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Abstract

In this paper we present a novel method for the numerical solution of linear transport equations,
which is based on ridgelets. Such equations arise for instance in radiative transfer or in phase contrast
imaging. Due to the fact that ridgelet systems are well adapted to the structure of linear transport
operators, it can be shown that our scheme operates in optimal complexity, even if line singularities are
present in the solution.

The key to this is showing that the system matrix (with diagonal preconditioning) is uniformly well-
conditioned and compressible – the proof for the latter represents the main part of the paper. We
conclude with some numerical experiments about N -term approximations and how they are recovered
by the solver, as well as localisation of singularities in the ridgelet frame.
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1 Introduction

In the past two decades, a wide range of multiscale systems have been introduced with lasting impact
in many different fields, starting with wavelets [Dau92] and continuing with ridgelets [Can98], curvelets
[CD05b, CD05a, CDDY06], shearlets [KLLW05, KL12], contourlets [DV05] etc. – the latter three of which
fall into the framework of so-called “parabolic molecules” [GK14], while all of the mentioned systems are
encompassed by the even broader framework of α-molecules [GKKS14].

These systems share the property that they are very well-adapted to representing certain classes of
functions optimally (in the sense of the decay rate of the best N -term approximation) – functions with point
singularities for wavelets, line singularities for ridgelets and curved singularities for parabolic molecules.
Since these classes make up the fundamental phenomenological features of most images in an extremely
diverse set of applications, it is perhaps not surprising, that many of the above-mentioned systems were
originally investigated in view of their properties regarding image processing.

With a certain time-lag, it is becoming apparent that these systems are also very suitable for solving
partial differential equations – again, wavelets were the first in this regard, for example leading to provably
optimal solvers for elliptic equations [CDD01]. For differential equations with strong directional features –
such as transport equations – it is intuitively clear that optimal solvers will need to take these features into
account, however, the development of solvers based on directional systems is still in its infancy.

Following recent results [Gro11], that ridgelets permit the construction of simple diagonal preconditioners
for linear transport equations which arise in collocation-type discretization methods for kinetic transport
equations (such as radiative transport), we intend this paper (and its companion [EGO14]) to be a first step
towards establishing directional representation systems as a useful tool for solving PDEs.

Perhaps the main reason for the success of wavelets in PDE solvers (which, as a long term goal, we would
like to emulate) is that they do not only represent typical solutions efficiently, but – crucially – that they
simultaneously sparsify (in a suitable sense) the resulting system matrices corresponding to the differential
operator and achieve uniformly well-conditioned matrices with simple preconditioning.

The main focus of the present paper is to demonstrate that the same properties hold for ridgelets applied
to the numerical discretisation of linear transport equations, and using the machinery of [CDD01] to show
that this leads to solvers with optimal complexity.

1.1 Radiative Transport Equation

The motivation for this work is the numerical solution of the following model equation, described by the
radiative transport equation (RTE),

Au := ~s · ∇u+ κu = f +

∫

Sd−1

σu d~s′. (1.1)

It is a steady state continuity equation describing the conservation of radiative intensity in an absorbing,
emitting and scattering medium, see e.g. [Mod13]. We will, however, not treat the scattering operator in this
paper, which can be incorporated through a variety of methods, not the least of which – the source iteration
– we implemented in [EGO14]. Let us assume that the following quantities are known at all locations
~x ∈ Ω ⊂ Rd and for all directions ~s ∈ Sd−1 :=

{
~s ∈ Rd : ‖~s‖2 = 1

}
:

• absorption coefficient κ(~x,~s) ≥ κ0 > 0

• source term f(~x,~s) ∈ R

Then, the above equation allows us to find the unknown radiative intensity u as a function Ω× Sd−1 → R.
Although the RTE looks simple, standard numerical techniques for solving it do not perform well for a

number of reasons, mainly:

• The transport term s · ∇u leads to ill-conditioned systems of equations.

• Singularities in the input data may remain in the solution.
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• With the dimension of the domain of u being 3 in 2-dimensional physical space and 5 in 3-dimensional
space, the problem is fairly high-dimensional.

These issues make the accurate numerical solution of the RTE very costly or even impossible due to memory
and compute power limitations of today’s hardware.

1.2 Ridgelets

Our proposed approach to solving (1.1), while addressing the above-mentioned problems, is to discretise the
equation in physical space using ridgelets. At a glance, a ridgelet is a function which is located along a
line, orthogonal to which it oscillates heavily and along which it varies only little (see Figure 1.1a for an
example). The idea is to build a basis (or rather, a frame) out of such ridgelets with varying locations,
directions and widths, with which we can represent a function whose features are located along curves by
a linear combination of relatively few of them. Solutions of the RTE typically fall into this category of
functions that can be efficiently represented by such a system, as the variations along the transport direction
are smoothed out while the ones orthogonal to it are not – in particular, singularities in the input data may
remain.

The present work provides a first step towards a ridgelet-based construction of an optimally convergent
numerical solver for (1.1). More precisely we consider the RTE for fixed directions ~s and show that our
proposed scheme delivers optimal convergence rates for linear transport equations

~s · ∇u(~x) + κ(~x)u(~x) = f(~x). (1.2)

Since a number of numerical methods for the solution of (1.1) heavily relies on efficient solvers of the above
linear transport equation, the spatial discretization scheme developed and analyzed in the present paper can
be directly utilized for the numerical approximation of solutions to the RTE – as is done in [EGO14].

Before we describe our approach in more detail we would like to pause and comment on its novel properties
and limitations.

The most important property, and the main result of this paper is the fact that our proposed algorithm
is able to approximate solutions u of (1.2) in optimal complexity. In this regard our results are very strong:
complexity here is measured in terms of arithmetic operations to be carried out by a processor and the solution
is even allowed to possess singularities along lines. Moreover our result hold uniformly in ~s, meaning that
they are independent of the transport direction. This property is of essential importance for solving the full
RTE.

Even though the PDE (1.2) is of admittedly simple form with several efficient methods to solve it (cf.
[EG04]) we are not aware of any method with such strong convergence results as is the case for our proposed
scheme. For instance our method converges exponentially for solutions u which are piecewise smooth with a
line singularity (see Theorem 6.2) and this result holds uniformly for all directions ~s. Such a result is far from
true for conventional (eg. Finite-Element-based) discretization schemes where the expected convergence rate

would be of order N− 1
2 instead, with N being the number of arithmetic operations.

We consider the present paper as a first step in a larger programme of developing ridgelet-based solvers
for the RTE. Therefore, in the following paragraphs we outline some limitations of the results as well as
some promising directions for future work, opened up by our results.

The convergence results are confined to linear transport equations (1.2) and our analysis assumes that ~x
belongs to the full space Rd. The latter fact poses no problem if for instance the source term f is compactly
supported but in many applications one needs to restrict ~x to a finite domain D ⊂ Rd and impose inflow
boundary conditions. The efficient incorporation of boundary conditions will require the construction of
ridgelet frames on finite domains which is the subject of future work (to be more precise, incorporation of
inflow boundary conditions is possible with the code developed in [EGO14] but a rigorous analysis is still
lacking). With such a construction at hand the theoretical analysis carried out in this paper would essentially
go through also for finite domains.

With regard to the fact that the model equation (1.2) addressed in this paper is far simpler than the
full radiative transport equation we would like to mention that the paper [EGO14] combines a ridgelet
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(a) Physical space (green denotes 0) (b) Fourier space (blue denotes 0)

Figure 1.1: An illustration of a ridgelet in the two relevant spaces

solver in space with a sparse collocation method to solve the full RTE efficiently. There, a key feature
of the use of ridgelets is that collocation in angle leads to uniformly well-conditioned linear systems to be
solved, independent of the spatial resolution – a key property for efficient parallelisation. It is possible to
go further by combining the spatial ridgelet discretisation as developed in the present paper with a wavelet
discretisation on the sphere by a tensor product construction to develop an adaptive numerical algorithm
for the full RTE. Again, this is the subject of future work.

1.3 Outline

We begin the paper with a brief investigation of the well-posedness of the main equation in section 2.
In section 3, we introduce the framework of the discretisation, review how the discretised system can be
solved algorithmically, and discuss which properties have to be satisfied to achieve optimal complexity – see
Theorem 3.11.

The subsequent section 4 recalls the ridgelet construction and how it forms a frame for the appropriate
spaces, as well as the corresponding preconditioner, leading to the stability result Theorem 4.4.

The core of the paper is in section 5, where we prove compressibility of the system matrix corresponding
to the model problem (1.2) – see Theorem 5.4. Of the necessary properties for optimal complexity mentioned
above, this is the key tool to allow approximate linear-time matrix-vector multiplication. Some necessary
but less interesting technical details of the proof are outsourced into the appendix.

In the penultimate section 6, we bring together the separate threads to arrive at the result that – in fact
– ridgelets do achieve the desired optimal complexity (Corollary 6.1), and additionally, also sparsify typical
solutions of such transport equations in the sense of best N -term approximations (Theorem 6.2).

The final section 7 reports on a proof-of-concept implementation and corresponding numerical experi-
ments.
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1.4 Notation

We let BX(x, r) := {x′ ∈ X : distX(x, x′) < r} be the open ball in the metric space X. Occasionally we
omit the space if it is clear from the context. To distinguish the Euclidian norm from the other norms, we
denote it by |~x|. The inner product on Rd is simply denoted by ~x · ~x′, all other inner products are denoted
by 〈·, ·〉, where the first argument is antilinear and the second is linear (which is closer to the interpretation
as a functional (see e.g. Bra-ket notation) and has several advantages, in our opinion).

The Fourier transform we use is

f̂(~ξ) :=
[
F(f)

]
(~ξ) :=

∫

Rd

f(~x)e−2πi~x·~ξ d~x,

where we will mostly omit the square brackets for improved legibility if the second term has to be used. In
order to limit the amount of constants we have to carry, we define the following relation,

A(y) . B(y) :⇐⇒ ∃ c > 0 : A(y) ≤ cB(y),

where the constant has to be independent of y. We try to explicitly state each constant at least once, before
swallowing it into the .-sign. Additionally, A ∼ B denotes the case that both A . B and B . A hold.

We abbreviate the minimum and maximum of two quantites (if clear from context which two) by y< :=
min(y, y′) and y> := max(y, y′), respectively.

2 Well-Posedness

Starting point is the differential operator

A : H~s(Rd) ∋ u 7→ ~s · ∇u(~x) + κ(~x)u(~x) ∈ L2(Rd)

with fixed ~s ∈ Sd−1 and a function κ ∈ L∞(Rd) that satisfies κ(~x) ≥ γ > 0, ∀~x ∈ Rd. The space H~s is
defined as follows.

Definition 2.1. Let ~s ∈ Sd−1, then we define the anisotropic Sobolev space

Hk+~s(Rd) :=
{
f ∈ L2(Rd) : (~s · ∇)f ∈ Hk(Rd)

}
,

where Hk(Rd) is the usual Sobolev space. It is equipped with the norm

‖f‖2Hk+~s(Rd) := ‖f‖2Hk(Rd) + ‖(~s · ∇)f‖2Hk(Rd).

We set H~s := H0+~s. These spaces are more easily characterised on the Fourier side,

Hk+~s(Rd) :=
{
f̂ ∈ L2(Rd) :

〈
~s ·~ξ

〉〈
~ξ
〉k
f̂(x̂, ŷ) ∈ L2(Rd)

}

with norm
∥∥f̂

∥∥
Hk+~s(Rd)

:=
∥∥〈~s ·~ξ

〉〈
~ξ
〉k
f̂
∥∥
L2(Rd)

.

To make the operators involved positive definite, we have to restrict ourselves to solving the normal
equation A∗Au = A∗f ∈ L2(Rd), which we do by minimising the L2-residual,

u0 = argmin
v∈H~s

‖A∗Av −A∗f‖L2 . (2.1)

Theorem 2.2. The problem of finding u ∈ H~s such that Au = f ∈ L2(Rd) is well-posed. In addition, for
u ∈ H~s, the following norm-equivalence holds

‖Au‖L2 ∼ ‖u‖H~s . (2.2)
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Before we come to the proof of Theorem 2.2 we introduce some notation. Let R~s be an orthogonal matrix
which maps ~s to ~e1 = (1, 0, . . .)⊤, and let R−1

~s = R⊤
~s be its inverse. This rotation is not unique for d > 3 (see

also Remark 4.6), however, an arbitrary but fixed choice suffices for this section. We define the respective
pullbacks for f ∈ L2(Rd) by

ρ~sf(~x) := f(R−1
~s ~x), ρ−1

~s f(~x) := f(R~s~x),

thus ρ~sf(~e1) = f(~s), ρ−1
~s f(~s) = f(~e1) – if f is continuous. These pullbacks is also well-defined for L2(Rd)-

functions, as long as we don’t evaluate at a single value – since we always integrate in the following, this
presents no problem.

We will use these transformations to restrict ourselves to dealing with just the derivative in the first
component x1, as the following lemma shows.

Lemma 2.3. For u ∈ H~s(Rd),

~s · ∇u = ρ−1
~s

d

dx1
(ρ~su)(~x). (2.3)

Proof. Our notation for the Jacobian is

dg(~x) =

(
∂gi
∂xj

(~x)

)

i=1,...,m
j=1,...,n

for g : Rn → Rm,

whereby d
d~s g(~x) =

(
dg(~x)

)
~s, and the chain rule is written as d(g ◦ h)(~x) = dg(h(~x))dh(~x) for h : Rℓ → Rn.

If m = 1, the vector is usually written upright, of course, i.e. ∇g = (dg(~x))⊤. Thus,

d

dx1
(ρ~su)(~x) =

(
d(u ◦R−1

~s )(~x)
)
~e1 = du(R−1

~s ~x)R−1
~s ~e1︸ ︷︷ ︸
=~s

= ~s · ∇u(R−1
~s ~x) = ρ~s(s · ∇u(~x)).

Applying ρ−1
~s yields the result.

Remark 2.4. An immediate consequence of Lemma 2.3 is

u ∈ H~s(Rd) ⇐⇒ ρ~su ∈ H~e1(Rd).

Proof of Theorem 2.2. This proof is a simple adaptation of the proof in [GS11]. By the previous lemma we
immediately see that

Au = f ⇐⇒ ρ~sAu = ρ~sf ⇐⇒ d

dx1
(ρ~su) + ρ~sκ ρ~su = ρ~sf. (2.4)

Using variation of constants, this can be solved explicitly for arbitrary f ∈ L2(Rd) in the following way. We
let ~x′ := (x2, . . . , xd)

⊤ ∈ Rd−1 be the vector of the d− 1 lower components of ~x =
(
x1

~x′

)
and compute

y(x1, ~x
′) := e−K(x1,~x

′)

(∫ x1

0

ρ~sf(t, ~x
′)eK(t,~x′) dt+ C

)
, where K(t, ~x′) =

∫ t

0

ρ~sκ(r,~x
′) dr.

Note that since κ ≥ γ > 0, K is a strictly increasing function of x1 (with slope at least γ), in particular
K(t, ~x′)−K(x1, ~x

′) ≤ γ(t− x1) for t ≤ x1.
In general, y will not be in L2(Rd) – something we clearly need. As a necessary requirement, it must

tend to zero for large negative x1, which – considering the exponential growth of the first factor – means
that the second factor must tend to zero, thus determining the constant C;

y(x1, ~x
′)

x1→−∞−−−−−→ 0, =⇒ C =

∫ 0

−∞
ρ~sf(t, ~x

′)eK(t,~x′) dt.
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For arbitrary g ∈ L2(Rd) we compute

∣∣〈y, g〉L2

∣∣ =
∣∣∣∣
∫

Rd

g(~x)

∫ x1

−∞
ρ~sf(t, ~x

′)eK(t,~x′)−K(x1,~x
′) dt d~x

∣∣∣∣ ≤
∫

Rd

∫ x1

−∞
|g(~x)||ρ~sf(t, ~x′)|eK(t,~x′)−K(x1,~x

′) dt d~x

≤
∫

Rd

∫ x1

−∞
|g(~x)||ρ~sf(t, ~x′)|eγ(t−x1) dt d~x =

∫

Rd

∫ 0

−∞
|g(~x)||ρ~sf(x1 + r,~x′)|eγr dr d~x

(∗)
=

∫ 0

−∞

∫

Rd

|g(~x)||ρ~sf(x1 + r,~x′)|eγr d~x dr
(∗∗)
≤ ‖g‖L2‖ρ~sf‖L2

∫ 0

−∞
eγr dr =

1

γ
‖g‖L2‖f‖L2 ,

where for (∗) we used Fubini’s theorem, while (∗∗) makes use of the Cauchy–Schwarz inequality, as well as
the fact that translating the argument of a function f ∈ L2(Rd) by a fixed vector (in this case (r, 0, . . .)⊤)
preserves the norm. By the Riesz representation theorem, we see ‖y‖L2 ≤ 1

γ ‖f‖L2 , and in particular that

y ∈ H~s, since differentiability is obvious from the construction. Setting u := ρ−1
~s y, (2.4) shows that we have

found a solution of Au = f for arbitrary f ∈ L2(Rd), which is what we wanted to prove.
To see (2.2), we consider the norm of the derivative

∥∥∥∥
d

dx1
ρ~su

∥∥∥∥
L2

= ‖ρ~sf − ρ~sκ ρ~su‖L2 ≤ ‖f‖L2 + ‖κ‖L∞‖u‖L2 . ‖f‖L2 ,

where the last inequality is due to ‖u‖L2 = ‖y‖L2 ≤ 1
γ ‖f‖L2 . Consequently,

‖ρ~su‖2H~e1 = ‖ρ~su‖2L2 +

∥∥∥∥
d

dx1
ρ~su

∥∥∥∥
2

L2

. ‖f‖2L2 = ‖ρ~sf‖2L2

(2.4)
=

∫

Rd

∣∣∣ d

dx1
ρ~su(~x) + ρ~sκ(~x) ρ~su(~x)

∣∣∣
2

d~x, (2.5)

and putting everything together (as well as substituting twice), we arrive at

‖u‖2H~s =

∫

Rd

∣∣~s · ∇u(~x)
∣∣2 +

∣∣u(~x)
∣∣2 d~x (2.3)

=

∫

Rd

∣∣∣ρ−1
~s

d

dx1
(ρ~su)(~x)

∣∣∣
2

+
∣∣u(~x)

∣∣2 d~x

=

∫

Rd

(∣∣∣ d

dx1
(ρ~su)(~x)

∣∣∣
2

+
∣∣ρ~su(~x)

∣∣2
)∣∣detR−1

~s

∣∣
︸ ︷︷ ︸

=1

d~x
(2.5)

.

∫

Rd

∣∣∣ d

dx1
(ρ~su)(~x) + ρ~sκ(~x) ρ~su(~x)

∣∣∣
2

d~x

=

∫

Rd

∣∣∣ρ−1
~s

d

dx1
(ρ~s u)(~x) + κ(~x)u(~x)

∣∣∣
2∣∣detR~s

∣∣ d~x =

∫

Rd

∣∣~s · ∇u(~x) + κ(~x)u(~x)
∣∣2 d~x = ‖Au‖2L2 .

The second inequality necessary for (2.2) is immediate,

‖Au‖L2 = ‖~s · ∇u+ κu‖L2 ≤ ‖~s · ∇u‖L2 + ‖κ‖L∞‖u‖L2 . ‖u‖H~s ,

and thus we have shown the equivalence of the norms, ‖Au‖L2 ∼ ‖u‖H~s , which finishes the proof.

Corollary 2.5. For every ℓ ∈
(
H~s

)′
– the dual of H~s – there exists a unique u0 ∈ H~s which solves (2.1).

Moreover, the solution is characterized by the variational equation

a(v, u0) = ℓ(v) for all v ∈ H~s, (2.6)

where we put
a(v, u) := 〈Av,Au〉L2 .

In particular, well-definedness holds for

ℓf (v) := 〈Av, f〉L2 with f ∈ L2(Rd). (2.7)

7



Proof. The first statement is a direct consequence of Theorem 2.2 (yielding continuity and coercivity of a
in terms of ‖·‖H~s) and the Lax-Milgram lemma. Equation (2.6) is simply a reformulation as a linear least
squares problem. Finally, well-definedness for (2.7) holds, since ℓ as defined in (2.7) is trivially continuous,
as can be seen from the Cauchy-Schwarz inequality.

Corollary 2.5 shows that, using L2-regularization, we may interpret the operator A∗A as a bounded and
boundedly invertible operator A∗A : H~s →

(
H~s

)′
.

3 Discretisation

In our paper we aim to solve (2.1) via solving a discretization of the linear system (2.6). Several ingredients
are needed to render this approach efficient:

(i) Uniform well-conditionedness of the resulting infinite discrete linear system

(ii) Fast approximate matrix-vector multiplication for the discrete operator matrix

(iii) Efficient approximation of typical solutions

There exists several results which essentially state that, whenever (i), (ii) and (iii) are satisfied, then the
linear system (2.6) can be solved in optimal computational complexity [CDD01, Ste04, DFR07]. We will
formalize what is precisely meant by properties (i)–(iii) later on, but first we need to introduce some further
notation.

3.1 Gelfand Frames

Following [DFR07], we will use the concept of a Gelfand frame to discretize (2.6). Our starting point is a
bounded and boundedly invertible operator

F : H → H′, (3.1)

for some Hilbert space H, inducing a symmetric and coercive bilinear form,

a(u, v) = 〈Fu, v〉H′×H, a(v, v) ∼ ‖v‖2H,

where 〈·, ·〉H′×H is the duality pairing of H′ and H. The aim is to provide an efficient discretization of this
operator.

To do this we first consider discrete systems Φ = (ϕλ)λ∈Λ which provide a stable decomposition and
reconstruction procedure, so-called frames:

Definition 3.1. Let Λ be a discrete set and H a Hilbert space. A system Φ = (ϕλ)λ∈Λ with ϕλ ∈ H for all
λ ∈ Λ is called a frame if there exist constants 0 < cΦ ≤ CΦ <∞ such that

cΦ‖f‖2H ≤
∑

λ∈Λ

∣∣〈ϕλ, f〉H
∣∣2 ≤ CΦ‖f‖2H.

If cΦ = CΦ one calls Φ a tight frame; if, additionally cΦ = 1, one speaks of a Parseval frame.

For a frame Φ for H we also need to define the frame analysis operator

G :

{ H → ℓ2(Λ)
f 7→ 〈Φ, f〉H :=

(
〈ϕλ, f〉H

)
λ∈Λ

,

and its dual the frame reconstruction operator

G∗ :

{
ℓ2(Λ) → H

c 7→ Φc :=
∑

λ∈Λ cλϕλ.
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The definition of a frame implies that the operator

SΦ : H → H, f 7→ G∗Gf

is symmetric, bounded and boundedly invertible. The canonical dual frame of Φ is defined as Φ̃ := S−1
Φ Φ ⊆ H.

Additionally, we need the notion of a Gelfand triple:

Definition 3.2. Let H be a Hilbert space with dual H′. If we have

H ⊆ L2(Ω) ⊆ H′

withH a Hilbert space such that all inclusions above are continuous and dense , then the triplet (H, L2(Ω),H′)
is called a Gelfand triple.

Remark 3.3. A canonical example for a Gelfand triple is induced by the Sobolev space H = H1
0 (Ω) for

some domain Ω ⊆ Rd. Of more interest to our purpose is the case

H = H~s(Rd),

which also induces a Gelfand triple.
The concept of Gelfand triples is actually much more general and allows for B ⊆ H ⊆ B′ where B is a

Banach space and H a Hilbert space (with the same requirement on the embeddings). However, since we
need a Hilbert space for the results of [DFR07] in relation to (3.1) anyway, we omit this.

We call a frame Φ = (ϕλ)λ∈Λ for H a Gelfand frame if Φ ⊆ H, and there exists a Gelfand triple
(Hd, ℓ

2(Λ),H′
d) of sequence spaces such that the operators

G∗
Φ :

{
Hd → H
c 7→ Φc

and GΦ̃ :

{ H → Hd

f 7→
〈
Φ̃, f

〉
H′×H =

〈
Φ̃, f

〉
L2

are bounded. By duality, the operators

GΦ :

{ H′ → H′
d

f 7→
〈
Φ, f

〉
H′×H

and G∗
Φ̃
:

{ H′
d → H′

c 7→ Φ̃c

are also bounded. In addition, suppose that there exists an isomorphism DH : Hd → ℓ2(Λ) such that its
ℓ2(Λ)–adjoint D∗

H : ℓ2(Λ) → H′
d is also an isomorphism.

Now assume that we want to solve the operator equation

Fu = f (3.2)

where f ∈ H′ and F given above in (3.1). Using a Gelfand frame Φ we can discretize (3.2) to yield the
discrete system

Fu = f , (3.3)

with
F = (D∗

H)−1GΦFG
∗
ΦD

−1
H and f = (D∗

H)−1GΦf.

We have the following result which states that the discrete version (3.3) yields a uniformly well-conditioned
infinite linear system.

Lemma 3.4 ([DFR07, Lemma 4.1]). The operator F : ℓ2(Λ) → ℓ2(Λ) is bounded and boundedly invertible
on its range ran(F) = ran

(
(D∗

H)−1GΦ

)
. Furthermore, ker(F) = ker(G∗

ΦD
−1
H ).
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3.2 Numerical Solution of the Discrete System

In the previous subsection we have reformulated the operator equation (3.2) in terms of a discrete linear
system

Fu = f , (3.4)

with F and f given as above (in particular, this means that f ∈ ran(F) and that F is positive definite). If
we were able to compute with infinite vectors, at this point we could simply use a standard iterative solver
such as a damped Richardson iteration

u(j+1) = u(j) − α
(
Fu(j) − f

)
, u(0) = 0. (3.5)

Due to the well-conditionedness of the matrix F ensured by Lemma 3.4 and the fact that the iterates stay
in ran(F) in each step, it is easy to show that for appropriate damping α the sequence u(j) converges
geometrically to the sought solution u in the ℓ2(Λ)-norm, i.e.

∥∥u− u(j)
∥∥
ℓ2(Λ)

. ρj

for some ρ < 1, depending on the spectral properties of the operator F.
In view of a practical realization of the above scheme, two fundamental issues arise:

(A) We only have finite computing capabilities at our disposal, and therefore all operations in (3.5) can only
be carried out approximatively

(B) Due to the approximate computation of the iteration (3.5), we might fall out of ran(F) during iteration.
A consequence is that an error in ker(F) might not be reduced in subsequent iterations.

In the remainder of this section we discuss how these two issues can be dealt with, without compromising
numerical accuracy. We start with (A) which is by now classical for wavelet discretizations of elliptic PDEs.
The approximative evaluation of the Richardson iteration utilizes the following three procedures:

• RHS[ε, f ] → fε: determines for f ∈ ℓ2(Λ) a finitely supported fε ∈ ℓ2(Λ) such that

‖f − fε‖ℓ2(Λ) ≤ ε;

• APPLY[ε,A,v] → vε: determines for A : ℓ2(Λ) → ℓ2(Λ) and for a finitely supported v ∈ ℓ2(Λ) a
finitely supported vε such that

‖Av − vε‖ℓ2(Λ) ≤ ε;

• COARSE[ε, c] → cε: determines for a finitely supported u ∈ ℓ2(Λ) a finitely supported uε ∈ ℓ2(Λ)
with at most N nonzero coefficients (by setting the other entries to zero), such that

‖c− cε‖ℓ2(Λ) ≤ ε. (3.6)

Moreover, if Nmin is the minimal number of coefficients necessary to achieve (3.6), the output achieves
N . Nmin in linear time (whereas satisfying Nmin would incur an additional log-factor in the complex-
ity).

We refer to [CDD01, Ste04, DFR07] for information on the numerical realization of these routines. Assuming
the existence of numerical procedures as above, we can formulate the first numerical algorithm to solve the
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discrete linear system (3.4) up to accuracy ε > 0, given as Algorithm 3.5 below.

Algorithm 3.5: Inexact Damped Richardson Iteration

Data: ε > 0, F, f
Result: uε = SOLVE[ε,F, f ]

Let θ < 1
3 and K ∈ N such that 3ρK < θ. i := 0, u(0) := 0, ε0 :=

∥∥F
∣∣−1

ran(F)

∥∥∥∥f
∥∥
ℓ2(Λ)

while εi > ε do
i := i+ 1;
εi := 3ρKεi−1/θ;
f (i) := RHS[θεi/(6αK), f ];
u(i,0) := u(i−1);
for j = 1, . . . ,K do

u(i,j) := u(i,j−1) − α
(
APPLY

[
θεi/(6αK),F,u(i,j−1)

]
− f (i)

)
;

u(i) := COARSE[(1− θ)εi,u
(i,K)];

uε := u(i);

Conditional on the three routines above, we have thus formulated a feasible algorithm for the approximate
solution of (3.4). We will talk about the computational complexity and accuracy of this algorithm in a
moment, but first let us discuss the issue (B), namely that errors in ker(F) may not be decreased during
the iterations in Algorithm 3.5. In [Ste04] this problem is addressed and in particular it is shown that
possibly the computational complexity of Algorithm 3.5 may deteriorate unless some additional conditions
are satisfied. While it is believed that those conditions – most notably the compressibility of the orthogonal
projection – are valid, it is impossible to prove them at this time.

3.2.1 The modSOLVE-Algorithm

A remedy is to apply a bounded projection P such that

ker(P) = ker(F)
Lemma 3.4

= ker(G∗
ΦD

−1
H ) (3.7)

every few Richardson iterations in order to remove unwanted error components in ker(F).
The following discussion also applies to general Gelfand triples (B,H,B′), however, we continue in the

notation so far (requiring Hilbert instead of Banach spaces), again using the Gelfand frame Φ with canonical

dual Φ̃.
In order to arrive at a projector satisfying (3.7) we consider the (injective) mapping

Z :

{
B → ℓ2(Λ)
f 7→ DHGΦ̃f

By the definition of a Gelfand frame, this mapping is bounded. We also have that

G∗
ΦD

−1
H Zf = G∗

ΦD
−1
H DHGΦ̃f = G∗

ΦGΦ̃f = f for all f ∈ H. (3.8)

Therefore, we can put

P :=

{
ℓ2(Λ) → ℓ2(Λ)
c 7→ ZG∗

ΦD
−1
H c

and see, using (3.8), that this mapping is indeed a projector with

ker(P) = ker(G∗
ΦD

−1
H ),

which is exactly what we wanted.
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To find the matrix representation of P we note that

P = DH
〈
Φ̃,Φ

〉
L2D

−1
H .

Using the projection operator P as just defined, we now follow [Ste04] and formulate a slightly modified
algorithm to approximatively solve (3.4) in Algorithm 3.6.

Algorithm 3.6: Modified Inexact Damped Richardson Iteration

Data: ε > 0, F, f
Result: uε = modSOLVE[ε,F,P, f ]

Let θ < 1
3 and K ∈ N such that 3ρK‖P‖ < θ. i := 0, u(0) := 0, ε0 :=

∥∥P
∥∥∥∥F

∣∣−1

ran(F)

∥∥‖f‖ℓ2(Λ)

while εi > ε do
i := i+ 1;
εi := 3ρK‖P‖εi−1/θ;
f (i) := RHS[θεi/(6αK‖P‖), f ];
u(i,0) := u(i−1);
for j = 1, . . . ,K do

u(i,j) := u(i,j−1) − α
(
APPLY

[
θεi/(6αK‖P‖),F,u(i,j−1)

]
− f (i)

)
;

z(i) := APPLY
[
θεi/3,P,u

(i,K)
]
;

u(i) := COARSE[(1− θ)εi, z
(i)];

uε := u(i);

3.2.2 Complexity Analysis

We now turn to a complexity analysis of the algorithms SOLVE and modSOLVE introduced above. To
this end it it convenient to work with so-called weak ℓp-spaces.

Definition 3.7. For 0 < p < 2 we define the weak ℓp–space – denoted by ℓpw(Λ) – as

ℓpw(Λ) :=
{
c ∈ ℓ2(Λ) : |c|ℓpw(Λ) := sup

n∈N

n
1
p |γn(c)| <∞

}
,

where γn(c) denotes the n-th largest coefficient in modulus of c.

Remark 3.8. The quasi-Banach spaces ℓpw are instrumental in the study of nonlinear best N -term ap-
proximation. More precisely, membership of the coefficient sequence in ℓpw is equivalent to a best N -term
approximation rate of order N−σ, where σ = 1

p − 1
2 , see [DeV98]. Moreover, it is easy to see that we have

the inclusions
ℓp ⊆ ℓpw ⊆ ℓp+ε

for any ε > 0.

To achieve optimal convergence rates for our problem through the techniques introduced in [CDD01],
a key ingredient is compressibility of the discretized operator equation. Such a property guarantees the
existence of linear-time approximate matrix-vector multiplication algorithms APPLY which are used in the
iterative solution of the operator equation, see [CDD01, Ste04] for more information.

Definition 3.9. A matrix A is called σ∗-compressible if for every σ < σ∗ and k ∈ N there exists a matrix
A[k] such that

(i) the matrix A[k] has at most αk2
k non-zero entries in each column,
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(ii) we have
∥∥A−A[k]

∥∥
2
≤ Ck

so that the sequences (αk)k∈N, (Ck2
σk)k∈N are both summable.

Definition 3.10 ([Ste04, Def. 3.9]). A vector c ∈ ℓ2 is called σ∗-optimal, when for a suitable routine RHS,
for each σ ∈ (0, σ∗) with p := ( 12 + σ)−1, the following is valid for cε = RHS[ε, c]:

1. #supp cε . ε−1/σ|c|1/σ
ℓpw

2. The number of arithmetic operations used to compute cε is at most a multiple of ε−1/σ|c|1/σ
ℓpw

.

We can now formulate the main result of [Ste04, Theorem 3.11].

Theorem 3.11 (Convergence of modSOLVE). Assume that for some σ∗ > 0, the matrices F and P are
σ∗-compressible and that for some σ ∈ (0, σ∗) and p := 1

1
2
+σ

, the system Fu = f has a solution u ∈ ℓpw(Λ).

Moreover, assume that f is σ∗-optimal. Then for all ε > 0, uε := modSOLVE[ε,F,P, f ] satisfies

(I) #supp uε . ε−1/σ|u|1/σ
ℓpw(Λ)

,

(II) the number of arithmetic operations to compute uε is at most a multiple of ε−1/σ|u|1/σ
ℓpw(Λ)

.

Furthermore, ‖Pu− uε‖ℓ2(Λ) ≤ ε and so
∥∥u−G∗

ΦD
−1
B uε

∥∥
H . ε.

An analogous result holds also for the algorithm SOLVE, provided that the orthogonal projector P onto
the range of F is σ∗-compressible as above. However, except for trivial cases it is not possible to verify this
assumption with current mathematical technology [Ste04, DFR07].

The line of attack to solve the operator equation (2.1) is now clear: We have to construct a Gelfand frame
Φ for the Gelfand triple

(
H~s, L2, (H~s)′

)
and show that the resulting matrices F and P are compressible.

This is done in the following sections.

4 Ridgelet Frames

4.1 Ridgelet Gelfand Frames for H~s

In order to make use of the general results of the previous subsection for our problem (2.6), leading to a
stable discretization, the task is to construct a Gelfand frame for the Gelfand triple induced by H = H~s(Rd).

To this end, in [Gro11], a Parseval frame Φ = (ϕλ)λ∈Λ of ridgelets was constructed – we need to reproduce
it in some detail, in order to be able to derive a number of properties which will be indispensable to prove
sparsity of the operator in this discretisation. The key to the construction is a certain set of functions
ψj,ℓ ∈ L2(Rd), which form a partition of unity in the frequency domain, i.e.

(
ψj,ℓ

)
j∈N0, ℓ∈{0,...,Lj} such that

∞∑

j=0

Lj∑

ℓ=0

ψ̂2
j,ℓ = 1. (4.1)

Definition 4.1. To partition the angular component, we need a covering (approximately uniform) of the
sphere Sd−1, which we choose according to the following construction for α = 2−j :

Choose {~sℓ ∈ Sd−1}ℓ∈{0,...,L} such that

{⋃L
ℓ=0BSd−1(~sℓ, α) = Sd−1,

BSd−1

(
~sℓ,

α
3

)
pairwise disjoint.

Here BSd−1(~s, α) is the open ball on the sphere of radius α in the geodesic metric (see subsection A.1). This

can be shown to imply L ∼
(
1
α

)d−1
(for details see [BN07] or subsection A.2), and thus Lj ∼ 2j(d−1).

Furthermore, set αj := 2−j+1 and choose (smooth and bounded) window functions W , W (0), V (j,ℓ), such
that
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1. supp W ⊆
(
1
2 , 2

)
,

2. supp W (0) ⊆ [0, 2),

3. supp V (j,ℓ) ⊆ BSd−1

(
~sj,ℓ, αj

)
,

4. Lower bounds for all functions in a suitable subset, see [Gro11].

From these properties, it can be shown that

Φ(~ξ) :=W (0)(|~ξ|)2 +
∑

j∈N0

Lj∑

ℓ=0

W
(
2−j |~ξ|

)2
V (j,ℓ)

(~ξ
|~ξ|

)2

is bounded from above and below. Now, define

ψ̂0,0(~ξ) :=
W (0)(|~ξ|)√

Φ(~ξ)
and ψ̂j,ℓ(~ξ) :=

W
(
2−j |~ξ|

)
V (j,ℓ)

(
~ξ

|~ξ|

)

√
Φ(~ξ)

, j ≥ 1, ℓ = 0, . . . , Lj . (4.2)

Note that all ψj,ℓ are defined via their Fourier transforms, and that for notational convenience, we have set
L0 := 0 to extend the indexing consistently to the function for j = 0 as well. From these definitions, it is
easy to check that (4.1) holds.

Definition 4.2. Using Definition 4.1, a Parseval frame for L2(Rd) is defined by

ϕj,ℓ,~k = 2−
j
2TUj,ℓ

~k ψj,ℓ, j ∈ N0, ℓ ∈ {0, . . . , Lj}, ~k ∈ Zd,

with T the translation operator, T~yf(·) := f(· − ~y), and Uj,ℓ := R−1
j,ℓD2−j , where Rj,ℓ is the transformation

introduced in section 2, and Da dilates the first component, Da
~k := (a k1, k2, . . . , kd)

⊤. The rotation Rj,ℓ is
arbitrary (to the extent that it is ambiguous, see Remark 4.6) but fixed. Whenever possible, we will subsume

the indices of ϕ by λ = (j, ℓ, ~k).

We note that for a Parseval frame, the frame operator SΦ = I, since

〈SΦf, f〉 = 〈G∗Gf, f〉 = 〈Gf,Gf〉 = ‖〈Φ, f〉‖2ℓ2 = ‖f‖2 = 〈f, f〉,

which implies Φ̃ = Φ.
With the ridgelet frame Φ in hand we go on to show that Φ is indeed a Gelfand frame for the Gelfand

triple
(
H~s, L2(Rd), (H~s)′

)
. First, we need to find suitable sequence spaces Hd. To this end we introduce the

diagonal preconditioning matrix

Wλ,λ′ =

{
0, λ 6= λ′,

w(λ) := 1 + 2j |~s ·~sj,ℓ|, λ = λ′,

and define the weighted ℓ2-spaces

Hd := ℓ2
W
(Λ) := {c ∈ ℓ2(Λ) : ‖Wc‖ℓ2(Λ) <∞}

and the corresponding isomorphisms

Dℓ2,W :

{
Hd → ℓ2(Λ),
c 7→ Wc,

and D∗
ℓ2
W

:

{
ℓ2(Λ) → H′

d = ℓ2
W−1(Λ),

c 7→ Wc.

Theorem 4.3. The ridgelet frame Φ as constructed above constitutes a Gelfand frame for the Gelfand triple(
H~s, L2(Rd), (H~s)′

)
.
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Proof. Essentially, this has been shown in [Gro11], where it is observed that

‖f‖H~s ∼ ‖〈Φ, f〉H‖
ℓ2
W

. (4.3)

Using the fact that Φ̃ = Φ, we immediately infer boundedness of the operator GΦ̃ : H~s → ℓ2
W
(Λ). To show

the boundedness of the operator G∗
Φ : ℓ2

W
(Λ) → H~s we need to estimate the H~s-norm of Φc in terms of the

ℓ2
W
-norm of c. To see this, we first observe that, due to (4.3), we have

‖Φc‖H~s . ‖〈Φ,Φ〉L2c‖ℓ2
W

.

In order to arrive at the desired bound it remains to note that the matrix operator 〈Φ,Φ〉L2 : ℓ2W(Λ) → ℓ2
W
(Λ)

is bounded, which is a simple consequence of the frequency support properties of the frame elements.

Theorem 4.4. With Φ the ridgelet system and A the differential operator defined above, consider the (infi-
nite) matrix

F := W−1〈AΦ, AΦ〉L2W
−1. (4.4)

Then the operator F : ℓ2(Λ) → ℓ2(Λ) is bounded as well as boundedly invertible on its range ran(F) =
ran

(
(Dℓ2

W

)−1GΦ

)
.

Proof. This is a direct consequence of Lemma 3.4, Corollary 2.5 and Theorem 4.3.

In summary, we have achieved (i) above, namely a stable discretization of the operator equation (2.6).
In order to make use of the convergence results presented in section 3 we also need to derive a matrix
representation of the projector P defined in subsubsection 3.2.1. Using the fact that for our ridgelet frame
construction Φ, the dual frame coincides with the primal frame, e.g., Φ̃ = Φ, it is easy to see that

P = W〈Φ,Φ〉L2W
−1. (4.5)

4.2 Remarks on the construction

Remark 4.5. By the support properties of V (j,ℓ) and W , we see that

supp ψ̂j,ℓ ⊆ Pj,ℓ :=
{
~ξ ∈ Rd : 2j−1 < |~ξ| < 2j+1,

~ξ

|~ξ|
∈ BSd−1(~sj,ℓ, αj)

}
, j ≥ 1,

supp ψ̂0,0 ⊆ P0,0 :=
{
~ξ ∈ Rd : |~ξ| < 2

}
.

For several reasons, we will need to know for which j and ℓ the intersections Pj,ℓ ∩ Pj′, ℓ′ are non-empty if
j′, ℓ′ is fixed. For example, to prove the sparsity of the ridgelet discretisation of the transport operator A
introduced in section 2, we will have to consider a sum of terms involving the ψ̂j,ℓ over all parameters as in
(5.1) – only through a criterion of the above-mentioned form will we be able to bound the sum. Luckily, it
is straightforward to check that a non-empty intersection necessarily implies

|j − j′| ≤ 1 and distSd−1(~sj,ℓ,~sj′, ℓ′) ≤ αj + αj′
(∗)
≤ 3αj′ ,

where (∗) makes use of the first condition. Often, it will turn out to be convenient to cast these conditions
into an inclusion, in other words,

{
(j, ℓ) : Pj,ℓ ∩ Pj′, ℓ′ 6= ∅

}
⊆

{
(j, ℓ) : |j − j′| ≤ 1, distSd−1(~sj,ℓ,~sj′, ℓ′) ≤ 3αj′

}
.

This knowledge lets us revisit the function Φ in Definition 4.1 – in particular, for ~ξ ∈ Pj,ℓ, the sum consists
of only the terms “neighbouring” j and ℓ,

Φ(~ξ) =
∑

j′∈N0:
|j−j′|≤1

∑

ℓ′∈{0,...,Lj′}:
dist

Sd−1 (~sj,ℓ,~sj′, ℓ′ )≤3αj

W
(
2−j′ |~ξ|

)2
V (j′, ℓ′)

( ~ξ

|~ξ|

)2

. (4.6)

Of course, the above describes the case j > 2 – otherwise, the term W (0)(|~ξ|) would also appear in the sum.
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Remark 4.6. In dimensons d > 3, the rotation R~s turning ~s into ~e1 is no longer unique, although all other
possible choices must satisfy

R̃~s =

(
1 0
0 R

)
R~s,

where R ∈ SO(d− 1). Due to this ambiguity, the Lipschitz condition

‖R~s −R~s′‖ . distSd−1(~s,~s′) (4.7)

will not hold in general (if, for example, ~s = ~s′ and the matrix R above contains two reflections). However,
it is possible to choose such an R~s for fixed R~s′ (as proved in Lemma A.4) – this suffices for our purposes,
since in essence, we do not need this Lipschitz condition globally, but only in a neighbourhood of ~s, where
the ambiguity is irrelevant.

In the course of the proof (of sparsity of the Ridgelet discretisation), we need to control the derivatives

of ψ̂j,ℓ under a pullback related to the above-mentioned Uj,ℓ. We formulate this as an assumption that has
to satisfied when choosing the window functions.

Assumption 4.7. The window functions in Definition 4.1 are chosen in such a way, that for any rotation
Rj,ℓ (taking ~sj,ℓ to ~e1), the pullbacks under the transformation U−⊤

j,ℓ = R−1
j,ℓD2j ,

ψ̂(j,ℓ)(~η) := ψ̂j,ℓ(U
−⊤
j,ℓ ~η) =

W
(
2−j |D2j~η|

)
V (j,ℓ)

(
D

2j
~η

|D
2j

~η|

)

√
Φ(U−⊤

j,ℓ ~η)
,

have bounded derivatives independently of j and ℓ. Thus, for all n up to an upper bound N dependent on
the differentiability of the window functions (or possibly for all n ∈ N if the window functions are C∞), we
have the estimate

∥∥ψ̂(j,ℓ)

∥∥
Cn ≤ βn.

In Lemma B.1, we show that this assumption can be satisfied with a reasonable (and still quite flexible) choice
of window functions.

5 Compressibility

In this section, we show the main result, that the relevant bi-infinite matrices (F and P) appearing in
Algorithm 3.6 are in fact compressible.

5.1 Preliminary Considerations

In general, compressibility is difficult to verify directly. Instead we use the following notion of sparsity for a
(possible bi-infinite) matrix A:

Definition 5.1. Let p > 0. A matrix A =
(
aλ,λ′

)
λ∈Λ,λ′∈Λ′ is called p-sparse if

‖A‖ℓp(Λ)→ℓp(Λ) := max

(
sup
λ′∈Λ′

∑

λ∈Λ

|aλ,λ′ |p, sup
λ∈Λ

∑

λ′∈Λ′

|aλ,λ′ |p
) 1

p

<∞. (5.1)

Proposition 5.2. Assume that A is p-sparse for 0 < p < 1. Then A is 1
2

(
1
p − 1

)
-compressible.

To prove this result, we require the following version of Schur’s test (which is [HS78, Thm. 5.2] for a
discrete measure):
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Theorem 5.3. Let A := (aλ,λ′)λ,λ′∈Λ be an operator. Then the following holds:

‖A‖ℓ2(Λ)→ℓ2(Λ) ≤
(
sup
λ∈Λ

∑

λ′∈Λ′

|aλ,λ′ |
) 1

2
(

sup
λ′∈Λ′

∑

λ∈Λ

|aλ,λ′ |
) 1

2

Proof of Proposition 5.2. Note that by assumption each column aλ of A has ℓp norm bounded by

‖aλ‖p ≤ ‖A‖ℓp(Λ)→ℓp(Λ).

This means that for each k ∈ N and for some summable sequence αk, we may keep only the αk2
k largest

coefficients of the column vector aλ, which gives the approximation A[k] consisting of columns a
[k]
λ . An

immediate observation is, that it would be non-sensical to let αk decay quicker than 2−k, since then the
number of approximating coefficients would decrease in each step. While it is possible to let αk decay like
2−k(1−ǫ), this would impact the achieved compressibility (see below), and so we choose a sequence whose
inverses grow at most polynomially (say, αk = k−2).

To compute the error of this approximation,

∥∥A−A[k]
∥∥
ℓ2(Λ)→ℓ2(Λ)

,

denote by a∗λ :=
(
(a∗λ)i

)
i∈N

the non-increasing rearrangement of aλ. The defining condition for weak-ℓp

spaces is, that aλ ∈ ℓp implies (a∗λ)i . i−
1
p . In order to be able to apply Schur’s Lemma, we use this fact to

estimate the (square of the) first factor,

sup
λ∈Λ

∑

λ′∈Λ

|aλ,λ′ − a
[k]
λ,λ′ | = sup

λ∈Λ

∑

i≥αk2k

|(a∗λ)i| .
∑

i≥αk2k

i−
1
p .

To continue, choose ℓ ∈ N such that 2ℓ−1 ≤ αk2
k ≤ 2ℓ and let

Fm :=
2m∑

i=2m−1

i−
1
p ≤ (2m − 2m−1)(2m−1)−

1
p .

Consequently, using p < 1, we see that

∑

i≥αk2k

i−
1
p ≤

∑

i≥2ℓ−1

i−
1
p =

∞∑

m=ℓ

Fm ≤
∞∑

m=ℓ

2−(m−1)( 1
p
−1) = 2−(ℓ−1)( 1

p
−1)

∞∑

m=0

2−(m−1)( 1
p
−1)

=

(
1

2ℓ

) 1
p
−1

2
1
p
−1

1− 2−( 1
p
−1)

.
(
αk2

k
)−( 1

p
−1)

.

On the other hand, since all sequences x satisfy ‖x‖q ≤ ‖x‖p for all 0 < p ≤ q ≤ ∞, we have (with q = 1)

sup
λ′∈Λ

∑

λ∈Λ

|aλ,λ′ − a
[k]
λ,λ′ | ≤ 2 sup

λ′∈Λ

∑

λ∈Λ

|aλ,λ′ | = 2 sup
λ′∈Λ

‖aλ′‖1 ≤ 2 sup
λ′∈Λ

‖aλ′‖p ≤ 2‖A‖ℓp(Λ)→ℓp(Λ) <∞.

Applying Schur’s Lemma we get that

∥∥∥A−A[k]
∥∥∥
ℓ2(Λ)→ℓ2(Λ)

.
(
α−1
k 2−k

) 1
2
( 1
p
−1)

=: Ck.

We see that for any σ < 1
2

(
1
p −1

)
, the sequence (2σkCk)k∈N is summable, since the polynomial growth in α−1

k

does not affect the exponential decay of 2−(
1
2
( 1
p
−1)−σ)k (up to a constant). This proves the compressibility.
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5.2 Sparsity of F

Having introduced the concepts of compressibility and sparsity in the last section, we now want to show
sparsity of the ridgelet discretisation of the transport operator A introduced in section 2. By Proposition 5.2,
this will prove compressibility of the ridgelet discretisation of this operator.

Theorem 5.4. We consider the frame Φ = (ϕλ)λ∈Λ for L2(Rd) (see Definition 4.2), satisfying Assump-
tion 4.7 for 2n with d

2 < n ∈ N, and choose p ∈ R such that 1 > p > d
2n . Furthermore, we introduce

the differential operator A : u 7→ ~s · ∇u + κu with fixed ~s ∈ Sd−1, where the absorption coefficient κ has a
decomposition κ = γ + κ0 with constant γ > 0, and κ0 ≥ 0 satisfying κ0, κ̂0 ∈ L∞(Rd). Finally, we demand
the existence of r0, c0 > 0, such that the decay condition

∣∣κ̂0(~ξ)
∣∣ ≤ c0

|~ξ|q
∀~ξ ∈ Rd : |~ξ| ≥ r0, (5.2)

is fulfilled for a fixed q > 2d+2n+ 3
2 +

d−1
p . Then the preconditioned stiffness matrix F, see (4.4), is p-sparse

in this frame – in other words,
∥∥F

∥∥
ℓp(Λ)→ℓp(Λ)

=
∥∥∥W−1〈AΦ, AΦ〉L2W

−1
∥∥∥
ℓp(Λ)→ℓp(Λ)

<∞. (5.3)

Remark 5.5. As we have seen in Proposition 5.2, the smaller p, the better the compressibility. The theorem
is formulated in a way that p is chosen according to the restrictions imposed by d and n – however, since
it is possible to construct window functions of arbitrary smoothness (and thus arbitrarily smooth ψ̂j,ℓ), the
limiting factor for p then becomes the decay rate of κ̂0. In the case that κ̂0 decays faster than any polynomial
(say, exponentially), arbitrarily small p can be achieved (for infinitely smooth ψ̂j,ℓ) – of course at the cost of
exploding constants.

Before we begin with the proof, as a service to the reader, we collect a few results on technical details,
which we have moved to Appendix A.

Proposition 5.6 (Lemma A.5). Let w(λ) = 1 + 2j |~s · ~sj,ℓ|, Uj,ℓ = R−1
j,ℓD2−j and Uj′, ℓ′ = R−1

j′, ℓ′D2−j with

arbitrary Rj′, ℓ′ such that (4.7) holds for ~s = ~sj,ℓ and ~s′ = ~sj′, ℓ′ . Then we have the estimates
∣∣U−1

j,ℓ ~s
∣∣ ≤ w(λ), and

∣∣U−1
j,ℓ ~s

∣∣ . max(2j−j′ , 1)
(
w(λ′) + 2j

′

distSd−1(~sj,ℓ,~sj′, ℓ′)
)
, (5.4)

as well as
∥∥U−1

j,ℓ Uj′, ℓ′
∥∥ . max(2j−j′ , 1) + 2jdistSd−1(~sj,ℓ,~sj′, ℓ′). (5.5)

Proposition 5.7 (Proposition A.6). For j ≥ 1, the transformation U⊤
j,ℓ takes the “frequency tiles” Pj,ℓ back

into a bounded set around the origin (illustrated in Figure A.1),

U⊤
j,ℓPj,ℓ ⊆ BRd(0, 5) and U⊤

j,ℓ(P
m
j,ℓ) ⊆ BRd(0, 5 + 2m), (5.6)

where Pm
j,ℓ is again the Minkowski sum Pj,ℓ +BRd(0, 2m).

Additionally, we can calculate the opening angle of the cone containing Pm
j,ℓ as follows,

αm
j = αj + arcsin

(
2m

2j−1

)
≤ cω2

m−j , (5.7)

as long as j ≥ m+ 1, where cω ≤ π + 2 (illustrated in Figure A.2).

Proposition 5.8 (Lemma A.7). Let j′, ℓ′ as well as m,m′ be fixed and denote m> := max(m,m′), then we
have the following inclusion for the set of parameters that can yield a non-empty intersection with Pm′

j′, ℓ′ ,

{
(j, ℓ) : Pm

j,ℓ ∩ Pm′

j′, ℓ′ 6= ∅
}
⊆

m>+2⋃

j=0

{
j
}
×
{
0 ≤ ℓ ≤ Lj

}
∪

⋃

j≥m>+3

{
j
}
×
{
ℓ : distSd−1(~sj,ℓ,~sj′, ℓ′) ≤ 5cω2

m>−j′
}
, (5.8)
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Proof of Theorem 5.4. Due to symmetry, we are able to express (5.3) without taking the maximum (cf.
(5.1)),

∥∥F
∥∥p
ℓp(Λ)→ℓp(Λ)

= sup
λ′∈Λ

∑

λ∈Λ

∣∣∣w(λ)−1w(λ′)−1〈Aϕλ, Aϕλ′〉L2

∣∣∣
p

= sup
λ′∈Λ

∑

j∈N0

Lj∑

ℓ=0

∑

~k∈Zd

∣∣∣w(λ)−1w(λ′)−1
〈
Aϕj,ℓ,~k, Aϕj′, ℓ′,~k

′

〉
L2

∣∣∣
p

<∞.

(5.9)

Step 1 – Transforming the integral: Recalling the definition of the ϕλ, we compute

Fλ,λ′ = w(λ)−1w(λ′)−1〈Aϕλ, Aϕλ′〉L2 = w(λ)−1w(λ′)−1
〈
Â ϕλ, Â ϕλ′

〉
L2

=
2−

j+j′

2

w(λ)w(λ′)

∫
F
(
~s · ∇ψj,ℓ (~x− Uj,ℓ

~k ) + κ(~x)ψj,ℓ (~x− Uj,ℓ
~k )

)
(~ξ) · . . .

. . . · F
(
~s · ∇ψj′, ℓ′(~x− Uj′, ℓ′

~k
′
) + κ(~x)ψj′, ℓ′(~x− Uj′, ℓ′

~k
′
)
)
(~ξ) d~ξ

=
cF2−

j+j′

2

w(λ)w(λ′)

∫ (
(~s ·~ξ) ψ̂j,ℓ (~ξ) +

[
ψ̂j,ℓ ∗Mλ κ̂

]
(~ξ)

)
· . . .

. . . ·
(
(~s ·~ξ) ψ̂j′, ℓ′(~ξ) +

[
ψ̂j′, ℓ′ ∗Mλ′ κ̂

]
(~ξ)

)
exp

(
2πi~ξ · (Uj,ℓ

~k − Uj′, ℓ′
~k
′
)
)
d~ξ,

where cF = (2πi)2 and
[
Mλκ̂

]
(~ξ) = κ̂(~ξ) exp(2πi~ξ · Uj,ℓ

~k) = F
(
κ(~x + Uj,ℓ

~k)
)
(~ξ) is the modulation operator

corresponding to a shift of Uj,ℓ
~k according to our definition of the Fourier transform.

The transformation Uj,ℓ modifying ~k in the exponential function makes summing ~k difficult, and therefore,

we will transform all the integral by ~ξ = U−⊤
j,ℓ ~η – introducing a factor 2j from the determinant of the Jacobian

and yielding the exponent

2πi~η · (~k − U−1
j,ℓ Uj′, ℓ′

~k
′
) = 2πi~η · (~k − U j,ℓ

j′, ℓ′
~k
′
), where U j,ℓ

j′, ℓ′ := U−1
j,ℓ Uj′, ℓ′ .

Additionally, we observe that the Fourier transform of κ splits as follows, κ̂(~ξ) = (γ̂ + κ0)(~ξ) = γδ(~ξ) +

κ̂0(~ξ). We expand all products and rearrange, observing also that ~s ·~ξ = ~s ·U−⊤
j,ℓ η = U−1

j,ℓ ~s ·η is a real number.
Thus,

Fλ,λ′ =
cF2

j−j′

2

w(λ)w(λ′)

∫ ((
U−1
j,ℓ ~s · η + γ

)2
ψ̂(j,ℓ)(~η)ψ̂(j′, ℓ′)(Ũ

⊤
j′, ℓ′U

−⊤
j,ℓ ~η)︸ ︷︷ ︸

=:h00

λ,λ′ (~η)

+ . . .

. . . ·
(
U−1
j,ℓ ~s · η + γ

)
ψ(j,ℓ)(~η)

[
ψ̂j′, ℓ′ ∗Mλ′ κ̂0

]
(U−⊤

j,ℓ ~η)︸ ︷︷ ︸
=:h0∗

λ,λ′ (~η)

+ . . .

. . . ·
(
U−1
j,ℓ ~s · η + γ

) [
ψ̂j,ℓ ∗Mλκ̂0

]
(U−⊤

j,ℓ ~η)ψ(j′, ℓ′)(Ũ
⊤
j′, ℓ′U

−⊤
j,ℓ ~η)︸ ︷︷ ︸

=:h∗0
λ,λ′ (~η)

+ . . .

. . . ·
[
ψ̂j,ℓ ∗Mλκ̂0

]
(U−⊤

j,ℓ ~η)
[
ψ̂j′, ℓ′ ∗Mλ′ κ̂0

]
(U−⊤

j,ℓ ~η)︸ ︷︷ ︸
=:h∗∗

λ,λ′ (~η)

)
exp

(
2πi~η · (~k − U j,ℓ

j′, ℓ′
~k
′
)
)
d~η, (5.10)

where we used the representation of ψ̂j,ℓ from Assumption 4.7 – which holds for arbitrary rotations R̃j′, ℓ′

taking ~sj′, ℓ′ to ~e1. We choose R̃j′, ℓ′ in Ũj′, ℓ′ := R̃−1
j′, ℓ′D2−j in such a way that (4.7) holds for ~s = ~sj,ℓ and

~s′ = ~sj′, ℓ′ , which is possible due to Lemma A.4. Unsurprisingly, we set Ũ j,ℓ
j′, ℓ′ := U−1

j,ℓ Ũj′, ℓ′ .
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It should be noted that h-terms does not depend on ~k,~k
′
– however, we have chosen this notation

for reasons of readability (as well as uniformity with the Y - and Z-terms, which appear in Step 2 and 7,
respectively).

For each of the terms in (5.10), we have to show that the sum over all parameters in (5.9) is finite –

which we will do for ~k first, then for ℓ and finally for j.

Step 2 – Integration by parts: Even though the exponent is purely imaginary, we cannot estimate the
exponential function by one, as we would then sum constants in ~k. However, a simple calculation shows
∆~η exp(2πi~η · ~y) = −(2π)2|~y|2 exp(2πi~η · ~y), which entails

∆~η exp
(
2πi~η · (~k − U j,ℓ

j′, ℓ′
~k
′
)
)
= −(2π)2

∣∣~k − U j,ℓ
j′, ℓ′
~k
′∣∣2 exp

(
2πi~η · (~k − U j,ℓ

j′, ℓ′
~k
′
)
)
.

Applying Green’s second identity iteratively, we will use this to generate a denominator of sufficient power
to be summed over all ~k ∈ Zd – on the other hand, this forces us to estimate the derivatives of the remaining
factors of the integrands. All differential operators will be with respect to ~η, which we will not indicate
anymore in the following.

The h00λ,λ′ is unproblematic because of its compact support, however, for the other funcitons, their un-
bounded support (as a superset of supp κ̂0) means that the boundary integral does not vanish trivially.
Nevertheless, we can always shift the derivatives of the convolution away from κ̂ and so the vanishing of
the boundary term can be seen by applying Green’s second identity to the domain BRd(0, R) and exploiting
the decay of κ̂ as R → ∞ (bearing in mind that λ, λ′ are fixed for this consideration). Due to the growing
surface of BRd(0, R), this requires a decay q > d− 1 of κ̂0, which is satisfied by our assumption.

Thus, for ~k 6= U j,ℓ
j′, ℓ′
~k
′
,

Fλ,λ′ =
cF2

j−j′

2

w(λ)w(λ′)

(−1)n(2π)−2n

∣∣~k − U j,ℓ
j′, ℓ′
~k
′∣∣2n

∫ [
∆n

((
U−1
j,ℓ ~s · η + γ

)2
h00λ,λ′(~η)

)
+∆n

((
U−1
j,ℓ ~s · η + γ

)
h0∗λ,λ′(~η)

)
+ . . .

. . .+∆n
((
U−1
j,ℓ ~s · η + γ

)
h∗0λ,λ′(~η)

)
+∆n

(
h∗∗λ,λ′(~η)

)]
exp

(
2πi~η · (~k − U j,ℓ

j′, ℓ′
~k
′
)
)
d~η

=:
∣∣~k − U j,ℓ

j′, ℓ′
~k
′∣∣−2n

(
Y 00
λ,λ′ + Y 0∗

λ,λ′ + Y ∗0
λ,λ′ + Y ∗∗

λ,λ′

)
. (5.11)

Step 3 – Estimating the Derivatives: Before we can deal with the derivatives of the h-terms, we have to
disentangle the derivatives of U−1

j,ℓ ~s · η from them. Computing ∇
(
U−1
j,ℓ ~s · ~η + γ

)
= U−1

j,ℓ ~s, a simple induction
shows

∆n
(
(U−1

j,ℓ ~s · ~η + γ)h(~η)
)
= (U−1

j,ℓ ~s · ~η + γ)∆nh(~η) + 2nU−1
j,ℓ ~s · ∇

(
∆n−1h(~η)

)
, (5.12)

and inserting h̃(~η) := (U−1
j,ℓ ~s · ~η + γ)h(~η) into this formula also yields

∆n
((
U−1
j,ℓ ~s · ~η + γ

)2
h(~η)

)
=

(
U−1
j,ℓ ~s · ~η + γ

)2
∆nh(~η) + 4n

(
U−1
j,ℓ ~s · ~η + γ

)(
U−1
j,ℓ ~s · ∇

(
∆n−1h(~η)

))
+ . . .

. . .+ 2n
∣∣U−1

j,ℓ ~s
∣∣2∆n−1h(~η) + 4n(n− 1)U−1

j,ℓ ~s ·
( ∂2

∂ηs ∂ηt

(
∆n−2h(~η)

))d

s,t=1
U−1
j,ℓ ~s. (5.13)

Alternatively, both of these formulas can be obtained by applying (C.1) – the product rule for the Laplacian.
This product rule is also the tool to obtain the following estimate, see Corollary C.3,

∣∣[∆n
(
fg

)]
(~η)

∣∣ ≤ (4d)n|f(~η)|C2n |g(~η)|C2n ≤ (4d)n‖f‖C2n‖g‖C2n , (5.14)

where |f(~η)|C2n = max0≤r≤2n |f (r)(~η)| is the maximum of all derivatives up to order 2n of f at ~η. We will
use this to estimate the derivatives of the h-terms.
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The last ingredient of this step is an estimate of the derivatives of the convolution terms, proved in
Lemma C.4,

∣∣∣∂
|α|

∂~ηα
(
(f ∗ g)(U~η)

)∣∣∣ ≤
∥∥∥∂

|α|

∂~ηα
(
f(U ·)

)∥∥∥
∞

(
1supp f (·) ∗ |g(·)|

)
(Uη), (5.15)

where U is any invertible linear transformation and ∂|α|

∂~ηα is the standard differentiation in multi-index nota-
tion. The reason for the form of this estimate will become apparent in the next step.

Using Assumption 4.7 with an appropriate choice of R̃j′, ℓ′ (see (4.7)), together with
∥∥ψ̂(j,ℓ)

∥∥
C2n ≤ β2n <

∞, (5.15) yields

∣∣∣∂
|α|

∂~ηα

((
ψ̂j′, ℓ′ ∗Mλ′ κ̂0

)
(U−⊤

j,ℓ ~η)
)∣∣∣ ≤

∥∥∥∂
|α|

∂~ηα
(
ψ̂j′, ℓ′(U

−⊤
j,ℓ ·)

)∥∥∥
∞

(
1Pj′, ℓ′

∗
∣∣Mλ′ κ̂0

∣∣)(U−⊤
j,ℓ ~η)

=
∥∥∥∂

|α|

∂~ηα

(
ψ̂(j′, ℓ′)

(
(Ũ j,ℓ

j′, ℓ′)
⊤·
))∥∥∥

∞

(
1Pj′, ℓ′

∗ |κ̂0|
)
(U−⊤

j,ℓ ~η)

≤ β|α|
∥∥Ũ j,ℓ

j′, ℓ′

∥∥|α|(1Pj′, ℓ′
∗ |κ̂0|

)
(U−⊤

j,ℓ ~η),

(5.16)

as well as
∣∣∣∂

|α|

∂~ηα

((
ψ̂j,ℓ ∗Mλκ̂0

)
(U−⊤

j,ℓ ~η)
)∣∣∣ ≤

∥∥∥∂
|α|

∂~ηα
ψ̂(j,ℓ)

∥∥∥
∞

(
1Pj,ℓ

∗
∣∣Mλκ̂0

∣∣)(U−⊤
j,ℓ ~η)

≤ β|α|
(
1Pj,ℓ

∗ |κ̂0|
)
(U−⊤

j,ℓ ~η).

(5.17)

Equations (5.12)–(5.17) allow us to estimate the different terms in (5.11), remembering to keep the
support information of terms we estimate away:

∣∣Y 00
λ,λ′

∣∣ . 2
j−j′

2

∫

U⊤
j,ℓ

(Pj,ℓ∩Pj′, ℓ′ )

∥∥Ũ j,ℓ
j′, ℓ′

∥∥2n
∣∣U−1

j,ℓ ~s
∣∣2

w(λ)w(λ′)

(
|~η|2 + (4n+ 2γ)|~η|+ 4n(n+ γ) + γ2

)
d~η

∣∣Y 0∗
λ,λ′

∣∣ . 2
j−j′

2

∫

U⊤
j,ℓPj,ℓ

∥∥Ũ j,ℓ
j′, ℓ′

∥∥2n
∣∣U−1

j,ℓ ~s
∣∣

w(λ)w(λ′)

(
|~η|+ 2n+ γ

)(
1Pj′, ℓ′

∗ |κ̂0|
)
(U−⊤

j,ℓ ~η) d~η

∣∣Y ∗0
λ,λ′

∣∣ . 2
j−j′

2

∫

U⊤
j,ℓPj′, ℓ′

∥∥Ũ j,ℓ
j′, ℓ′

∥∥2n
∣∣U−1

j,ℓ ~s
∣∣

w(λ)w(λ′)

(
|~η|+ 2n+ γ

)(
1Pj,ℓ

∗ |κ̂0|
)
(U−⊤

j,ℓ ~η) d~η

∣∣Y ∗∗
λ,λ′

∣∣ . 2
j−j′

2

∫ ∥∥Ũ j,ℓ
j′, ℓ′

∥∥2n 1

w(λ)w(λ′)

(
1Pj,ℓ

∗ |κ̂0|
)
(U−⊤

j,ℓ ~η)
(
1Pj′, ℓ′

∗ |κ̂0|
)
(U−⊤

j,ℓ ~η) d~η

Step 4 – Dealing with the convolution terms: Ultimately, we have to find a restriction on j, ℓ in
terms of fixed j′, ℓ′ to be able to sum (5.9) – see Step 6. The way to obtain this restriction is to inspect the

supports of ψ̂j,ℓ and ψ̂j′, ℓ′ and see where the intersection is non-empty. However, the convolution ψ̂j,ℓ ∗Mλκ̂

is supported on the Minkowski sum supp ψ̂j,ℓ + supp κ̂, and since the latter summand may be unbounded
we have to tackle this problem a little differently.

The idea now is to decompose Rd in such a way, that the increases in non-empty intersections (and other
contributions arising therefrom) are offset by the decay of κ̂. To this end, choose m0 as the minimal m ∈ N

such that 2m ≥ r0 (from the decay condition (5.2)). Then Rd may be written as the direct sum

Rd =
(
Pj,ℓ +BRd(0, 2m0)

)
∪̇

⋃̇

m≥m0

(
Pj,ℓ +BRd(0, 2m+1)

)
\
(
Pj,ℓ +BRd(0, 2m)

)
,

which we choose to abbreviate by setting Pm
j,ℓ := Pj,ℓ +BRd(0, 2m), as well as Qm

j,ℓ := Pm+1
j,ℓ \ Pm

j,ℓ, thus

Rd = Pm0

j,ℓ ∪̇
⋃̇

m≥m0

Pm+1
j,ℓ \ Pm

j,ℓ = Pm0

j,ℓ ∪̇
⋃̇

m≥m0

Qm
j,ℓ.
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To see the gain of the above decomposition, we consider the convolution terms appearing in the estimates
(5.17). In particular, for ~ξ ∈ Qm

j,ℓ and
~ζ ∈ Pm0

j,ℓ , the construction of the Qm
j,ℓ yields |~ξ−~ζ| ≥ 2m − 2m0 , which

we can exploit to estimate (using q > d)

(
1Pj,ℓ

∗|κ̂0|
)
(~ξ) =

∫
1Pj,ℓ

(~ζ)|κ̂0(~ξ − ~ζ)| d~ζ ≤
∫

|~ζ|≥2m−2m0

|κ̂0(~ζ)| d~ζ
(5.2)

≤
∫ ∞

2m−2m0

c0
rq
rd−1 dΩdr . 2−m(q−d).

(5.18)

Step 5 – Dealing with the anisotropic terms: The terms ~s ·~ξ, respectively ~s · U−⊤
j,ℓ η = U−1

j,ℓ ~s · η after

the transformation, can get very large (∼ 2j), in particular if ~s is close to Pj,ℓ – the support of ψ̂j,ℓ. It is
this behaviour that has to be counteracted by the preconditioning, since we would not be able to bound this
term otherwise – together with (5.8), (5.4) implies

∣∣U−1
j,ℓ ~s

∣∣ ≤ w(λ), and
∣∣U−1

j,ℓ ~s
∣∣ . max(2j−j′ , 1)

(
w(λ′) + 2j

′

distSd−1(~sj,ℓ,~sj′, ℓ′)
)
. w(λ′), (5.19)

which conveniently cancels with the weights in the denominator.
Finally, we need the inclusion (5.6) for estimating both |~η| as well as the volume of the integral. This

illustrates another property of the transformation we employed, since, in essence (resp. as a consequence
of the construction), it transforms the highly anisotropic sets Pj,ℓ back into a subset of a ball around the
origin, see also Figure A.1.

Step 6 – The condition for j and ℓ: As noted above, to be able to sum j and ℓ, we need a restriction for
these indices in terms of j′, ℓ′. For constant (or compactly supported) κ̂, such a condition follows naturally

from the fact that the integral of the inner product is zero when the supports of the functions ψ̂j,ℓ and ψ̂j′, ℓ′

do not intersect. For general κ̂, we have to consider these intersections for the decomposition we introduced
above. Here, the concentric structure of the Qm

j,ℓ is irrelevant, it suffices to consider the sets Pm+1
j,ℓ ⊇ Qm

j,ℓ.
The main argument in this respect is (5.8), which basically says that for j ≥ m> + 3, we are able to restrict
j and ℓ in relation to j′, ℓ′, whereas for j ≤ m> + 2, we have to assume the worst-case scenario of all indices
contributing to the sum (or rather, a more precise estimate doesn’t change anything in this case).

An immediate consequence is, that all terms of the form 2j−j′ can be estimated

2j−j′ ≤
{
2|j−j′|, j ≥ m> + 3

2j , j ≤ m> + 2

}
. 2m> . (5.20)

Similarly, we can estimate the norm of Ũ j,ℓ
j′, ℓ′ . After appealing to a (5.5), we apply (5.8), first the condition

in ℓ for (∗) and then in j for (∗∗), and finally (5.20), to arrive at

∥∥Ũ j,ℓ
j′, ℓ′

∥∥
(5.5)

. max(2j−j′ , 1) + 2jdistSd−1(~sj,ℓ,~sj′, ℓ′)
(∗)
≤

{
max(2j−j′ , 1) + 5cω2

m>+j−j′ , j ≥ m> + 3

max(2j−j′ , 1) + π
2 2j , j ≤ m> + 2

.

{
2m>+|j−j′|, j ≥ m> + 3

2j , j ≤ m> + 2

}
(∗∗)
. 2m> . (5.21)
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Applying the estimates (5.6) and (5.18)–(5.21), we see that (by definition, m = m′ = 0 for Y 00
λ,λ′)

∣∣Y 00
λ,λ′

∣∣ .
∫

U⊤
j,ℓ

(Pj,ℓ∩Pj′, ℓ′ )

d~η (5.22)

∣∣Y 0∗
λ,λ′

∣∣ .
∫

U⊤
j,ℓ(Pj,ℓ∩P

m0

j′, ℓ′
)

d~η +
∑

m≥m0

2−m(q−d−2n− 1
2
)

∫

U⊤
j,ℓ(Pj,ℓ∩Qm

j′, ℓ′
)

d~η (5.23)

∣∣Y ∗0
λ,λ′

∣∣ .
∫

U⊤
j,ℓ(P

m0
j,ℓ

∩Pj′, ℓ′ )

d~η +
∑

m≥m0

2−m(q−d−2n− 3
2
)

∫

U⊤
j,ℓ(Q

m
j,ℓ∩Pj′, ℓ′ )

d~η (5.24)

∣∣Y ∗∗
λ,λ′

∣∣ .
∫

U⊤
j,ℓ(P

m0
j,ℓ

∩P
m0

j′, ℓ′
)

d~η +
∑

m≥m0

2−m(q−d−2n− 1
2
)

∫

U⊤
j,ℓ(P

m0
j,ℓ

∩Qm
j′, ℓ′

)

d~η + . . . (5.25)

. . .+
∑

m≥m0

2−m(q−d−2n− 1
2
)

∫

U⊤
j,ℓ(Q

m
j,ℓ∩P

m0

j′, ℓ′
)

d~η +
∑

m,m′≥m0

2−(m+m′)(q−d−2n− 1
2
)

∫

U⊤
j,ℓ(Q

m
j,ℓ∩Qm

j′, ℓ′
)

d~η

Step 7 – Summing ~k: Thus far, we have omitted the case ~k = U j,ℓ
j′, ℓ′
~k
′
– in fact, to sum over ~k, we need

treat even more elements differently. In order to estimate the term
∣∣~k − U j,ℓ

j′, ℓ′
~k
′∣∣, we choose Kj,ℓ

j′, ℓ′
~k
′ ∈ Zd

as a (possibly non-unique) closest lattice element to U j,ℓ
j′, ℓ′
~k
′
(for example by rounding every component

to the nearest integer), which may be interpreted as a projection of U j,ℓ
j′, ℓ′
~k
′
onto the lattice Zd. Then

∣∣Kj,ℓ
j′, ℓ′
~k
′ − U j,ℓ

j′, ℓ′
~k
′∣∣ ≤

√
d
2 , and if we restrict ~k ∈ Zd such that

∣∣~k −Kj,ℓ
j′, ℓ′
~k
′∣∣ ≥

√
d, it holds that

∣∣~k − U j,ℓ
j′, ℓ′
~k
′∣∣ ≥

∣∣~k −Kj,ℓ
j′, ℓ′
~k
′∣∣−

√
d

2
≥ 1

2

∣∣~k −Kj,ℓ
j′, ℓ′
~k
′∣∣. (5.26)

For ~k ∈ Zd such that
∣∣~k−Kj,ℓ

j′, ℓ′
~k
′∣∣ <

√
d, we retrace the derivation of all above estimates without the partial

integration, which, in effect, only eliminates the divisor
∣∣~k−U j,ℓ

j′, ℓ′
~k
′∣∣2n (and reduces the constants). Putting

the estimates for (5.22)–(5.25) together, we arrive at

Fλ,λ′ .
∣∣~k − U j,ℓ

j′, ℓ′
~k
′∣∣−2n

(∣∣Y 00
λ,λ′

∣∣+
∣∣Y 0∗

λ,λ′

∣∣+
∣∣Y ∗0

λ,λ′

∣∣+
∣∣Y ∗∗

λ,λ′

∣∣
)
=: Z00

λ,λ′ + Z0∗
λ,λ′ + Z∗0

λ,λ′ + Z∗∗
λ,λ′

for
∣∣~k −Kj,ℓ

j′, ℓ′
~k
′∣∣ ≥

√
d, and similarly for

∣∣~k −Kj,ℓ
j′, ℓ′
~k
′∣∣ <

√
d,

Fλ,λ′ .
∣∣Y 00

λ,λ′

∣∣+
∣∣Y 0∗

λ,λ′

∣∣+
∣∣Y ∗0

λ,λ′

∣∣+
∣∣Y ∗∗

λ,λ′

∣∣ =: Z00
λ,λ′ + Z0∗

λ,λ′ + Z∗0
λ,λ′ + Z∗∗

λ,λ′ .

Note that the different cases for ~k are incorporated in the definition of the Z-terms.
The intention now is to prove (5.9) by showing

sup
λ′∈Λ

∑

λ∈Λ

∣∣Fλ,λ′

∣∣p . sup
λ′∈Λ

∑

λ∈Λ

(
Z00
λ,λ′ + Z0∗

λ,λ′ + Z∗0
λ,λ′ + Z∗∗

λ,λ′

)p

≤ sup
λ′∈Λ

∑

λ∈Λ

(
Z00
λ,λ′

)p
+
(
Z0∗
λ,λ′

)p
+
(
Z∗0
λ,λ′

)p
+

(
Z∗∗
λ,λ′

)p
<∞, (5.27)

where the second inequality requires p ≤ 1. All four terms have the same structure in ~k – namely, the integrals
do not depend on this parameter. Thus we may calculate the sum over ~k separately, which crucially requires
the condition p > d

2n ,

∑

~k∈Z
d∣∣∣~k−Kj,ℓ

j′, ℓ′
~k
′
∣∣∣≥

√
d

1
∣∣~k − U j,ℓ

j′, ℓ′
~k
′∣∣2np

(5.26)

≤
∑

~k∈Z
d∣∣∣~k−Kj,ℓ

j′, ℓ′
~k
′
∣∣∣≥

√
d

22np
∣∣~k −Kj,ℓ

j′, ℓ′
~k
′∣∣2np

=
∑

~k∈Z
d

|~k|≥√
d

22np
∣∣~k
∣∣2np =: Gd,2np <∞.
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The remaining sum over ~k ∈ Zd :
∣∣~k −Kj,ℓ

j′, ℓ′
~k
′∣∣ <

√
d has at most O(

√
d
d
) terms. Taken together, this

implies (recall that the Y -terms do not depend on ~k and ~k
′
)

sup
λ′∈Λ

∑

λ∈Λ

∣∣Fλ,λ′

∣∣p .
∑

j∈N0

Lj∑

ℓ=0

∣∣Y 00
λ,λ′

∣∣p +
∣∣Y 0∗

λ,λ′

∣∣p +
∣∣Y ∗0

λ,λ′

∣∣p +
∣∣Y ∗∗

λ,λ′

∣∣p.

Step 8 – Estimating the Number of Intersections:

As the last important tool to show the finiteness of (5.27), we show one more estimate – the number of
non-empty intersections Pm

j,ℓ ∩ Pm′

j′, ℓ′ in terms of ℓ. Recalling αj = 2−j+1, we derive that (for j, j′ ≥ m> + 1)

Nm,m′

j,j′,ℓ′ := #
{
ℓ ∈ {0, . . . , Lj} : Pm

j,ℓ ∩ Pm′

j′, ℓ′ 6= ∅
}
≤ #

{
ℓ ∈ {0, . . . , Lj} : PSd−1(Pm

j,ℓ) ∩ PSd−1(Pm′

j′, ℓ′) 6= ∅
}

= #
{
ℓ ∈ {0, . . . , Lj} : BSd−1(~sj,ℓ, α

m
j ) ∩BSd−1(~sj′, ℓ′ , α

m′

j′ ) 6= ∅
}

(5.7)

≤ #
{
ℓ ∈ {0, . . . , Lj} : BSd−1(~sj,ℓ, cω2

m−j) ∩BSd−1(~sj′, ℓ′ , cω2
m′−j′) 6= ∅

}

(A.2)

≤ µ
(
BSd−1(~sj′, ℓ′ , 3cω2

m>−j<)
)

µ
(
BSd−1(~sj,ℓ,

1
32

−j)
)

(A.1)

≤ Cd

cd

(
9cω2

j−j<+m>
)d−1

. 2(|j−j′|+m>)(d−1).

(5.28)

In particular, the estimate is independent of the choice of ℓ′.

Step 9 – Summing j and ℓ: The following procedure is very similar for all four terms (5.22)–(5.25), we
demonstrate the procedure with the most difficult term. With Lj . 2j(d−1) and max(m+1,m′+1) = m>+1
for (5.28), we have

∑

λ∈Λ

(
Z∗∗
λ,λ′

)p ≤
∑

j∈N0

Lj∑

ℓ=0

( ∑

m,m′≥m0

2−(m+m′)(q−d−2n− 1
2
)

∫

U⊤
j,ℓ

(Qm
j,ℓ

∩Qm′

j′, ℓ′
)

d~η

)p

p≤1

.
∑

m,m′≥m0

2−p(m+m′)(q−d−2n− 1
2
)
∑

j∈N0

Lj∑

ℓ=0

(∫

U⊤
j,ℓ

(Qm
j,ℓ

∩Qm′

j′, ℓ′
)

d~η

)p

(5.8)

≤
∑

m,m′≥m0

2−p(m+m′)(q−d−2n− 1
2
)

[
m>+3∑

j=0

(Lj + 1)
Lj

sup
ℓ=0

(∫

U⊤
j,ℓ

(Qm
j,ℓ

∩Qm′

j′, ℓ′
)

d~η

)p

+ . . .

. . .+
∑

j≥m>+4
|j−j′|≤2

Nm+1,m′+1
j,j′,ℓ′

Lj

sup
ℓ=0

(∫

U⊤
j,ℓ

(Qm
j,ℓ

∩Qm′

j′, ℓ′
)

d~η

)p
]

(5.6)

.
∑

m,m′≥m0

2−p(m+m′)(q−d−2n− 1
2
)

[
m>+3∑

j=0

(Lj + 1) 2mdp +
∑

j≥m>+4
|j−j′|≤2

Nm+1,m′+1
j,j′,ℓ′ 2mdp

]

(5.28)

.
∑

m,m′≥m0

2−p(m+m′)(q−d−2n− 1
2
)

[
m>+3∑

j=0

2j(d−1)+m>dp +
∑

j≥m>+4
|j−j′|≤2

2(|j−j′|+m>+1)(d−1)+m>dp

]

.
∑

m,m′≥m0

2−p(m+m′)(q−d−2n− 1
2
)2m>(dp+d−1) ≤

∑

m,m′≥m0

2−p(m+m′)(q−2d−2n− 1
2
− d−1

p
)

=
∑

m≥m0

2−mp(q−2d−2n− 1
2
− d−1

p
)

∑

m′≥m0

2−m′p(q−2d−2n− 1
2
− d−1

p
) =

(
cm0

1− c

)2

<∞.

Here, c := 2−p(q−2d−2n− 1
2
− d−1

p
) can be summed geometrically, since q > 2d + 2n + 3

2 + d−1
p implies c < 1.
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As we have now estimated every term in (5.27) independently of λ′, taking the supremum does not change
anything and the proof is finished.

5.3 Sparsity of P

Recall that in order for Algorithm 3.6 to converge in optimal complexity (compare Theorem 3.11), not only
F but also P need to be compressible (resp. sparse). This is formulated in the following theorem.

Theorem 5.9. Again, let Φ = (ϕλ)λ∈Λ satisfy Assumption 4.7 for 2n with d
2 < n ∈ N, and choose p ∈ R

such that 1 > p > d
2n . Then the projection P, see (4.5), is p-sparse in this frame – in other words,

∥∥P
∥∥
ℓp(Λ)→ℓp(Λ)

=
∥∥∥W〈Φ,Φ〉L2W

−1
∥∥∥
ℓp(Λ)→ℓp(Λ)

<∞.

As the proof proceeds exactly along the lines of Theorem 5.4 (but with substantial simplifications due to
the lack of the operator A), we leave it to the reader.

6 Main results

The results so far allow us to formulate the following corollary to Theorem 4.3, which, in essence, states
that the complexity of modSOLVE is linear with respect to the number of relevant coefficients of the
discretisation.

Corollary 6.1. Assume that f is σ∗-optimal (compare Definition 3.10) and that the system Fu = f has a
solution u ∈ ℓpw(Λ) for σ ∈ (0, σ∗) and p := 1

1
2
+σ

. Then the solution uε := modSOLVE[ε,F,P, f ] of the

ridgelet-based solver recovers this approximation rate – i.e.

#supp uε . ε−1/σ|u|1/σ
ℓpw(Λ)

,

and the number of arithmetic operations is at most a multiple of ε−1/σ|u|1/σ
ℓpw(Λ)

.

Finally, the last assumption – that the discretisation of typical solutions are in ℓpw(Λ) – is also satisfied
by the ridgelet discretisation. The proof of this theorem is based on arguments of [Can01] and is the subject
of an upcoming paper [GO14].

Theorem 6.2. For a function u ∈ L2(Rd) such that u, ~s · ∇u ∈ Ht(Rd) apart from discontinuities across
hyperplanes containing ~s. Then W〈Φ, u〉L2 ∈ ℓpw, the weak ℓp-space with 1

p = t
d +

1
2 . This is the best possible

approximation rate for functions in Ht(Rd) (even without singularities!).

To conclude the theoretical discussion, the bottom line is that the presented construction “sparsifies”
both the system matrix as well as typical solutions of transport problems (in the sense of compressibility
and N -term approximations, respectively), which makes it the ideal candidate for the development of fast
algorithms, as underscored also by the results of Corollary 6.1.

7 Numerical Experiments

To underpin the theoretical claims of the paper, we implemented Algorithm 3.5 in Matlab. We need to
stress, however, that as things stand, this is not a competitive solver, but rather a proof-of-concept. There
are two main caveats: APPLY is not fully adaptive – but rather uses a heuristic based on the distance
of the translations – and the necessary quadrature effort is substantial. To a degree, this is the price for
sticking close to the theory – another paper desribing an implementation based on FFT is forthcoming, see
[EGO14].
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20 21 22 23

(a) Rotational partition based on the construction from
section 4

20 21 22 23

(b) Sheared partition used for implementation

Figure 7.1: Two different partitions in Fourier space, with the support of one ridgelet on scale j = 2 shaded
in blue1. The dashed lines are the continuation of the pattern but only become relevant for the
following scale j = 3.

7.1 Implementation

As a proof-of-concept, the implementation is only 2-dimensional. The first important difference between
theory and implementation is that instead of using the rotations Rj,ℓ to generate the different ridgelets, we
use a shearing matrix

Sj,ℓ :=

(
1 ℓ

2j

0 1

)
.

The advantage of this is that the transformed grid of translations (Uj,ℓZ
d, compare Definition 4.2) becomes

invariant to the relevant shears and one can avoid tedious interpolation that would be necessary for a faithful
implementation based on rotations. The difference between the different partitions of unity is illustrated in
Figure 7.1. This change does not affect the theoretical properties, as can be shown using [GKKS14].

As in section 4, the ridgelets are constructed in the Fourier domain, for a sufficiently smooth transition
function between zero and one. In our case, we used

t(ξ) =
exp

(
− 1

ξα

)

exp
(
− 1

ξα

)
+ exp

(
− 1

(1−ξ)α

)

with α = 1.1, as opposed to the “classical” choice of α = 2 (for an example how V (j,ℓ) and W can be
constructed from t, see Appendix B). The reason for this is that the transition for α = 2 – while being C∞ –
nevertheless has a very sharp step around ξ = 0.5, which results in an unfavourable localisation in physical
space. The choice of α = 1.1 alleviates this problem to a degree.

1For the implementation, the support is actually taken together with its point-symmetric mirror image (around the origin)
to reduce the number of parameters.
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Figure 7.2: Solution to the transport equation for a smooth right-hand side (Gaussian)

We note that – while we have neglected quadrature effort in the theoretical discussion (as is usually the
case, see [Ste04]) – the actual computational cost is not negligible. Furthermore, for a good localisation of
the solution in physical space, we have chosen a relatively high value for the absorption coefficient (which is
constant in the model problem for the implementation). However, all of these caveats can be alleviated by
the above-mentioned FFT-based solver in [EGO14], although at the “cost” of a less direct relationship to the
theoretical results.

7.2 Convergence of the solver

For both smooth and singular functions, we have used Algorithm 3.6 to solve the transport equation. In
particular, we have observed that without the projection P, the results deteriorate and eventually diverge,
while with the projection, convergence can be observed. To the best of our knowledge, this is the first
time where the positive effect of such a projection is observed in practice. It is worth noting however, that
the kernels of F and P in their respective restrictions to a finite set of coefficients don’t match anymore.
This is also observed in the sense that for frames that are “too small”, the projection does not improve the
convergence.

7.2.1 Smooth functions

For smooth functions, the algorithm works as expected, as illustrated in Figures 7.2 and 7.3.

7.2.2 Functions with Singularities

The main thrust of the construction, however, is that singularities are resolved with the same N -term
approximation (and complexity) as if they weren’t there. We illustrate this with the following example in
Figure 7.4 – the right-hand side is a product of a Gaussian times a box function, rotated in a direction that
isn’t aligned with any ~sj,ℓ in the ridgelet frame (rather arbitrarily constructed from irrational numbers such

that it lies in the second octant) – ~s =
(√

2
2 ,

π
3

)⊤
, normed to 1. We use the same ~s as the transport direction
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(b) N -term approximations of outer iterations

Figure 7.3: Convergence of solver to solution in Figure 7.2. Subplot (a) shows the relative error between it-
erations, while (b) shows the N -term approximations at the end of an outer iteration (beginnings
marked in (a)) against the reference solution.

in the differential equation, which means that there is no smoothing orthogonal to ~s, and in particular, the
singularities of the right-hand side remain in the solution.

In Figure 7.5, the N -term approximation of the reference solution (which can be calculated explicitly
thanks to constant κ), compared against the N -term approximation of the numerical solution after several
outer iteration of Algorithm 3.5. Even though the functions have singularities, the N -term approximation
can be seen to converge exponentially!

In Figure 7.6, we illustrate the localisation properties of the ridgelet frame – namely, for the singular
solution from Figure 7.4, we consider the translations corresponding to the 10000 largest coefficients (of
the discretisation up to scale j = 10). As can be seen in Figure 7.6, (b)–(l), the higher the scale, the less
coefficients are active (also with diminishing maximal Euclidian norms), and the more they are aligned with
the location of the singularities. Note that the grid is only refined in one direction, which explains the
constant distance in the y-direction. Conversely, in the x-direction, what may appear like a single point are
often many points very close to each other.
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Figure 7.4: Solution to the transport equation for a singular right-hand side (box times Gaussian) with
transport direction parallel to the orientation of the singularity.

10
1

10
2

10
3

10
4

10
5

10
−4

10
−3

10
−2

10
−1

10
0

 

 

Reference

Iteration 4

Iteration 5

Iteration 6

Iteration 7

Iteration 8

Iteration 9

Figure 7.5: Comparison of the N -term approximations of the reference solution, against the N -term approx-
imations of the output of Algorithm 3.5. Even though the functions are singular, the N -term
approximations converge exponentially!
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Figure 7.6: Localisation of solution in (a) in the ridgelet frame: Subplots (b)–(l) show the translations
corresponding to the 10000 largest coefficients (up to scale j = 10) within a given scale. At high
scales, only coefficients close to the singularities are active – as expected.
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Appendix A Geometric Considerations

A.1 Basic Properties of the Hypersphere

For various estimates, we need properties of the (d− 1)-dimensional hypersphere Sd−1 =
{
~x ∈ Rd : |x| = 1

}
,

which we equip it with the geodesic metric

distSd−1(~s,~s′) = arccos(~s ·~s′).

Naturally, an equivalent metric would make no difference other than changing some constants. For conve-
nience we extend distSd−1 to a pseudo-metric on Rd by taking

distSd−1(~x,~x′) = arccos
(
PSd−1(~x) · PSd−1(~x′)

)
= arccos

(
~x

|~x| ·
~x′

|~x′|

)
.

Remark A.1. For ~s ∈ Sd−1, straight-forward calculus shows that the geodesic metric is equivalent to the
Euclidian metric,

|~s−~s′| ≤ arccos(~s ·~s′) ≤ π

2
|~s−~s′|.

The construction of the ridgelet frame uses window functions supported on “balls” in this metric space,

BSd−1(~s, α) :=
{
~s′ ∈ Sd−1 : distSd−1(~s,~s′) < α

}
,

appropriately called hyperspherical caps. For α > π, we define BSd−1(~s, α) as the whole sphere Sd−1. These
are closely related with the solid angle corresponding to α, which we estimate in the following lemma.

Lemma A.2. The d-dimensional solid angle corresponding to opening angle α can be estimated by

Ωd(α) :=
µ
(
BSd−1(~s, α2)

)

µ(Sd−1)
. αd−1,

where µ is the canonical surface measure of Sd−1. For α1 ≤ π
2 and arbitrary α2 > 0,

µ
(
BSd−1(~s, α2)

)

µ
(
BSd−1(~s, α1)

) ≤ Cd

cd

(
α2

α1

)d−1

, (A.1)

where cd, Cd are constants that only depend on d.

Proof. The area of the hyperspherical cap for arbitrary but fixed ~s ∈ Sd−1 and opening angle α ∈ [0, π2 ]
can be calculated (see [Li11]) as follows. The idea is that the intersection of Sd−1 with an affine hyperplane
perpendicular to ~s is a (d− 2)-dimensional sphere (if the intersection is not empty) – all its points have the
same angle to ~s, say ϑ, in which case the radius of this lower-dimensional sphere is sinϑ. Integrating over
this angle ϑ between 0 and α will then yield the desired area. From this we obtain the solid angle by dividing
through the area of the whole sphere. Denoting by

Si(r) =
2π

i+1

2

Γ( i+1
2 )

ri

the surface area of the i-dimensional hypersphere with radius r, we calculate

Ωd(α) =
1

Sd−1(1)
µ
(
BSd−1(~s, α)

)
=

1

Sd−1(1)

∫ α

0

Sd−2(sinϑ) dϑ

=
Γ(d2 )

2π
d
2

2π
d−1

2

Γ(d−1
2 )

∫ α

0

(sinϑ)︸ ︷︷ ︸
≤ϑ

d−2 dϑ ≤ 1

B(d−1
2 , 12 )

1

d− 1
αd−1 . αd−1,
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where B(x, y) is the beta function. The same argument can be used to yield (use e.g. sinϑ ≥ ϑ
2 for the lower

estimate), for α ∈ [0, π2 ],

cd α
d−1 ≤ µ

(
BSd−1(~s, α)

)
≤ Cd α

d−1.

Subsequently, for two angles α1, α2, the inequality

µ
(
BSd−1(~s, α2)

)
≤ Cd α

d−1
2 ≤ Cd

cd

(
α2

α1

)d−1

µ
(
BSd−1(~s, α1)

)

holds as long as α1 ≤ π
2 , which finishes the proof.

A.2 Construction of the ~sj,ℓ

The construction of the ψj,ℓ (see [Gro11]) requires a sequence of points on the sphere with particular prop-
erties. The following proposition collects these properties and some consequences.

Proposition A.3. For fixed α > 0, there exists a sequence {~sℓ}ℓ∈{0,...,L} such that

L⋃

ℓ=0

BSd−1(~sℓ, α) = Sd−1, BSd−1

(
~sℓ,

α

3

)
are pairwise disjoint,

and L .
(
1
α

)d−1
. Additionally, for an arbitrary cap of opening angle α′ (and possibly using dilation q, q′ > 0),

the number of non-empty intersections of the sequence with this cap can be estimated by

#
{
ℓ ∈ {0, . . . L} : BSd−1(~sℓ, qα) ∩BSd−1(~s ′, q′α′)

}
≤ µ

(
BSd−1(~s ′, 3(qα)>)

)

µ
(
BSd−1(~sℓ,

α
3 )
) , (A.2)

where (qα)> := max(qα, q′α′).

Proof. The construction of the sequence (and the idea for the estimate below) can be found in [BN07]. We
note that for α > π, we simply choose ~s0 := ~e1.

To estimate the number of intersections for two such sequences, we let ν(~s ′, α, α′) :=
{
~s ∈ Sd−1 : BSd−1(~s, α)∩

BSd−1(~s ′, α′) 6= ∅
}
and see that

⋃

~s∈ν(~s′,α,α′)

BSd−1(~s, α) ⊆ BSd−1(~s ′, α′ + 2α) ⊆ BSd−1(~s ′, 3α>).

In particular, all member sets of our covering having non-empty intersection with BSd−1(~s ′, α′) are contained
in BSd−1(~s ′, 3α>). Consequently, the number of non-empty intersections BSd−1(~sℓ, α) ∩BSd−1(~s ′, α′) can be
estimated by assuming that BSd−1(~s ′, 3α>) is perfectly filled out by the disjoint sets BSd−1(~sℓ,

α
3 ). In other

words,

#
{
ℓ ∈ {0, . . . L} : BSd−1(~sℓ, α) ∩BSd−1(~s ′, α′)

}
≤ µ

(
BSd−1(~s ′, 3α>)

)

µ
(
BSd−1(~sℓ,

α
3 )
) .

In particular, by setting α′ > π
3 , we obtain

#{0, . . . , L} ≤ µ
(
Sd−1

)

µ
(
BSd−1(~sℓ,

α
3 )
)

(A.1)

.
1

αd−1
,

which is the desired estimate. In the case that dilations q, q′ > 0 are applied after the construction, we argue
in a similar fashion, now using the disjoint sets BSd−1(~sℓ,

α
3 ) to fill out the dilated sets BSd−1(~s ′, 3(qα)>) ⊇

BSd−1(~s ′, qα+ 2q′α′), thus

#
{
ℓ ∈ {0, . . . L} : BSd−1(~sℓ, qα) ∩BSd−1(~s ′, q′α′)

}
≤ µ

(
BSd−1(~s ′, 3q>α>)

)

µ
(
BSd−1(~sℓ,

α
3 )
) .

This finishes the proof.
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A.3 Properties of Uj,ℓ and Pj,ℓ

Lemma A.4. For ~s, ~s′ ∈ Sd−1 there exist rotations R~s, R~s′ which map ~e1 to ~s, ~s′ respectively, such that

‖R~s −R~s′‖ . distSd−1(~s,~s′). (A.3)

Proof. We only consider the case d > 2 since the other cases are trivial.
Step 1: For any fixed δ > 0 it suffices to consider points with

distSd−1(~s,~s′) < δ. (A.4)

To see this, assume that
distSd−1(~s,~s′) ≥ δ.

In this case we have the trivial estimate

‖R~s −R~s′‖ ≤ ‖R~s‖+ ‖R~s′‖ = 2 ≤ 2

δ
δ ≤ 2

δ
distSd−1(~s,~s′).

Therefore it is no loss in generality to assume that (A.4) holds for a suitably small and henceforth fixed
δ > 0. This implies, by applying a suitable rotation, that both ~s, ~s′ can be assumed to lie in a fixed small
neighborhood around ~e1.
Step 2: We first consider the case d = 3. Then we can write each ~t ∈ Sd−1 as

~t =
(
cos(θ) cos(ψ),− cos(θ) sin(ψ), sin(θ)

)⊤
.

For ~t in a sufficiently small neighborhood of ~e1, the assignment

Φ: ~t 7→ (θ, ψ)

is smooth. Define

R~t :=




cos(θ) cos(ψ) sin(ψ) − sin(θ) cos(ψ)
− cos(θ) sin(ψ) cos(ψ) sin(θ) sin(ψ)

sin(θ) 0 cos(θ)


,

where (θ, ψ) are defined by Φ(~t). Since Φ is smooth, the assignment ~t 7→ R~t is smooth in a neighborhood of
~e1 and therefore Lipschitz – this implies (A.3) for d = 3.
Step 3: Now assume d general. Pick an ONB

{
~e1,~e

′
2, . . . ,~e

′
d

}
such that ~s,~s′ lie in the span of ~e1, ~e

′
2, ~e

′
3

and set
E~s,~s′ =

(
~e1

∣∣~e′2
∣∣ . . .

∣∣~e′d
)
.

Using this coordinate system, we may define the matrix R~t for any ~t = v1(~t)~e1 + v2(~t)~e
′
2 + v3(~t)~e

′
3 ∈

span
{
~e1, ~e

′
2, ~e

′
3

}
∩ Sd−1 – sufficiently close to ~e1 – as follows:

R~t : R
d ∋ v 7→ E~s,~s′

(
R
(v1(~t),v2(~t),v3(~t))

⊤ × Id−3

)
E−1
~s,~s′v ∈ Rd,

where the matrix R
(v1(~t),v2(~t),v3(~t))

⊤ × Id−3 ∈ Rd×d applies R
(v1(~t),v2(~t),v3(~t))

⊤ – as defined above for three

dimensions – to the first three coordinates and leaves the other coordinates invariant. This matrix maps
~e1 to ~t as desired and it is smooth in ~t with the same Lipschitz constant as the matrix R

(v1(~t),v2(~t),v3(~t))
⊤ .

Therefore we may use this Lipschitz property to establish that

‖R~s −R~s′‖ . distSd−1(~s,~s′)

as required.
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Lemma A.5. For the matrix Uj,ℓ = R−1
j,ℓD2−j we have the inverse estimate

∣∣U−1
j,ℓ ~s

∣∣ ≤ w(λ), (A.5)

where the w(λ) = 1 + 2j |~s ·~sj,ℓ| is again the weight of the preconditioning matrix.
Additionally, for Uj′, ℓ′ = R−1

j′, ℓ′D2−j with Rj′, ℓ′ such that (A.3) holds for ~s = ~sj,ℓ and ~s′ = ~sj′, ℓ′ , we have

∥∥U−1
j,ℓ Uj′, ℓ′

∥∥ . max(2j−j′ , 1) + 2jdistSd−1(~sj,ℓ,~sj′, ℓ′), (A.6)

and
∣∣U−1

j,ℓ ~s
∣∣ . max(2j−j′ , 1)

(
w(λ′) + 2j

′

distSd−1(~sj,ℓ,~sj′, ℓ′)
)
.

Proof. For (A.5), the components have to be computed individually (using the orthogonality of the rotation),

U−1
j,ℓ ~s = D2jRj,ℓ~s = D2j



~e1 ·Rj,ℓ~s
~e2 ·Rj,ℓ~s

...


= D2j



R−1

j,ℓ~e1 ·~s
R−1

j,ℓ~e2 ·~s
...


= D2j




~sj,ℓ ·~s
R−1

j,ℓ~e2 ·~s
...


=




2j~sj,ℓ ·~s
R−1

j,ℓ~e2 ·~s
...


,

and consequently, since all but the first component have modulus less than 1,
∣∣U−1

j,ℓ ~s
∣∣ ≤ max

(
2j |~s ·~sj,ℓ|, 1

)
≤ w(λ).

Denoting the identity by I, we begin the proof of (A.6) by considering the matrix Rj,ℓR
−1
j′, ℓ′ – exploiting

the orthogonality of the Rj,ℓ and Lemma A.4 to yield
∥∥Rj,ℓR

−1
j′, ℓ′ − I

∥∥ =
∥∥Rj′, ℓ′ −Rj,ℓ

∥∥ . distSd−1(~sj,ℓ,~sj′, ℓ′).

Thus, we can estimate
∥∥U−1

j,ℓ Uj′, ℓ′
∥∥ =

∥∥D2jRj,ℓR
−1
j′, ℓ′D2−j′

∥∥ =
∥∥D2j−j′ +D2j (Rj,ℓR

−1
j′, ℓ′ − I)D2−j′

∥∥

. max(2j−j′ , 1) + 2jdistSd−1(~sj,ℓ,~sj′, ℓ′).

Finally, for the last inequality, we compute

U−1
j,ℓ = D2jRj,ℓ = D2j−j′D2j′Rj,ℓR

−1
j′, ℓ′Rj′, ℓ′ = D2j−j′

(
U−1
j′, ℓ′ +D2j′ (Rj,ℓR

−1
j′, ℓ′ − I)Rj′, ℓ′

)
,

and after multiplying with ~s and taking the modulus, we use the above results to arrive at
∣∣U−1

j,ℓ ~s
∣∣ . max(2j−j′ , 1)

(
w(λ′) + 2j

′

distSd−1(~sj,ℓ,~sj′, ℓ′)
)
,

which is what we wanted to prove.

Proposition A.6. For j ≥ 1, the transformation U⊤
j,ℓ takes the “tiles” Pj,ℓ back into a bounded set around

the origin (illustrated in Figure A.1),

U⊤
j,ℓPj,ℓ ⊆

[
1

2
cos(αj), 2

]
× P(span{~e1})⊥

(
BRd(0, 4)

)
⊆ BRd(0, 5). (A.7)

The Minkowski sums Pm
j,ℓ := Pj,ℓ +BRd(0, 2m) behave similarly,

U⊤
j,ℓ(P

m
j,ℓ) ⊆ BRd(0, 5 + 2m). (A.8)

More importantly, we can calculate the opening angle of the cone containing Pj,ℓ as follows,

αm
j = αj + arcsin

(
2m

2j−1

)
≤ cω2

m−j , (A.9)

as long as j ≥ m+ 1, where cω ≤ π + 2.
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(
1
4 , 4

) (
2, 4

)

Figure A.1: U⊤
j,ℓPj,ℓ for arbitrary ℓ and j = 1, . . . , 3. For better legibility, the y-axis is scaled down by a

factor of 2.

Proof. From the definition of ψj,ℓ (see (4.2)), we see that its support Pj,ℓ is contained in the intersection
between a spherical shell (between radii 2j−1 and 2j+1) and a cone around~sj,ℓ with opening angle αj = 2−j+1.
The rotation in U⊤

j,ℓ = D2−jRj,ℓ brings the axis of this cone into ~e1. We see that the smallest value of η1 for

~η ∈ U⊤
j,ℓPj,ℓ is 2−j2j−1 cos(αj) =

1
2 cos(αj) >

1
4 since αj = 2−j+1 ≤ 1 < π

3 for j ≥ 1.
The largest extent perpendicular to ~e1 can be calculated as

2j+1 cosαj sinαj = 2j sin 2αj ≤ 2j · 2αj = 4,

which proves (A.7). (A.8) follows immediately because the contraction D2−j can not enlarge the distance
2m to Pj,ℓ. We note that choosing a different

R̃j,ℓ =

(
1 0

0 R̃

)
Rj,ℓ

with R̃ ∈ SO(d − 1) yields exactly the same set, since the rotation R̃ leaves disks (in d − 1 dimensions)

invariant, i.e. R̃ BRd−1(0, 4) = BRd−1(0, 4).
By elementary geometric considerations (compare Figure A.2), we see that

αm
j = αj + arcsin

(
2m

2j−1

)
≤ αj + π2m−j = 2m−j(2−m+1 + π) ≤ cω2

m−j ,

since arcsinx ≤ π
2x. The estimate can be made as long as j ≥ m + 1 and for all m ≥ 0, cω ≤ π + 2. This

finishes the proof.

Lemma A.7. Let j′, ℓ′ as well as m,m′ be fixed and denote m> := max(m,m′). If j ≥ m> + 3, the
intersections Pm

j,ℓ ∩ Pm′

j′, ℓ′ can only be non-empty if j, ℓ satisfies

|j − j′| ≤ 2 and distSd−1(~sj,ℓ,~sj′, ℓ′) ≤ 5cω2
m>−j . (A.10)
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Pm
j,l

Pj,l

αm
j

αj

2j−1

2m

arcsin

(
2m

2j−1

)

Figure A.2: The angle αm
j can be computed explicitly

For the complementary case j ≤ m> + 2, we are not able to restrict the contributing indicies and have to
assume the worst-case scenario. Put together, we have the inclusion

{
(j, ℓ) : Pm

j,ℓ ∩ Pm′

j′, ℓ′ 6= ∅
}
⊆

{
(j, ℓ) : j ≥ m> + 3, (A.10) satisfied

}
∪
{
(j, ℓ) : j ≤ m> + 2, ℓ ∈ {0, . . . , Lj}

}
.

Proof. For fixed j′, ℓ′, the a necessary condition for the intersection Pm
j,ℓ ∩ Pm′

j′, ℓ′ to be non-empty is

2j
′+1 + 2m

′

> 2j−1 − 2m and 2j
′−1 − 2m

′

< 2j+1 + 2m.

For |j − j′| ≤ 2 this can always be satisfied for any m ≥ 0. For |j − j′| ≥ 3, one can check that it’s only
possible for m> > j − 3. Said otherwise, if j ≥ m> + 3, then all intersections must satisfy |j − j′| ≤ 2. This
is illustrated in Figure A.3.

In terms of the angle, we observe that the Minkowksi sums Pm
j,ℓ cannot anymore be easily described as

the intersection of a spherical shell with a cone having its apex in the origin. However, it is still possible to
find such a cone which contains Pm

j,ℓ, having an enlarged opening angle αm
j > αj . By construction, we have

that distSd−1(~sj,ℓ,~sj′, ℓ′) ≤ αm
j + αm′

j′ must be satisfied for the intersection to be non-empty. Naturally, these
quantities can be estimated (see Proposition A.6),

αm
j

(A.9)

≤ cω2
m−j , αm′

j′

(A.9)

≤ cω2
m′−j′ ,

as long as j ≥ m+ 1 and j′ ≥ m′ + 1, respectively. We can relate both quantities to j′, since by the above
condition for j, we see that αm

j + αm′

j′ ≤ (4 + 1)cω2
m>−j′ .

Since j′ is arbitrary, we cannot make any restrictions on it – however, we can use the fact that for
j ≥ m> + 3, the above consideration in terms of scale still hold, and that in this case |j − j′| ≤ 2 has to
be satisfied. This gives us the desired condition j′ ≥ m> + 1, which allows us to use the estimates for the
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24 25 26

(a) Normal scaling

21 22 23 24 25 26

(b) Logarithmic (base 2) scaling of the radius

Figure A.3: Both subplots illustrate the argument of Lemma A.7, that for |j − j′| = 3, m = m′ = m> =
j< = j> − 3 does not lead to an intersection

opening angles of the bounding cones. Collectively, these observations yield that Pm
j,ℓ ∩ Pm′

j′, ℓ′ 6= ∅ implies

|j − j′| ≤ 2 and distSd−1(~sj,ℓ,~sj′, ℓ′) ≤ 5cω2
m>αj′ ,

as long as j ≥ m> + 3. In other words,

{
(j, ℓ) : Pm

j,ℓ ∩ Pm′

j′, ℓ′ 6= ∅
}
⊆

{
(j, ℓ) : j ≥ m> + 3, (A.10) satisfied

}
∪
{
(j, ℓ) : j ≤ m> + 2, ℓ ∈ {0, . . . , Lj}

}
,

where we have assumed the worst-case scenario for j < m> + 3.

Appendix B A Suitable Choice of Window Functions

To prove that Assumption 4.7 is satisfiable, we show a possible way of constructing the window functions
such that the assumption holds. Independent of the specific form of the function, the key property we need
to show the desired estimates, is that the function G(x) below is constant for x < 1.

Lemma B.1. Choose

t(x) :=
exp

(−1
x2

)

exp
(−1
x2

)
+ exp

( −1
(1−x)2

) .

as a C∞ transition t : [0, 1] → [0, 1] with t(0) = 0 and t(1) = 1. Using this function, we construct

T (x) =





1, 0 ≤ x < 1,

t(1− x), 1 ≤ x ≤ 2,

0, 2 < x.
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Setting

V (j,ℓ)(~ξ) := T

(
2j arccos

( ~ξ

|~ξ|
·~sj,ℓ

))
= T

(
2jdistSd−1(~ξ,~sj,ℓ)

)
.

and

W (x) :=

{
sin(π2 t(x− 1)) 1 ≤ x ≤ 2,

cos(π2 t(
x
2 − 1)) 2 < x ≤ 4.

Then Assumption 4.7 holds.

Proof. Since the argument of the arctan is independent of the length, V (j,ℓ) is homogeneous of degree
zero – multiplicative constants in the argument do not change the result. Consequently, we may omit the
normalising factor for this particular choice of V (j,ℓ).

To estimate the derivatives of

ψ̂(j,ℓ)(~η) := ψ̂j,ℓ(U
−⊤
j,ℓ ~η) =

W
(
2−j |D2j~η|

)
V (j,ℓ)

(
D2j~η

)
√
Φ(U−⊤

j,ℓ ~η)
,

with arbitrary Rj,ℓ in Uj,ℓ = R−1
j,ℓD2−j , we have to estimate the derivatives of W , V (j,ℓ) and Φ – all three

share the restriction that ~η must lie in the support of the numerator of ψ̂j,ℓ, U
⊤
j,ℓPj,ℓ, see Definition 4.1.

For Φ, we see by (4.6), that for ~η ∈ U⊤
j,ℓPj,ℓ, the sum only consists of only a few terms with indices “close

to” j and ℓ,

Φ(U−⊤
j,ℓ ~η) =

∑

j′∈N0:
|j−j′|≤1

∑

ℓ′∈{0,...,Lj′}:
dist

Sd−1 (~sj,ℓ,~sj′, ℓ′ )≤3αj

W
(
2−j′ |D2j~η|

)2
V (j′, ℓ′)

(
R−1

j,ℓD2j~η
)2

.

Again, we can rewrite the function V (j′, ℓ′),

V (j′, ℓ′)
(
R−1

j,ℓD2j~η
)
= T

(
2j arccos

(
R−1

j,ℓ

D2j~η

|D2j~η|
·~sj′, ℓ′

))
= T

(
2j arccos

(
R−1

j,ℓ

D2j~η

|D2j~η|
·R−1

j′, ℓ′~e1

))

= T

(
2j arccos

(
Rj′, ℓ′R

−1
j,ℓ

D2j~η

|D2j~η|
·~e1

))
= V (j′′,0)

(
Rj′, ℓ′R

−1
j,ℓD2j~η

)
,

where Rj′, ℓ′ can be any rotation taking ~sj′, ℓ′ to ~e1 – we choose it such that the transformation Rj′, ℓ′R
−1
j,ℓ is

“close to” the identity, see Lemma A.4,
∥∥Rj′, ℓ′R

−1
j,ℓ − I

∥∥ . distSd−1(~sj,ℓ,~sj′, ℓ′)

Therefore, instead of proving the estimates for V (j,0)
(
D2j~η

)
and V (j′,0)

(
Rj′, ℓ′R

−1
j,ℓD2j~η

)
separately, we con-

sider V (j′,0)(~ζ), where we let M = (mi,k)
d
i,k=1 be a general matrix and set ~ζ :=M D2j~η – in other words,

ζi = mi,12
jη1 +mi,2η2 + . . .+mi,dηd, i = 1, . . . , d

for the i-th entry. Alternatively, instead of applying Rj′, ℓ′R
−1
j,ℓ to

D
2j

~η

|D
2j

~η| , we could have shifted both transfor-

mations to ~e1, which would eliminate some difficulties (no chain rule necessary, see below), but complicate
other estimates, especially (B.3).

As indicated above, the matrixM will be the identity or very close to it. In particular, forM := Rj′, ℓ′R
−1
j,ℓ ,

the equivalence of all norms on Rd×d implies that we can estimate the individual matrix entries,

|mi,k − δi,k| ≤
∥∥Rj′, ℓ′R

−1
j,ℓ − I

∥∥
Fro

≤ cFro
∥∥Rj′, ℓ′R

−1
j,ℓ − I

∥∥ ≤ cFro6cR~s
2−j =: cI2

−j , (B.1)
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which allows us to choose j0 such that for all j ≥ j0,

mi,i ≥
1

2 cos(α1)
= 0.925 . . . as well as 2j ≥

√
32(d− 1)cI. (B.2)

We can now investigate the support of (the derivatives of) V (j′,0)(~ζ). The main point here is that since
T (x) = 1 for x < 1, the derivatives vanish there as well and thus we obtain a lower bound for the angle,

arccos

(
ζ1√

ζ21 + . . .+ ζ2d

)
≥ 2−j′ ⇐⇒ ζ21 ≤ (ζ21 + . . .+ ζ2d) cos(2

−j′)2

⇐⇒ ζ21 sin(2
−j′)2 ≤ (ζ22 + . . .+ ζ2d) cos(2

−j′)2 (B.3)

⇐⇒ ζ21 tan(2
−j′)2 ≤ ζ22 + ζ22 + . . .+ ζ2d .

We want to derive a lower bound for the right hand side independently of j, and thus we return to

|ζ1| = |m1,12
jη1 +m1,2η2 + . . .+m1,dηd| ≥ m1,12

j |η1| − |m1,2η2 + . . .+m1,dηd|,

where the second term can be estimated as follows

|m1,2η2 + . . .+m1,dηd|
(B.1)

≤ (d− 1)cI2
−j

√
η22 + . . .+ η2d

(A.7)

≤ 2−j+2(d− 1)cI.

Together with (B.2) and (A.7), we see that

|ζ1| ≥ 2j
cos(αj)

4 cos(α1)
− 2−j+2(d− 1)cI ≥ 2j

(
1

4
− 1

8

)
= 2j−3,

because cos(αj) ≥ cos(α1), yielding the desired lower estimate for ~ζ,

√
ζ22 + ζ22 + . . .+ ζ2d ≥ tan(2−j′)|ζ1| ≥ 2−j′+j−3 ≥ 2−4,

since tan(x) ≥ x.
Now we are fully equipped to tackle the derivatives of

V (j′, ℓ′)
(
R−1

j,ℓD2j~η
)
= V (j′,0)(T D2j~η) = V (j′,0)(~ζ) = T

(
2j

′

arccos

(
ζ1

|~ζ|

))
,

where it suffices to control the derivatives of 2j
′

arccos
(
ζ1
|~ζ|

)
, since G ∈ C∞ and does not depend on j. We

calculate for 2 ≤ k ≤ d

∂

∂ηk
arccos

(
ζ1

|~ζ|

)
=

−1√
1− ζ2

1

ζ2
1
+...+ζ2

d

(
m1,k

(
ζ21 + . . .+ ζ2d

)
− ζ21m1,k

√
ζ21 + . . .+ ζ2d

3 − 2 ζ2m2,k + . . .+ 2 ζdmd,k

2
√
ζ21 + . . .+ ζ2d

3

)

=
−
√
ζ21 + . . .+ ζ2d√
ζ22 + . . .+ ζ2d

(
m1,k

(
ζ22 + . . .+ ζ2d

)
√
ζ21 + . . .+ ζ2d

3 − ζ2m2,k + . . .+ ζdmd,k√
ζ21 + . . .+ ζ2d

3

)

=
−m1,k

√
ζ22 + . . .+ ζ2d

ζ21 + . . .+ ζ2d
− 1(

ζ21 + . . .+ ζ2d
)√

ζ22 + . . .+ ζ2d

(
ζ2m2,k + . . .+ ζdmd,k

)
.

The case k = 1 is the same, except for an additional factor 2j everywhere, due to the definition of ~ζ.
By induction, we extend this to higher derivatives, using standard multi-index notation. We only care

about the kinds of terms that will appear, but not their respective weights – exact calculation is certainly
possible, but only by not investigating the constants are we able to present a proof of acceptable length.
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As might be expected from looking at the definition of ~ζ (and the first derivative above), we will get
a mn,k-factor for each derivative after ηk, depending on which component ζn with n ∈ {1, . . . , d} is being
derived. To compress this notation, we let ~a be a vector in {1, . . . , d}|α| (as it is necessary to choose one
component for each derivative), and denote

m~a,α :=

d∏

k=1

∑k
r=1

αr∏

n=
∑k−1

r=1
αr+1

man,k.

Apart from this, operations of the multi-indices are to be interpreted componentwise. Lastly, since |j−j′| ≤ 1,
we can replace 2j

′

with 2j up to a constant. This leads to the promised result of the induction,

∂|α|

∂~ηα
2j arccos

(
ζ1

|~ζ|

)
=

∑

β+γ+δ=α
δ≤β+γ
|β|≥1

∑

~a′∈{1,...,d}|β|+|δ|

~b
′∈{2,...,d}|γ|

c
α,β,~a′,γ,~b

′
,δ

2j(α1+1)m~a′,β m~b,γ
~ζ
β+γ−δ

(
ζ21 + . . .+ ζ2d

)|β|√
ζ22 + . . .+ ζ2d

2|γ|+1
+ . . .

. . .+
∑

β+γ+δ=α
δ≤β+γ

|β+γ+δ|=|α|−1

∑

~a′∈{1,...,d}|β|+|δ|+1

~b
′∈{2,...,d}|γ|

d
α,β,~a′,γ,~b

′
,δ

2j(α1+1)m~a′,β m~b,γ
~ζ
β+γ−δ

(
ζ21 + . . .+ ζ2d

)|β|+1√
ζ22 + . . .+ ζ2d

2|γ|−1
.

Note, that in the second sum, the constant dα,... is zero unless the vector ~a′ contains an entry which is 1 –

in fact, all changes in the second sum boil down to requiring that at least once, the component of ~ζ being
derived was ζ1. In the first sum there is a somewhat complementary condition, namely that cα,... is zero
unless at least one entry of ~a′ does not contain 1.

The reward for this rather unwieldy formula is that we are now able to prove that it can be bounded
independently of j. The goal is to balance the powers of 2j in numerator and denominator – the other factor
in the denominator is unproblematic because we derived

√
ζ22 + . . .+ ζ2d ≥ 2−4 above.

Since we know |ζ1| & 2j , the exponent of 2j in the denominator is 2|β| and 2|β|+ 2, respectively. In the

numerator of the first sum, powers of 2j may appear in ~ζ
β+γ−δ

, and thus the exponent is at worst

α1 + 1 + |β + γ − δ| ≤ |α|+ |β|+ |γ| − |δ|+ 1 = 2|β|+ 2|γ|+ 1,

using the decomposition of α and the fact that the “absolute value” of a multi-index is linear. At this
point we have to exploit the proximity of M to the identity matrix, which implies that off-diagonal elements
satisfy mi,k ≤ cI 2

−j as derived above. Since the powers of 2j can only appear when deriving by η1, and

m~b
′
,γ ∼ 2−j|β′| can never yield an index 1 in the first component (by the restriction on ~b

′
), it follows that

the term 2|γ| can be eliminated. Lastly, as we mentioned above, one component of ~a′ must also not be equal
to 1, and thus we can eliminate the term “+1” as well, and have balanced the powers of 2j in the first term.

For the second sum we proceed similarly, the worst exponent in the numerator is

α1 + 1 + |β + γ − δ| ≤ |α|+ |β|+ |γ| − |δ|+ 1 = 2|β|+ 2|γ|+ 2,

by the same argument as above, taking the different decomposition of α into account. The 2|γ|-term is
eliminated like before and this concludes the hardest part.

Wrapping everything up, we now see that V (j′,0)
(
M D2j~η

)
has bounded derivatives for η ∈ U⊤

j,ℓ. The

derivatives of the function W
(
2−j′ |D2j~η|

)
are much easier to handle, because W ∈ C∞ is benign and the

inner derivatives

∂|α|

∂~ηα
2−j′ |D2j~η| =

∑

β+γ=α
γ≤β

2−j′+jα1~ηβ−γ

√
22jη21 + η22 + . . .+ η2d

2|β|−1
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are (more than) balanced in terms of powers of 2j since η1 ≥ 1
4 and |j − j′| ≤ 1. Together, this implies that

the derivatives of Φ(U−⊤
j,ℓ ~η) are bounded independently of j for ~η ∈ U⊤

j,ℓPj,ℓ. For the numerator of ψ(j,ℓ), we
insert M = I and j′ = j into the above equations, which finally proves Assumption 4.7 for the presented
choice of window functions.

Appendix C Derivatives and Convolutions

In the proof of Theorem 5.4, we need to explicitly calculate terms of the form ∆n(fg). Although we are
not aware of any reference, the formula below is almost certainly known already. However, it seems to be
sufficiently non-standard to justify exploring it in a little bit more detail.

Proposition C.1. For two sufficiently smooth functions f, g : Rd → C, the product rule for the Laplacian
reads as follows,

∆n(fg) =
∑

j+k1+k2=n

2j
(

n

j, k1, k2

) ∑

|α|=j

∂|α|

∂~ηα
(
∆k1f

)∂|α|
∂~ηα

(
∆k2g

)
, (C.1)

where

(
n

j, k1, k2

)
=

n!

j! k1! k2!
is the trinomial coefficient and the differential operator ∂|α|

∂~ηα in standard multi-

index notation operates on the different coordinates of ~η,

∂|α|

∂~ηα
=

∂α1+...+αd

∂ηα1

1 . . . ∂ηαd

d

.

Remark C.2. If we interpret ∇ as an operator taking a tensor of order i to a tensor of order i + 1, then
(C.1) can be written even more compactly,

∆n(fg) =
∑

j+k1+k2=n

2j
(

n

j, k1, k2

)〈
∇j

(
∆k1f

)
,∇j

(
∆k2g

)〉
Fro
,

where 〈A,B〉Fro is the sum over all componentwise products of the two tensors – i.e. the tensor analogue of
the Frobenius inner product for matrices (which induces the Frobenius norm). We note that it’s possible to
generalise this formula to a product

∏q
i=1 fi with q ∈ N as well.

As an unrelated observation, setting d = 1 and comparing coefficients with the standard product rule
yields a curious relation between bi- and trinomial coefficients,

(
2n

ℓ

)
=

⌊ ℓ
2⌋∑

k=0

2ℓ−2k

(
n

ℓ− 2k, k, n+ k − ℓ

)
=

⌊ ℓ
2⌋∑

k=max(ℓ−n,0)

2ℓ−2kn!

(ℓ− 2k)! k! (n+ k − ℓ)!
,

and in particular,

(2n)! =

⌊n
2 ⌋∑

k=0

2n−2k(n!)3

(n− 2k)! (k!)2
.
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Proof. The proof is a simple induction – the case n = 0 is trivial. For n→ n+ 1 we consider

∆n+1(fg) = ∆

( ∑

j+k1+k2=n

2j
(

n

j, k1, k2

)〈
∇j

(
∆k1f

)
,∇j

(
∆k2g

)〉
Fro

)

=
∑

j+k1+k2=n

2j
(

n

j, k1, k2

)(〈
∇j

(
∆k1+1f

)
,∇j

(
∆k2g

)〉
Fro

. . .+

. . .+ 2
〈
∇j+1

(
∆k1f

)
,∇j+1

(
∆k2g

)〉
Fro

+
〈
∇j

(
∆k1f

)
,∇j

(
∆k2+1g

)〉
Fro

)

=
∑

j+k1+k2=n+1

2j
((

n

j, k1 − 1, k2

)
+

(
n

j − 1, k1, k2

)
+

(
n

j, k1, k2 − 1

))〈
∇j

(
∆k1f

)
,∇j

(
∆k2g

)〉
Fro
,

where for the last equation, we performed an index shift for each of the three summands independently (in
k1, j, k2, respectively) and were able to extend the range of the indices because all additional terms have a
trinomial coefficient of zero (either one entry is negative or the sum j + k1 + k2 is greater than n). At this
point we need an analogous result to a well-known property of Pascal’s triangle, namely

(
n

j − 1, k1, k2

)
+

(
n

j, k1 − 1, k2

)
+

(
n

j, k1, k2 − 1

)
=
n!(j + k1 + k2)

j! k1! k2!
=

(n+ 1)!

j! k1! k2!
=

(
n+ 1

j, k1, k2

)
,

since j + k1 + k2 = n+ 1. This finishes the proof.

An immediate corollary to Proposition C.1 is the following.

Corollary C.3. Under the same assumptions as in Proposition C.1, we have

∣∣[∆n
(
fg

)]
(~η)

∣∣ ≤ (4d)n|f(~η)|C2n |g(~η)|C2n ≤ (4d)n‖f‖C2n‖g‖C2n ,

where |f(~η)|C2n = max0≤r≤2n |f (r)(~η)| is the maximum of all derivatives up to order 2n of f at ~η.

Proof. The sum
∑

|α|=j consists of dj terms. This can be seen since the sum can also be interpreted as

selecting j (possibly redundant) coordinates from {1, . . . , d} – a vector in {1, . . . , d}j . Alternatively, one can
use multinomials for selecting multiplicities α1, . . . , αd which sum to j.

Similarly, the operator ∆k consists of
(
d+k−1

k

)
≤ dk terms (which corresponds to choosing k out of d

elements with repetitions). With this in mind, taking the absolute value of (C.1) leads to

∣∣∆n
(
f(~η)g(~η)

)∣∣ =
∣∣∣∣

∑

j+k1+k2=n

2j
(

n

j, k1, k2

) ∑

|α|=j

∂|α|

∂~ηα
(
∆k1f(~η)

)∂|α|
∂~ηα

(
∆k2g(~η)

)∣∣∣∣

≤
∑

j+k1+k2=n

2j
(

n

j, k1, k2

)
dj+k1+k2 |f(~η)|Cj+2k1 |g(~η)|Cj+2k2

≤ (4d)n|f(~η)|C2n |g(~η)|C2n ≤ (4d)n‖f‖C2n‖g‖C2n ,

where we used the identity
∑

j+k1+k2=n(2d)
jdk1dk2

(
n

j,k1,k2

)
= (4d)n, which is immediate by setting (a, b, c)

to (2d, d, d) in the trinomial expansion

(a+ b+ c)n =
∑

j+k1+k2=n

(
n

j, k1, k2

)
ajbk1ck2 .

Finally, we need the following auxiliary result for differentiating the pullbacks of a convolution.
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Lemma C.4. For any invertible linear transformatiton U : Rd → Rd, the derivatives of the pullback of the
convolution can be estimated as follows,

∣∣∣∂
|α|

∂~ηα
(
(f ∗ g)(U~η)

)∣∣∣ ≤
∥∥∥∂

|α|

∂~ηα
(
f(U ·)

)∥∥∥
∞

(
1supp f (·) ∗ |g(·)|

)
(Uη).

Proof. We begin by computing

(
f ∗ g

)
(U~η) =

∫
f(~ζ)g(U~η − ~ζ) d~ζ = | detU |

∫
f(U~ξ)g

(
U(~η −~ξ)

)
d~ξ = | detU |

(
f(U ·) ∗ g(U ·)

)
(~η).

We apply all derivatives of the convolution to the function f , thus

∂|α|

∂~ηα
(
(f ∗ g)(U~η)

)
= | detU |

(∂|α|
∂~ηα

(
f(U ·)

)
∗ g(U ·)

)
(~η) = | detU |

∫ (
∂|α|f(U ·)
∂~ηα

)
(~ξ) g

(
U(~η −~ξ)

)
d~ξ.

Estimating the derivatives of f by its maximal value times its support, we arrive at

∣∣∣∂
|α|

∂~ηα
(
(f ∗ g)(U~η)

)∣∣∣ ≤ | detU |
∫ ∥∥∥∂

|α|

∂~ηα
(
f(U ·)

)∥∥∥
∞
1supp f (U~ξ)

∣∣g
(
U(~η −~ξ)

)∣∣ d~ξ

=
∥∥∥∂

|α|

∂~ηα
(
f(U ·)

)∥∥∥
∞

∫
1supp f (~ζ)

∣∣g
(
U~η − ~ζ

)∣∣ d~ζ

=
∥∥∥∂

|α|

∂~ηα
(
f(U ·)

)∥∥∥
∞

(
1supp f (·) ∗ |g(·)|

)
(Uη),

which finishes the proof.
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