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We consider the non-linear spatially homogeneous Boltzmann equation, and develop a polar spectral

discretization in two dimensions based on Laguerre polynomials, which generalizes previous methods by

Ender and Ender [A.YA. ENDER AND I.A. ENDER: Polynomial expansions for the isotropic Boltzmann

equation and invariance of the collision integral with respect to the choice of basis functions. Physics of

Fluids, 11:2720–2730, 1999] to the case of non-radially symmetric solutions. The method yields sparse

approximation for long times and enjoys exponential convergence in the number of degrees of freedom

for analytic solutions. A particular implementation exactly conserves mass, momentum and energy.

Compared to the Fourier spectral discretization method, we need not truncate the collision operator and,

thus, avoid aliasing errors.

Keywords: Boltzmann equartion; spectral Galerkin method; Laguerre polynomials.

1. Introduction

In this paper we are concerned with the discretization in velocity and time of the spatially homogeneous

Boltzmann equation
∂ f

∂ t
(t,vvv) = Q( f , f )(t,vvv), (1.1)

where f : R+×R
d → R

+ is an unknown density function, for which initial values f0 = f0(vvv) at t = 0

are prescribed. The bilinear collision operator Q takes the form (dropping the variable t for the sake of

readability)

Q( f ,h)(vvv) =
∫

Rd

∫

Sd−1
B(‖vvv− vvv∗‖,cosθ)(h′∗ f ′−h∗ f )dσσσ dvvv∗, (1.2)

where the notation Q( f ,h)(vvv) means Q( f ,h) evaluated at vvv, and we have used the common shorthand

notation

f = f (vvv), h∗ = h(vvv∗), f ′ = f (vvv′), h′∗ = h(vvv′∗).

The pre- and post-collision velocities (vvv,vvv∗) and (vvv′,vvv′∗) are related through the transformation

vvv′ =
1

2
(vvv+ vvv∗+‖vvv− vvv∗‖σσσ) , vvv′∗ =

1

2
(vvv+ vvv∗−‖vvv− vvv∗‖σσσ) ,

which represents all solutions conserving momentum and energy, parametrized by σσσ ∈ Sd−1. See Fig-

ure 1.
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FIG. 1: Illustrating the relationship between pre- and post-collisional velocities. On a sphere centered at
1/2(vvv+ vvv∗) with diameter ‖vvv− vvv∗‖, the pre-collisional velocities are diametrically opposite, as are the

post-collisional velocities. The angle between the two is the θ entering (1.2).

By construction Q enjoys invariance with respect to translations and rotations, as expressed in the

following theorem. Actually, these properties are

THEOREM 1.1 For ccc∈Rd , let τccc be a translation operator, i.e. τccc f (xxx) = f (xxx−ccc). Also, given a rotation

matrix R ∈ R
d×d , let ρR be a rotation operator, i.e. ρR f (xxx) = f (Rxxx). Then Q commutes with τccc and ρR:

Q(τccc f ,τcccg) = τcccQ( f ,g), Q(ρR f ,ρRg) = ρRQ( f ,g).

The two terms h′∗ f ′ and h∗ f are called gain and loss parts respectively, and it is often useful (and we

will do so when necessary) to split the collision operator and write

Q( f ,h) = Q+( f ,h)−Q−( f ,h). (1.3)

We are going to use this splitting in our spectral method. This is only possible, if we make the following

customary assumption on the collision kernel B in (1.2).

Assumption 1.2 Assume that B is separable, with a power law dependence on the relative velocity,

that is,

B(‖uuu‖,cosθ) = ‖uuu‖λ b(cosθ), with λ >−d

2
, (1.4)

and some function b : [−1,1]→ R that satisfies Grad’s cutoff assumption

∫

Sd−1
b(cosθ)dσσσ < ∞. (1.5)

For the physical background and the mathematical analysis of (1.1) we refer to Cercignani (2002);

Villani (2002). The numerical treatment of (1.1) has received considerable attention as a testbed for the
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discretization of the full Boltzmann equation in velocity space. Among others, we would like to mention

Gamba & Tharkabhushanam (2009); more references are given below.

The most popular methods for the solution of (1.1) are stochastic Monte Carlo-type methods as

developed in Rjasanow & Wagner (2005). These are commonly afflicted by indeterminism, noise and

slow convergence. In principle, deterministic schemes can overcome these problems, but they often

incur hefty computational cost. Lattice Boltzmann methods, which rely on very crude pointwise dis-

cretizations in velocity space, have also become popular. Since our work is primarily concerned with a

high-accuracy spectral deterministic method, no attempt will be made in the following to compare our

work with stochastic methods or lattice Boltzmann methods.

Most existing work tackle the discretization of (1.1) by means of Fourier spectral methods. They

can exploit the convolution structure of Q, which follows from Theorem 1.1. This is explained in

Bobylev (1988); Kirsch & Rjasanow (2007); Pareschi & Perthame (1996) and we refer to Gamba &

Tharkabhushanam (2009, 2010); Filbet et al. (2006); Pareschi & Russo (2000); Pareschi et al. (2003)

for numerical simulations based on that method, and Filbet & Mouhot (2011); Fonn et al. (2012) for its

numerical analysis. We remark that the difference methods developed in Bobylev & Rjasanow (1997,

1999, 2000) and Ibragimov & Rjasanow (2002) are related to Fourier spectral discretization.

Yet, the Fourier spectral approach entails tinkering with the collision operator in two ways:

(i) the restriction of the integration over Rd in (1.2) to a ball of finite radius R > 0.

(ii) the truncation of the velocity space R
d to a cube DL := [−L,L)d plus periodic continuation.

These modifications result in a perturbed evolution

∂

∂ t
fR = QR( fR, fR), fR(0) = f0. (1.6)

The evolution (1.6) is then projected onto a subset of L2(DL) spanned by a finite set of tensor prod-

uct Fourier modes. One observes the following property of QR, which follows from the translation

invariance of Q:

QR(eilll·vvv,eimmm·vvv) = β̂ (lll,mmm)ei(lll+mmm)·vvv, (1.7)

where β̂ (lll,mmm) ∈ C. In other words, the collision operator is sparse with respect to this basis. With N

degrees of freedom in each direction, a discrete collision operator can be applied in O(N2d) time instead

of O(N3d). For some collision kernels B, this may be further improved upon, see Mouhot & Pareschi

(2006) for some examples.

The price we pay for this property is a lack of conservation (the projected equation (1.6) cannot in

general conserve momentum and energy), and an additional error introduced by truncation. To curb this

error, the quantity R must be chosen large enough compared to the effective support of f , and the ratio

R : L must be chosen small enough to avoid aliasing between different periodizations of f Fonn et al.

(2012). However, increasing L will effectively increase the high-frequency content of f , so the trial

space must be enlarged as well.

In this paper, we propose a different discrete trial space for f , which avoids the shortcomings of the

Fourier spectral method. To begin with, the proposed method is fully conservative (in mass, momentum

and energy) for a certain choice of parameters. It also requires no truncation of the collision operator, so

no aliasing occurs. The price we pay for these properties is a worse time complexity (in two dimensions,

it requires O(N5) time to apply the collision operator, compared to the Fourier method’s O(N4)), but

this is mitigated in part by a natural sparsity for long times, which can be exploited by a time-dependent

adaptive choice of the trial space.



Page 4 of 36 E. FONN, P. GROHS, R. HIPTMAIR

Associated Laguerre polynomials (also called generalized Laguerre polynomials or Sonine polyno-

mials have been used before to solve the Boltzmann equation (in particular, see work by Ender and

Ender Ender & Ender (1994, 1999), the former appears unavailable in English), but only for rotationally

symmetric solutions. In this paper we generalized the system to arbitrary solutions in two dimensions.

We study the approximation properties of the trial space in Section 2 and prove exponential convergence

of the best approximation in terms of the number of degrees of freedom for analytic densities. Yet, so

far there is no proof that this kind of convergence carries over to the solution of the semi-discrete evolu-

tion. Some algorithmic details of the polar spectral method are given in Section 4.1, whereas Section 5

reports its performance in the case of a few test problems. Our results provide circumstantial evidence

that The full generalization of the method to arbitrary dimensions is postponed to future work; for the

remainder of the paper, we focus on two-dimensional velocity space.

Parallel to our work a closely related Petrov-Galerkin spectral scheme for (1.1) has been developed

by Kitzler & Schöberl (2013). They use Maxwellian modulated tensor product polynomials as trial

space and test with the same polynomials, which ensures conservation of mass, momentum and energy

for the semi-discrete evolution. In their work, for the simple case of Maxwellian molecules B≡ 1, they

rely on a transformation to a polar spectral representation to accelerate the application of the collision

operator in their discrete framework. In addition, a quadrature approximation is employed. Though not

explicitly stated in Kitzler & Schöberl (2013), taking into account that the accuracy of the quadrature

has to match the resolution of the trial space, we end up with asymptotic computational costs of O(N5)
per timestep, the same as for the method presented in this article. A thorough comparison of the methods

still has to be done.

2. The polar Laguerre function space

For the sake of simplicity of notation we will identify R
2 with C, and its standard polar representation,

vvv = x(vvv)+ iy(vvv) = r(vvv)ei argvvv.

We will also denote by µ the Maxwellian weight function

µ(vvv) = µ(r) = e−r2

. (2.1)

Let us now define, for l ∈ Z, k ∈ Z>0, β > 0

ξl : [0,2π)→ C : θ 7→ eilθ , (2.2)

ψS
k,β : [0,∞)→ R : r 7→

√
2e−r2/β L

(0)
k (r2), (2.3)

ψK
k,β : [0,∞)→ R : r 7→

√

2

k+1
e−r2/β rL

(1)
k (r2). (2.4)

Here, L
(α)
k denote the associated Laguerre polynomials of order α ∈ N0. They are defined as

L
(α)
k (x) =

k

∑
i=0

(−1)k

(
k+α

k− i

)
xi

i!
, (2.5)
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k L
(0)
k L

(1)
k

0 1 1

1 −x+1 −x+2

2 1
2
x2−2x+1 1

2
x2−3x+3

3 − 1
6
x3 + 3

2
x2−3x+1 − 1

6
x3 +2x2−6x+4

4 1
24

x4− 2
3
x3 +3x2−4x+1 1

24
x4− 5

6
x3 +5x2−10x+5

Table 1: The first few associated Laguerre polynomials of order 0 and 1.

and satisfy the recurrence relations

(k+1)L
(0)
k+1(x) = (2k+1− x)L

(0)
k (x)− kL

(0)
k−1(x), k > 1, (2.6)

L
(α)
k (x) =

k

∑
i=0

L
(α−1)
i (x), (2.7)

with L
(0)
0 = 1 and L

(0)
1 = 1− x. The first few polynomials of order 0 and 1 are tabulated in Table 1 and

plotted in Figure 2.
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FIG. 2: The first six associated Laguerre polynomials of order 0 (left) and 1 (right).

The polynomials L
(α)
k are orthogonal with respect to the weight e−xxα :

∫ ∞

0
e−xxα L

(α)
k (x)L

(α)
l (x)dx =

(
k+α

k

)

α! (2.8)

This is the motivation for the definitions (2.3) and (2.4). Substituting x = r2, we see that ψS
k,β and ψK

k,β

are orthonormal with respect to the weighted L2 inner product on (0,∞) with weight

e−(1−2/β)r2

r dr,

which fits with the volume element for polar integrals over R2. This will be made precise in the follow-

ing.
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The functions ψS
k and ψK

k from (2.3), (2.4) are exponentially weighted polynomials in r of degree

2k and 2k + 1 containing only even and odd powers of r, respectively. Therefore it can be expected

that, if f : [0,∞)→ R is analytic and sufficiently rapidly decaying (a condition depending on β ) and its

analytic extension to R is even, it will have an exponentially convergent series representation in terms

of the functions ψS
k,β , and likewise for ψK

k,β if f has an odd extension to R. The appropriate domains of

analyticity turn out to be strips

s(c) :=
{

z : |ℑz|6
√

c
}

(2.9)

PROPOSITION 2.1 Let f : [0,∞)→ R be given, and assume that f has an even analytic extension to the

strip s(c) for some c > 0, and that for every b such that 0 6 b < c, there exists C(b) such that

| f (z)|6C(b)exp

[
x2

2
−|y|

(
b2− y2

) 1
2

]

, (2.10)

for all z = x+ iy ∈ s(b). Then there exist Laguerre series expansions, converging to f uniformly on

compact sets,

f (r) =
∞

∑
k=0

a
(0)
k L

(0)
k (r2) =

∞

∑
k=0

a
(1)
k L

(1)
k (r2),

where the coefficients a
(α)
k for α ∈ {0,1} are given by

a
(α)
k =

1

(k+1)α/2

∫ ∞

0
e−xxα L

(α)
k (x) f (

√
x)dx

and satisfy the decay property
∣
∣a

(α)
k

∣
∣6 2C(b)e−2b

√
k. (2.11)

Proof. The existence of a Laguerre series expansion of f is confirmed by (Szsz & Yeardley, 1958,

Theorem B). By (Szsz & Yeardley, 1958, Lemma 3.4) we also conclude (2.11) for α = 0 and all b.

The corresponding decay for a
(1)
k holds due to the relation a

(1)
k = a

(0)
k − a

(0)
k+1, which follows easily

from the next lemma. �

LEMMA 2.1 The Laguerre polynomials satisfy

xL
(1)
k (x) = (k+1)(L

(0)
k (x)−L

(0)
k+1(x)).

Proof. We proceed by induction. As L
(0)
0 (x) = 1 and L

(0)
1 (x) = 1− x, the statement is evidently true for

k = 0. For the induction step, we note that

xL
(1)
k

(2.7)
= xL

(1)
k−1 + xL

(0)
k

IH
= k(L

(0)
k−1−L

(0)
k )+ xL

(0)
k

(2.6)
= k(L

(0)
k−1−L

(0)
k )+(2k+1)L

(0)
k − kL

(0)
k+1− (k+1)L

(0)
k+1

= (k+1)(L
(0)
k −L

(0)
k+1),

where the induction hypothesis was used in step (IH). �

Proposition 2.1 establishes sufficient conditions on a function f to have a rapidly converging La-

guerre series expansion comprising terms L
(α)
k (r2) for α ∈ {0,1}. Now, we consider expansions of even

and odd functions in terms of ψS and ψK.
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PROPOSITION 2.2 Let f S, f K : [0,∞)→ R be given. Assume that f S and 1
r

f K have analytic even and

odd extensions, respectively, to the strip s(c) for some c > 0, and that for every b such that 0 6 b < c,

there exists C(b) such that

| f S(z)|,
∣
∣
∣
∣

1

z
f K(z)

∣
∣
∣
∣
6C(b)exp

[

−|z|
2

β
+

x2

2
−|y|

(
b2− y2

) 1
2

]

, (2.12)

for all z = x+ iy ∈ s(b). Then there exist series representations

f S(r) =
∞

∑
k=0

aS
k,β ψS

k,β (r), f K(r) =
∞

∑
k=0

aK
k,β ψK

k,β (r), (2.13)

that converge uniformly on each compact interval. Using the Maxwellian weight µ as defined in (2.1),

the expansion coefficients are given by

aS
k,β =

1√
2

∫ ∞

0
e

x/β−xLk(x) f S(
√

x)dx

=
∫ ∞

0
µ1−2/β (r)ψS

k,β (r) f S(r)r dr,

aK
k,β =

1√
2

1√
k+1

∫ ∞

0
e

x/β−x
√

xL
(1)
k (x) f K(

√
x)dx

=
∫ ∞

0
µ1−2/β (r)ψK

k,β (r) f K(r)r dr.

and |aS
k,β |, |aK

k,β |6 2C(b)
√

k+1 e−2b
√

k.

Proof. It is clear that both f S and 1
r

f K are even and analytic. Moreover, owing to (2.12), we see that

the functions

e
r2/β f S(r), e

r2/β 1

r
f K(r)

both satisfy the assumptions of Proposition 2.1. Thus, we have

e
r2/β f S(r) =

∞

∑
k=0

aS
k Lk(r

2), e
r2/β 1

r
f K(r) =

∞

∑
k=0

ãK
k L

(1)
k (r2),

which gives (2.13) with aK
k = ãK

k

√
k+1. The expressions for aS

k and aK
k as well as their decay follow

directly from Proposition 2.1. �

As an immediate consequence of the orthonormality of the expansion systems we obtain approxi-

mation estimates for the truncated series in the weighted norm

‖ f‖2
β :=

∫ ∞

0
| f (r)|2 e−(1−2/β)r2

r dr :

COROLLARY 2.1 Under the assumptions of Proposition 2.2 we find for both ∗= S and ∗= K

∥
∥
∥
∥
∥

f ∗−
K

∑
k=0

a∗k,β ψ∗k,β

∥
∥
∥
∥
∥

β

6C′(b)K3/2e−2b
√

K for all K ∈ N,

with a constant C′(b)> 0 depending only on b and independent of K, f , and β .
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Let us now take the step to two dimensions, and consider an analytic function f :R2→R. Associated

with f are its even and odd parts,

f S(r,θ) =
1

2
( f (r,θ)+ f (r,θ +π)) , f K(r,θ) =

1

2
( f (r,θ)− f (r,θ +π)) ,

which are also both analytic. Fixing θ (effectively considering it a parameter), and assuming that f S

and f K satisfy the conditions of Proposition 2.2 for some β > 0, we can write

f S(r,θ) =
∞

∑
k=0

aS
k,β (θ)ψ

S
k,β (r), f K(r,θ) =

∞

∑
k=0

aK
k,β (θ)ψ

K
k,β (r),

where aS and aK are rapidly decaying in k. In fact, as f S is π-periodic in θ , we should be able to

approximate aS
k,β (θ) in terms of the complex exponentials ξl from (2.2) for even l, and correspondingly

aK
k,β (θ) in terms of ξl for odd l.

To simplify notation, let us introduce the notation for radial components of the basis functions

ϕ
(β )
k =

{

ψS
k/2,β , for even k ,

ψK
(k−1)/2,β , for odd k ,

(2.14)

so that we may write

f (r,θ) = f S(r,θ)+ f K(r,θ) =
∞

∑
k=0

a
(β )
k (θ)ϕ

(β )
k (r),

where ak corresponds to aS
k/2,β for even k and to aK

(k−1)/2,β for odd k, and where ak has the same parity as

k, i.e. ak(θ +π) = (−1)kak(θ).
Continuing from before, we now write

a
(β )
k (θ) = ∑

2 |(k−l)

F
(β )
k,l ξl(θ),

where the complex coefficients are given by

F
(β )
k,l =

1

2π

∫ 2π

0
a
(β )
k (θ)ξ−l(θ)dθ .

Let us first consider even k. Then

F
(β )
k,l =

1

2π

∫ 2π

0

∫ ∞

0
µ1−2/β (r)ϕ

(β )
k (r)ξ−l(θ) f S(r,θ) r dr dθ

=
1

2π

∫

R2
µ1−2/β (r)ϕ

(β )
k (r)ξ−l(θ) f S(vvv)dvvv =

1

2π

∫

R2
µ1−2/β (r)ϕ

(β )
k (r)ξ−l(θ) f (vvv)dvvv,

since ξ−l is even, the corresponding integral with f K will be zero. Precisely the same argument applies

for k odd. Thus, we arrive at

f (r,θ) = ∑
2 |(k−l)

F
(β )
k,l ϕ

(β )
k (r)ξl(θ) , (2.15)



Page 9 of 36

with complex coefficients

F
(β )
k,l =

1

2π

∫

R2
µ1−2/β (r)ϕ

(β )
k (r)ξ−l(θ) f (vvv)dvvv.

We will use the notation L2(R2; β ) to denote a weighted L2-space with inner product

〈 f ,g〉L2(R2;β ) =
1

2π

∫

R2
µ1−2/β (r) f (vvv)ḡ(vvv)dvvv. (2.16)

We retain the notation ‖ f‖β for the induced norm. We also note in passing that L2(R2; 2) = L2(R2) We

note that the functions ϕ
(β )
k ξl form a complete orthonormal system with respect to the weight 1

2π µ1−2/β .

For β = 2 we even have orthogonality with respect to the usual Lebesgue measure:

PROPOSITION 2.3 Assuming k1 ≡ l1 (mod2) and k2 ≡ l2 (mod2), we have

〈

ϕ
(β )
k1

ξl1 ,ϕ
(β )
k2

ξl2

〉

L2(R2;β )
=

1

2π

∫

R2
µ1−2/β ϕ

(β )
k1

ξl1ϕ
(β )
k2

ξ−l2 dvvv = δk1,k2
δl2,l2 .

Proof. First, we note that if k1 and k2 have different parities, the integrand is odd, and so the integral is

zero. Thus, we assume from now that they have equal parities. We have

〈

ϕ
(β )
k1

ξl1 ,ϕ
(β )
k2

ξl2

〉

L2(R2;β )
=

1

2π

∫ 2π

0
ξl1−l2 dθ

∫ ∞

0
µ1−2/β ϕ

(β )
k1

ϕ
(β )
k2

r dr

= δl1,l2

∫ ∞

0
µ1−2/β ϕ

(β )
k1

ϕ
(β )
k2

r dr

For k1,k2 both even, we have

∫ ∞

0
µ1−2/β ϕ

(β )
k1

ϕ
(β )
k2

r dr =
∫ ∞

0
e−r2

Lk1/2(r
2)Lk2/2(r

2) 2r dr

=
∫ ∞

0
e−xLk1/2(x)Lk2/2(x)dx

(2.8)
=

1

2
δk1,k2

.

And for k1,k2 both odd, we find, using Z(a,b) = [(a+1)(b+1)]−1/2,

∫ ∞

0
µ1−2/β ϕ

(β )
k1

ϕ
(β )
k2

r dr = 2Z(k1,k2)
∫ ∞

0
e−r2

r2L
(1)
(k1−1)/2

(r2)L
(1)
(k2−1)/2

(r2) r dr

= Z(k1,k2)
∫ ∞

0
e−xxL

(1)
(k1−1)/2

(x)L
(1)
(k2−1)/2

(x)dx

(2.8)
= δk1,k2

.

This concludes the proof. �

For K,L,β > 0 and L even, we define the KL-dimensional function spaces of complex valued func-

tions R2 7→ C:

Vβ (K,L) = span
{

ϕ
(β )
k ξl : 0 6 k < K, −L 6 l < L, k ≡ l (mod2)

}

(2.17)
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As basis we use the polar tensor product functions

Bβ (K,L) :=
{

ϕ
(β )
k ξl : 0 6 k < K, −L 6 l < L, k ≡ l (mod2)

}

. (2.18)

The requirement that L is even is made for the sake of simplicity, as the basis functions can now be

enumerated as bk,q = ϕkξl(q,k) for 0 6 k < K and 0 6 q < L, where

l(q,k) =

{

2q− (−1)k, q < L/2

2(q−L)− (−1)k, otherwise.
(2.19)

Let us also denote by PVβ (K,L) (or, when convenient, merely PV ) the L2(R2; β )-orthogonal projection

onto Vβ (K,L). Next, we combine the estimate of Corollary 2.1 and well-known results about the ap-

proximation of analytic functions by means of trigonometric polynomials into a result about best ap-

proximation in Vβ (K,L).

COROLLARY 2.2 Let f : R2 7→ R, viewed as a function f = f (r,θ) of polar coordinates, possess an

analytic extension to the tensor product strip s(c)× s(γ2) ⊂ C
2 with c,γ > 0 and s(·) defined in (2.9).

Then, for any 0 < b < c and 0 < ρ < γ ,
∥
∥
∥ f −PVβ (K,L) f

∥
∥
∥

β
6C(b,ρ)K

3/2e−2b
√

K−ρL ,

with a constant C =C(b,ρ)> 0 independent of K, L, f , and β .

We propose a Galerkin discretization of (1.1) in velocity space based on the trial and test space V and

the inner product (2.16). This means that, given an initial condition f0(vvv), we solve (1.1) approximately

in the form of the projected equation for fV ∈C∞([0,T ],V ), T > 0 final time,

∂ fV

∂ t
= PV Q( fV , fV ) , fV (0) = PV f0. (2.20)

This is equivalent to a non-linear ordinary differential equation for the complex expansion coefficients

of fV , cf. (2.15). The evolution (2.20) amounts to the semi-discrete and non-adaptive version of our

method. It is worth noting that unlike the Fourier method, we need not truncate the collision operator.

Thus we avoid all the aliasing effects which plague the conventional Fourier methods.

3. Equilibria and initial values

3.1 Adapted solutions

The space Vβ (K,L) contains functions on the form

ϕ
(β )
0 ξ0 = exp(−‖vvv‖2/β),

which are equilibrium solutions with mass βπ , momentum 000 and temperature β/2. Thus, if the initial

condition conforms to these conditions, we can expect that for k, l not both zero, the corresponding

time-dependent coefficient F
(β )
k,l (t) in the expansion (2.15) of FV from (2.20) tends to zero for t→ ∞. If

the initial condition does not match this particular mass, momentum and temperature, the equilibrium

solution cannot be exactly represented in any of the finite-dimensional spaces Vβ (K,L). However, owing

to the equilibrium solution being isotropic, its polar representation (2.15) will still have zero coefficients

for all l 6= 0. Thus, we expect F
(β )
k,l (t) to tend to zero for all l 6= 0 for t→ ∞.
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DEFINITION 3.1 We say that a function f (vvv) is β -conforming if mass, momentum, and temperature

attain the particular values

ρ( f ) = βπ, uuu( f ) = 000, T ( f ) =
β

2
.

THEOREM 3.2 Let g(t,vvv) be a solution to (1.1), where the collision kernel B satisfies Assumption 1.2.

Let α,γ > 0 be given, and define η = α/γλ+2. Then

h(t,vvv) = αg(ηt,γvvv)

is also a solution to (1.1).

Proof. First,

∂h

∂ t
(t,vvv) = αη

∂g

∂ t
(ηt,γvvv)

= αη

∫

R2

∫

S1
‖γvvv− vvv∗‖λ b(cosθ)

[
g(ηt,vvv′)g(ηt,vvv′∗)−g(ηt,γvvv)g(ηt,vvv∗)

]
dσσσ dvvv∗,

where the collision identities read

vvv′,vvv′∗ =
1

2
(γvvv+ vvv∗±‖γvvv− vvv∗‖σσσ) .

Making the change of variables vvv∗,vvv′,vvv′∗ = γvvv∗,γvvv′,γvvv′∗, we recover the familiar collision identity

vvv′,vvv′∗ =
1

2
(vvv+ vvv∗±‖vvv− vvv∗‖σσσ) ,

whence

∂h

∂ t
(t,vvv) = αη

∫

R2

∫

S1
‖γvvv− γvvv∗‖λ b(cosθ)
[
g(ηt,γvvv)g(ηt,γvvv′∗)−g(ηt,γvvv)g(ηt,γvvv∗)

]
dσσσ d(γvvv∗)

=
ηγλ+2

α
Q(h,h)(vvv).

Since ηγλ+2/α = 1, this concludes the proof. �

REMARK 3.1 A corresponding result holds in arbitrary dimensions d, where η = α/γλ+d .

Hence, the “problem” of nonconforming initial values is easily overcome. Theorem 3.2 allows

us to transform any initial condition f (0,vvv) to become β -conforming. Then we solve it in the space

Pβ (K,L), and afterwards we recover the solution, as demonstrated in the following theorem. This

makes it possible to reuse the same Galerkin discretization of the collision operator for different values

of observables.

THEOREM 3.3 Let f (t,vvv) be a solution to (1.1), where B satisfies Assumption 1.2. Let β > 0 be given,

and assume f has mass, momentum and temperature ρ , uuu and T . Define

γ =

√

2T

β
, α =

2πT

ρ
, η =

α

γλ+2
. (3.1)
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Then

h(t,vvv) = α f (ηt,γvvv+uuu)

is a β -conforming solution to (1.1), and f can be recovered via f (t,vvv) = α−1h(t/η, (vvv−uuu)/γ).

Proof. We show that h is β -conforming. Indeed,

ρ(h) = α

∫

R2
f (γvvv+uuu)dvvv =

α

γ2

∫

R2
f (γvvv+uuu)d(γvvv+uuu) =

α

γ2
ρ, (3.2)

and

T (h) =
1

2ρ(h)

∫

R2
α f (γvvv+uuu)dvvv =

1

2γ2ρ

∫

R2
f (sss)‖sss−uuu‖2 dsss

=
1

2γ2ρ

[∫

R2
f (sss)‖sss‖2 dsss+‖uuu‖2

∫

R2
f (sss)dsss−2uuu ·

∫

R2
f (sss)sssdsss

]

=
1

2γ2

[
E +‖uuu‖2−2‖uuu‖2

]
=

1

γ2
T. (3.3)

Setting ρ(h) = βπ and T (h) = β/2, and solving (3.2)-(3.3) for α,γ , we find precisely (3.1). It is easy to

see that uuu(h) = 000. That h is a solution of (1.1) immediately follows from Theorems 1.1 and 3.2. �

3.2 Choice of Decay Parameter β

The properties of the bases Bβ heavily depend on the value of β . We have already noted that for β = 2,

the weighted inner product 〈·, ·〉L2(R2;β ) becomes the standard L2 inner product, and so error analysis in

familiar norms will be simple.

REMARK 3.2 There is empiric evidence that for solutions f of (1.1), the expansion coefficients F
(β )
k,l (t)

decay fastest, in terms of k, for β = 2. As a consequence one can consistently achieve faster convergence

for β = 2 than for β < 2, both in the weighted norm and the L2-norm.

A key selection criterion for β is the stability of the bases with respect to the observables.

THEOREM 3.4 Let β > 0 be given and define the linear functionals1

ρ( f ) =
∫

R2
f (vvv)dvvv (mass) , (uuuρ)( f ) =

∫

R2
f (vvv)vvvdvvv (momentum),

(Eρ)( f ) =
∫

R2
f (vvv)‖vvv‖2 dvvv (total energy).

These functionals attain the following values for particular functions in Bβ (K,L):

ρ
(

ξ0ψS
k,β

)

=
√

2βπ(1−β )k,

(uuuρ)
(

ξ±1ψK
k,β

)

=
1√
2

(
1

±i

)

β 2π
√

k+1(1−β )k,

(Eρ)
(

ξ0ψS
k,β

)

=
√

2β 2π ·
{

[1− (k+1)β ](1−β )k−1, k > 0,

1, k = 0,

1Here we have abused notation somewhat, since the quantity (Eρ)( f ) as defined above is only equal to E( f )ρ( f ) if ρ( f ) 6= 0,

and similarly for uuuρ .
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using the convention that 00 = 1 if β = 1. For all other products of ξl and ψ∗
k,β in the basis Bβ (K,L)

the functionals evaluate to zero.

Proof. The proof for this is not difficult, but it involves a fair amount of algebra. First, we have the

expansion of Laguerre polynomials in terms of monomials,

L
(α)
k (x) =

k

∑
i=0

(
k+α

k− i

)
(−1)i

i!
xi.

For mass and energy, we first note that any integration against ξl for l 6= 0 must yield zero. For mo-

mentum, note that (considering vvv as a complex number) we have vvv =
(

r cosθ
r sinθ

)
, so any integration against

ξl(vvv) = eilθ for l 6=±1 must yield zero.

Thus, for mass we have

1√
2
ρ
(

ξ0ψS
k,β

)

= 2π

∫ ∞

0
e−r2/β Lk(r

2)r dr = βπ

∫ ∞

0
e−uLk(βu)du

= βπ

∫ ∞

0
e−u

k

∑
i=0

(
k

i

)
(−1)i

i!
(βu)i du

= βπ
k

∑
i=0

(
k

i

)
(−β )i

i!

∫ ∞

0
e−uui du

︸ ︷︷ ︸

=Γ (i+1)=i!

= βπ
k

∑
i=0

(
k

i

)

(−β )i1k−i = βπ(1−β )k.

For the total energy functional the technique is mostly the same, except one needs the identity
(

k
i

)
=

k
i

(
k−1
i−1

)
for k, i > 0. Thus, for k > 0 we find

1√
2
(Eρ)

(

ξ0ψS
k,β

)

= 2π

∫ ∞

0
e−r2/β r2Lk(r

2)r dr = β 2π

∫ ∞

0
e−uuLk(βu)du

= β 2π

∫ ∞

0
e−uu

k

∑
i=0

(
k

i

)
(−1)i

i!
(βu)i du

= β 2π
k

∑
i=0

(
k

i

)
(−β )i

i!

∫ ∞

0
e−uui+1 du

= β 2π
k

∑
i=0

(
k

i

)

(i+1)(−β )i

= β 2π
k

∑
i=0

(
k

i

)

(−β )i

︸ ︷︷ ︸

=(1−β )k

+β 2π
k

∑
i=1

(
k

i

)

i

︸ ︷︷ ︸

=k(k−1
i−1)

(−β )i

= β 2π

[

(1−β )k−βk
k

∑
i=1

(
k−1

i−1

)

(−β )i−1

]

= β 2π
[

(1−β )k−βk(1−β )k−1
]

= β 2π[1− (k+1)β ](1−β )k−1.
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If k = 0 the second sum can be dropped, and one is left with β 2π .

Lastly, momentum, where we consider only one component:

√

k+1
2

(uuuρ)
(

ξ−1ψK
k,β

)

=
∫ 2π

0

∫ ∞

0
e−r2/β r2L

(1)
k (r2)ξ−1(θ)r cos(θ)dr = π

∫ ∞

0
e−r2/β r2L

(1)
k (r2)r dr

= β 2π

∫ ∞

0
e−uuL

(1)
k (βu)du = β 2π

∫ ∞

0
e−uu

k

∑
i=0

(
k+1

k− i

)

(βu)i du

= β 2π
k

∑
i=0

(
k+1

k− i

)
(−β )i

i!

∫ ∞

0
e−uui+1 du = β 2π

k

∑
i=0

(
k+1

k− i

)

(i+1)

︸ ︷︷ ︸

=(k+1)(k
i)

(−β )i

= β 2π(k+1)
k

∑
i=0

(
k

i

)

(−β )i = β 2π(k+1)(1−β )k.

�

In particular, we arrive at the following asymptotic rates.

COROLLARY 3.1 It holds that

• for 0 < β < 2 we have exponential decay of observables for basis functions as k→ ∞, i.e:

ρ
(

ψS
k,β

)

= (uuuρ)
(

ξ−1ψK
k,β

)

= (Eρ)
(

ψS
k,β

)

∈ O(|β −1|k).

All these bases are stable with respect to observables.

• for β = 1 only a few basis functions contribute to the observables:

1√
2
ρ
(
ψS

k,1

)
=
√

2(uuuρ)
(
ξ−1ψK

k,1

)
= δ0,kπ , (Eρ)

(
ψS

k,1

)
=
√

2π







1, k = 0,

−1, k = 1,

0, k > 2.

• for β = 2 we have polynomial instability:

ρ
(

ψS
k,β

)

∈ O(1), (uuuρ)
(

ξ−1ψK
k,β

)

= (Eρ)
(

ψS
k,β

)

∈ O(k).

• for β > 2 we have exponential instability:

ρ
(

ψS
k,β

)

= (uuuρ)
(

ξ−1ψK
k,β

)

= (Eρ)
(

ψS
k,β

)

∈ O((β −1)k).

In a sense, β = 1 is optimal, because we have exact conservation of all observable in the semi-

discrete evolution.

THEOREM 3.5 If β = 1, then mass, momentum, and total energy as defined in Theorem 3.4 are invari-

ants of the semi-discrete evolution (2.20)
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Proof. (i) In (2.20) choose the test function g := 1√
2
ξ0ψS

0,1, that is g(r,θ) = e−r2
. The weight in the

inner product exactly offsets the factor e−r2
. Thus we end up with

d

dt
〈 fV ,g〉L2(R2;1) =

d

dt

∫

R2
fV (vvv)dvvv =

d

dt
ρ( fV ) =

∫

R2
Q( fV , fV )dvvv = 0 ,

by fundamental conservation properties of the Boltzmann collision operator (Cercignani, 2002, Sect. 5).

(ii) We choose the test functions ξ±1ψK
0,1 and note that g1 :=

√
k+1

8
(ξ1 +ξ−1)ψ

K
0,1 = cos(θ)re−r2

and

g2 := 1
i

√
k+1

8
(ξ1 +ξ−1)ψ

K
0,1 = sin(θ)re−r2

. Hence, again we benefit from a cancellation of the weights

and (2.20) involves

d

dt

〈

fV ,

(
g1

g2

)〉

L2(R2;1)

=
d

dt
(uuuρ)( fV ) =

∫

R2
Q( fV , fV )vvvdvvv = 0 .

(iii) Finally, the test function g := 1√
2
ξ0(ψ

S
0,1−ψS

1,1) evaluates to g(vvv) = ‖vvv‖2
e−r2

, which means

d

dt
〈 fV ,g〉L2(R2;1) =

d

dt
(Eρ))( fV ) =

∫

R2
Q( fV , fV )‖vvv‖2

dvvv = 0 .

�

The last detail to keep in mind is that any β > 2 results in an unbounded basis, that is

sup
k

sup
r

∣
∣
∣ϕ

(β )
k (r)

∣
∣
∣= ∞.

This fact follows from the following asymptotic expression (Gavrilyuk & Khoromskij, 2011, Equation

2.12):

L
(α)
k (x) = π−1/2e

x/2x−α/2−1/4k
α/2−1/4

[

cos
(

2
√

kx−ωπ
)

+O

(

k−1/2

)]

,

for some ω depending on α , but not on x or k.

In summary, β = 2 seems to somewhat faster convergence in the L2-norm and easier analysis in this

norm, while β = 1 guarantees exact conservation of all observables. One might also employ a value

1 < β < 2 as a compromise, while values β > 2 render the basis useless for numerical purposes.

In this paper we have only performed experiments with β ∈ {1,2}. No other values will be consid-

ered in Section 5.

4. Computational Aspects

4.1 Evaluating Discrete Collision Operators

We now turn to the practical aspects of evaluating Q( f ,g) for f ,g ∈ Vβ (K,L). Taking the L2(R2; β )-
orthogonal approximation by discarding the extra coefficients, we have, due to bilinearity of Q,

Q( f ,g) = ∑
k,l

(

∑
k1,k2,l1,l2

S
k,l
k1,k2,l1,l2

F
(β )
k1,l1

G
(β )
k2,l2

)

ϕ
(β )
k ξl , (4.1)
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in a formal sense and F
(β )
k,l ,G

(β )
k,l are the coefficients for f and g respectively (according to (2.15)), and

S
k,l
k1,k2,l1,l2

=
〈

Q
(

ϕ
(β )
k1

ξl1 ,ϕ
(β )
k2

ξl2

)

,ϕ
(β )
k ξl

〉

L2(R2;β )
.

Of course, the entries of the tensor S also depend on β , but we have suppressed this. S is K3L3-

dimensional, and forming a sum such as (4.1) at each timestep is extremely expensive. However, some

effort can be saved by exploiting convolution structure, which is revealed by the following corollary of

Theorem 1.1.

COROLLARY 4.1 Let f and g be represented in polar coordinates as

f (r,θ) = fr(r)e
ikθ , g(r,θ) = gr(r)e

ilθ ,

for some functions fr, gr, k and l. Then,

Q( f ,g)(r,θ) =C(r)ei(k+l)θ

for some function C depending on fr, gr, k and l.

Proof. Let ρω be a rotation operator through ω , that is

ρω f (r,θ) = f (r,θ −ω)

We get ρω f = e−ikω f , and correspondingly for g. Using Theorem 1.1 and the linearity of Q we obtain

ρω Q( f ,g)(r,θ) = e−i(k+l)ω Q( f ,g)(r,θ).

Choose ω = θ and rearrange to find

Q( f ,g)(r,θ) = ei(k+l)θ ρθ Q( f ,g)(r,θ).

The result follows since ρθ Q( f ,g)(r,θ) = Q( f ,g)(r,0) is independent of θ . � By

Corollary 4.1, S is nonzero only for l1 + l2 = l, reducing the complexity to K3L2. Assuming K = L = N

degrees of freedom in each direction, and generalizing to arbitrary dimensions, this yields a complexity

of “only” N2d+1 compared to the N2d of the simple Fourier spectral discretization.

REMARK 4.1 At first glance, the computational effort involved in the polar spectral method appears to

be daunting. However, we point out that the basis functions from (2.18) combined with the rescaling

discussed in Section 3.1 are particularly well adapted to the structure of the solutions of (1.1), since for

t→∞ the solution will converge to a single basis function. This immediately suggests effective adaptive

strategies, which will greatly reduce the required number of degrees of freedom at later times.

In detail, to take advantage of the expected exponential decay in time of all basis expansion coef-

ficients Fk,l except k = l = 0, we have implemented a simple adaptive scheme reducing the number of

degrees of freedom when coefficients reach a threshold value.

As we will see in the numerical experiments, coefficients go to zero in an order which is primarily

determined by l. That is, in general, Fk1,l1 will reach a threshold value before Fk2,l2 if |l1|> |l2|.
This suggests the following simple adaptivity check: after every timestep, check the magnitude of

the coefficients Fk,l with l ∈ {−L,−L+1, L−1, L−2}. If they are all below the threshold, reduce L by

2.
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REMARK 4.2 The core challenge when generalizing this method to higher dimensions is to find an

analogue of Corollary 4.1 for d > 2. The problem of rotating expansions in spherical harmonics is non-

trivial. The classical text is Wigner (1944). For more recent work, see for example Ivanic & Ruedenberg

(1996) (real spherical harmonics) and Lessig et al. (2012).

At least, what can be said is that these rotation operators are band-restricted, so that a rotated spher-

ical harmonic Y m
l contains no contributions from harmonics with degrees different from l.

4.2 Computing the discrete collision operator

Let us now turn to the issue of evaluating the coefficients of K. For this, we will split the operator into

gain and loss parts, and first consider the loss part. With ϕ
(β )
k defined in (2.14)

S
k,l (−)
k1,k2,l1,l2

=
〈

Q−
(

ϕ
(β )
k1

ξl1 ,ϕ
(β )
k2

ξl2

)

,ϕ
(β )
k ξl

〉

L2(R2;β )

=
1

π

∫

R2

∫

R2

∫

S1
B(‖vvv− vvv∗‖,cosθ)
(

µ1−2/β ϕ
(β )
k1

ξl1 ϕ
(β )
k ξ−l

)

(vvv)
(

ϕ
(β )
k2

ξl2

)

(vvv∗)dσσσ dvvv∗ dvvv

=
1

π

∫

R2

(

µ1−2/β ϕ
(β )
k1

ξl1 ϕ
(β )
k ξ−l

)

(vvv)
∫

R2

(

ϕ
(β )
k2

ξl2

)

(vvv∗)I
−(vvv,vvv∗)dvvv∗ dvvv,

where the inner integral I − is given by

I
−(vvv,vvv∗) =

∫

S1
B(‖vvv− vvv∗‖,cosθ)dσσσ .

It prevents us from separating the two integrals over R2 (It is generally not the case that I − has low

separation rank, so a corresponding strategy of simplification fails). However, I −(vvv,vvv∗) is a function

of just one real variable, namely ‖vvv− vvv∗‖. In fact, by Assumption 1.2, we have

I
−(vvv,vvv∗) = ‖vvv− vvv∗‖λ

∫

S1
b(cosθ)dσσσ .

Hence, quadrature is cheap. Then the value of I −(vvv,vvv∗) for pairs of quadrature points in velocity is

readily available.

REMARK 4.3 For the Maxwellian kernel, B ≡ 1/2π, the loss part is particularly easy to evaluate, as

I − ≡ 1, giving

S
k,l (−)
k1,k2,l1,l2

=
1

2π

∫

R2

(

µ1−2/β ϕ
(β )
k1

ξl1ϕ
(β )
k ξ−l

)

dvvv

∫

R2

(

ϕ
(β )
k2

ξl2

)

dvvv∗

=
1

2π

〈

ϕ
(β )
k1

ξl1 ,ϕ
(β )
k ξl

〉

L2(R2;β )
ρ
(

ϕ
(β )
k2

ξl2

)

= δk,k1
δl,l1 δ0,l2 ρ

(

ϕ
(β )
k2

)

Theorem 3.4 provides the values for the masses ρ
(

ϕ
(β )
k2

)

.
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Let us now turn to the gain part. In a similar vein as before, we find

S
k,l (+)
k1,k2,l1,l2

=
〈

Q+
(

ϕ
(β )
k1

ξl1 ,ϕ
(β )
k2

ξl2

)

,ϕ
(β )
k ξl

〉

L2(R2;β )

=
1

2π

∫

R2

∫

R2

∫

S1
B(‖vvv− vvv∗‖,cosθ)

(

ϕ
(β )
k1

ξl1

)

(vvv′)
(

ϕ
(β )
k2

ξl2

)

(vvv′∗)
(

µ1−2/β ϕ
(β )
k ξ−l

)

(vvv)dσσσ dvvv∗ dvvv

=
1

2π

∫

R2

(

ϕ
(β )
k1

ξl1

)

(vvv)
∫

R2

(

ϕ
(β )
k2

ξl2

)

(vvv∗)I
+

k,l(vvv,vvv∗)dvvv∗ dvvv

with

I
+

k,l(vvv,vvv∗) =
∫

S1
B(‖vvv− vvv∗‖,cosθ)

(

µ1−2/β ϕkξ−l

)

(vvv′)dσσσ . (4.2)

Here, we have made a change of variables vvv,vvv∗←→ vvv′,vvv′∗, revealing a striking similarity with the loss

term. However, in this case we find the (k, l)-dependence in the inner integral, which makes the gain

term somewhat more challenging, even for simple cases like the Maxwellian kernel.

In analyzing I + it will be helpful to identify the points vvv,vvv∗ in velocity space with complex numbers

(Note, however, that while the integrals are complex-valued, they are not complex integrals.). In the

following, let us also make the simplifying assumption of considering only constant b(cosθ)≡ 1, known

as the Variable Hard Spheres (VHS) assumption.

After making the substitution vvv′ = ei arg(vvv+vvv∗)www′, we find

I
+

k,l(vvv,vvv∗) = ‖vvv− vvv∗‖λ ξ−l(arg(vvv+ vvv∗))
∫

S1

(

µ1−2/β ϕ
(β )
k ξl

)

(www′)dσσσ , (4.3)

where now www′ runs over a circle centered at 1/2‖vvv+ vvv∗‖ with radius 1/2‖vvv− vvv∗‖ (see Figure 3). In

particular, the integral in (4.3) is real, and depends only on the two real quantities ‖vvv+vvv∗‖ and ‖vvv−vvv∗‖
(and not on their arguments). Additionally, I + depends on the argument of vvv+vvv∗, but this dependence

is trivial and requires no quadrature to track. In out implementation we precompute I
+

k,l(vvv,vvv∗) for

relevant indices k, l and pairs of quadrature points on velocity space.

REMARK 4.4 Some of the listed advantages of the polar method over the Fourier discretization depend

on the fact that the solution will converge to a function that lies in the solution space (in the conforming

case), or if not, is isotropic and thus has a sparse representation. These conditions might fail to hold in

the solution of a spatially inhomogeneous Boltzmann equation, where the equilibrium solution might

depend on the spatial variable xxx under certain source terms and boundary conditions. In this case,

conformity can no longer be guaranteed at every point, nor can isotropy of the equilibrium be taken for

granted (say, if the global momentum in the system is nonzero).

We have not performed experiments with the spatially inhomogeneous Boltzmann equation in this

work. However, we have performed limited experiments in the homogeneous case where conformity

and equilibrium isotropy are deliberately discarded. These results are discussed in Section 5.5. The

results indicate that the method might still be viable in this case, and that adaptivity might still be

useful, although the parameter choice β = 2 should be avoided.

5. Numerical results

Throughout this section, all quadrature in vvv has been performed using a polar tensor product quadrature

rule with Gauss-Laguerre quadrature rules in the radial direction and the trapezoidal rule in the angular
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www′arg(vvv+ vvv′)

FIG. 3: Transforming the integral I + from (4.2) to (4.3).

direction. For the computation of the collision tensor S, we used “overkill” 61-point quadrature in both

directions (this includes 61-point trapezoidal quadrature for the inner integrals I − and I +). Thus, we

expect the impact of quadrature error to be negligible. For the evaluation of the initial condition and

errors, we used the same quadrature rule.

Timestepping was performed using an explicit fourth-order Runge-Kutta method with a timestep of

10−2 for β = 1 and 5 ·10−3 for β = 2, to compensate for the fact that after rescaling time runs twice as

quickly in the latter case. Stiffness does not appear to be a problem.

5.1 Validation for BKW solution

The BKW solution Tourenne (1983); Ernst (1984) is the only known non-stationary analytic solution to

(1.1). It takes the form

g(t,v) = (2πs)−d/2 exp

(

−‖vvv‖
2

2s

)(

1− 1− s

2s

(

d− ‖vvv‖
2

s

))

(5.1)

where

s = s(t) = 1− e−λ (t+t0),

and B = const. (also called the Maxwellian kernel). Here, λ is a parameter given in terms of B, and

for d = 2 we find B = 1
2π and λ = 1

8
. Finally, t0 is any reasonable starting time so that g(t,vvv) > 0

everywhere. We will use a t0 determined by s(0) = 1
2
, which gives the initial distribution

g0(vvv) =
1

π
‖vvv‖2e−‖vvv‖

2

.

With g so defined, write

f (t,vvv) = 2πg(2πt,vvv). (5.2)

Then f is a 2-conforming solution to (1.1), and f (t/2,
√

2vvv) is the corresponding 1-conforming solution.

The L2-errors for this test are shown, depending on t, K and β , in Figures 4 on the following page

and 5 on page 21. One can observe exponential convergence to zero both in K and t, as expected. No

dependence on L is shown, since g is isotropic for all times.
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We observe that the error decays exponentially to a threshold level for all K. This threshold is mostly

due to quadrature error, and not timestepping. The β = 2 method is better for solutions far removed from

equilibrium, but β = 1 eventually achieves better accuracy.
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FIG. 4: L2-error for the BKW solution as a function of time for different radial resolutions K and values

of β , see Section 5.1 on the previous page for details.

5.2 Crossed streams

Given constants R,S> 0, a 2-conforming crossed streams initial condition can be constructed as follows:

η(c,v,w) = exp
[
−g(S(v− c)2 +(w− c)2)

]

f0(vvv) = α (η(c,vx,vy)+η(−c,vy,vx))

with

δ = 4R2 +
1

S
+1, α =

δ

4

√
S, g =

δ

4
, c =

R√
g
.

Here, R regulates the relative velocity between the two streams, and S the relative spread of the two

streams in each direction (parallel and perpendicular to the momentum).

Figure 6 on page 22 shows some samples of approximate solutions to this initial condition with

S = 3, R = 1, with a relatively large number of degrees of freedom.

Figure 7 on page 23 shows the error in observables as a function of time for both values of β .

As expected, β = 1 is considerably more accurate than β = 2. The experiment also shows a slight

unexpected worsening of the energy and momentum for β = 1, which should be constant. This can

likely be attributed to quadrature error.
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FIG. 5: L2-error for the BKW solution as a function of the number K of radial basis function for different

times t and values of β , see Section 5.1 on page 19 for details.

Figure 10 on page 25 shows the entropy of the numerical solution as a function of time for K = 44,

L = 26. For the concept of entropy refer to (Cercignani, 2002, Section 8).

In Figure 8 on page 24, the evolution of the spectral coefficients are shown. One may observe

that coefficients approach zero in columns (with constant l), which validates the adaptive strategy from

Remark 4.1.

Finally, Figure 9 on page 25 shows the time-dependent power contribution for some values of k, for

β = 2. The power contribution of level k is defined as the time-dependent quantity

∑
l

|Fk,l(t)|2.
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FIG. 6: Solutions to the crossed streams experiment with K = 44, L = 26. The times shown are, from

left to right, t = 0, 0.5, 0.75. See Section 5.2 on page 20 for details.
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FIG. 7: Error in observables at different times for the crossed streams experiment. The progressive

worsening of mass and energy for β = 1 is attributed to quadrature error. See Section 5.2 on page 20

for details.
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FIG. 8: Spectral magnitudes for the crossed streams experiment. The times shown are, from left to

right, t = 0, 2.1, 4.2. The adaptive restriction of the function space is indicated with white lines, using a

threshold value of 10−10. See Section 5.2 on page 20 for details.
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FIG. 9: Power contribution for some values of k for the crossed streams experiment. See Section 5.2 on

page 20 for details.
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FIG. 10: Entropy as a function of time for the crossed streams experiment. See Section 5.2 on page 20

for details.
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5.3 Adaptivity

In Figure 11 we show the time-dependence of the computational effort per timestep (a pseudo-quantity

of L2), under the strategy detailed in Remark 4.1. The results shown are for three different experiments,

one of which (blue) is the crossed streams of the previous section. In this particular case we used a

threshold value of 10−10, which can be considered very strict.

We observe a strong downward tendency in all cases. One achieves better adaptivity for β = 2 than

β = 1, but this difference does not appear to be significant compared to the dependence on the actual

initial data.
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FIG. 11: Time-dependence of computational effort per timestep (∝ L2) for three different experi-

ments (red is the crossed streams solution of Section 5.2 on page 20, blue is the initial condition
5
4

exp(− 5
16
(4v2

x + v2
y)), and green is the initial condition α

[
exp(−α|vvv−η |2)+ 1

2
exp(−α

2
|vvv+η |2)

]

where S = 1.8, α = 1
4
(3+ 2S2) and η = Sα−1/2. (The latter two are given in their β = 2-conforming

cases.) See Section 5.3 for details.

5.4 Collision tensor compressibility

Figure 12 on the facing page shows the magnitude of the nonzero collision tensor entries for K = 44

and L = 26 (giving about 20 million nonzero entries) for both β = 1 and β = 2. One might hope that

a sufficiently rapid decay in these entries can yield some compressibility of the tensor, but this appears

not to be the case, particularly not for β = 2.

5.5 Non-conforming solutions

In light of the discussion in Remark 4.4, we study here the performance of the Polar method for a non-

conforming solution which has off-center momentum. The equilibrium solution is thus neither in the
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FIG. 12: Magnitudes of the roughly 20 million nonzero collision tensor entries for K = 44 and L = 26.

See Section 5.4 on the facing page for details.

solution space, nor is it isotropic. Specifically, we have used the initial condition

f0(vvv) = exp
[
−5‖vvv‖2

]
+ exp

[
−5(vx−1)2−12v2

y

]
,

which represents a stream of gas colliding with gas at equilibrium.

Figure 13 on the next page shows contour plots of the solutions to this experiment at various times

for both β = 1 and β = 2.

Figure 15 on page 30 shows the evolution of the spectral coefficients, and should be compared to

Figure 8 on page 24. The general pattern of coefficient decay appears to be maintained, although it is

considerably slower, and will not go as far.

Finally, Figure 14 on page 29 shows the time-dependent power contribution for some values of k,

for β = 2, and should be compared to Figure 9 on page 25. The power content of the higher levels can

be seen to deteriorate for longer times in the β = 2 case, which might be related to the poor stability of

the method and the lack of symmetry of the solution. The β = 1 solutions suffer no such effects.

6. Comparison with Fourier discretization

We offer here some concluding remarks on the viability of the two methods presented.

With N2 degrees of freedom, the Fourier discretization can perform a timestep in O(N4) time, and

with KL degrees of freedom, the Polar discretization uses O(K3L2) time per timestep. In addition to

this, the convergence in radial direction is only O(e−
√

K) compared to O(e−N) in all directions for the

Fourier discretization, assuming an analytic solution. Both methods require a one-time setup where the

discrete collision operator is computed, but this step depends only on the kernel.
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FIG. 13: Nonconforming experiment with K = 44, L = 26. The times shown are, from left to right,

t = 0, 0.5, 1.0. See Section 5.5 on page 26 for details.

With this in mind, it seems unlikely that the Polar discretization can outperform the Fourier method.

It can be argued that the Polar method will yield more physical solutions (especially for β = 1), as it

is both fully conservative and devoid of aliasing effects. The Polar method also performs exceptionally

well with near-equilibrium solutions, while the Fourier method has constant performance across the

board (or possibly, as the case may be for the hyperbolic cross method, it performs well for some

solutions that are far removed from equilibrium).

It has proven challenging to directly compare the error performance of the two methods in a realistic

experiment. Since the only known exact solution to (1.1) is the isotropic BKW solution (which gives

the Polar method an unfair advantage), we have to resort to reference solutions computed with very high

accuracy. For this, we have again used the crossed streams solution of Section 5.2 on page 20.

Reference solutions were computed using the full Fourier method (with 100× 100 = 104 degrees

of freedom), and with the Polar method (with 44× 26 = 1144 degrees of freedom). The comparison

solutions were computed for the Fourier method on N×N-grids for N = 8,10,12,14, and for the Polar

method on N× N/2-grids for N = 12,16,20. These numbers give comparable total numbers of degrees

of freedom ([64,196] for Fourier and [72,200] for Polar).

The results of this experiment can be seen in Figure 16. The cross-method errors are all dominated
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FIG. 14: Power contribution for some values of k for the nonconforming experiment. See Section 5.5

on page 26 for details.

by the difference between the two reference solutions, and consistently level off at about 10−2 (see

Figure 17). This disagreement between the methods can presumably be explained by either

(i) dissipative effects from explicit timestepping, or

(ii) aliasing error introduced in the Fourier method.

As an additional experiment, we have performed the same analysis on the nonconforming solution

of Section 5.5, while all other values remain the same (grid sizes, etc.), except we have used β = 1,

since from the observations made in Figure 9 on page 25, the β = 2 method is may not be reliable for

nonconforming (or at least, asymmetrical) solutions. The relevant data can be seen in Figure 18 on

page 33.

Here, the two methods perform comparably well, and the error is not dominated by the difference

between the reference solutions, but rather by the actual discretization error.

To be able to evaluate more accurately the quality of the two reference solutions we have performed

the same test on the BKW solution, which has a known nontrivial analytic solution. The results are

shown in Figure 19 on page 34, which shows the time-dependent errors for the polar method (with 44

radial basis functions), and for three different full-grid Fourier methods with 80×80 degrees of freedom,

differing only in the parameter L, to attempt to control the aliasing error. The errors were computed only

on the square [−π/2,π/2]2, which is the domain of the smallest Fourier experiment. We observe that the

polar method produces significantly better solutions.
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(a) β = 1
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FIG. 15: Spectral magnitudes for the nonconforming experiment. The times shown are, from left to

right, t = 0, 5, 10. No adaptivity was achieved here with a strict threshold value of 10−10. Compare to

Figure 8. See Section 5.5 on page 26 for details.
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(a) Reference solution computed with the Fourier method.
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(b) Reference solution computed with the Polar method.

FIG. 16: Comparison using reference solutions computed with the two different methods for the crossed

streams experiment. Note the y-axis scales. See Section 6 on page 27 for details.
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FIG. 17: The discrepancy between the two reference solutions from the crossed streams experiment of

Figure 16, measured in the L2-norm. See Section 6 on page 27 for details.
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(b) Reference solution computed with the Polar method.

FIG. 18: Comparison using reference solutions computed with the Fourier method (top) and Polar

method (middle) for the nonconforming experiment. See Section 6 on page 27 for details.
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FIG. 19: Comparison between reference solutions for the BKW solution, defined as g(t/2,
√

2vvv) for g

from (5.2). We used L = π/2,π, 3π/2 for the three different Fourier solutions (small, medium and large,

respectively) in order to control aliasing errors. The Fourier solutions were produced with 80× 80

degrees of freedom, and the polar solution with 44 radial degrees of freedom. See Section 6 on page 27

for details.
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to IMA J. Numer. Anal.

GAMBA, I. M. & THARKABHUSHANAM, S. H. (2009) Spectral-Lagrangian methods for collisional

models of non-equilibrium statistical states. Journal of Computational Physics, 228, 2012 – 2036.

GAMBA, I. M. & THARKABHUSHANAM, S. H. (2010) Shock and boundary structure formation

by spectral-Lagrangian methods for the inhomogeneous Boltzmann transport equation. J. Comput.

Math., 28, 430–460.

GAVRILYUK, I. & KHOROMSKIJ, B. (2011) Quantized-TT-Cayley transform for computing the dy-

namics and the spectrum of high-dimensional Hamiltonians. Comput. Methods Appl. Math., 11,

273–290.

IBRAGIMOV, I. & RJASANOW, S. (2002) Numerical solution of the Boltzmann equation on the uniform

grid. Computing, 69, 163–186.



Page 36 of 36 REFERENCES

IVANIC, J. & RUEDENBERG, K. (1996) Rotation matrices for real spherical harmonics. Direct deter-

mination by recursion. The Journal of Physical Chemistry, 100, 6342–6347.

KIRSCH, R. & RJASANOW, S. (2007) A weak formulation of the Boltzmann equation based on the

Fourier transform. J. Stat. Phys., 129, 483–492.
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