samples derived in [11, 38], i.e. such that the
sum over all error terms in (3.17) are asymptotically optimized with respect to the
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required computational work. We note that such “optimization” is understood in
terms of minimizing only the error bound in (3.17) and not the error directly; such
error bound, of course, is only valid asymptotically and can be rather conservative.
For each resolution level ℓ = 0, . . . , L, the asymptotically optimized number of
samples is given by

(3.18) Mℓ =
⌈

ML2
2
3
(s+d+1)(L−ℓ)

⌉

, ℓ = 0, . . . , L,

where ⌈·⌉ denotes the rounding up to integer values for number of samples and
ML ≥ 1 denotes the number of samples on the finest level and is treated as a
parameter of the MLMC-FVM algorithm. Notice that (3.18) implies that the largest
number of MC samples is required on the coarsest mesh level ℓ = 0, whereas only
a small fixed number of MC samples is needed on the finest discretization levels.
Choosing sample numbers Mℓ in (3.17) according to (3.18), leads to the following
error vs. work estimate for (3.16),
(3.19)

∥

∥E[U(tn)]− EL[Un
TL

]
∥

∥

L2(Ω,L2(D))
.











Work−s/(d+1) s < (d+ 1)/2,

Work−1/2 log (Work)
1/2

s = (d+ 1)/2,

Work−1/2 s > (d+ 1)/2.

The error estimates in (3.19) show that the MLMC-FVM is superior to the MC-

FVM as the asymptotic computational cost for MLMC-FVM scales as Work−s/(d+1);

compare to Work−s/(d+1+2s) for the MC-FVM scheme as in (3.12). Furthermore,
if s < (d + 1)/2 then the error vs. work estimate (3.19) is of the same order as
the error vs. work of the deterministic finite volume scheme, which implies that
the total amount of work to achieve a certain error level ε, for instance, in ap-
proximation of the random entropy solution’s mean field, will (asymptotically) be
equal to that of approximating the entropy solution of one deterministic balance
law at the same level L of resolution. In fact, it was shown in [44] that for the same
amount of computational work the stochastic simulation is at most

√
2ML times

less accurate compared to its deterministic version, where the free parameter ML

is usually chosen to be small, i.e. O(1)−O(10).
We also remark, that the remaining parameters such as the number of samples

on the finest mesh resolution ML could be estimated a-priori based on several (sta-
tistical) assumptions on the (unknown) solution, refer to [44]. Several a-posteriori
techniques were also proposed in [33, 38] to empirically estimate the required num-
ber of samples Mℓ on each level as well as the optimal coarsest mesh resolution
∆x0.

4. Log-normally distributed random material coefficients

For the stochastic modeling of the uncertain material coefficient c, it is customary
to assume that the Karhunen-Loève (KL) expansion [41, 47, 21] of c is available:

(4.1) log c(x, ω) = log c̄(x) +

∞
∑

m=1

√

λmΨm(x)Ym(ω).

Here, {λm}∞m=1 are the eigenvalues satisfying {
√
λm}∞m=1 ∈ ℓ1(N), Ψm are the

eigenfunctions satisfying ‖Ψm‖L2(D) = 1, c̄ ∈ L2(D) is the deterministic part,
and Ym are independent random variables with zero mean and finite variance. In
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most applications of practical interest, many terms are needed in the Karhunen-
Loève expansion to approximate the random material coefficient well. The repeated
sampling of a large number of Karhunen-Loève terms is very costly, especially on the
coarsest mesh levels of MLMC-FVM method, where the largest number of samples
is drawn.

Hence, we propose an alternative method which allows the generation of ran-
dom material coefficient samples with almost optimal (up to logarithmic terms)
computational complexity on all MLMC mesh levels, including the coarsest ones.

4.1. Spectral generator using Fast Fourier Transform. In the following, the
spectral generator to compute log-normally distributed random field realizations
based on [34, 7, 35, 42] is described. We will assume that the distribution of
the random material coefficient is completely determined by the positive definite
covariance operator of the random field c(x, ω). Furthermore, we assume that the
covariance is stationary, i.e. that the covariance of the (random) values at two
given points x,y ∈ D in a periodic domain D depends only on the (component-
wise) distance vector τ = |y − x| between these two points,

(4.2) Cov(log c(x, ω), log c(y, ω)) := k(τ ), τ ∈ D = [0, p1)× · · · × [0, pd),

where k : Rd → R+ is called an anisotropic covariance kernel.
For a given mesh T , define a multi-dimensional array of cell mid-points x(i1,...,id),

(4.3) X ∈ R
#T 1 × · · · × R

#T d

, Xi1,...,id = x(i1,...,id), ir = 1, . . . ,#T r.

We are interested in approximating the values of one realization of the random
material coefficient c(x, ω) at the mesh discretization points x(i1,...,id). We define
an analogous multi-dimensional array for these values:

(4.4) c ∈ R
#T 1 × · · · × R

#T d

, ci1,...,id = c(x(i1,...,id), ω), ir = 1, . . . ,#T r.

Define the covariance matrix, corresponding to the discrete version of the symmetric
positive definite covariance operator, to be
(4.5)

C ∈
(

R
#T 1 × · · · × R

#T d
)2

, Ci1,...,id;j1,...,jd = Cov(log ci1,...,id ; log cj1,...,jd).

By [43, section 4.1], the covariance matrix C is symmetric positive definite, hence
the following decomposition of C exists,

(4.6) L ∈
(

R
#T 1 × · · · × R

#T d
)2

, such that C = LL⊤.

For instance, one choice for a matrix L could be the square root matrix of the
matrix C; as C is symmetric positive definite, L would also be symmetric and
hence L = L⊤ would hold. Another possible choice for a matrix L could be the
Cholesky factor L of the corresponding Cholesky decomposition C = LL⊤.

Using the decomposition (4.6), a realization of the random material coefficient
c can be obtained by the following steps:

(1) generate a vector g with i.i.d. Gaussian (standard normal) random variables
as its components

(4.7) g ∈ R
#T 1 × · · · × R

#T d

, gi1,...,id ∼ N (0, 1),

(2) given vector g, compute a realization of the correlated coefficient c by

(4.8) c = exp(Lg),
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where the exponential function of the vector is understood component-wise.
Then, the logarithm of the realizations of c, generated using the above method-

ology, have the desired symmetric positive definite covariance matrix C,

Cov(log c) = E[log c log c⊤] = E[Lg(Lg)⊤] = LE[gg⊤]L⊤ = LL⊤ = C.

Notice that the covariance C is much larger than the required material coefficient
array c, hence, without further improvements, such an algorithm would be compu-
tationally extremely expensive. However, as the covariance matrix is determined
by a stationary covariance kernel k(τ ) on a periodic domain D, see (4.2), the re-
sulting covariance matrix C is circulant. Hence, the “matrix-vector” multiplication
in (4.8) is actually a multi-dimensional “vector-vector” convolution [34, 7, 35, 42]
which can be performed much faster using the Fast Fourier Transform (FFT). The
algorithm has three main steps:

Step 1: d-dimensional Fourier transforms of the evaluated kernel

(4.9) k ∈ R
#T 1 × · · · × R

#T d

, ki1,...,id = k(|x(i1,...,id) − x(1,...,1)|),

and a random Gaussian vector g with i.i.d. entries are needed:

(4.10) k̂ = Fk ∈ R
#T 1 × · · · × R

#T d

, ĝ = Fg ∈ C
#T 1 × · · · × C

#T d

.

Since k is real and periodic, k̂ is also real and periodic (in each dimension). More-
over, the Fourier basis diagonalizes the circulant positive semi-definite matrix C,

hence k̂ is the vector of the eigenvalues of C, i.e. all entries in k̂ are non-negative.
Step 2: Computing the square root matrix L as in (4.6) (with L = L⊤) corre-

sponds to taking the element-wise square root l̂ of k̂:

(4.11) l̂ ∈ R
#T 1 × · · · × R

#T d

, l̂i1,...,id =

√

k̂i1,...,id .

Step 3: “matrix-vector” multiplication in (4.8) is equivalent to multiplying l̂

and ĝ element-wise and performing d-dimensional inverse Fourier transform F−1:

(4.12) c = exp(F−1(̂lĝ)) ∈ R
#T 1 × · · · × R

#T d

,

where the vector-vector multiplication and the exponential are applied element-
wise. For the implementation of this generator, d-dimensional Fourier transforms
F and F−1 were computed using the parallel version of the Fast Fourier Transform
library FFTW [57].

We remark that k̂ and l̂ in steps 1 and 2 need to be computed only once for
a given mesh T , whereas ĝ in step 1 and the resulting sample c in step 3 need
to be computed for each realization of random coefficient c. We would also like
to note that none of the mentioned Fourier transforms are available in complex

arithmetic i.e. C → C. In particular, since k is real and even, the transform k 7→ k̂

is R → R with k̂ even; the transform g 7→ ĝ is R → C with ĝ even; the final

transform l̂ĝ 7→ F−1(̂lĝ) is C → R, since both l̂ and ĝ are even, resulting in even

l̂ĝ. Performing such transforms with a standard C → C FFT is inefficient (though
possible). In the numerical experiments reported ahead, the appropriate (hardware)
optimized R → R, R → C and C → R FFT transforms from the FFTW library [57]
were used instead.
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4.2. Covariance upscaling. The MLMC-FVM algorithm requires MC estimates
of the differences Uℓ−Uℓ−1, i.e. solutions obtained on two consecutive mesh levels,

(4.13) EMℓ
[Uℓ −Uℓ−1] .

In (4.13), the same realization of the random material coefficient c(·, ω) is required
on different mesh resolutions, ℓ and ℓ − 1. The required coupling of the MLMC
methods with the generation of log-normal fields using spectral FFT method is not
straight-forward.

One idea was recently introduced in [34], where the coupling is achieved by draw-
ing a realization cℓ ∈ R

#Tℓ of c(, ω) on the finer mesh Tℓ, and then computing the
averages of cℓ on the coarser mesh to obtain the upscaled realization c̄ℓ−1 ∈ R

#Tℓ−1 .
One must, however, ensure that the distribution of such “averaged” discrete ran-
dom fields c̄ℓ−1(ω) coincides with the distribution of the “non-averaged” discrete
random fields cℓ−1(ω). In order to achieve this and at the same time maintain
the efficiency of the method, the covariance Cℓ ∈ (R#Tℓ)2 from level ℓ also needs
to be upscaled to the coarser mesh resolution ℓ − 1. In the context of stationary
covariance (as described in subsection 4.1), with given kernel, only the kernel needs
to be upscaled from kℓ ∈ R

#Tℓ to k̄ℓ−1 ∈ R
#Tℓ−1 [34]. However, in order to ob-

tain the upscaled covariance kernel k̄ℓ (and hence also C̄ℓ) for any arbitrary level
0 ≤ ℓ < L, a recursive computation needs to be performed starting with the covari-
ance kernel kL on the finest mesh resolution [34]. Such overhead in computational
work would cause the MLMC algorithm to be very inefficient and would invalidate
the error vs. computational work bound (3.19). Moreover, since the domain de-
composition method is not used for samples on the coarsest mesh resolutions, the
amount of memory available might be significantly smaller than is required for the
computation of kL.

Here we present a different coupling strategy, which directly uses the spectrum
k of the kernel k. Let ḡℓ−1(ω) be defined as the scaled multi-dimensional average
of the vector gℓ(ω),

(4.14) ḡℓ−1
i1,...,id

(ω) =
1√
2d

∑

jr∈{0,1}

gℓ
2i1+j1,...,2id+jd

(ω), ir = 1, . . . ,#T r
ℓ−1.

The upscaled realization c̄ℓ−1(ω) of cℓ is defined according to (4.12), using the
averaged ḡℓ−1,

(4.15) c̄ℓ−1(ω) = exp(F−1 l̂ℓ−1F ḡℓ−1).

Since the (scaled) average of Gaussian i.i.d. random variables is again the same
Gaussian random variable, the upscaled coefficient c̄ℓ−1(ω) is log-Gaussian with the
same covariance kernel k. Note, that in order to have a standard normal distribu-

tion for ḡℓ−1, the averages are multiplied by an additional scaling factor of
√
2d.

Moreover, the Fourier transform F ḡℓ−1 of the averaged gℓ will be an approximation
of Fgℓ, since the averaging (4.14) corresponds to the low-pass filtering of the vector
gℓ.

In comparison to the upscaling strategy presented in [34], the above method
operates only on the mesh resolution that is one level finer, and not on every level
with finer mesh resolution.
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4.3. Anisotropic exponential covariance kernel for periodic boundary con-

ditions. Given variance σ2 > 0 and correlation lengths η1, . . . , ηd > 0, the expo-
nential covariance kernel is given by

(4.16) k(τ ) = σ2 exp

(

−
√

τ
2
1

η21
+ · · ·+ τ

2
d

η2d

)

, τ ∈ D.

Since the domain D = [0, p1) × · · · × [0, pd) is assumed to be periodic, the
resulting kernel k(τ ) is not smooth at hyper-planes τ r = pr/2, r = 1, . . . , d. The
exponential covariance kernel k(τ (x)) with p1 = 2 and η1 = 1

2 is shown in Figure 1.
It was observed in [34], that for long correlation lengths ηr, the resulting kernel in
(4.16) defines a covariance matrix C that is not positive semi-definite [34]. Hence,
following [43, section 4.2.3], we define a periodic exponential covariance kernel kP (τ )
by superimposing kernel (4.16) and a smooth periodic sine function,
(4.17)

kP (τ ) = σ2 exp

(

−
√

(p1 sin(π/p1τ 1))2

η21
+ · · ·+ (pd sin(π/pdτ d))2

η2d

)

, τ ∈ D.

The derivation of kP (τ ) in (4.17) (as a generalization of derivation in [43, section
4.2.3]) is as follows. Define an auxiliary kernel k̄(τ ), obtained by tensorizing the
kernel k(τ ) in (4.16), resulting in a kernel defined on the 2d-dimensional space
D×D,

(4.18) k̄(τ̄ ) = σ2 exp

(

−
√

τ̄
2
1

η21
+ · · ·+ τ̄

2
2d

η22d

)

, τ̄ ∈ D×D,

where the correlation lengths η1, . . . , ηd are extended to the indices 1, . . . , 2d by

ηd+1 = η1, . . . , η2d = ηd.

As the kernel (τ ) in (4.16) defines a positive definite covariance matrix, so does
the tensorized kernel k̄(τ̄ ), but only on a tensorized domain D × D. Then, the
kernel kP (τ ) in (4.17) is obtained by restricting k̄(τ̄ ) to the d-dimensional sphere
in D×D, parametrized as follows,

(4.19) x̄r =
1

2
pr ·

{

cos(2π/prxr) if r = 1, . . . , d,

sin(2π/pr−dxr−d) if r = d, . . . , 2d.
x ∈ D, x̄ ∈ D×D.

Using the following trigonometrical identity for each component of τ = x−x′ ∈ D,

1

4

(

cos(2xj)− cos(2x′
j)
)2

+
1

4

(

sin(2xj)− sin(2x′
j)
)2

= sin2(xj − x′
j), j = 1, . . . d,

the parametrization (4.19) of the tensorized kernel (4.18) gives the periodic kernel
(4.17). Since k̄(τ̄ ) defines a positive definite covariance matrix, so does its restric-
tion kP (τ ). Notice that the periodic exponential covariance kernel kP (τ ) depends
explicitly on the domain geometry (periods p1, . . . , pd) and is smooth with mini-
mum at the center of D. An example of kP (τ (x)) for d = 1 with period p1 = 2 and
correlation length η1 = 1

2 is shown in Figure 1.
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Figure 1. Conventional (4.16) and periodic (4.17) covariance ker-
nels k(τ (x)) and kP (τ (x)) for d = 1 with period p1 = 2 and corre-
lation length η1 = 1

2 . The latter is smooth at x = p1/2, the former
is not.

5. Parallel implementation and adaptive run-time load balancing

The MLMC-FVM algorithm (3.16) is quite simple to implement. We remark
that step 2 requires a (pseudo) random number generator. In step 3, any standard
(high-order) finite volume scheme can be used. Hence, existing code for FVM
can be used and there is no need to rewrite FVM code. Furthermore, the only
(data) interaction between different samples is in step 4 when ensemble averages
are computed. Thus, the MC-FVM is non-intrusive as well as easily parallelizable.

Our parallel implementation of MLMC-FVM scheme is called ALSVID-UQ [1,
46, 45]. For the detailed descriptions of how each step of the MLMC-FVM al-
gorithm(3.16) is implemented in ALSVID-UQ, including robust pseudo random
number generators (and their consistent seeding using bijective pairing functions),
stable and efficient statistical estimators, parallelization paradigms and load balanc-
ing, we refer to the technical papers [46, 45]. For the wave equation with complex
log-normally distributed coefficients, efficient spectral FFT generation techniques
described in section 4, together with hierarchical bias-free upsacaling, were im-
plemented using the FFTW library [57] for the parallelization of all required FFT
transforms.

We would also like to emphasize a newly developed adaptive load balancing tech-
nique from [45], which was specifically designed to distribute very heterogeneous (in
terms of computational work required for FVM simulations) realization-dependent
MC samples. Such samples of very uneven complexity were observed in the nu-
merical experiments (e.g. Figures 6, 10, and 15) of the forthcoming section 6. The
adaptive load balancing [45] is a generalization of the greedy algorithm for workers
with heterogeneous speeds of execution, arising due to heterogeneous domain decom-
position configurations used in the parallelization of the FVM solvers. The main
idea of the algorithm based on sorting all MC samples from all levels according to
the estimated required computational run-time, and then recursively assigning the
largest available sample to some (parallel) worker such that the maximal run-time
of all workers (including the assigned sample) is minimized. The adaptive load bal-
ancing was shown to be a 2-approximation, i.e. the maximum run-time among all
workers is at most 2 times larger than the optimal run-time [45]. Strong and weak
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parallel scaling were achieved up to 40 000 cores on on Cray XE6 (see [58]) with
1496 AMD Interlagos 2 x 16-core 64-bit CPUs (2.1 GHz), 32 GB DDR3 memory
per node, 10.4 GB/s Gemini 3D torus interconnect with a theoretical peak perfor-
mance of 402 TFlops. We present the scaling results from [45] in Figure 2, where
labels “MLMC” and “MLMC2” indicate that first and second order accurate FVM
solvers were used.
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Figure 2. Strong scaling of the adaptive load balancing for the
parallel MLMC-FVM algorithm up to 40 000 cores. The efficiency
is nearly optimal, hence we expect that our parallelization algo-
rithm will scale linearly for a much larger number of cores, espe-
cially for more computationally challenging problems.

We expect that our parallelization algorithm will scale linearly for a much larger
number of cores. For the extensive description of the scaling tests and analysis of
the obtained results we refer to [45].

6. Acoustic anisotropic wave propagation in random heterogeneous

layered medium

Before proceeding to the numerical experiments, we describe the notation, termi-
nology, simulation parameter abbreviations and the methods for error computation.

6.1. Notation, terminology and simulation parameters. Recalling that the
discretization of the random conservation law involves discretizing in space-time
with a standard Finite Volume Method and the discretizing the probability space
with a statistical sampling method, we tabulate various combinations of methods
that are to be tested:

MC Monte Carlo with 1st order (s = 1
2 ) FVM M = O(∆x−1),

MC2 Monte Carlo with 2nd order (s = 1) FVM M = O(∆x−2),
MLMC multi-level MC with 1st order (s = 1

2 ) FVM Mℓ = ML2
(L−ℓ),

MLMC2 multi-level MC with 2nd order (s = 1) FVM Mℓ = ML4
(L−ℓ).

Furthermore, we need the following parameters, which will be specified for every
simulation in the form of a table below the corresponding figure:

Parameter Description

L number of hierarchical mesh levels in the MLMC method
ML number of samples at the finest mesh level
grid size number of cells in X, Y and Z directions
CFL CFL number based on the fastest wave
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cores total number of CPU cores used in the simulation
runtime serial runs: clock-time; parallel runs: wall-time; hrs:min:sec
efficiency MPI efficiency, as defined in [45]

6.2. Root mean square error estimation in MLMC-FVM. As we will present
numerical convergence analysis results, we need to specify the error estimator. In
the MC-FVM and MLMC-FVM approximations (3.8) and (3.16) of the expectation
E[U], the estimators EM [Un

T ] and EL[Un
TL

] are constructed using the random draws
of the solution U, and hence the estimators themselves are random fields, even
though they are approximating deterministic statistical moments. For this reason,
the discretization errors in (3.9) and (3.17) are random quantities as well. For
our computational error convergence analysis we therefore compute a statistical
estimator by averaging estimated discretization errors from several independent
runs. The aforementioned errors of MC-FVM and MLMC-FVM estimators will
be computed by approximating the corresponding L2(Ω,L2(D)) norms with MC
quadrature.

Let Eref[U(x, t)] denote the reference solution, i.e. either the exact solution
E[U(x, t)] (when available) or a very accurate approximation (such as on the finest
resolution) of it, and

Ek[U
n
T (x)], k = 1, . . . ,K,

be a sequence of independent approximations of E[U(x, tn)] obtained by running
MC-FVM or MLMC-FVM solver K times, corresponding to K realizations of the
stochastic space. Then the L2(Ω,L2(D))-based relative error estimator is defined
as in [27],

(6.1) ǫ =

√

√

√

√

K
∑

k=1

ǫ2k/K,

where:

(6.2) ǫk =
‖Eref[U(·, tn)]− Ek[U

n
T (·)]‖L2(D)

‖Eref[U(·, tn)]‖L2(D)
× 100%.

Definitions (6.1) - (6.2) are generalized to any E-valued statistical estimators on U

by replacing the expectation estimators Eref[·] and Ek[·] with the required estima-
tors. The extensive analysis for the appropriate choice of K is conducted in [27];
unless indicated otherwise, we choose K = 30 which was found to be sufficient in
our numerical experiments in removing statistical fluctuations in the convergence
plots.

Equipped with the above notation and concepts, we proceed to numerical exper-
iments.

6.3. Two dimensional case. The physical domain is D = [0, 2] × [0, 2]. We
assume a stationary periodic covariance kernel (4.17) with variance σ2 = 0.2 and
correlation lengths η1 = 2.0, η2 = 0.1 in (4.17). The initial data is chosen to be
deterministic and is set to zero, i.e. p0(x, ω) ≡ 0,u0(x, ω) ≡ 0. Identical periodic
(in time) acoustic pressure pulses are injected into two locations of the domain
through the deterministic source term f ,

(6.3) f(x, t, ω) =

{

Ap

(

exp
(

−‖x−xc
1‖

2σ

)

+ exp
(

−‖x−xc
2‖

2σ

))

if {3t} < 0.02,

0 else.
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where Ap = 5000, xc
1 = (0.5, 2.0), xc

2 = (1.5, 2.0), σ2 = 0.04 and {·} denotes the
fractional part. Perfectly reflecting boundary conditions (3.4) are assumed at the
top and the bottom, and periodic boundary conditions (3.3) are assumed at the
sides of the domain.

Results of a deterministic FVM simulation up to t = 1.0 are presented in Fig.
3, where the approximated sample (realization) of the random material coefficient
c(x, ω) and the acoustic pressure p(x, t, ω) at different time instances are plot-
ted. The computation is performed using the HLL two wave Rusanov solver and
a first order accurate piecewise constant reconstruction on the mesh resolution of
4096×4096 cells, and took 7 minutes on 256 cores. Notice that since the correlation
length is long in x-dimension and short in y-dimension, the resulting realization of
random material coefficient c(x, ω) exhibits layered structures as in many subsur-
face formations of interest: many layers with very heterogeneous wave propagation
speeds are visible. The structure of the acoustic pressure wave propagation consists
of close-to-circular wave fronts interfering in the center of the domain and getting
distorted by the heterogeneity of the underlying physical domain.
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Figure 3. Top left plot: one sample of the coefficient c(x, y, ω)
with variance σ2 = 0.2 and correlation lengths η1 = 2.0, η2 = 0.1.
Remaining plots: time snapshots of the approximated acoustic
pressure p(x, y, ω). Since the correlation length is long in x-
dimension and short in y-dimension, the resulting random material
coefficient c(x, y, ω) exhibits layered structures: notice many layers
with very heterogeneous wave propagation speeds.
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Results of the stochastic MLMC-FVM simulation up to t = 1.0 are presented in
Figures 4 - 5, where the approximated mean and variance of the random material
coefficient c(x, ω) and the acoustic pressure p(x, t, ω) at different time instances are
provided. The computation is performed using an HLL two wave Rusanov solver
and second order accurate piecewise linear WENO reconstruction. The number of
levels is set to 9, i.e. L = 8, and the mesh resolution on the finest mesh level is
8192× 8192 cells. The number of MC samples at the finest resolution is 8. We also
note that the number of uncertainty sources in this simulation is very large: the
material coefficient c(x, ω) was sampled on the resolution of 128 × 128, resulting
in 16 384 sources of uncertainty in the coefficients. The simulation took almost 5
hours (wall-clock) on 8176 cores (simulated on CSCS production cluster Rosa [58]).
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Figure 4. MLMC-FVM estimates for mean and variance of the
coefficient c(x, y, ω) with variance σ2 = 0.2 and correlation lengths
η1 = 2.0, η2 = 0.1. Stationary covariance kernel resulted in homo-
geneous moments of the coefficient.

As expected, the mean and the variance of the material coefficient c(x, ω) in
Figure 4 are homogeneous within the entire domain, since a stationary covariance
kernel is used. As the statistical moments of c(x, ω) are known, the results in
Figure 4 are also used as a “self-consistency test” of the MLMC-FVM, including
the spectral FFT-based generation of the samples of the log-normally distributed
material coefficient c(x, ω) and the bias-free upscaling presented in section 4.

The structure of the propagation of the mean acoustic pressure waves shown
in Figure 5 resembles the mean behavior of the circular interfering waves seen in
the deterministic simulation of one sample, given in the previous Figure 3. The
highest variance is observed at the top of the domain, i.e. at the regions where the
interference of the waves is strongest.

Finally, in Figure 6, the distributions of random maximal wave speeds λmax(ω)
from (3.2). across all levels are depicted, where asymptotically optimized numbers
of samples Mℓ as in (3.18) were used. Due to the large spread of approximately
1 to 3.5, the simulation was executed using the adaptive load balancing technique
introduced in [45].

Next, we use the high-resolution MLMC-FVM simulations from Figure 5 as the
reference solution Uref in (6.2) and investigate the convergence of the error vs.
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Figure 5. MLMC-FVM estimates for mean (left) and variance
(right) of time snapshots of the approximated acoustic pressure
p(x, y, ω). The structure of the mean acoustic pressure is symmet-
ric and consists of smooth circular wave fronts, i.e. it resembles the
mean behavior of the (distorted) circular interfering waves seen in
the deterministic simulation in Figure 3. Largest variances are
observed at the top of the domain.

computational work in Figure 7 and Figure 8. The errors in the mean and variance
fields converge at the expected rates. At comparable numerical resolution and
accuracy, we observe the MLMC(2) to be approximately one order of magnitude
faster than the MC(2) method.
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Figure 6. Distributions of random maximal wave speeds of sam-
ples for all resolution levels in the MLMC-FVM simulation re-
ported in Figures 4 - 5. The spread is approximately from 1 to 3.5,
leading to very heterogeneous computational loads for samples at
the same mesh resolution level.
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Figure 7. Error convergence of the mean of the acoustic pressure
p(x, y, ω). The asymptotically optimized number of samples (3.18)
provided slightly higher accuracy for the same computational work.
Both MLMC2 methods are approximately two orders of magnitude
faster than the MC2 method.

6.4. Two dimensional case with discontinuous layers. Next, in order to
demonstrate the utility of the MLMC-FVM methods for very complex random
material coefficients, we consider a setup analogous to subsection 6.3, but we also
assume that the random material coefficient c is given by independent log-normal
distributions within four layers D1, D2, D3, D4 partitioning the domain D,

D1 = [0, 2]× [0, 0.5], D2 = [0, 2]× [0.5, 1],

D3 = [0, 2]× [1, 1.5], D4 = [0, 2]× [1.5, 2].
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Figure 8. Error convergence of the variance of the acoustic pres-
sure p(x, y, ω). The asymptotically optimized number of samples
(3.18) provided slightly higher accuracy for the same computa-
tional work. Both MLMC(2) methods are approximately one order
of magnitude faster than the MC(2) method.

In each of the layers D1, . . . , D4, we assume that the material coefficient is log-
normally distributed with stationary periodic covariance kernels (4.17) and layer-
dependent variances σ2 and correlation lengths η1, η2, given by

(6.4) σ2 =

{

0.2 in D1 and D3,

0.4 in D2 and D4,
(η1, η2) =

{

(1.0, 0.5) in D1 and D3,

(2.0, 0.1) in D2 and D4.

The initial data is chosen to be deterministic and set to zero, i.e. p0(x, ω) ≡
0,u0(x, ω) ≡ 0. As in the previous experiment, identical periodic (in time) acoustic
pressure pulses are injected into two locations of the domain through the deter-
ministic source term f given in (6.3). Perfectly reflecting boundary conditions are
assumed at the top and the bottom, and periodic boundary conditions are assumed
at the sides of the domain. Results of the deterministic FVM simulation at t = 1.0
are presented in Fig. 9, where the layers D1, . . . D4 are depicted in bottom to top
order. The computation is performed using the HLL two wave Rusanov solver and
a second order accurate piecewise linear WENO reconstruction on the mesh reso-
lution of 2048× 2048 cells, and took 15 minutes on 64 cores. Notice that in layers
D2 and D4, the correlation length is long in x-dimension and short in y-dimension,
resulting in even finer layered structures. On the other hand, in layers D1 and D3,
the correlation lengths are similar in both directions, and hence no evident layered
structures are present in the resulting random material coefficient. At the interfaces
of layers D1, D2, D3, D4, each realization as well as the mean and variance of the
random material coefficient c is discontinuous; this is expected as the distributions
of c within each layer were assumed to be independent.

Results of the stochastic MLMC-FVM simulation up to t = 1.0 are presented in
Figures 11 - 12, where the approximated mean and variance of the random material
coefficient c(x, ω) and the acoustic pressure p(x, t, ω) at different time instances are
provided. The computation is performed using the HLL two wave Rusanov solver
and second order accurate piecewise linear WENO reconstruction. The number of
levels is set to 5, i.e. L = 4, and the mesh resolution on the finest mesh level is
2048 × 2048 cells. The number of MC samples at the finest resolution is 16. The
number of uncertainty sources is 16 384, i.e. the same as in the previous simulation.
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Figure 9. Top left: one sample of the coefficient c(x, y, ω) with
layer-dependent variances and correlation lengths as specified in
(6.4). Remaining plots: time snapshots of the approximated
acoustic pressure p(x, y, ω). Interchanging layers of isotropic and
anisotropic material coefficient regions c(x, y, ω) are present; at
the interfaces, each realization of the random material coefficient
c(x, y, ω) is discontinuous in y-direction.

The simulation took almost 1 hour (wall-clock) on 992 cores (simulated on CSCS
production cluster Rosa [58]).

The distributions of random maximal wave speeds across all levels are depicted
in Figure 10. The spread is again large, approximately from 1.5 to 5.0, hence,
adaptive load balancing was used, together with asymptotically optimized numbers
of samples Mℓ as in (3.18).

The mean and the variance of the material coefficient c(x, ω) in Figure 4 consist of
interchanging regions, discontinuous in y-direction; such heterogeneity in statistical
moments is due to different covariance kernels in (6.4).

The structure of the propagation of the mean acoustic pressure waves in Figure 12
again resembles the mean behavior of the circular interfering wave seen in the
deterministic simulation of one sample, depicted in Figure 9.

6.5. Three dimensional case. The physical domain is D = [0, 2]× [0, 2]× [0, 2].
We assume a stationary periodic covariance kernel (4.17) with variance σ2 = 0.2 and
correlation lengths η1 = 2.0, η2 = 0.1, η3 = 2.0 in (4.17). The initial data is chosen
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1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.510-1

100

101

102

103

co
un

t

level 0

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.010-1

100

101

102

103

co
un

t

level 1

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.510-1

100

101

102

co
un

t

level 2

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.50
2
4
6
8

10
12
14
16
18

co
un

t

level 3

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.80.0
0.5
1.0
1.5
2.0
2.5
3.0

co
un

t

level 4

Figure 10. Distributions of random maximal wave speeds of sam-
ples for all resolution levels in the MLMC-FVM simulation re-
ported in Figures 11 - 12. The spread is approximately from 1.5 to
5.0, leading to very heterogeneous computational loads for samples
at the same mesh resolution level.
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Figure 11. MLMC-FVM estimates for mean and variance of the
coefficient c(x, y, ω) with variances and correlation lengths as spec-
ified in (6.4). Alternating regions, discontinuous in y-direction, of
mean and variance of the material coefficient c(x, y, ω) are due to
different covariance kernels in (6.4).

to be deterministic and set to zero, i.e. p0(x, ω) ≡ 0,u0(x, ω) ≡ 0. Analogously,
identical periodic (in time) acoustic pressure pulses are injected into two locations
of the domain through the deterministic source term f ,

(6.5) f(x, t, ω) =

{

Ap

(

exp
(

−‖x−xc
1‖

2σ

)

+ exp
(

−‖x−xc
2‖

2σ

))

if {3t} < 0.02,

0 else.

where Ap = 5000, xc
1 = (0.5, 2.0), xc

2 = (1.5, 2.0), σ = 0.04 and {·} denotes the
fractional part. Perfectly reflecting boundary conditions (3.4) are assumed at the
top and the bottom, and the periodic boundary conditions (3.3) are assumed at
the sides of the domain.

Results of the deterministic FVM simulation up to t = 1.0 are presented in
Fig. 13, where the approximated sample of the random material coefficient c(x, ω)
and the acoustic pressure p(x, t, ω) at different time instances are provided. The
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Figure 12. MLMC-FVM estimates for the mean (left) and the
variance (right) of time snapshots of the approximated acoustic
pressure p(x, y, ω). The structure of the mean acoustic pressure
is symmetric and consists of smooth circular wave fronts, i.e. it
resembles the mean behavior of the (distorted) circular interfering
waves seen in the deterministic simulation in Figure 9. Largest
variances are observed at the top of the domain.

computation is performed using the HLL two wave Rusanov solver and a second
order accurate piecewise linear WENO reconstruction on the mesh resolution of
1024 × 1024 × 1024 cells, and took almost 3 hours on 4096 cores. Analogously to
the two-dimensional experiment in Sect. 6.3, the long correlation length in xz-plane
combined with short correlation length in y-dimension results in a random material
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coefficient exhibiting layered structures. For a slice taken parallel to the xz-plane,
the “entire” layer is obtained. The structure of acoustic pressure wave propagation
consists of close-to-circular wave fronts interfering in the center of the domain and
getting distorted by the heterogeneity of the underlying physical domain.

L ML grid size CFL cores runtime efficiency
0 1 1024x1024x1024 0.475 4096 2:45:36 99.9%

Figure 13. Top left: one sample of the coefficient c(x, ω) with
σ2 = 0.2 and η1 = η3 = 2.0, η2 = 0.1. Remaining plots: time
snapshots of the approximated acoustic pressure p(x, ω). Due to
anisotropic correlation lengths, coefficient c(x, ω) exhibits layered
structures, distorting the circular wave fronts of the acoustic pres-
sure.

Results of the stochastic MLMC-FVM simulation up to t = 1.0 are presented
in Figure 14, where the approximated mean and variance of the random material
coefficient c(x, ω) and the acoustic pressure p(x, t, ω) at different time instances are
provided. The computation is performed using the HLL two wave Rusanov solver
and a second order accurate piecewise linear WENO reconstruction. The number
of levels is set to 7, i.e. L = 6, and the mesh resolution on the finest mesh level
is 1024× 1024× 1024 cells. The number of MC samples at the finest resolution is
8. We also note that the number of uncertainty sources in this simulation is even
larger than for the 2-D case: the material coefficient c(x, ω) was sampled on the
resolution of 128× 128× 128, resulting in more than 2 million (2 097 152) sources



MLMC FOR ACOUSTIC WAVE IN RANDOM MEDIUM 31

of uncertainty in coefficients. The simulation took almost 3 hours (wall-clock) on
43680 cores (simulated on CSCS production cluster Rosa [58]).

L ML grid size CFL cores runtime efficiency
6 8 1024x1024x1024 0.475 43680 2:48:50 98.1%

Figure 14. MLMC-FVM estimates for mean (left) and variance
(right) of time snapshots of the approximated acoustic pressure
p(x, y, ω). The structure of the mean acoustic pressure is symmet-
ric and consists of smooth circular wave fronts, i.e. it resembles the
mean behavior of the (distorted) circular interfering waves seen in
the deterministic simulation in Figure 13. Largest variances are
again observed at the top of the domain.

The distributions of random maximal wave speeds across all levels are depicted
in Figure 15. The spread is again large, approximately from 1 to 3, hence, adaptive
load balancing was used, together with optimal numbers of samples Mℓ as in (3.18).
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Figure 15. Distributions of random maximal wave speeds of sam-
ples for all resolution levels in the MLMC-FVM simulation re-
ported in Figure 14. The spread is approximately from 1 to 3,
leading to very heterogeneous computational loads for samples at
the same mesh resolution level.

7. Summary and conclusions

We presented a Multi-Level Monte-Carlo Finite-Volume discretization of linear,
second order hyperbolic partial differential equations for the efficient computation
of solution statistics for wave propagation in complex, hetergeneous random media.
Specifically, we addressed the case where the acoustic properties of the hetero-
geneous medium are time-independent, possibly anisotropic, and are given by a
lognormal gaussian random field.

Propagation of waves is simulated by explicit timestepping on a hierarchy of uni-
form, block-structured spatial meshes, and is subject to a CFL stability constraint.

An asymptotic convergence analysis of the total error, consisting of spatial- and
temporal discretization error and Monte-Carlo sampling error was given, covering
first and second order standard discretizations. Our analysis furnishes judicious
choices of algorithmic steering parameters which formed the basis of and imple-
mentation on large-scale, massively parallel hardware.

In the random medium, the wave propagation speed and there also the CFL
stability constraint is sample-dependent. This necessitates a novel, probabilistic
complexity and load balancing analysis which is developed here. Due to the strongly
varying, sample dependent propagation speeds, load balancing across samples be-
come a nontrivial issue, even for solution samples on the same spatial discretization
level. A novel, adaptive load-balancing scheme developed recently by one of the
present authors is used to achieve near-linear scaling of the method up to several
10K processors.

A key challenge in designing efficient MLMC algorithms is the multi-scale na-
ture of the heterogeneous, log-gaussian material properties of the random medium.
A novel, bias-free multi-resolution representation of random spatially inhomoge-
neous coefficients was developed to ensure uniform algorithmic efficiency across all
discretization levels. It is based on a novel multi-resolution FFT spectral sample
generator with level-coupled random number generation for statistical sampling of
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stochastic log-normally distributed material coefficients. In large scale numerical
experiments, it is shown to maintain the efficiency of the FVM solver on coarse
resolutions, which are the main building blocks for the MLMC-FVM algorithm.
Numerical experiments of the acoustic wave equation with anisotropic, heteroge-
neous log-normally distributed material coefficients in two and three dimensions
were performed, illustrating the efficiency of the MLMC-FVM method. The the-
oretical results and the MLMC-FVM methodology are developed for an abstract
hyperbolic systems of linear balance laws, so that more complex generalizations of
the acoustic wave equation can be treated with the presently proposed methods.
Examples include the already mentioned elastic anisotropic wave equation with
highly heterogeneous and direction-dependent wave propagation speeds, linearized
shallow water and Euler equations.

MLMC-FVM can deal with a very large number of sources of uncertainty. For
instance, the simulation of acoustic wave propagation with uncertain material co-
efficient involved 2 million sources of uncertainty. To the best of our knowledge,
no other method (particularly deterministic methods such as quasi Monte Carlo,
stochastic Galerkin, stochastic collocation, PGD, ANOVA, or stochastic FVM) is
able to efficiently handle this many sources of uncertainty (i.e., high “stochastic di-
mensions”), in particular with solutions of low regularity and possibly non-smooth
dependence on random input fields.

In the present work, we verified the strong scaling of the proposed adaptive load
balancing for the MLMC-FVM method up to 40 000 cores and for more compu-
tationally challenging problems we expect it to scale linearly up to and beyond 1
million cores. However, in such large (Exa)-scale simulations on emerging massively
parallel computing platforms, processor failures at run-time are inevitable and oc-
cur with increasing frequency as the number of processors increases, as reported
eg. in [4]. Due to natural fault tolerance in MLMC-FVM due to independent sam-
pling, a fault tolerant multi-level Monte Carlo (FT-MLMC) method was proposed in
[36, 37, 39]. FT-MLMC does not rely on checkpoint/restart or on re-computation:
all samples unaffected by failures are used in the computation of the final result,
whereas all remaining samples affected by failures are either completely ignored or
the unaffected parts in the domain decomposition parallelization of such samples
are also incorporated to the final result [39]. The FT-MLMC was implemented in
[37] and was shown to perform in agreement with theoretical analysis in the pres-
ence of simulated, compound Poisson distributed, random hard failures of compute
cores.

We finally indicate that the presently developed multi-level methodology for
the efficient computation of solution statistics is naturally suited in the context of
multi-level extensions of MCMC methods for Bayesian inversion, as proposed and
analyzed in [20, 21].

We also remark that, for hyperbolic, second order problems without damping
or other smoothing effects, propagation of singularities occurs which precludes the
use of polynomial chaos based stochastic Galerkin or collocation schemes.

Given these advantages, the Multi-level Monte Carlo Finite Volume Method,
with carefully chosen number of hierarchical mesh levels and efficient implementa-
tion on massively parallel hardware architectures, appears to be a powerful general
purpose technique for quantifying uncertainty in solutions of complex flow problems
governed by hyperbolic systems of linear balance laws with uncertain inputs.
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