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Abstract

Strong convergence rates for (temporal, spatial, and noise) numerical approxi-
mations of semilinear stochastic evolution equations (SEEs) with smooth and regu-
lar nonlinearities are well understood in the scientific literature. Weak convergence
rates for numerical approximations of such SEEs have been investigated since about
11 years and are far away from being well understood: roughly speaking, no essen-
tially sharp weak convergence rates are known for parabolic SEEs with nonlinear
diffusion coefficient functions; see Remark 2.3 in [A. Debussche, Weak approxima-
tion of stochastic partial differential equations: the nonlinear case, Math. Comp.
80 (2011), no. 273, 89–117] for details. In this article we solve the weak conver-
gence problem emerged from Debussche’s article in the case of spectral Galerkin
approximations and establish esssentially sharp weak convergence rates for spatial
spectral Galerkin approximations of semilinear SEEs with nonlinear diffusion co-
efficient functions. Our solution to the weak convergence problem does not use
Malliavin calculus. Rather, key ingredients in our solution to the weak convergence
problem emerged from Debussche’s article are the use of appropriately modified
versions of the spatial Galerkin approximation processes and applications of a mild
Itô type formula for solutions and numerical approximations of semilinear SEEs.
This article solves the weak convergence problem emerged from Debussche’s article
merely in the case of spatial spectral Galerkin approximations instead of other more
complicated numerical approximations. Our method of proof extends, however, to
a number of other kind of spatial, temporal, and noise numerical approximations
for semilinear SEEs.

1 Introduction

Both strong and numerically weak convergence rates for numerical approximations of
finite dimensional stochastic ordinary differential equations (SODEs) with smooth and
regular nonlinearities are well understood in the literature; see, e.g., the monographs
Kloeden & Platen [20] and Milstein [26]. The situation is different in the case of possi-
bly infinite dimensional semilinear stochastic evoluation equations (SEEs). While strong
convergence rates for (temporal, spatial, and noise) numerical approximations of semi-
linear SEEs with smooth and regular nonlinearities are well understood in the scientific
literature, weak convergence rates for numerical approximations of such SEEs have been
investigated since about 11 years and are far away from being well understood: roughly
speaking, no essentially sharp weak convergence rates are known for parabolic SEEs with
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nonlinear diffusion coefficient functions (see Remark 2.3 in Debussche [12] for details). In
this article we solve the weak convergence problem emerged from Debussche’s article in
the case of spectral Galerkin approximations and establish essentially sharp weak conver-
gence rates for spatial spectral Galerkin approximations of semilinear SEEs with nonlinear
diffusion coefficient functions. To illustrate the weak convergence problem emerged from
Debussche’s article and our solution to the problem we consider the following setting
as a special case of our general setting in Section 5 below. Let (H, 〈·, ·〉H , ‖·‖H) and
(U, 〈·, ·〉U , ‖·‖U) be separable R-Hilbert spaces. Let T ∈ (0,∞), let (Ω,F ,P, (Ft)t∈[0,T ])
be a stochastic basis and let (Wt)t∈[0,T ] be a cylindrical IdU -Wiener process with respect
to (Ft)t∈[0,T ]. Let (en)n∈N ⊆ H be an orthonormal basis of H and let (λn)n∈N ⊆ (0,∞)
be an increasing sequence. Let A : D(A) ⊆ H → H be a closed linear operator such that
D(A) = {v ∈ H :

∑

n∈N |λn 〈en, v〉H |
2 < ∞} and such that for all n ∈ N it holds that

Aen = −λnen. Let (Hr, 〈·, ·〉Hr
, ‖·‖Hr

), r ∈ R, be a family of interpolation spaces associ-
ated to −A (see, e.g., Theorem and Definition 2.5.32 in [19]). Let ι ∈ [0, 1

4
] and let ξ ∈ Hι.

Finally, let γ ∈ [0, 1
2
], and let F ∈ ∩r<ι−γC

4
b (Hι, Hr), B ∈ ∩r<ι−γ/2C

4
b (Hι, HS(U,Hr)),

where for two R-Banach spaces (V1, ‖·‖V1
) and (V2, ‖·‖V2

) we denote by C4
b (V1, V2) the

R-vector space of all four times continuously Fréchet differentiable functions with glob-
ally bounded derivatives. The above assumptions ensure (cf., e.g., Proposition 3 in Da
Prato et al. [8], Theorem 4.3 in Brzeźniak [6], Theorem 6.2 in Van Neerven et al. [33]) the
existence of a continuous mild solution process X : [0, T ]× Ω → Hι of the SEE

dXt = [AXt + F (Xt)] dt+B(Xt) dWt, t ∈ [0, T ], X0 = ξ. (1)

As an example for (1), we think of H = U = L2((0, 1);R) being the R-Hilbert space of
equivalence classes of Lebesgue square integrable functions from (0, 1) to R and A being
the Laplace operator with Dirichlet boundary conditions on H (cf., e.g., Da Prato &
Zabczyk [9] and Debussche [12] for details). In the above setting the parameter γ controls
the regularity of the operators F and B.

Strong convergence rates for (temporal, spatial, and noise) numerical approximations
for SEEs of the form (1) are well understood. Weak convergence rates for numerical
approximations of SEEs of the form (1) have been investigated since about 11 years; see,
e.g., [32, 16, 11, 13, 15, 21, 14, 3, 22, 25, 23, 24, 4, 5, 2, 34, 36, 17, 12, 35]. Except for
Debussche & De Bouard [11], Debussche [12] and Andersson & Larsson [3], all of the
above mentioned references assume, beside further assumptions, that the considered SEE
is driven by additive noise. In Debussche & De Bouard [11] weak convergence rates for
the nonlinear Schrödinger equation, whose dominant linear operator generates a group
(see Section 2 in [11]) instead of only a semigroup as in the general setting of the SEE (1),
are analyzed. The method of proof in Debussche & De Bouard [11] strongly exploits this
property of the nonlinear Schrödinger equation (see Section 5.2 in [11]). Therefore, the
method of proof in [11] can, in general, not be used to establish weak convergence rates
for the SEE (1). In Debussche’s seminal article [12] (see also Andersson & Larsson [3]),
essentially sharp weak convergence rates for SEEs of the form (1) are established under the
hypothesis that the second derivative of the diffusion coefficient B satisfies the smoothing
property that there exists a real number L ∈ [0,∞) such that for all x, v, w ∈ H it holds
that1

‖B′′(x)(v, w)‖L(H) ≤ L ‖v‖H−1/4
‖w‖H−1/4

. (2)

As pointed out in Remark 2.3 in Debussche [12], assumption (2) is a serious restriction for
SEEs of the form (1). Roughly speaking, assumption (2) imposes that the second deriva-
tive of the diffusion coefficient function vanishes and thus that the diffusion coefficient

1Assumption (2) above slighlty differs from the original assumption in [12] as we believe that there is
a small typo in equation (2.5) in [12]; see inequality (4.3) in the proof of Lemma 4.5 in [12] for details.
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function is affine linear. Remark 2.3 in Debussche [12] also asserts that assumption (2)
is crucial in the weak convergence proof in [12], that assumption (2) is used in an es-
sential way in Lemma 4.5 in [12] and that Lemma 4.5 in [12], in turn, is used at many
points in the weak convergence proof in [12]. To the best of our knowledge, it remained
an open problem to establish essentially sharp weak convergence rates for any type of
temporal, spatial, or noise numerical approximation of the SEE (1) without imposing
Debussche’s assumption (2). In this article we solve this problem in the case of spatial
spectral Galerkin approximations for the SEE (1). This is the subject of the following the-
orem (Theorem 1.1), which follows immediately from Corollary 5.2 (the R-Hilbert space
H in Corollary 5.2 corresponds to the R-Hilbert space Hι in Theorem 1.1).

Theorem 1.1. Assume the setting in the first paragraph of Section 1, let ϕ ∈ C4
b (Hι,R),

let (PN)N∈N ⊆ L(H−1) satisfy PN(v) =
∑N

n=1 〈en, v〉H en for all v ∈ H, N ∈ N, and for
every N ∈ N let XN : [0, T ]× Ω → PN (H) be a continuous mild solution of the SEE

dXN
t =

[

PNAX
N
t + PNF (XN

t )
]

dt+ PNB(XN
t ) dWt, t ∈ [0, T ], XN

0 = PN(ξ). (3)

Then for every ε ∈ (0,∞) there exists a real number Cε ∈ [0,∞) such that for all N ∈ N

it holds that
∣

∣E
[

ϕ(XT )
]

− E
[

ϕ(XN
T )

]
∣

∣ ≤ Cε · (λN )
−(1−γ−ε) . (4)

Let us add a few comments regarding Theorem 1.1. First, we would like to empha-
size that in the general setting of Theorem 1.1, the weak convergence rate established in
Theorem 1.1 can essentially not be improved. More specifically, in Corollary 6.5 in Sec-
tion 6 below we give for every ι ∈ [0, 1

4
], γ ∈ [0, 1

2
] examples of A : D(A) ⊆ H → H , F ∈

∩r<ι−γC
4
b (Hι, Hr), (U, 〈·, ·〉U , ‖·‖U), B ∈ ∩r<ι−γ/2C

4
b (Hι, HS(U,Hr)), and ϕ ∈ C4

b (Hι,R)
such that there exists a real number C ∈ [0,∞) such that for all N ∈ N it holds that

∣

∣E
[

ϕ(XT )
]

− E
[

ϕ(XN
T )

]
∣

∣ ≥ C · (λN )
−(1−γ) . (5)

In addition, we emphasize that in the setting of Theorem 1.1 it is well known (cf., e.g.,
Corollary 6.1.11 in [19]) that for every ε ∈ (0,∞) there exists a real number Cε ∈ [0,∞)
such that for all N ∈ N it holds that

(

E
[

‖XT −XN
T ‖2Hι

])1/2 ≤ Cε · (λN)
−( 1−γ

2
−ε) . (6)

The weak convergence rate 1 − γ − ε established in Theorem 1.1 is thus twice the well
known strong convergence rate 1−γ−ε

2
in (6). Moreover, we add that Theorem 1.1 uses the

assumption that the first four derivatives of ϕ, F , and B are globally bounded. While
the proof of Theorem 1.1 can in a straightforward way be extended to the case where ϕ
has at most polynomially growing derivatives, it is not clear to us how to treat the case
where F and B are globally Lipschitz continuous with the first four derivatives having
at most polynomial growth. Furthermore, we emphasize that Theorem 1.1 solves the
weak convergence problem emerged from Debussche’s article (see (2.5) and Remark 2.3 in
Debussche [12]) merely in the case of spatial spectral Galerkin approximations instead of
other more complicated numerical approximations for the SEE (1). The method of proof
of our weak convergence results, however, can be extended to a number of other kind of
spatial, temporal, and noise numerical approximations for SEEs of the form (1). This will
be the subject of future research articles. Next we point out that the proof in Debussche’s
article [12] as well as many other proofs in the above mentioned weak convergence articles
use Malliavin calculus. Our method of proof does not use Malliavin calculus but uses –
in some sense – merely elementary arguments as well as the mild Itô formula in Da Prato
et al. [8].
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The paper is organized as follows. In Section 1.1 below we give a brief sketch of
the proof without technical details. However, the main ideas needed in order to obtain
an essentially sharp rate of convergence are highlighted. Sections 1.2 and 1.3 present
the general notation and framework used in the paper. Section 2 addresses the weak
convergence of the Galerkin projection PN(XT ) to the solution XT to the SEE (1) as N
goes to infinity. This result is then used in Section 3 to obtain the weak convergence of the
Galerkin approximation (3) to the solution of (1) in the case where the drift and diffusion
operators F and B as well as the initial condition are mollified in an appropriate sense.
This provides a less general version of Theorem 1.1. Section 4 is devoted to the proof of
a elementary strong convergence result which is then used in Section 5 to establish weak
convergence (Proposition 5.2) for general drift and diffusion operators. Finally, in Section
6, we consider the case F = 0 and provide examples of constant (additive noise) functions
B which show that the weak convergence rate established in Theorem 1.1 can essentially
not be improved.

1.1 Sketch of the proof of Theorem 1.1.

In the following we give a brief sketch of our method of proof in the case where ξ ∈ Hι+1

(the case where ξ ∈ Hι then follows from a standard mollification procedure; see (83) in
the proof of Proposition 5.1 in Section 5 for details). In our weak convergence proof we
intend to work (as it is often the case in the case of weak convergence for S(P)DEs; see,
e.g., Rößler [31] and Debussche [12]) with the Kolmogorov backward equation associated
to (1). In the case of an SEE with a general nonlinear diffusion coefficient it is, however,
not clear whether there exists any relation between solutions of the Kolmogorov backward
equation associated to (1) and solutions of the SEE (1); see Andersson et al. [1] and Da
Prato [7]. We therefore work with suitable mollified versions of (1) and (3). More formally,
for every κ ∈ (0,∞) let Fκ : Hι → H1 and Bκ : Hι → HS(U,H1) be functions given by
Fκ(x) = eκAF (x) and Bκ(x) = eκAB(x) for all x ∈ Hι. For every κ ∈ (0,∞), x ∈ Hι let
X̄x,κ : [0, T ]× Ω → Hι be a continuous mild solution of the SEE

dX̂x,κ
t =

[

AX̂x,κ
t + Fκ(X̂

x,κ
t )

]

dt+Bκ(X̂
x,κ
t ) dWt, t ∈ [0, T ], Xx,κ

0 = x. (7)

For every κ ∈ (0,∞), let uκ : [0, T ]×Hι → R be a function given by uκ(t, x) = E
[

ϕ(X̂x,κ
T−t)

]

for all (t, x) ∈ [0, T ]×Hι. In particular, notice that for all κ ∈ (0,∞) and all nonrandom
x ∈ Hι it holds that uκ(T, x) = ϕ(x). Then, for every κ ∈ (0,∞), N ∈ N let XN,κ : [0, T ]×
Ω → Hι be a continuous mild solution of the SEE

dXN,κ
t =

[

PNAX
N,κ
t +PNFκ(X

N,κ
t )

]

dt+PNBκ(X
N,κ
t ) dWt, t ∈ [0, T ], XN

0 = PN(ξ). (8)

The first key idea in our proof is then to bring certain modified versions of the SEEs (3)
and (8) respectively into play to analyze the weak approximation errors

∣

∣E
[

ϕ(X̄ξ,κ
T )

]

−
E
[

ϕ(XN,κ
T )

]
∣

∣ for N ∈ N, κ ∈ (0,∞). More specifically, for every κ ∈ (0,∞), N ∈ N let
Y N,κ : [0, T ]× Ω → Hι+1 be a continuous mild solution of the SEE

dY N,κ
t =

[

AY N,κ
t +Fκ

(

PN(Y
N,κ
t )

)]

dt+Bκ

(

PN(Y
N,κ
t )

)

dWt, t ∈ [0, T ], Y N,κ
0 = ξ. (9)

It is crucial in (9) that PN(·) appears inside the arguments of Fκ and Bκ instead of in
front of Fκ and Bκ as in (8) (and (3)). Moreover, notice the projection PN(Y

N,κ
t ) = XN,κ

t

P-a.s. for all N ∈ N, κ ∈ (0,∞), t ∈ [0, T ]. To estimate the weak approximation errors
∣

∣E
[

ϕ(X̂ξ,κ
T )

]

− E
[

ϕ(XN,κ
T )

]
∣

∣ for N ∈ N, κ ∈ (0,∞) we then apply the triangle inequality
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to obtain that for all κ ∈ (0,∞), N ∈ N it holds that

∣

∣E
[

ϕ(X̂ξ,κ
T )

]

− E
[

ϕ(XN,κ
T )

]
∣

∣

≤
∣

∣E
[

ϕ(X̂ξ,κ
T )

]

− E
[

ϕ(Y N,κ
T )

]
∣

∣+
∣

∣E
[

ϕ(Y N,κ
T )

]

− E
[

ϕ(XN,κ
T )

]
∣

∣

=
∣

∣uκ(0, ξ)− E
[

uκ(T, Y
N,κ
T )

]
∣

∣+
∣

∣E
[

ϕ(Y N,κ
T )

]

− E
[

ϕ(PN(Y
N,κ
T ))

]
∣

∣

=
∣

∣E
[

uκ(T, Y
N,κ
T )− uκ(0, Y

N,κ
0 )

]
∣

∣ +
∣

∣E
[

ϕ(Y N,κ
T )

]

− E
[

ϕ(PN(Y
N,κ
T ))

]
∣

∣.

(10)

Roughly speaking, the processes Y N,κ, N ∈ N, κ ∈ (0,∞), are chosen in such a way
so that it is not so difficult anymore to estimate

∣

∣E
[

uκ(T, Y
N,κ
T ) − uκ(0, Y

N,κ
0 )

]
∣

∣ and
∣

∣E
[

ϕ(Y N,κ
T )

]

−E
[

ϕ(PN(Y
N,κ
T ))

]
∣

∣ on the right hand side of (10). More formally, to estimate

the term
∣

∣E
[

ϕ(Y N,κ
T )

]

− E
[

ϕ(PN(Y
N,κ
T ))

]
∣

∣ on the right hand side of (10) (see Section 2
and Lemma 3.1 in Section 3) we apply the mild Itô formula in Corollary 2 in Da Prato et
al. [8] to E

[

ϕ(Y N,κ
t )

]

, t ∈ [0, T ], and to E
[

ϕ(PN(Y
N,κ
T ))

]

, t ∈ [0, T ], and then estimate the
difference of the resulting terms in a straightforward way (see the proof of Proposition 2.1
in Section 2 below for details). This allows us to prove (see Proposition 2.1 below) that

there exist real numbers C
(1)
ε ∈ [0,∞), ε ∈ (0,∞), such that for all ε, κ ∈ (0,∞), N ∈ N

it holds that

∣

∣E
[

ϕ(Y N,κ
T )

]

−E
[

ϕ(XN,κ
T )

]
∣

∣ =
∣

∣E
[

ϕ(Y N,κ
T )

]

−E
[

ϕ(PN(Y
N,κ
T ))

]
∣

∣ ≤ C(1)
ε (λN)

−(1−γ−ε) . (11)

To estimate the term
∣

∣E
[

uκ(T, Y
N,κ
T )−uκ(0, Y

N,κ
0 )

]
∣

∣ on the right hand side of (10) we apply

the standard Itô formula to the stochastic processes
(

uκ(t, Y
N,κ
t )

)

t∈[0,T ]
, κ ∈ (0,∞), and

use the fact that the functions uκ, κ ∈ (0,∞), solve the Kolmogorov backward equation
associated to (7) to obtain that for all κ ∈ (0,∞), N ∈ N it holds that

∣

∣E
[

uκ(T, Y
N,κ
T )− uκ(0, Y

N,κ
0 )

]
∣

∣ ≤
T
∫

0

∣

∣E
[(

∂
∂x
uκ

)

(s, Y N,κ
s )

(

Fκ(PN(Y
N,κ
s ))− Fκ(Y

N,κ
s )

)]
∣

∣ ds

+
∑

j∈J

T
∫

0

∣

∣

∣

∣

E

[

(

∂2

∂x2
uκ

)

(s,Y N,κ
s )

(

[

Bκ(PN (Y N,κ
s ))+Bκ(Y

N,κ
s )

]

gj ,
[

Bκ(PN (Y N,κ
s ))−Bκ(Y

N,κ
s )

]

gj

)]
∣

∣

∣

∣

2
ds (12)

where (gj)j∈J ⊆ U is an arbitrary orthonormal basis of U ; cf. (39) in Section 3 below. The
next key idea in our weak convergence proof is then to again apply the mild Itô formula
(see Da Prato et al. [8]) to the terms appearing on the right hand side of (12). After
applying the mild Itô formula, the resulting terms can be estimated in a straightforward
way by using the estimates for the functions uκ, κ ∈ (0,∞), from Andersson et al. [1].
This allows us (cf. (87) in the proof of Proposition 5.1 in Section 5) to prove that for all

ε ∈ (0,∞) there exists a real number C
(2)
ε ∈ [0,∞) such that for all κ ∈ (0, 1], N ∈ N it

holds that

∣

∣E
[

ϕ(X̂ξ,κ
T )

]

− E
[

ϕ(Y N,κ
T )

]
∣

∣ =
∣

∣E
[

uκ(T, Y
N,κ
T )− uκ(0, Y

N,κ
0 )

]
∣

∣ ≤ C
(2)
ε

κε (λN )(1−γ−ε) . (13)

Putting (13) and (11) into (10) then proves that for all κ ∈ (0, 1], N ∈ N it holds that

∣

∣E
[

ϕ(X̂ξ,κ
T )

]

− E
[

ϕ(XN,κ
T )

]
∣

∣ ≤ C(2)
ε κ−ε (λN)

−(1−γ−ε) + C(1)
ε (λN)

−(1−γ−ε) . (14)

Estimates (13) and (14) illustrate that we cannot simply let the mollifying parameter κ
tend to 0 because the right hand side of (14) diverges as κ tends to 0. The last key idea
in our proof is then to make use of the following – somehow nonstandard – mollification
procedure to overcome this problem. For this mollification procedure we first use well-
known strong convergence analysis to prove (see Proposition 4.1 in Section 4) that for all
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ε ∈ (0,∞) there exists a real number C
(3)
ε ∈ [0,∞) such that for all κ ∈ (0, 1], N ∈ N it

holds that
∣

∣E
[

ϕ(XT )
]

− E
[

ϕ(X̂ξ,κ
T )

]
∣

∣ +
∣

∣E
[

ϕ(XN
T )

]

− E
[

ϕ(XN,κ
T )

]
∣

∣ ≤ C(3)
ε κ(

1−γ
2

−ε). (15)

Combining (15) with (14) then shows that for all ε ∈ (0,∞), κ ∈ (0, 1], N ∈ N it holds
that

∣

∣E
[

ϕ(XT )
]

− E
[

ϕ(XN
T )

]
∣

∣ ≤ C
(1)
ε

(λN)
(1−γ−ε)

+
C

(2)
ε

κε (λN)
(1−γ−ε)

+ C(3)
ε κ(

1−γ
2

−ε). (16)

As the left hand side of (16) is independent of κ ∈ (0, 1], we can minimize the right
hand side of (16) over κ ∈ (0, 1] (instead of letting κ tend to 0) and this will allow us to
complete the proof of Theorem 1.1; see (88) and (90) in the proof of Proposition 5.1 in
Section 5 below for details.

1.2 Notation

Throughout this article the following notation is used. For a set S we denote by IdS : S →
S the identity mapping on S, that is, it holds for all x ∈ S that IdS(x) = x. Moreover, for
a set S we denote by P(S) the power set of S. Furthermore, let Er : [0,∞) → [0,∞), r ∈
(0,∞), be functions given by Er(x) =

[
∑∞

n=0
x2n Γ(r)n

Γ(nr+1)

]1/2
for all x ∈ [0,∞), r ∈ (0,∞) (cf.

Chapter 7 in [18] and Chapter 3 in [19]). Moreover, for normed R-vector spaces (E1, ‖·‖E1
)

and (E2, ‖·‖E2
) and a nonnegative integer k ∈ N0, let |·|Lipk(E1,E2)

, ‖·‖Lipk(E1,E2)
: Ck(E1,

E2) → [0,∞] be mappings given by

|f |Lipk(E1,E2)
=











supx,y∈E1,
x 6=y

‖f(x)−f(y)‖E2

‖x−y‖E1

: k = 0

supx,y∈E1,
x 6=y

‖f(k)(x)−f(k)(y)‖
L(k)(E1,E2)

‖x−y‖E1

: k ∈ N

(17)

and ‖f‖Lipk(E1,E2)
= ‖f(0)‖E2

+
∑k

l=0 |f |Lipl(E1,E2)
for all f ∈ Ck(E1, E2) and let Lipk(E1,

E2) be a set given by Lipk(E1, E2) = {f ∈ Ck(E1, E2) : ‖f‖Lipk(E1,E2)
< ∞}. In addi-

tion, for a natural number k ∈ N and normed R-vector spaces (E1, ‖·‖E1
) and (E2, ‖·‖E2

),

let |·|Ck
b (E1,E2)

, ‖·‖Ck
b (E1,E2)

: Ck(E1, E2) → [0,∞] be mappings given by |f |Ck
b (E1,E2) =

supx∈E1
‖f (k)(x)‖Lk(E1,E2) and ‖f‖Ck

b (E1,E2) = ‖f(0)‖E2 +
∑k

l=1 |f |Cl
b(E1,E2) for all f ∈

Ck(E1, E2) and let Ck
b (E1, E2) be a set given by Ck

b (E1, E2) = {f ∈ Ck(E1, E2) : ‖f‖Ck
b (E1,E2)

< ∞}.

1.3 Setting

Throughout this article the following setting is frequently used. Let (H, 〈·, ·〉H , ‖·‖H)
and (U, 〈·, ·〉U , ‖·‖U) be two separable R-Hilbert spaces, let T ∈ (0,∞), η ∈ [0,∞),
let (Ω,F ,P, (Ft)t∈[0,T ]) be a stochastic basis, let (Wt)t∈[0,T ] be a cylindrical IdU -Wiener
process with respect to (Ft)t∈[0,T ], let H ⊆ H be an orthonormal basis, let λ : H → R

be a function satisfying supb∈H λb < η, let A : D(A) ⊆ H → H be a linear operator
such that D(A) = {v ∈ H :

∑

b∈H |λb 〈b, v〉H |
2 < ∞} and such that for all v ∈ D(A)

it holds that Av =
∑

b∈H λb 〈b, v〉H b, let (Hr, 〈·, ·〉Hr
, ‖·‖Hr

), r ∈ R, be a family of
interpolation spaces associated to η − A (see, e.g., Theorem and Definition 2.5.32 in
[19]) and let (PI)I∈P(H) ⊆ L(H−1) fulfill that for all v ∈ H , I ∈ P(H) it holds that
PI(v) =

∑

b∈I 〈b, v〉H b.
Throughout this article we also frequently use the well-known facts that for all r ∈

(0,∞), I ∈ P(H) it holds that ‖PI‖L(H,H−r) = [infb∈I [η − λb]]
−r = ‖PI‖rL(H,H−1)

and that

for all r ∈ [0, 1] it holds that supt∈(0,∞)

∥

∥(−tA)reAt
∥

∥

L(H)
≤ supx∈(0,∞)

[

xr

ex

]

≤
[

r
e

]r ≤ 1.
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2 Weak convergence for Galerkin projections of SPDEs

In this section we establish weak convergence rates for Galerkin projections of SPDEs (see
Proposition 2.1). Proposition 2.1, in particular, proves inequality (11) in Section 1.1. In
Corollary 3.3 in Section 3 below we will use Proposition 2.1 to establish weak convergence
rates for Galerkin approximations of SPDEs with mollified nonlinearities. Proposition 2.1
is a slightly modified version of Corollary 8 in Da Prato et al. [8].

2.1 Setting

Assume the setting in Section 1.3, assume that η = 0, and let ϑ ∈ [0, 1), F ∈ Lip0(H,H−ϑ),
B ∈ Lip0(H,HS(U,H−ϑ/2)), ϕ ∈ Lip2(H,R), ξ ∈ L3(P|F0 ;H).

The above assumptions ensure (cf., e.g., Proposition 3 in Da Prato et al. [8], Theorem
4.3 in Brzeźniak [6], Theorem 6.2 in Van Neerven et al. [33]) that there exist an up-to-
modifications unique (Ft)t∈[0,T ]-predictable stochastic process X : [0, T ] × Ω → H which
satisfies supt∈[0,T ] ‖Xt‖L3(P;H) < ∞ and which satisfies that for all t ∈ [0, T ] it holds P-a.s.
that

Xt = eAtξ +

∫ t

0

eA(t−s)F (Xs) ds+

∫ t

0

eA(t−s)B(Xs) dWs. (18)

2.2 A weak convergence result

Proposition 2.1. Assume the setting in Section 2.1 and let ρ ∈ [0, 1 − ϑ), I ∈ P(H).
Then

∣

∣E
[

ϕ(XT )
]

− E
[

ϕ
(

PI(XT )
)]
∣

∣ ≤ ‖ϕ‖Lip2(H,R) max
{

1, supt∈[0,T ] E
[

‖Xt‖3H
]}

·
[

1

T ρ
+

T (1−ρ−ϑ)
[

‖F‖Lip0(H,H−ϑ)
+ ‖B‖Lip0(H,HS(U,H−ϑ/2))

]

(1− ρ− ϑ)

]

‖PH\I‖L(H,H−ρ).
(19)

Proof. Throughout this proof let U ⊆ U be an orthonormal basis of U and let Bb ∈
C(H,H−ϑ/2), b ∈ U, be given by Bb(v) = B(v) b for all v ∈ H , b ∈ U. Next observe

that for all t ∈ [0, T ] it holds P-a.s. that PI(Xt) = eAtPI(ξ) +
∫ t

0
eA(t−s)PIF (Xs) ds +

∫ t

0
eA(t−s)PIB(Xs) dWs. The mild Itô formula in Corollary 2 in Da Prato et al. [8] hence

yields that

E
[

ϕ(XT )
]

− E
[

ϕ(PI(XT ))
]

= E
[

ϕ(eAT ξ)
]

− E
[

ϕ(eATPI(ξ))
]

+

∫ T

0

E
[

ϕ′(eA(T−t)Xt) e
A(T−t)F (Xt)

]

− E
[

ϕ′(eA(T−t)PI(Xt)) e
A(T−t)PIF (Xt)

]

dt

+
1

2

∑

b∈U

∫ T

0

E
[

ϕ′′(eA(T−t)Xt)(e
A(T−t)Bb(Xt), e

A(T−t)Bb(Xt))
]

dt

− 1

2

∑

b∈U

∫ T

0

E
[

ϕ′′(eA(T−t)PI(Xt))(e
A(T−t)PIB

b(Xt), e
A(T−t)PIB

b(Xt))
]

dt.

(20)

Next observe that the fact that for all r ∈ [0, 1] it holds that supt∈(0,∞)

∥

∥(−tA)reAt
∥

∥

L(H)
≤

supx∈(0,∞)

[

xr

ex

]

≤
[

r
e

]r ≤ 1 implies that

∣

∣E
[

ϕ(eAT ξ)
]

− E
[

ϕ(eATPI(ξ))
]
∣

∣ ≤
|ϕ|Lip0(H,R) ‖ξ‖L1(P;H) ‖PH\I‖L(H,H−ρ)

T ρ
. (21)

Inequality (21) provides us a bound for the first difference on the right hand side of (20).
In the next step we bound the second difference on the right hand side of (20). For this
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observe that for all x ∈ H , t ∈ [0, T ) it holds that

∣

∣

[

ϕ′(eA(T−t)x)− ϕ′(eA(T−t)PI(x))
]

eA(T−t)F (x)
∣

∣

≤
|ϕ|Lip1(H,R) ‖PH\I‖L(H,H−ρ) ‖x‖H ‖F (x)‖H−ϑ

(T − t)(ρ+ϑ)

(22)

and that

∣

∣ϕ′(eA(T−t)PI(x))
(

[IdH −PI ] e
A(T−t)F (x)

)
∣

∣ ≤
|ϕ|Lip0(H,R) ‖PH\I‖L(H,H−ρ) ‖F (x)‖H−ϑ

(T − t)(ρ+ϑ)
.

(23)

Combining (22) and (23) proves that

∣

∣

∣

∣

∫ T

0

E
[

ϕ′(eA(T−t)Xt) e
A(T−t)F (Xt)

]

dt−
∫ T

0

E
[

ϕ′(eA(T−t)PI(Xt)) e
A(T−t)PIF (Xt)

]

dt

∣

∣

∣

∣

≤ T (1−ρ−ϑ) supt∈[0,T ] E

[

‖Xt‖H ‖F (Xt)‖H−ϑ
|ϕ|Lip1(H,R)+‖F (Xt)‖H−ϑ

|ϕ|Lip0(H,R)

]

‖PH\I‖L(H,H−ρ)

(1−ρ−ϑ)

≤ T (1−ρ−ϑ) ‖ϕ‖Lip1(H,R) supt∈[0,T ] max{E[‖Xt‖H ‖F (Xt)‖H−ϑ ],E[‖F (Xt)‖H−ϑ ]} ‖PH\I‖L(H,H−ρ)

(1−ρ−ϑ)

≤
T (1−ρ−ϑ) ‖ϕ‖Lip1(H,R) ‖F‖Lip0(H,H−ϑ)

max{1, supt∈[0,T ] E[‖Xt‖2H ]} ‖PH\I‖L(H,H−ρ)

(1− ρ− ϑ)
.

(24)

Inequality (24) provides us a bound for the second difference on the right hand side of
(20). Next we bound the third difference on the right hand side of (20). To this end note
that for all x ∈ H , t ∈ [0, T ) it holds that

∣

∣

∣

∣

∑

b∈U

[

ϕ′′(eA(T−t)x)− ϕ′′(eA(T−t)PI(x))
]

(eA(T−t)Bb(x), eA(T−t)Bb(x))

∣

∣

∣

∣

≤
|ϕ|Lip2(H,R) ‖B(x)‖2HS(U,H−ϑ/2)

‖x‖H ‖PH\I‖L(H,H−ρ)

(T − t)(ρ+ϑ)

(25)

and that
∣

∣

∣

∣

∑

b∈U
ϕ′′(eA(T−t)PI(x))([IdH +PI ]e

A(T−t)Bb(x), [IdH −PI ]e
A(T−t)Bb(x))

∣

∣

∣

∣

≤
2 |ϕ|Lip1(H,R) ‖B(x)‖2HS(U,H−ϑ/2)

‖PH\I‖L(H,H−ρ)

(T − t)(ρ+ϑ)
.

(26)

Combining (25) and (26) proves that
∣

∣

∣

∣

∣

1

2

∑

b∈U

∫ T

0

E
[

ϕ′′(eA(T−t)Xt)(e
A(T−t)Bb(Xt), e

A(T−t)Bb(Xt))
]

dt

− 1

2

∑

b∈U

∫ T

0

E
[

ϕ′′(eA(T−t)PI(Xt))(e
A(T−t)PIB

b(Xt), e
A(T−t)PIB

b(Xt))
]

dt

∣

∣

∣

∣

∣

≤
T (1−ρ−ϑ) ‖PH\I‖L(H,H−ρ)

‖ϕ‖Lip2(H,R) supt∈[0,T ] max
{

E

[

‖Xt‖H‖B(Xt)‖2HS(U,H−ϑ/2)

]

,E
[

‖B(Xt)‖2HS(U,H−ϑ/2)

]}

(1−ρ−ϑ)

≤
T (1−ρ−ϑ) ‖PH\I‖L(H,H−ρ) ‖ϕ‖Lip2(H,R) ‖B‖Lip0(H,HS(U,H−ϑ/2))

max{1, supt∈[0,T ] E
[

‖Xt‖3H
]

}
(1− ρ− ϑ)

.

(27)
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Combining (20), (21), (24), and (27) finally proves that

∣

∣E
[

ϕ(XT )
]

− E
[

ϕ(PI(XT ))
]
∣

∣ ≤ ‖ϕ‖Lip2(H,R) max

{

1, sup
t∈[0,T ]

E
[

‖Xt‖3H
]

}

·
[

1

T ρ
+

T (1−ρ−ϑ)
[

‖F‖Lip0(H,H−ϑ)
+ ‖B‖Lip0(H,HS(U,H−ϑ/2))

]

(1− ρ− ϑ)

]

‖PH\I‖L(H,H−ρ).

(28)

This finishes the proof of Proposition 2.1.

3 Weak convergence for Galerkin approximations of

SPDEs with mollified nonlinearities

In this section we establish weak convergence rates for Galerkin approximations of SPDEs
with mollified nonlinearities ; see Corollary 3.3 and Corollary 3.4 below. Corollary 3.4, in
particular, enables us to prove inequality (13) in the introduction. In Section 5 below we
will use Corollary 3.4 to establish weak convergence rates for Galerkin approximations of
SPDEs with “non-mollified” nonlinearities.

3.1 Setting

Assume the setting in Section 1.3, assume that η = 0, let U ⊆ U be an orthonormal
basis of U , let ϑ ∈ [0, 1/2), F ∈ C4

b (H,H1), B ∈ C4
b (H,HS(U,H1)), ϕ ∈ C4

b (H,R), ξ ∈
L4(P|F0 ;H1), let ςF,B ∈ R be given by ςF,B = max

{

1, ‖F‖2
C3

b (H,H−ϑ)
, ‖B‖4

C3
b (H,HS(U,H−ϑ/2))

}

,

let (FI)I∈P(H) ⊆ C(H,H), (BI)I∈P(H) ⊆ C(H,HS(U,H)), (Bb)b∈U ⊆ C(H,H) and
(Bb

I)I∈P(H),b∈U ⊆ C(H,H) be given by

FI(v) = F
(

PI(v)
)

, BI(v) u = B
(

PI(v)
)

u, Bb(v) = B(v) b, Bb
I(v) = B

(

PI(v)
)

b
(29)

for all v ∈ H , u ∈ U , I ∈ P(H), b ∈ U, and let (gr)r∈[0,∞) ⊆ C(H,R) be given by
gr(x) = max{1, ‖x‖rH} for all r ∈ [0,∞), x ∈ H .

The above assumptions ensure (cf., e.g., Proposition 3 in Da Prato et al. [8], Theo-
rem 4.3 in Brzeźniak [6], Theorem 6.2 in Van Neerven et al. [33]) that there exist up-to-
modifications unique (Ft)t∈[0,T ]-predictable stochastic processes XI : [0, T ]×Ω → PI(H),
I ∈ P(H), Y I : [0, T ] × Ω → H1, I ∈ P(H), and XH,x : [0, T ] × Ω → H , x ∈ H , which
satisfy that for all I ∈ P(H), x ∈ H it holds that supt∈[0,T ]

[

‖XI
t ‖L4(P;H) + ‖Y I

t ‖L4(P;H1) +

‖XH,x
t ‖L4(P;H)

]

< ∞ and which satisfy that for all t ∈ [0, T ], I ∈ P(H), x ∈ H it holds
P-a.s. that

XI
t = eAtPI(ξ) +

∫ t

0

eA(t−s)PIF (XI
s ) ds+

∫ t

0

eA(t−s)PIB(XI
s ) dWs, (30)

Y I
t = eAtξ +

∫ t

0

eA(t−s)FI(Y
I
s ) ds+

∫ t

0

eA(t−s)BI(Y
I
s ) dWs, (31)

XH,x
t = eAtx+

∫ t

0

eA(t−s)F (XH,x
s ) ds+

∫ t

0

eA(t−s)B(XH,x
s ) dWs. (32)

Moreover, let u : [0, T ] × H → R be a function given by u(t, x) = E
[

ϕ(XH,x
T−t)

]

for all
x ∈ H , t ∈ [0, T ], let cδ1,...,δk ∈ [0,∞], δ1, . . . , δk ∈ R, k ∈ {1, 2, 3, 4}, be extended real
numbers given by

cδ1,δ2,...,δk = sup
t∈(0,T ]

sup
s∈[0,t]

sup
x∈H

sup
v1,...,vk∈H\{0}

[

∣

∣( ∂k

∂xku)(t, e
A(t−s)x)(v1, . . . , vk)

∣

∣

t(δ1+...+δk) ‖v1‖Hδ1
· . . . · ‖vk‖Hδk

]

(33)
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for all δ1, . . . , δk ∈ R, k ∈ {1, 2, 3, 4}, and let (KI
r )r∈(0,∞),I∈P(H) ⊆ [0,∞) be given by

KI
r = supt∈[0,T ] E

[

gr(Y
I
t )
]

for all r ∈ (0,∞), I ∈ P(H).

3.2 Weak convergence results

Lemma 3.1. Assume the setting in Section 3.1 and let ρ ∈ [0, 1− ϑ), I ∈ P(H). Then

∣

∣E
[

ϕ(Y I
T )
]

− E
[

ϕ(XI
T )
]
∣

∣ ≤
[

1

T ρ
+

2 T (1−ρ−ϑ)

(1− ρ− ϑ)

]

‖ϕ‖C3
b (H,R) ςF,B KI

3 ‖PH\I‖L(H,H−ρ). (34)

Proof. First of all, note that for all t ∈ [0, T ] it holds P-a.s. that

PI(Y
I
t ) = eAtPI(ξ) +

∫ t

0

eA(t−s)PIF
(

PI(Y
I
s )
)

ds+

∫ t

0

eA(t−s)PIB
(

PI(Y
I
s )
)

dWs. (35)

The fact that mild solutions of (30) are within a suitable class of solutions unique up
to modifications (see, e.g., Theorem 7.4 (i) in Da Prato & Zabczyk [9] for details) hence
ensures that for all t ∈ [0, T ] it holds P-a.s. that PI(Y

I
t ) = XI

t . An application of
Proposition 2.1 hence proves that

∣

∣E
[

ϕ(Y I
T )
]

− E
[

ϕ
(

XI
T

)]
∣

∣ ≤ ‖ϕ‖C3
b (H,R) max

{

1, supt∈[0,T ] E
[

‖Y I
t ‖3H

]}

·
[

1

T ρ
+

T (1−ρ−ϑ)
[

‖F‖C1
b (H,H−ϑ) + ‖B‖C1

b (H,HS(U,H−ϑ/2))

]

(1− ρ− ϑ)

]

‖PH\I‖L(H,H−ρ).
(36)

This completes the proof of Lemma 3.1.

Lemma 3.2. Assume the setting in Section 3.1 and let ρ ∈ [0, 1− ϑ), I ∈ P(H). Then

∣

∣E
[

ϕ(XH

T )
]

− E
[

ϕ(Y I
T )
]
∣

∣ ≤ T 1−ϑ−ρ ςF,B KI
4

(1− ϑ− ρ)

[

1 +
9 T 1−ϑ

2 (2− 2ϑ− ρ)

]

∥

∥PH\I
∥

∥

L(H,H−ρ)

·
[

c−ϑ + c−ϑ,0 + c−ϑ,0,0 + c−ϑ/2,−ϑ/2 + c−ϑ/2,−ϑ/2,0 + c−ϑ/2,−ϑ/2,0,0

]

. (37)

Proof. Throughout this proof let ut : [0, T ]×H → R, ux : [0, T ]×H → L(H,R), uxx : [0, T ]×
H → L(2)(H,R), uxxx : [0, T ] × H → L(3)(H,R), uxxxx : [0, T ] × H → L(4)(H,R) be
functions defined through ut(s, y) := ∂

∂s
u(s, y), ux(s, y) := ∂

∂y
u(s, y), uxx(s, y)(v1, v2) :=

(

∂2

∂y2
u(s, y)

)

(v1, v2), uxxx(s, y)(v1, v2, v3) :=
(

∂3

∂y3
u(s, y)

)

(v1, v2, v3), uxxxx(s, y)(v1, . . . , v4)

:=
(

∂4

∂y4
u(s, y)

)

(v1, v2, v3, v4) for all s ∈ [0, T ], y, v1, v2, v3, v4 ∈ H . Then observe that Itô’s
formula proves that

E
[

ϕ(Y I
T )
]

− E
[

ϕ(XH

T )
]

= E
[

u(T, Y I
T )− u(0, Y I

0 )
]

=

∫ T

0

E
[

ut(t, Y
I
t ) + ux(t, Y

I
t )
(

AY I
t + FI(Y

I
t )
)]

dt

+
1

2

∑

b∈U

∫ T

0

E
[

uxx(t, Y
I
t )
(

Bb
I(Y

I
t ), B

b
I(Y

I
t )
)]

dt.

(38)

Exploiting the fact that u is a solution of the Kolmogorov backward equation associated
to XH,x : [0, T ]× Ω → H , x ∈ H , hence shows that

E
[

ϕ(Y I
T )
]

− E
[

ϕ(XH

T )
]

=

∫ T

0

E
[

ux(t, Y
I
t )
(

FI

(

Y I
t

)

− F
(

Y I
t

))]

dt

+
1

2

∑

b∈U

∫ T

0

E
[

uxx(t, Y
I
t )
(

Bb
I

(

Y I
t

)

+Bb
(

Y I
t

)

, Bb
I

(

Y I
t

)

− Bb
(

Y I
t

))]

dt.

(39)

10



Below we will apply the mild Itô formula in Corollary 2 in Da Prato et al. [8] to the first
summand on the right hand side of (39). To this end we define functions F̃t,s : H → R,
t ∈ (s, T ], s ∈ [0, T ), by

F̃t,s(x)

:= uxx(t, e
A(t−s)x)

(

FI(e
A(t−s)x)− F (eA(t−s)x), eA(t−s)FI(x)

)

+ ux(t, e
A(t−s)x)

([

F ′
I(e

A(t−s)x)− F ′(eA(t−s)x)
]

eA(t−s)FI(x)
)

+ 1
2

∑

b∈U
uxxx(t, e

A(t−s)x)
(

FI(e
A(t−s)x)− F (eA(t−s)x), eA(t−s)Bb

I(x), e
A(t−s)Bb

I(x)
)

+
∑

b∈U
uxx(t, e

A(t−s)x)
([

F ′
I(e

A(t−s)x)− F ′(eA(t−s)x)
]

eA(t−s)Bb
I(x), e

A(t−s)Bb
I(x)

)

+ 1
2

∑

b∈U
ux(t, e

A(t−s)x)
([

F ′′
I (e

A(t−s)x)− F ′′(eA(t−s)x)
](

eA(t−s)Bb
I(x), e

A(t−s)Bb
I(x)

))

(40)

for all x ∈ H , t, s ∈ [0, T ] with t > s. An application of the mild Itô formula in Corollary 2
in Da Prato et al. [8] then proves that for all t ∈ [0, T ] it holds that

E
[

ux(t, Y
I
t )
(

FI

(

Y I
t

)

− F
(

Y I
t

))]

= E
[

ux(t, e
Atξ)

(

FI

(

eAtξ
)

− F
(

eAtξ
))]

+

∫ t

0

E

[

F̃t,s(Y
I
s )
]

ds.
(41)

Below we will also apply the mild Itô formula in Corollary 2 in Da Prato et al. [8] to the
second summand on the right hand side of (39). For this we define functions B̃t,s : H → R,
t ∈ (s, T ], s ∈ [0, T ), by

B̃t,s(x)

:=
∑

b∈U uxx(t, e
A(t−s)x)

(

[

(Bb
I)

′(eA(t−s)x) + (Bb)′(eA(t−s)x)
]

eA(t−s)FI(x),

Bb
I(e

A(t−s)x)−Bb(eA(t−s)x)
)

+
∑

b∈U
uxx(t, e

A(t−s)x)
(

Bb
I(e

A(t−s)x) +Bb(eA(t−s)x),

[

(Bb
I)

′(eA(t−s)x)− (Bb)′(eA(t−s)x)
]

eA(t−s)FI(x)
)

+
∑

b∈U
uxxx(t, e

A(t−s)x)
(

Bb
I(e

A(t−s)x) +Bb(eA(t−s)x),

Bb
I(e

A(t−s)x)−Bb(eA(t−s)x), eA(t−s)FI(x)
)

+
∑

b1,b2∈U
uxx(t, e

A(t−s)x)
(

[

(Bb2
I )′(eA(t−s)x) + (Bb2)′(eA(t−s)x)

]

eA(t−s)Bb1
I (x),

[

(Bb2
I )′(eA(t−s)x)− (Bb2)′(eA(t−s)x)

]

eA(t−s)Bb1
I (x)

)

+
1

2

∑

b1,b2∈U
uxx(t, e

A(t−s)x)
(

Bb2
I (eA(t−s)x)− Bb2(eA(t−s)x), (42)

[

(Bb2
I )′′(eA(t−s)x) + (Bb2)′′(eA(t−s)x)

](

eA(t−s)Bb1
I (x), eA(t−s)Bb1

I (x)
)

)

+
1

2

∑

b1,b2∈U
uxx(t, e

A(t−s)x)
(

Bb2
I (eA(t−s)x) +Bb2(eA(t−s)x),

[

(Bb2
I )′′(eA(t−s)x)− (Bb2)′′(eA(t−s)x)

](

eA(t−s)Bb1
I (x), eA(t−s)Bb1

I (x)
)

)

+
∑

b1,b2∈U
uxxx(t, e

A(t−s)x)
(

[

(Bb2
I )′(eA(t−s)x) + (Bb2)′(eA(t−s)x)

]

eA(t−s)Bb1
I (x),

Bb2
I (eA(t−s)x)− Bb2(eA(t−s)x), eA(t−s)Bb1

I (x)
)
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+
∑

b1,b2∈U
uxxx(t, e

A(t−s)x)
(

Bb2
I (eA(t−s)x) +Bb2(eA(t−s)x),

[

(Bb2
I )′(eA(t−s)x)− (Bb2)′(eA(t−s)x)

]

eA(t−s)Bb1
I (x), eA(t−s)Bb1

I (x)
)

+
1

2

∑

b1,b2∈U
uxxxx(t, e

A(t−s)x)
(

Bb2
I (eA(t−s)x) +Bb2(eA(t−s)x), Bb2

I (eA(t−s)x)−Bb2(eA(t−s)x),

eA(t−s)Bb1
I (x), eA(t−s)Bb1

I (x)
)

for all x ∈ H , t, s ∈ [0, T ] with t > s. An application of the mild Itô formula in Corollary 2
in Da Prato et al. [8] then proves that for all t ∈ [0, T ] it holds that
∑

b∈U
E
[

uxx(t, Y
I
t )
(

Bb
I

(

Y I
t

)

+Bb
(

Y I
t

)

, Bb
I

(

Y I
t

)

−Bb
(

Y I
t

))]

(43)

=
∑

b∈U
E
[

uxx(t, e
Atξ)

(

Bb
I

(

eAtξ
)

+Bb
(

eAtξ
)

, Bb
I

(

eAtξ
)

− Bb
(

eAtξ
))]

+

∫ t

0

E

[

B̃t,s(Y
I
s )
]

ds.

Putting (41) and (43) into (39) proves that

E
[

ϕ(Y I
T )
]

− E
[

ϕ(XH

T )
]

=

∫ T

0

E
[

ux(t, e
Atξ)

(

FI

(

eAtξ
)

− F
(

eAtξ
))]

dt

+
1

2

∑

b∈U

T
∫

0

E
[

uxx(t, e
Atξ)

(

Bb
I

(

eAtξ
)

+Bb
(

eAtξ
)

, Bb
I

(

eAtξ
)

−Bb
(

eAtξ
))]

dt

+

∫ T

0

∫ t

0

E

[

F̃t,s(Y
I
s )
]

+
1

2
E

[

B̃t,s(Y
I
s )
]

ds dt.

(44)

In the following we estimate the absolute values of the summands on the right hand
side of (44). To this end observe that the fact that for all r ∈ [0, 1] it holds that
supt∈(0,∞) ‖(−tA)reAt‖L(H) ≤ supx∈(0,∞)

[

xr

ex

]

≤
[

r
e

]r ≤ 1 ensures that for all t ∈ (0, T ]
it holds that

∣

∣ux(t, e
Atξ)

(

FI(e
Atξ)− F (eAtξ)

)
∣

∣ ≤ c−ϑ

tϑ
∥

∥FI(e
Atξ)− F (eAtξ)

∥

∥

H−ϑ

≤
c−ϑ |F |C1

b (H,H−ϑ)

∥

∥PH\I
∥

∥

L(H,H−ρ)
‖ξ‖H

t(ρ+ϑ)
.

(45)

This and the fact that E[‖ξ‖H ] ≤ KI
1 imply that

∣

∣

∣

∣

∫ T

0

E
[

ux(t, e
Atξ)

(

FI

(

eAtξ
)

− F
(

eAtξ
))]

dt

∣

∣

∣

∣

≤
KI

1 c−ϑ T
(1−ϑ−ρ) |F |C1

b (H,H−ϑ)

∥

∥PH\I
∥

∥

L(H,H−ρ)

(1− ϑ− ρ)
.

(46)

Inequality (46) provides us an estimate for the absolute value of the first summand on
the right hand side of (44). In the next step we bound the absolute value of the second
summand on the right hand side (44). For this we observe that the fact that g1(ξ)‖ξ‖H ≤
g2(ξ) ensures that for all t ∈ (0, T ] it holds that

∑

b∈U

∣

∣uxx(t, e
Atξ)

(

Bb
I

(

eAtξ
)

+Bb
(

eAtξ
)

, Bb
I

(

eAtξ
)

− Bb
(

eAtξ
))
∣

∣

≤ c−ϑ/2,−ϑ/2

tϑ
∑

b∈U

∥

∥Bb
I

(

eAtξ
)

+Bb
(

eAtξ
)
∥

∥

H−ϑ/2

∥

∥Bb
I

(

eAtξ
)

− Bb
(

eAtξ
)
∥

∥

H−ϑ/2

≤ 2 c−ϑ/2,−ϑ/2 g2(ξ)

t(ρ+ϑ)
‖B‖2C1

b (H,HS(U,H−ϑ/2))

∥

∥PH\I
∥

∥

L(H,H−ρ)
.

(47)
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This and the fact that E[g2(ξ)] ≤ KI
2 imply that

∣

∣

∣

∣

∑

b∈U

∫ T

0
E
[

uxx(t, e
Atξ)

(

Bb
I

(

eAtξ
)

+Bb
(

eAtξ
)

, Bb
I

(

eAtξ
)

−Bb
(

eAtξ
))]

dt

∣

∣

∣

∣

≤ 2KI
2 c−ϑ/2,−ϑ/2 T

(1−ϑ−ρ)

(1− ϑ− ρ)
‖B‖2C1

b (H,HS(U,H−ϑ/2))

∥

∥PH\I
∥

∥

L(H,H−ρ)
.

(48)

Inequality (48) provides us an estimate for the second term on the right hand side of (44).

In the next step we bound the absolute value of the term
∫ T

0

∫ t

0
E
[

F̃t,s(Y
I
s )
]

ds dt on the
right hand side of (44). For this we note that (40) shows that for all s, t ∈ [0, T ], x ∈ H
with t > s it holds that

∣

∣F̃t,s(x)
∣

∣

≤ c−ϑ,0

tϑ
∥

∥FI(e
A(t−s)x)− F (eA(t−s)x)

∥

∥

H−ϑ

∥

∥eA(t−s)FI(x)
∥

∥

H

+
c−ϑ

tϑ
∥

∥

[

F ′
I(e

A(t−s)x)− F ′(eA(t−s)x)
]

eA(t−s)FI(x)
∥

∥

H−ϑ

+
c−ϑ,0,0

2 tϑ
∥

∥FI(e
A(t−s)x)− F (eA(t−s)x)

∥

∥

H−ϑ

∥

∥eA(t−s)BI(x)
∥

∥

2

HS(U,H)

+
c−ϑ,0

tϑ
∑

b∈U

∥

∥

[

F ′
I(e

A(t−s)x)− F ′(eA(t−s)x)
]

eA(t−s)Bb
I(x)

∥

∥

H−ϑ

∥

∥eA(t−s)Bb
I(x)

∥

∥

H

+
c−ϑ

2 tϑ
∑

b∈U

∥

∥

[

F ′′
I (e

A(t−s)x)− F ′′(eA(t−s)x)
](

eA(t−s)Bb
I(x), e

A(t−s)Bb
I(x)

)
∥

∥

H−ϑ
.

(49)

Next observe that for all x, v ∈ H , r ∈ [0, ϑ], s, t ∈ [0, T ] with s < t it holds that

∥

∥

[

F ′
I(e

A(t−s)x)− F ′(eA(t−s)x)
]

eA(t−s) v
∥

∥

H−ϑ

≤
∥

∥

[

F ′(eA(t−s)PI(x))PI − F ′(eA(t−s)x)
]

eA(t−s) v
∥

∥

H−ϑ

≤
∥

∥

[

F ′(eA(t−s)PI(x))− F ′(eA(t−s)x)
]

PI e
A(t−s) v

∥

∥

H−ϑ

+
∥

∥F ′(eA(t−s)x)PH\I e
A(t−s) v

∥

∥

H−ϑ

≤ |F |C2
b (H,H−ϑ)

∥

∥eA(t−s)PH\Ix
∥

∥

H

∥

∥PIe
A(t−s)v

∥

∥

H
+ ‖F‖C1

b (H,H−ϑ)

∥

∥PH\Ie
A(t−s)v

∥

∥

H

≤
[

g1(x) |F |C2
b (H,H−ϑ)

+ ‖F‖C1
b (H,H−ϑ)

] ‖v‖H−r

∥

∥PH\I
∥

∥

L(H,H−ρ)

(t− s)ρ+r

≤
g1(x) ‖F‖C2

b (H,H−ϑ)
‖v‖H−r

∥

∥PH\I
∥

∥

L(H,H−ρ)

(t− s)(ρ+r)
.

(50)

This and the fact that for all x ∈ H it holds that g1(x)‖x‖H ≤ g2(x) imply that for all
x ∈ H , s, t ∈ [0, T ] with s < t it holds that

∥

∥

[

F ′
I(e

A(t−s)x)− F ′(eA(t−s)x)
]

eA(t−s)FI(x)
∥

∥

H−ϑ
≤

g2(x) ‖F‖2
C2
b
(H,H−ϑ)

‖PH\I‖L(H,H−ρ)

(t−s)ρ+ϑ
(51)

and

[

∑

b∈U

∥

∥

[

F ′
I(e

A(t−s)x)− F ′(eA(t−s)x)
]

eA(t−s)Bb
I(x)

∥

∥

2

H−ϑ

]
1
2

≤
g2(x) ‖F‖C2

b (H,H−ϑ)
‖B‖C1

b (H,HS(U,H−ϑ/2))
‖PH\I‖L(H,H−ρ)

(t− s)ρ+
ϑ
2

.

(52)
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Moreover, note that for all x ∈ H , s, t ∈ [0, T ] with s < t it holds that

∑

b∈U

∥

∥

[

F ′′
I (e

A(t−s)x)− F ′′(eA(t−s)x)
](

eA(t−s)Bb
I(x), e

A(t−s)Bb
I(x)

)
∥

∥

H−ϑ

≤
∑

b∈U

∥

∥F ′′(eA(t−s)PI(x))
(

[IdH +PI ] e
A(t−s)Bb

I(x), [IdH −PI ] e
A(t−s)Bb

I(x)
)
∥

∥

H−ϑ

+
∑

b∈U

∥

∥

[

F ′′(eA(t−s)PI(x))− F ′′(eA(t−s)x)
](

eA(t−s)Bb
I(x), e

A(t−s)Bb
I(x)

)
∥

∥

H−ϑ

≤ 2 ‖F‖C2
b (H,H−ϑ)

∥

∥eA(t−s)BI(x)
∥

∥

HS(U,H)

∥

∥PH\Ie
A(t−s)BI(x)

∥

∥

HS(U,H)

+
|F |C3

b (H,H−ϑ)
g1(x)

∥

∥PH\I
∥

∥

L(H,H−ρ)

∥

∥eA(t−s)BI(x)
∥

∥

2

HS(U,H)

(t− s)ρ

≤
2 ‖F‖C2

b (H,H−ϑ)
‖B‖2C1

b (H,HS(U,H−ϑ/2))
‖PH\I‖L(H,H−ρ) g2(x)

(t− s)ρ+ϑ

+
|F |C3

b (H,H−ϑ)
‖B‖2C1

b (H,HS(U,H−ϑ/2))
‖PH\I‖L(H,H−ρ) g3(x)

(t− s)ρ+ϑ

≤
2 ‖F‖C3

b (H,H−ϑ)
‖B‖2C1

b (H,HS(U,H−ϑ/2))
‖PH\I‖L(H,H−ρ) g3(x)

(t− s)ρ+ϑ
.

(53)

Putting (51), (52), and (53) into (49) proves that for all x ∈ H , s, t ∈ [0, T ] with t > s it
holds that

∣

∣F̃t,s(x)
∣

∣ ≤
[

c−ϑ,0 ‖F‖2C1
b (H,H−ϑ)

g2(x) + c−ϑ ‖F‖2C2
b (H,H−ϑ)

g2(x)

+ c−ϑ,0,0 ‖F‖C1
b (H,H−ϑ) ‖B‖2C1

b (H,HS(U,H−ϑ/2))
g3(x)

+ c−ϑ,0 ‖B‖2C1
b (H,HS(U,H−ϑ/2))

g3(x) ‖F‖C2
b (H,H−ϑ)

+ c−ϑ ‖B‖2C1
b (H,HS(U,H−ϑ/2))

g3(x) ‖F‖C3
b (H,H−ϑ)

]‖PH\I‖L(H,H−ρ)

tϑ (t− s)(ρ+ϑ)
.

(54)

This implies that for all t ∈ (0, T ], s ∈ [0, t), x ∈ H it holds that

∣

∣F̃t,s(x)
∣

∣ ≤ 2 [c−ϑ + c−ϑ,0 + c−ϑ,0,0] ςF,B g3(x) ‖PH\I‖L(H,H−ρ)

tϑ (t− s)ρ+ϑ
. (55)

This, in turn, proves that

∣

∣

∣

∣

∫ T

0

∫ t

0

E

[

F̃t,s(Y
I
s )
]

ds dt

∣

∣

∣

∣

≤ 2 T (2−ρ−2ϑ) ςF,B ‖PH\I‖L(H,H−ρ)K
I
3

[

c−ϑ + c−ϑ,0 + c−ϑ,0,0

]

(1− ρ− ϑ) (2− ρ− 2ϑ)
.

(56)

It thus remains to bound the term 1
2

∫ T

0

∫ t

0
E
[

B̃t,s(Y
I
s )

]

ds dt on the right hand side of (44).
To do so, we use a few auxiliary estimates. More formally, note that for all r ∈ [0, ϑ],
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t ∈ (0, T ], s ∈ [0, t), x, v ∈ H it holds that

[

∑

b∈U
∥

∥

[

(Bb
I)

′(eA(t−s)x)− (Bb)′(eA(t−s)x)
]

eA(t−s) v
∥

∥

2

H−ϑ/2

]1/2

=
∥

∥

[

B′(eA(t−s)PI(x))PI − B′(eA(t−s)x)
]

eA(t−s) v
∥

∥

HS(U,H−ϑ/2)

≤
∥

∥

[

B′(eA(t−s)PI(x))− B′(eA(t−s)x)
]

PI e
A(t−s) v

∥

∥

HS(U,H−ϑ/2)

+
∥

∥B′(eA(t−s)x)PH\I e
A(t−s) v

∥

∥

HS(U,H−ϑ/2)

≤ |B|C2
b (H,HS(U,H−ϑ/2))

∥

∥eA(t−s)PH\Ix
∥

∥

H

∥

∥PIe
A(t−s)v

∥

∥

H

+ ‖B‖C1
b (H,HS(U,H−ϑ/2))

∥

∥PH\Ie
A(t−s)v

∥

∥

H

≤
[

|B|C2
b (H,HS(U,H−ϑ/2))

g1(x) + ‖B‖C1
b (H,HS(U,H−ϑ/2))

] ‖v‖H−r
‖PH\I‖L(H,H−ρ)

(t− s)(ρ+r)

≤
g1(x) ‖B‖C2

b (H,HS(U,H−ϑ/2))
‖v‖H−r

∥

∥PH\I
∥

∥

L(H,H−ρ)

(t− s)(ρ+r)
, and

(57)

[

∑

b∈U
∥

∥

[

(Bb
I)

′(eA(t−s)x) + (Bb)′(eA(t−s)x)
]

eA(t−s) v
∥

∥

2

H−ϑ/2

]1/2

=
∥

∥

[

B′(eA(t−s)PI(x))PI +B′(eA(t−s)x)
]

eA(t−s) v
∥

∥

HS(U,H−ϑ/2)

≤ 2 ‖B‖C1
b (H,HS(U,H−ϑ/2))

∥

∥eA(t−s)v
∥

∥

H
≤

2 ‖B‖C1
b (H,HS(U,H−ϑ/2))

‖v‖H−r

(t− s)r
.

(58)

Inequalities (57)–(58) imply that for all t ∈ (0, T ], s ∈ [0, t), x ∈ H it holds that

[

∑

b∈U
∥

∥

[

(Bb
I)

′(eA(t−s)x)− (Bb)′(eA(t−s)x)
]

eA(t−s)FI(x)
∥

∥

2

H−ϑ/2

]1/2

≤
g1(x) ‖B‖C2

b (H,HS(U,H−ϑ/2))
‖FI(x)‖H−ϑ

∥

∥PH\I
∥

∥

L(H,H−ρ)

(t− s)(ρ+ϑ)

≤
g2(x) ‖B‖C2

b (H,HS(U,H−ϑ/2))
‖F‖C1

b (H,Hϑ)

∥

∥PH\I
∥

∥

L(H,H−ρ)

(t− s)(ρ+ϑ)
,

(59)

[

∑

b∈U
∥

∥

[

(Bb
I)

′(eA(t−s)x) + (Bb)′(eA(t−s)x)
]

eA(t−s)FI(x)
∥

∥

2

H−ϑ/2

]1/2

≤
2 ‖B‖C1

b (H,HS(U,H−ϑ/2))
‖FI(x)‖H−ϑ

(t− s)ϑ
≤

2 g1(x) ‖B‖C1
b (H,HS(U,H−ϑ/2))

‖F‖C1
b (H,H−ϑ)

(t− s)ϑ
,

(60)

[

∑

b1,b2∈U
∥

∥

[

(Bb2
I )′(eA(t−s)x)− (Bb2)′(eA(t−s)x)

]

eA(t−s)Bb1
I (x)

∥

∥

2

H−ϑ/2

]1/2

≤
g1(x) ‖B‖C2

b (H,HS(U,H−ϑ/2))
‖BI(x)‖HS(U,H−ϑ/2)

∥

∥PH\I
∥

∥

L(H,H−ρ)

(t− s)(ρ+
ϑ
2
)

≤
g2(x) ‖B‖C2

b (H,HS(U,H−ϑ/2))
‖B‖C1

b (H,HS(U,H−ϑ/2))

∥

∥PH\I
∥

∥

L(H,H−ρ)

(t− s)(ρ+
ϑ
2
)

,

(61)

[

∑

b1,b2∈U
∥

∥

[

(Bb2
I )′(eA(t−s)x) + (Bb2)′(eA(t−s)x)

]

eA(t−s)Bb1
I (x)

∥

∥

2

H−ϑ/2

]1/2

≤
2 ‖B‖C1

b (H,HS(U,H−ϑ/2))
‖BI(x)‖HS(U,H−ϑ/2)

(t− s)
ϑ
2

≤
2 g1(x) ‖B‖2C1

b (H,HS(U,H−ϑ/2))

(t− s)
ϑ
2

.

(62)
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Moreover, observe that for all x ∈ H , t ∈ (0, T ], s ∈ [0, t) it holds that

∑

b1∈U

[

∑

b2∈U

∥

∥

∥

[

(Bb2
I )′′(eA(t−s)x) + (Bb2 )′′(eA(t−s)x)

](

eA(t−s)B
b1
I (x), eA(t−s)B

b1
I (x)

)∥

∥

∥

2

H
−

ϑ/2

]1/2

=
∑

b1∈U

∥

∥

∥

[

(BI)
′′(eA(t−s)x) + (B)′′(eA(t−s)x)

]

(

eA(t−s)B
b1
I (x), eA(t−s)B

b1
I (x)

)∥

∥

∥

HS(U,H
−

ϑ/2)

≤ ∑

b1∈U

∥

∥

∥
B′′(eA(t−s)PI(x))

(

PIe
A(t−s)B

b1
I (x), PIe

A(t−s)B
b1
I (x)

)∥

∥

∥

HS(U,H
−

ϑ/2
)

+
∑

b1∈U

∥

∥

∥
B′′(eA(t−s)x)

(

eA(t−s)Bb1
I (x), eA(t−s)Bb1

I (x)
)∥

∥

∥

HS(U,H
−

ϑ/2)

≤
∥

∥B′′(eA(t−s)PI(x))
∥

∥

L(2)(H,HS(U,H
−

ϑ/2))

∑

b1∈U

∥

∥PIe
A(t−s)B

b1
I (x)

∥

∥

2

H

+
∥

∥B′′(eA(t−s)x)
∥

∥

L(2)(H,HS(U,H
−

ϑ/2))

∑

b1∈U

∥

∥eA(t−s)B
b1
I (x)

∥

∥

2

H

≤ ‖B‖C2
b (H,HS(U,H

−
ϑ/2))

[

∥

∥PIe
A(t−s)BI(x)

∥

∥

2

HS(U,H)
+
∥

∥eA(t−s)BI(x)
∥

∥

2

HS(U,H)

]

≤
2 ‖B‖C2

b (H,HS(U,H
−

ϑ/2))
‖B‖2C1

b (H,HS(U,H
−

ϑ/2))
g2(x)

(t− s)
ϑ

,

(63)

and

∑

b1∈U

[

∑

b2∈U

∥

∥

∥

[

(Bb2
I )′′(eA(t−s)x)− (Bb2 )′′(eA(t−s)x)

](

eA(t−s)B
b1
I (x), eA(t−s)B

b1
I (x)

)
∥

∥

∥

2

H
−

ϑ/2

]1/2

=
∑

b1∈U

∥

∥

∥

[

(BI)
′′(eA(t−s)x)− (B)′′(eA(t−s)x)

]

(

eA(t−s)B
b1
I (x), eA(t−s)B

b1
I (x)

)∥

∥

∥

HS(U,H
−

ϑ/2
)

≤
∑

b1∈U

∥

∥

∥

[

B′′(eA(t−s)PI(x)) −B′′(eA(t−s)x)
]

(

eA(t−s)B
b1
I (x), eA(t−s)B

b1
I (x)

)∥

∥

∥

HS(U,H
−

ϑ/2)

+
∑

b1∈U

∥

∥

∥
B′′(eA(t−s)PI(x))

(

(IdH −PI)e
A(t−s)B

b1
I (x), (IdH +PI)e

A(t−s)B
b1
I (x)

)
∥

∥

∥

HS(U,H
−

ϑ/2)

≤
∥

∥B′′(eA(t−s)PI(x)) −B′′(eA(t−s)x)
∥

∥

L(2)(H,HS(U,H
−

ϑ/2))

∑

b1∈U

∥

∥eA(t−s)B
b1
I (x)

∥

∥

2

H

+
∥

∥B′′(eA(t−s)PI(x))
∥

∥

L(2)(H,HS(U,H
−

ϑ/2))

· ∑

b1∈U

∥

∥(IdH −PI) e
A(t−s)B

b1
I (x)

∥

∥

H

∥

∥(IdH +PI) e
A(t−s)B

b1
I (x)

∥

∥

H

≤
∥

∥B′′(eA(t−s)PI(x)) −B′′(eA(t−s)x)
∥

∥

L(2)(H,HS(U,H
−

ϑ/2))

∥

∥eA(t−s)BI(x)
∥

∥

2

HS(U,H)

+
∥

∥B′′(eA(t−s)PI(x))
∥

∥

L(2)(H,HS(U,H
−

ϑ/2))

·
∥

∥(IdH −PI) e
A(t−s)BI(x)

∥

∥

HS(U,H)

∥

∥(IdH +PI) e
A(t−s)BI(x)

∥

∥

HS(U,H)

≤
|B|C3

b (H,HS(U,H
−

ϑ/2))
‖B‖2C1

b (H,HS(U,H
−

ϑ/2))

∥

∥PH\I

∥

∥

L(H,H
−ρ)

g3(x)

(t− s)
(ρ+ϑ)

+
2 ‖B‖C2

b (H,HS(U,H
−

ϑ/2))
‖B‖2C1

b (H,HS(U,H
−

ϑ/2))

∥

∥PH\I

∥

∥

L(H,H
−ρ)

g2(x)

(t− s)
(ρ+ϑ)

≤
2 ‖B‖C3

b (H,HS(U,H
−

ϑ/2))
‖B‖2C1

b (H,HS(U,H
−

ϑ/2))

∥

∥PH\I

∥

∥

L(H,H
−ρ)

g3(x)

(t− s)(ρ+ϑ)
.

(64)
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Putting (59)–(64) into (42) shows that for all t ∈ (0, T ], s ∈ [0, t), x ∈ H it holds that
∣

∣B̃t,s(x)
∣

∣

≤
[

2c−ϑ/2,−ϑ/2 ‖F‖C1
b (H,H−ϑ)

|B|C1
b (H,HS(U,H−ϑ/2))

‖B‖C1
b (H,HS(U,H−ϑ/2))

g2(x)

+ 2c−ϑ/2,−ϑ/2 ‖F‖C1
b (H,H−ϑ)

‖B‖C1
b (H,HS(U,H−ϑ/2))

‖B‖C2
b (H,HS(U,H−ϑ/2))

g3(x)

+ 2c−ϑ/2,−ϑ/2,0 ‖F‖C1
b (H,H−ϑ)

|B|C1
b (H,HS(U,H−ϑ/2))

‖B‖C1
b (H,HS(U,H−ϑ/2))

g3(x)

+ 2c−ϑ/2,−ϑ/2 ‖B‖3C1
b (H,HS(U,H−ϑ/2))

‖B‖C2
b (H,HS(U,H−ϑ/2))

g3(x)

+ c−ϑ/2,−ϑ/2 |B|C1
b (H,HS(U,H−ϑ/2))

‖B‖2C1
b (H,HS(U,H−ϑ/2))

‖B‖C2
b (H,HS(U,H−ϑ/2))

g3(x)

+ 2c−ϑ/2,−ϑ/2 ‖B‖3C1
b (H,HS(U,H−ϑ/2))

‖B‖C3
b (H,HS(U,H−ϑ/2))

g4(x)

+ 2c−ϑ/2,−ϑ/2,0 |B|C1
b (H,HS(U,H−ϑ/2))

‖B‖3C1
b (H,HS(U,H−ϑ/2))

g3(x)

+ 2c−ϑ/2,−ϑ/2,0 ‖B‖3C1
b (H,HS(U,H−ϑ/2))

‖B‖C2
b (H,HS(U,H−ϑ/2))

g4(x)

+ c−ϑ/2,−ϑ/2,0,0 |B|C1
b (H,HS(U,H−ϑ/2))

‖B‖3C1
b (H,HS(U,H−ϑ/2))

g4(x)
]

·
∥

∥PH\I
∥

∥

L(H,H−ρ)

tϑ (t− s)(ρ+ϑ)
.

(65)

This implies that for all t ∈ (0, T ], s ∈ [0, t), x ∈ H it holds that

∣

∣B̃t,s(x)
∣

∣ ≤
9
[

c−ϑ/2,−ϑ/2 + c−ϑ/2,−ϑ/2,0 + c−ϑ/2,−ϑ/2,0,0

]

ςF,B g4(x)
∥

∥PH\I
∥

∥

L(H,H−ρ)

tϑ (t− s)ρ+ϑ
. (66)

This proves that

1

2

∣

∣

∣

∣

∫ T

0

∫ t

0

E

[

B̃t,s(Y
I
s )
]

ds dt

∣

∣

∣

∣

≤
9 T (2−ρ−2ϑ) ςF,B

∥

∥PH\I
∥

∥

L(H,H−ρ)

2 (1− ρ− ϑ) (2− ρ− 2ϑ)

[

c−ϑ/2,−ϑ/2 + c−ϑ/2,−ϑ/2,0 + c−ϑ/2,−ϑ/2,0,0

]

KI
4 .

(67)

Putting (46), (48), (56), and (67) into (44) finally yields
∣

∣E
[

ϕ(XH

T )
]

− E
[

ϕ(Y I
T )
]
∣

∣ ≤
[

c−ϑ + c−ϑ,0 + c−ϑ,0,0 + c−ϑ/2,−ϑ/2 + c−ϑ/2,−ϑ/2,0 + c−ϑ/2,−ϑ/2,0,0

]

· T (1−ϑ−ρ)

(1− ϑ− ρ)

[

1 +
9 T (1−ϑ)

2 (2− 2ϑ− ρ)

]

ςF,B KI
4

∥

∥PH\I
∥

∥

L(H,H−ρ)
.

(68)

This finishes the proof of Lemma 3.2.

The next result, Corollary 3.3, is an immediate consequence of Lemma 3.1 and Lemma 3.2
above.

Corollary 3.3. Assume the setting in Section 3.1 and let ρ ∈ [0, 1−ϑ), I ∈ P(H). Then

∣

∣E
[

ϕ(XH

T )
]

− E
[

ϕ(XI
T )
]
∣

∣ ≤ 9
2T ρ

[

1 + T (1−ϑ)

(1−ϑ−ρ)

]2

‖PH\I‖L(H,H−ρ) ςF,B KI
4

·
[

‖ϕ‖C3
b (H,R) + c−ϑ + c−ϑ,0 + c−ϑ,0,0 + c−ϑ/2,−ϑ/2 + c−ϑ/2,−ϑ/2,0 + c−ϑ/2,−ϑ/2,0,0

]

.
(69)

In the next result (Corollary 3.4 below) we use Proposition 5.1.11 in [19] to estimate
the real numbers KI

4 , I ∈ P(H), on the right hand side of (69). For the formulation
of Corollary 3.4 we recall that for all x ∈ [0,∞), θ ∈ [0, 1) it holds that E1−θ(x) =
[
∑∞

n=0
x2n Γ(1−θ)n

Γ(n(1−θ)+1)

]1/2
(see Section 1.2).
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Corollary 3.4. Assume the setting in Section 3.1. Then it holds for every θ ∈ [0, 1),
ρ ∈ [0, 1− ϑ), I ∈ P(H) that

∣

∣E
[

ϕ(XH

T )
]

− E
[

ϕ(XI
T )
]
∣

∣ ≤ 18

T ρ

[

1 + T (1−ϑ)

(1−ϑ−ρ)

]2

E
[

max{1, ‖ξ‖4H}
]
∥

∥PH\I
∥

∥

L(H,H−ρ)

· ςF,B
∣

∣

∣

∣

E(1−θ)

[

T 1−θ
√
2 ‖F‖

C1
b
(H,H−θ)√

1−θ
+
√
12 T 1−θ ‖B‖C1

b (H,HS(U,H−θ/2))

]
∣

∣

∣

∣

4

·
[

‖ϕ‖C3
b (H,R) + c−ϑ + c−ϑ,0 + c−ϑ,0,0 + c−ϑ/2,−ϑ/2 + c−ϑ/2,−ϑ/2,0 + c−ϑ/2,−ϑ/2,0,0

]

.

(70)

4 Strong convergence of mollified solutions for SPDEs

In this section an elementary and essentially well-known strong convergence result, see
Proposition 4.1 below, is established. Proposition 4.1, in particular, allows us to prove
estimate (15) in the introduction. In Section 5 below we will use Proposition 4.1 in con-
junction with Corollary 3.4 in Section 3 to establish weak convergence rates for Galerkin
approximations of SPDEs.

4.1 Setting

Assume the setting in Section 1.3, assume that η = 0, and let p ∈ [2,∞), ϑ ∈ [0, 1),
F ∈ Lip0(H,H−ϑ), B ∈ Lip0(H,HS(U,H−ϑ/2)), ξ ∈ Lp(P|F0;H).

The above assumptions ensure (cf., e.g., Proposition 3 in Da Prato et al. [8], Theo-
rem 4.3 in Brzeźniak [6], Theorem 6.2 in Van Neerven et al. [33]) that there exist up-
to-modifications unique (Ft)t∈[0,T ]-predictable stochastic processes Xκ : [0, T ] × Ω → H ,
κ ∈ [0,∞), which satisfy that for all κ ∈ [0,∞) it holds that supt∈[0,T ] ‖Xκ

t ‖Lp(P;H) < ∞
and which satisfy that for all t ∈ [0, T ], κ ∈ [0,∞) it holds P-a.s. that

Xκ
t = eAtξ +

∫ t

0

eA(κ+t−s)F (Xκ
s ) ds+

∫ t

0

eA(κ+t−s)B(Xκ
s ) dWs. (71)

4.2 A strong convergence result

Proposition 4.1. Assume the setting in Section 4.1 and let κ ∈ [0,∞), ρ ∈ [0, 1−ϑ
2
).

Then
∥

∥X0
T −Xκ

T

∥

∥

Lp(P;H)
≤ max

{

1, ‖ξ‖Lp(P;H)

}

· 2 κρ

∣

∣

∣

∣

E1−ϑ

[

T 1−ϑ
√
2 ‖F‖Lip0(H,H−ϑ)√

1−ϑ
+
√

T 1−ϑ p (p− 1) ‖B‖Lip0(H,HS(U,H−ϑ/2))

]
∣

∣

∣

∣

2

·
[

T (1−ρ−ϑ)

(1−ρ−ϑ)
‖F‖Lip0(H,H−ϑ)

+

√
p (p−1) T (1−2ρ−ϑ)

√
2−4ρ−2ϑ

‖B‖Lip0(H,HS(U,H−ϑ/2))

]

.

(72)

Proof. First of all, observe that Proposition 5.1.4 in [19] shows that

∥

∥X0
T −Xκ

T

∥

∥

Lp(P;H)

≤
√
2 · E1−ϑ

[

T 1−ϑ
√
2 |F |Lip0(H,H−ϑ)√

1−ϑ
+
√

T 1−ϑ p (p− 1) |B|Lip0(H,HS(U,H−ϑ/2))

]

· sup
t∈[0,T ]

∥

∥

∥

∥

∫ t

0

eA(t−s)
(

IdH −eAκ
)

F (Xκ
s ) ds+

∫ t

0

eA(t−s)
(

IdH −eAκ
)

B(Xκ
s ) dWs

∥

∥

∥

∥

Lp(P;H)

.

(73)
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In the next step we observe that the fact that for all r ∈ [0, 1], u ∈ [0, 1] it holds
that supt∈(0,∞)

∥

∥(−tA)reAt
∥

∥

L(H)
≤

[

r
e

]r ≤ 1 and supt∈(0,∞) ‖(−tA)−u(IdH −eAt)‖L(H) ≤ 1

implies that for all t ∈ [0, T ], r ∈ [0, 1− ϑ) it holds that

∥

∥

∥

∥

∫ t

0

eA(t−s)
(

IdH −eAκ
)

F (Xκ
s ) ds

∥

∥

∥

∥

Lp(P;H)

≤ T (1−r−ϑ)

(1− r − ϑ)

[

sup
t∈[0,T ]

‖F (Xκ
t )‖Lp(P;H−ϑ)

]

κr

≤ T (1−r−ϑ)

(1− r − ϑ)
‖F‖Lip0(H,H−ϑ)

max

{

1, sup
t∈[0,T ]

‖Xκ
t ‖Lp(P;H)

}

κr

(74)

and that for all t ∈ [0, T ], r ∈ [0, 1−ϑ
2
) it holds that

∥

∥

∥

∥

∫ t

0

eA(t−s)
(

IdH −eAκ
)

B(Xκ
s ) dWs

∥

∥

∥

∥

Lp(P;H)

≤
√

p (p− 1)

2

√
T 1−2r−ϑ

√
1− 2r − ϑ

[

sup
t∈[0,T ]

‖B(Xκ
t )‖Lp(P;HS(U,H−ϑ/2))

]

κr

≤
√

p (p− 1)

2

√
T 1−2r−ϑ

√
1− 2r − ϑ

‖B‖Lip0(H,HS(U,H−ϑ/2))
max

{

1, sup
t∈[0,T ]

‖Xκ
t ‖Lp(P;H)

}

κr.

(75)

Putting (74) and (75) into (73) yields that for all r ∈ [0, 1−ϑ
2
) it holds that

∥

∥X0
T −Xκ

T

∥

∥

Lp(P;H)
≤

√
2κr max

{

1, sup
t∈[0,T ]

‖Xκ
t ‖Lp(P;H)

}

· E1−ϑ

[

T 1−ϑ
√
2 |F |Lip0(H,H−ϑ)√

1−ϑ
+
√

T 1−ϑ p (p− 1) |B|Lip0(H,HS(U,H−ϑ/2))

]

·
[

T (1−r−ϑ)

(1−r−ϑ)
‖F‖Lip0(H,H−ϑ)

+

√
p (p−1)T (1−2r−ϑ)

√
2−4r−2ϑ

‖B‖Lip0(H,HS(U,H−ϑ/2))

]

.

(76)

Proposition 5.1.9 in [19] combined with (76) finishes the proof of Proposition 4.1.

5 Weak convergence for Galerkin approximations of

SPDEs

In this section our main weak convergence results are established; see Proposition 5.1 and
Corollary 5.2 below. The proof of Proposition 5.1 uses both Corollary 3.4 in Section 3 and
Proposition 4.1 in Section 4. Theorem 1.1 in the introduction is an immediate consequence
of Corollary 5.2 below.

5.1 Setting

Assume the setting in Section 1.3, let ϕ ∈ C4
b (H,R), θ ∈ [0, 1), F ∈ C4

b (H,H−θ), B ∈
C4

b (H,HS(U,H−θ/2)), ξ ∈ L4(P|F0 ;H), and let ςF,B ∈ R be a real number given by
ςF,B = max

{

1, ‖η IdH +F‖2
C3

b (H,H−θ)
, ‖B‖4

C3
b (H,HS(U,H−θ/2))

}

.

The above assumptions ensure (cf., e.g., Proposition 3 in Da Prato et al. [8], Theo-
rem 4.3 in Brzeźniak [6], Theorem 6.2 in Van Neerven et al. [33]) that there exist up-to-
modifications unique (Ft)t∈[0,T ]-predictable stochastic processes XI : [0, T ]×Ω → PI(H),
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I ∈ P(H), and XH,κ,x : [0, T ] × Ω → H , κ ∈ [0,∞), x ∈ H , which satisfy that for all
I ∈ P(H), κ ∈ [0,∞), x ∈ H it holds that supt∈[0,T ]

[

‖XI
t ‖L4(P;H) + ‖XH,κ,x

t ‖L4(P;H)

]

< ∞
and which satisfy that for all t ∈ [0, T ], I ∈ P(H), κ ∈ [0,∞), x ∈ H it holds P-a.s. that

XI
t = eAtPI(ξ) +

∫ t

0

eA(t−s)PIF (XI
s ) ds+

∫ t

0

eA(t−s)PIB(XI
s ) dWs, (77)

XH,κ,x
t = eAtx+

∫ t

0

eA(κ+t−s)F (XH,κ,x
s ) ds+

∫ t

0

eA(κ+t−s)B(XH,κ,x
s ) dWs. (78)

Moreover, let u(κ) : [0, T ] × H → R, κ ∈ [0,∞), be functions given by u(κ)(t, x) =

E
[

ϕ(XH,κ,x
T−t )

]

for all t ∈ [0, T ], x ∈ H , κ ∈ [0,∞) and let c
(κ)
δ1,...,δk

∈ [0,∞], δ1, . . . , δk ∈ R,
k ∈ {1, 2, 3, 4}, κ ∈ [0,∞), be extended real numbers given by

c
(κ)
δ1,δ2,...,δk

= sup
t∈(0,T ]

sup
s∈[0,t)

sup
x∈H

sup
v1,...,vk∈H\{0}

[

∣

∣( ∂k

∂xku
(κ))(t, eA(t−s)x)(v1, . . . , vk)

∣

∣

t(δ1+...+δk) ‖v1‖Hδ1
. . . · ‖vk‖Hδk

]

(79)

for all κ ∈ [0,∞), δ1, . . . , δk ∈ R, k ∈ {1, 2, 3, 4}.

5.2 A weak convergence result

Proposition 5.1. Assume the setting in Section 5.1 and let I ∈ P(H), ϑ ∈ [0, 1
2
)∩ [0, θ].

Then it holds for all r ∈ [0, 1− ϑ), ρ ∈ (0, 1− θ) that

∣

∣E
[

ϕ(XH

T )
]

− E
[

ϕ(XI
T )
]
∣

∣ ≤ 22E
[

|1 ∨ ‖ξ‖H|4
][

1 ∨ ‖ IdH‖L(H,H−1)

]

‖PH\I‖
rρ

ρ+4(θ−ϑ)

L(H,H−1)
(80)

·
{

[

T 1−ρ/2−θ ‖η IdH +F‖
C1
b
(H,H−θ)

1−ρ/2−θ
+

√
T 1−ρ−θ ‖B‖

C1
b
(H,HS(U,H

−θ/2
))

√
1−ρ−θ

]

‖ϕ‖C1
b (H,R) +

ςF,B

T r

[

1 + T 1−ϑ

1−ϑ−r

]2

·
[

‖ϕ‖C3
b (H,R) + sup

κ∈(0,∞)

[

c
(κ)
−ϑ + c

(κ)
−ϑ,0 + c

(κ)
−ϑ,0,0 + c

(κ)
−ϑ/2,−ϑ/2 + c

(κ)
−ϑ/2,−ϑ/2,0 + c

(κ)
−ϑ/2,−ϑ/2,0,0

]

]

}

·
∣

∣

∣

∣

E(1−θ)

[

T 1−θ
√
2 ‖η IdH +F‖

C1
b
(H,H−θ)√

1−θ
+
√
12 T 1−θ ‖B‖C1

b (H,HS(U,H−θ/2))

]
∣

∣

∣

∣

4

< ∞.

Proof. First of all, let Ã : D(A) ⊆ H → H and F̃ ∈ C4
b (H,H−θ) be given by Ãv = Av−ηv

and F̃ (v) = F (v) + ηv for all v ∈ D(A) and observe that Proposition 7.3.1 in [19] proves
that for all t ∈ [0, T ], I ∈ P(H), κ ∈ [0,∞), x ∈ H it holds P-a.s. that

XI
t = eÃtPI(ξ) +

∫ t

0

eÃ(t−s)PIF̃ (XI
s ) ds+

∫ t

0

eÃ(t−s)PIB(XI
s ) dWs, (81)

XH,κ,x
t = eÃtx+

∫ t

0

eÃ(κ+t−s)F̃ (XH,κ,x
s ) ds+

∫ t

0

eÃ(κ+t−s)B(XH,κ,x
s ) dWs. (82)

We intend to Proposition 5.1 through an application of Corollary 3.4. Corollary 3.4
assumes that the initial random variable of the considered SEE takes values in H1 ⊆ H .
In Section 5.1 above we, however, merely assume that the initial random variable ξ takes
values in H . To overcome this difficulty, we mollify the initial random variable in an
appropriate sense so that the assumptions of Corollary 3.4 are met and Corollary 3.4 can
be applied. More formally, note that there exist (cf., e.g., Proposition 3 in Da Prato
et al. [8], Theorem 4.3 in Brzeźniak [6], Theorem 6.2 in Van Neerven et al. [33]) up-to-
modifications unique (Ft)t∈[0,T ]-predictable stochastic processes X̂I,κ,δ : [0, T ] × Ω → H ,
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κ, δ ∈ [0,∞), such that for all κ, δ ∈ [0,∞) it holds that supt∈[0,T ] ‖X̂I,κ,δ
t ‖L4(P;H) < ∞

and such that for all t ∈ [0, T ], κ, δ ∈ [0,∞) it holds P-a.s. that

X̂I,κ,δ
t = eÃ(δ+t)PI(ξ) +

∫ t

0

eÃ(κ+t−s)PIF̃ (X̂I,κ,δ
s ) ds+

∫ t

0

eÃ(κ+t−s)PIB(X̂I,κ,δ
s ) dWs. (83)

In the next step we observe that the triangle inequality ensures that for all κ, δ ∈ (0,∞)
it holds that

∣

∣E
[

ϕ(X̂H,0,δ
T )

]

− E
[

ϕ(X̂I,0,δ
T )

]
∣

∣ ≤
∣

∣E
[

ϕ(X̂H,0,δ
T )

]

− E
[

ϕ(X̂H,κ,δ
T )

]
∣

∣

+
∣

∣E
[

ϕ(X̂H,κ,δ
T )

]

− E
[

ϕ(X̂I,κ,δ
T )

]
∣

∣ +
∣

∣E
[

ϕ(X̂I,κ,δ
T )

]

− E
[

ϕ(X̂I,0,δ
T )

]
∣

∣.
(84)

In the following we bound the three summands on the right hand side of (84). For the
first and third summand on the right hand side of (84) we observe that Proposition 4.1
shows that for all κ, δ ∈ (0,∞), ρ ∈ [0, 1− θ) it holds that

∣

∣E
[

ϕ(X̂H,0,δ
T )

]

− E
[

ϕ(X̂H,κ,δ
T )

]
∣

∣+
∣

∣E
[

ϕ(X̂I,κ,δ
T )

]

− E
[

ϕ(X̂I,0,δ
T )

]
∣

∣

≤ 4 ‖ϕ‖C1
b (H,R)

∣

∣

∣

∣

E(1−θ)

[

T 1−θ
√
2 ‖F̃‖

C1
b
(H,H−θ)√

1−θ
+
√
2 T 1−θ ‖B‖C1

b (H,HS(U,H−θ/2))

]
∣

∣

∣

∣

2

·
[

T 1−ρ/2−θ

1−ρ/2−θ
‖F̃‖C1

b (H,H−θ) +
√
T 1−ρ−θ√
1−ρ−θ

‖B‖C1
b (H,HS(U,H−θ/2))

]

max
{

1, ‖ξ‖L2(P;H)

}

κ
ρ
2 .

(85)

Next we bound the second summand on the right hand side of (84). For this we note that
for all κ ∈ (0,∞) it holds that

max
{

1, ‖eκÃF̃ (·)‖2C3
b (H,H−ϑ)

, ‖eκÃB(·)‖4C3
b (H,HS(U,H−ϑ/2))

}

≤ ςF,B max
{

1, κ−2(θ−ϑ)
}

. (86)

This and Corollary 3.4 show that for all κ, δ ∈ (0,∞), r ∈ [0, 1− ϑ) it holds that

∣

∣E
[

ϕ(X̂H,κ,δ
T )

]

− E
[

ϕ(X̂I,κ,δ
T )

]
∣

∣

≤
[

1 + T 1−ϑ

1−ϑ−r

]2
∣

∣

∣

∣

E(1−θ)

[

T 1−θ
√
2 ‖F̃‖

C1
b
(H,H−θ)√

1−θ
+
√
12 T 1−θ ‖B‖C1

b (H,HS(U,H−θ/2))

]
∣

∣

∣

∣

4

·
[

‖ϕ‖C3
b (H,R) + c

(κ)
−ϑ + c

(κ)
−ϑ,0 + c

(κ)
−ϑ,0,0 + c

(κ)
−ϑ/2,−ϑ/2 + c

(κ)
−ϑ/2,−ϑ/2,0 + c

(κ)
−ϑ/2,−ϑ/2,0,0

]

· 18 ςF,B
T r

E
[

max{1, ‖ξ‖4H}
]

max
{

1, κ−2(θ−ϑ)
}
∥

∥PH\I
∥

∥

L(H,H−r)
.

(87)

In the next step we plug (85) and (87) into (84) and we use the fact that for all r ∈ (0,∞)
it holds that ‖PI‖L(H,H−r) = ‖PI‖rL(H,H−1)

to obtain that for all κ, δ ∈ (0,∞), r ∈ [0, 1−ϑ),

ρ ∈ [0, 1− θ) it holds that

∣

∣E
[

ϕ(X̂H,0,δ
T )

]

− E
[

ϕ(X̂I,0,δ
T )

]
∣
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[

4 κ
ρ
2 + 18max

{

1, κ−2(θ−ϑ)
}

‖PH\I‖rL(H,H−1)

]

·
{

[

T 1−ρ/2−θ

1−ρ/2−θ
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b (H,H−θ) +
√
T 1−ρ−θ√
1−ρ−θ

‖B‖C1
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·
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(κ)
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]

}

· E
[

max{1, ‖ξ‖4H}
]

∣

∣

∣
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E(1−θ)

[

T 1−θ
√
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C1
b
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1−θ
+
√
12 T 1−θ ‖B‖C1

b (H,HS(U,H−θ/2))

]
∣

∣

∣

∣

4

.

(88)
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Next we use again the fact that for all r ∈ (0,∞) it holds that ‖PI‖L(H,H−r) = ‖PI‖rL(H,H−1)

to obtain that for all r ∈ (0,∞), ρ ∈ (0, 1− θ) it holds that

inf
κ∈(0,∞)

[

4 κ
ρ
2 + 18max

{

1, κ−2(θ−ϑ)
}

‖PH\I‖rL(H,H−1)

]
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[
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ρ
2
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}
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‖PH\I‖
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L(H,H−1)

}

≤ 22 ‖PH\I‖
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{
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‖PH\I‖
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, 1
}}
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1, ‖(−Ã)
−4r(θ−ϑ)
ρ+4(θ−ϑ) ‖L(H)

}

‖PH\I‖
rρ

ρ+4(θ−ϑ)

L(H,H−1)
(89)

Putting (89) into (88) implies that for all δ ∈ (0,∞), r ∈ [0, 1− ϑ), ρ ∈ (0, 1− θ) it holds
that

∣

∣E
[

ϕ(X̂H,0,δ
T )

]

− E
[

ϕ(X̂I,0,δ
T )

]
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(90)

Moreover, we note that Corollary 5.1.5 in [19] ensures that for all J ∈ P(H) it holds that
limδ→0 E

[

ϕ(X̂J,0,δ
T )

]

= E
[

ϕ(XJ
T )
]

. Combining this with inequality (90) proves the first
inequality in (80). The second inequality in (80) follows from Andersson et al. [1]. The
proof of Proposition 5.1 is thus completed.

In a number of cases the difference θ− ϑ ≥ 0 can be chosen to be an arbitrarily small
positive real number (cf. Theorem 1.1 above). In the next result, Corollary 5.2, we further
estimate the right hand side of (80).

Corollary 5.2. Assume the setting in Section 5.1 and let I ∈ P(H). Then it holds for
all ρ ∈ (0, 1− θ) ∩

(

4(θ − ϑ),∞
)

that
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Proof of Corollary 5.2. First of all, we choose r = ρ in (80) in Proposition 5.1 above to
obtain that for all ρ ∈ (0, 1− θ) that

∣
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Next we note that for all ρ ∈
(

0, 1− θ
)

∩
(

4(θ − ϑ),∞
)

it holds that

[
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≤
[

1 ∨ ‖ IdH‖L(H,H−1)

] [

1 ∨ ‖PH\I‖L(H,H−1)
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1, ‖ IdH‖2L(H,H−1)

}
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L(H,H−1)

(93)

Combining this with (92), the fact that ‖ IdH‖2L(H,H−1)
= ‖ IdH‖L(H,H−2) and the fact that

‖PH\I‖(ρ−4(θ−ϑ))
L(H,H−1)

=
[

infb∈H\I [η − λb]
]−(ρ−4(θ−ϑ))

completes the proof of Corollary 5.2.

6 Lower bounds for the weak error of Galerkin ap-

proximations for SPDEs

In this section a few specific lower bounds for weak approximation errors are established
in the case of concrete example SEEs. Lower bounds for strong approximation errors for
examples SEEs and whole classes of SEEs can be found in [10, 27, 29, 30]. In the case of
finite dimensional stochastic ordinary differential equations lower bounds for both strong
and weak approximation errors have been established; for details see, e.g., the references
in the overview article Müller-Gronbach & Ritter [28].

6.1 Setting

Assume the setting in Section 1.3, assume that (H, 〈·, ·〉H , ‖·‖H) = (U, 〈·, ·〉U , ‖·‖U), as-
sume that η = 0, let β ∈ [0, 1

2
), let µ : H → R be a function such that

∑

b∈H |µb|2 |λb|−2β <
∞, and letB ∈ HS(H,H−β) satisfy that for all v ∈ H it holds thatBv =

∑

b∈H µb 〈b, v〉H b.
The above assumptions ensure (cf., e.g., Proposition 3 in Da Prato et al. [8], Theorem

4.3 in Brzeźniak [6], Theorem 6.2 in Van Neerven et al. [33]) that there exist up-to-
modifications unique (Ft)t∈[0,T ]-predictable stochastic processes XI : [0, T ]× Ω → H, I ∈
P(H), such that for all p ∈ (0,∞), I ∈ P(H) it holds that supt∈[0,T ] ‖XI

t ‖Lp(P;H) < ∞ and

such that for all I ∈ P(H), t ∈ [0, T ] it holds P-a.s. that XI
t =

∫ t

0
eA(t−s)PIB dWs.
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6.2 Lower bounds for the weak error

Lemma 6.1. Assume the setting in Section 6.1 and let I ∈ P(H), b ∈ H, t ∈ [0, T ].

Then Var
(〈

b,XI
t

〉

H

)

= 1I(b) |µb|2 (e2λbt−1)
2λb

.

Proof. Observe that it holds P-a.s. that

〈

b,XI
t

〉

H
=

〈

b,

∫ t

0

eA(t−s)PIB dWs

〉

H

=

∫ t

0

〈

PI e
A(t−s) b, B dWs

〉

H

= 1I(b)

∫ t

0

eλb(t−s) 〈b, B dWs〉H = 1I(b)µb

∫ t

0

eλb(t−s) 〈b, dWs〉H .

(94)

This and Itô’s isometry yield that

Var
(〈

b,XI
t

〉

H

)

= 1I(b) |µb|2
∫ t

0

e2λb(t−s) ds =
1I(b) |µb|2

(

e2λbt − 1
)

2λb

. (95)

The proof of Lemma 6.1 is thus completed.

The next elementary result, Lemma 6.2, is an immediate consequence of Lemma 6.1
above.

Lemma 6.2. Assume the setting in Section 6.1, let I ∈ P(H), and let ϕ : H → [0,∞)
fulfill that for all x ∈ H it holds that ϕ(x) = ‖x‖2H . Then ϕ ∈ C∞(H, [0,∞)) and

E
[

ϕ(XH

T )
]

− E
[

ϕ(XI
T )
]

= E
[
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]

≥
[

1−e−2T infb∈H |λb|

2

] [

∑

b∈H\I
|µb|2
|λb|

]

. (96)

Lemma 6.2 establishes a lower bound in the case of the squared norm as the test
function. The next result, Lemma 6.3, establishes a similar lower bound for a test function
in C4

b (H,R).

Lemma 6.3. Assume the setting in Section 6.1, let I ∈ P(H) and let ϕ : H → R be given
by ϕ(v) = exp(−‖v‖2H) for all v ∈ H. Then ϕ ∈ C4

b (H,R) and

E
[

ϕ(XI
T )
]

− E
[

ϕ(XH

T )
]

≥ E[ϕ(XH

T )]E
[

‖XH\I
T ‖2H

]

2 (1+E[‖XH\I
T ‖2H ])3/2

≥ E[ϕ(XH

T )] (1−e−2T infb∈H |λb|)
4 (1+E[‖XH\I

T ‖2H ])3/2

[

∑

b∈H\I

|µb|2
|λb|

]

.

Proof. First of all, observe that for all x, u1, u2, u3, u4 ∈ H it holds that

ϕ(1)(x)(u1) = −2ϕ(x) 〈x, u1〉H , (97)

ϕ(2)(x)(u1, u2) = −2
[

ϕ(1)(x)(u2) 〈x, u1〉H + ϕ(x) 〈u2, u1〉H
]

= −2ϕ(x) [〈u1, u2〉H − 2 〈x, u1〉H 〈x, u2〉H ] , (98)

ϕ(3)(x)(u1, u2, u3) = −2
[

ϕ(1)(x)
(

〈u3, u1〉H u2 + 〈u2, u1〉H u3

)

+ ϕ(2)(x)(u2, u3) 〈x, u1〉H
]

, (99)

ϕ(4)(x)(u1, u2, u3, u4) = −2
[

ϕ(3)(x)(u2, u3, u4) 〈x, u1〉H + ϕ(2)(x)(u2, u3) 〈u4, u1〉H
+ ϕ(2)(x)

(

〈u3, u1〉H u2 + 〈u2, u1〉H u3, u4

)]

. (100)

Identity (97) and the fact that for all r ∈ [0,∞) it holds that supx∈H ([1 + ‖x‖rH ]ϕ(x)) <
∞ show that for all r ∈ [0,∞) it holds that supx∈H

(

[1 + ‖x‖rH ]
[

ϕ(x) + ‖ϕ(1)(x)‖L(H,R)

])

<
∞. This and identity (98) imply that for all r ∈ [0,∞) it holds that

sup
x∈H

(

[1 + ‖x‖rH ]
[
∑2

k=1 ‖ϕ(k)(x)‖L(k)(H,R)

])

< ∞. (101)
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This and (99) yield that for all r ∈ [0,∞) it holds that

sup
x∈H

(

[1 + ‖x‖rH ]
[
∑3

k=1 ‖ϕ(k)(x)‖L(k)(H,R)

])

< ∞. (102)

This and (100) prove that ϕ ∈ C4
b (H,R). Next observe that for all σ ∈ R it holds that

∫

R

exp
(

− [σx]2
)

· 1√
2π

exp

(

−x2

2

)

dx =

∫

R

1√
2π

exp

(

−x2

2

[

1 + 2σ2
]

)

dx

=
1

[1 + 2σ2]
1/2

∫

R

1√
2π

exp

(

−x2

2

)

dx =
1√

1 + 2σ2
.

(103)

This and Lemma 6.1 imply that

E
[

ϕ(XI
T )
]

− E
[

ϕ(XH

T )
]

=
∏

b∈I

[

1 + |µb|2
λb

(

e2λbT − 1
)

]−1/2

−
∏

b∈H

[

1 + |µb|2
λb

(

e2λbT − 1
)

]−1/2

=
∏

b∈I

[

1 + |µb|2
λb

(

e2λbT − 1
)

]−1/2



1−
∏

b∈H\I

[

1 + |µb|2
λb

(

e2λbT − 1
)

]−1/2





≥
∏

b∈H

[

1 + |µb|2
λb

(

e2λbT − 1
)

]−1/2






1−





∏

b∈H\I

[

1 + |µb|2
λb

(

e2λbT − 1
)

]





−1/2






≥ E
[

ϕ(XH

T )
]






1−



1 +
∑

b∈H\I

|µb|2
λb

(

e2λbT − 1
)





−1/2





.

(104)

In the next step we note that the fundamental theorem of calculus ensures that for all
x ∈ [0,∞) it holds that 1 − [1 + x]−1/2 = 1

2

∫ x

0
[1 + y]−3/2 dy ≥ 1

2
x [1 + x]−3/2. Combining

this with (104) and Lemma 6.1 proves that

E
[

ϕ(XI
T )
]

− E
[

ϕ(XH

T )
]

≥ E
[

ϕ(XH

T )
]

2





∑

b∈H\I

|µb|2
λb

(

e2λbT − 1
)







1 +
∑

b∈H\I

|µb|2
λb

(

e2λbT − 1
)





−3/2

≥ E
[

ϕ(XH

T )
]

E
[

‖XH\I
T ‖2H

]

2
(

1 + E
[

‖XH\I
T ‖2H

])3/2
.

(105)

This and Lemma 6.2 complete the proof of Lemma 6.3.

Proposition 6.4 (A more concrete lower bound for the weak error). Assume the setting
in Section 6.1, let b : N → H be a bijective function, let I ∈ P(H), N ∈ N, c, ρ ∈ (0,∞),
δ ∈ (−∞, 1

2
− 1

2ρ
) satisfy that for all n ∈ N it holds that λbn = −c nρ and µbn = |λbn |δ,

and let ϕ : H → R be given by ϕ(v) = exp(−‖v‖2H) for all v ∈ H. Then ϕ ∈ C5
b (H,R),

B ∈ ∩r∈(−∞,− 1
2
[1/ρ+2δ])HS(H,Hr) and

E
[

ϕ(X
{b1,...,bN}
T )

]

− E
[

ϕ(XH

T )
]

≥ E[ϕ(XH

T )] (1−e−2Tc) |λbN
|−(1−[1/ρ+2δ])

2(1−2δρ+ρ) c1/ρ (ρ−2δρ+c(2δ−1) (ρ−2δρ−1)−1/3)
3/2 . (106)
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Proof. First of all, observe that Lemma 6.3 ensures that ϕ ∈ C5
b (H,R) and that

E
[

ϕ(X
{b1,...,bN}
T )

]

− E
[

ϕ(XH

T )
]

≥ E[ϕ(XH

T )] (1−e−2Tc) c(2δ−1)

4 (1+c(2δ−1)
∑∞

n=N+1 n
ρ(2δ−1))

3/2

[ ∞
∑

n=N+1

nρ(2δ−1)

]

. (107)

Next note that the assumption that δ < 1
2
− 1

2ρ
ensures that ρ (2δ − 1) < −1. This, in

turn, implies that

∞
∑

n=N+1

nρ (2δ−1) =

∞
∑

n=N+1

∫ n+1

n

1

nρ (1−2δ)
dx ≥

∞
∑

n=N+1

∫ n+1

n

1

xρ (1−2δ)
dx

=

∫ ∞

N+1

xρ (2δ−1) dx =
−(N + 1)[1+ρ(2δ−1)]

[1 + ρ (2δ − 1)]
≥ (2N)ρ (

1/ρ+2δ−1)

[ρ (1− 2δ)− 1]

=
[2ρ/c](

1/ρ+2δ−1) |λbN |
(1/ρ+2δ−1)

[ρ (1− 2δ)− 1]
.

(108)

Putting this into (107) proves that

E
[

ϕ(X
{b1,...,bN}
T )

]

− E
[

ϕ(XH

T )
]

≥ E[ϕ(XH

T )] (1−e−2Tc) 2(1+2δρ−ρ) |λbN
|(1/ρ+2δ−1)

4 c1/ρ (ρ−2δρ−1) (1+c(2δ−1)
∑∞

n=N+1 n
ρ(2δ−1))

3/2 . (109)

This and the fact that

∞
∑

n=N+1

nρ (2δ−1) =
∞
∑

n=N+1

∫ n

n−1

1

nρ (1−2δ)
dx ≤

∞
∑

n=N+1

∫ n

n−1

1

xρ (1−2δ)
dx

=

∫ ∞

N

xρ (2δ−1) dx =
−N [1+ρ(2δ−1)]

[1 + ρ (2δ − 1)]
=

N (1+2δρ−ρ)

(ρ− 2δρ− 1)
≤ 1

(ρ− 2δρ− 1)

(110)

complete the proof of Proposition 6.4.

In the next result, Corollary 6.4, we specialise Proposition 6.4 to the case where ρ = 2,
c = π2 (we think of A being, e.g., the Laplacian with Dirichlet boundary conditions on
H = L2((0, 1);R)) and δ ∈ (−∞, 1/4).

Corollary 6.5. Assume the setting in Section 6.1, let b : N → H be a bijective function,
let I ∈ P(H), N ∈ N, δ ∈ (−∞, 1/4) satisfy that for all n ∈ N it holds that λbn = −π2 n2

and µbn = |λbn|δ, and let ϕ : H → R be given by ϕ(v) = exp(−‖v‖2H) for all v ∈ H. Then
ϕ ∈ C5

b (H,R), B ∈ ∩r∈(−∞,− 1
2
[1/2+2δ])HS(H,Hr) and

E
[

ϕ(X
{b1,...,bN}
T )

]

− E
[

ϕ(XH

T )
]

≥
[

E[ϕ(XH

T )] 2(4δ−5) (1−e−T )

(2−4δ+2(7δ−7) (1−4δ)−1/3)
3/2

]

|λbN |
−(1−[1/2+2δ]) . (111)
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