
FFRT - A Fast Finite Ridgelet Transform for

Radiative Transport

S. Etter and P. Grohs and A. Obermeier

Research Report No. 2014-11
March 2014

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland

____________________________________________________________________________________________________

Funding SNF: 146356



FFRT – A Fast Finite Ridgelet Transform for Radiative Transport

Simon Etter, Philipp Grohs, Axel Obermeier

March 25, 2014

Abstract

This paper introduces an FFT-based implementation of a fast finite ridgelet transform which we
call FFRT. Inspired by recent work where it was shown that ridgelet discretizations of linear transport
equations can be easily preconditioned by diagonal preconditioning we use the FFRT for the numerical
solution of such equations. Combining this FFRT-based method with a sparse collocation scheme we
construct a novel solver for the radiative transport equation which results in uniformly well-conditioned
linear systems.

Contents

1 Introduction 3

1.1 Radiative Transport Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Ridgelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminaries 5

2.1 Discrete intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Sobolev spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Finite Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Ridgelets 8

3.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Ridgelet Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Finite Ridgelet Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Implementation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5 Scalar Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Radiative Transport Equation 23

4.1 Basic RTE Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Convergence Of Basic RTE Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Discrete Ordinates Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4 Sparse Discrete Ordinates Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.5 Source Iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Numerical Experiments 32

5.1 Convergence Of CG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 Convergence Of Basic RTE Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3 General Dirichlet Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.4 Convergence Of SDOM Compared To DOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.5 Source Iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1



Bibliography 44

2



1 Introduction

The present paper describes an implementation of a discrete finite ridgelet transform. Ridgelets are one
among a family of anisotropic transforms which have been introduced during the past two decades with the
goal to optimally represent directional phenomena in signal data. Other examples include curvelets [CD05b,
CD05a, CDDY06], shearlets [KLLW05, KL12] or contourlets [DV05] which all fall into the general framework
of parabolic molecules [GK14]. While parabolic molecules are optimally suited for the representation of
functions with curved singularities, ridgelets are optimally adapted to line singularities. Ridgelets have
originally been introduced in [Can98].

Recently, in [Gro12] it was shown that ridgelets allow for the construction of simple diagonal precon-
ditioners for linear transport equations which arise in collocation-type discretization methods for kinetic
transport equations such as the radiative transport equation.

The present paper serves two purposes. First we introduce an implementation of a fast FFT-based finite
ridgelet transform FFRT (Fast Finite Ridgelet Transform). While previous publically available implemen-
tations (cf. [DV03]) of the ridgelet transform have been based on the Radon transform, our implementation
is FFT based and conceptually simpler.

The second purpose of this paper is to use the FFRT for the numerical solution of kinetic transport
equations arising in radiative transport. Using the preconditioner from [Gro12] for linear transport equations
together with a sparse discrete ordinates method similar to [GS11] we construct a solver which mitigates the
curse of dimensionality and which results in uniformly well-conditioned linear systems which can be solved
efficiently with CG.

1.1 Radiative Transport Equation

The radiative transport equation (RTE)

Au := ~s · ∇u + κu = f +

∫

S

σu d~s′

is a steady state continuity equation describing the conservation of radiative intensity in an absorbing,
emitting and scattering medium, see e.g. [Mod13]. Let us assume that the following quantities are known
at all locations (x, y) ∈ Ω := [0, Lx)× [0, Ly) and for all directions ~s ∈ S1 :=

{
~s ∈ R2

∣∣ ‖~s‖2 = 1
}
:

• absorption coefficient κ(x, y,~s) ∈ R

• source term f(x, y,~s) ∈ R

• scattering kernel σ
(
x, y,~s,~s′

)
∈ R

Then, the above equation allows us to find the unknown radiative intensity u as a function Ω × S1 → R,
which is the problem at the heart of this bachelor thesis.

Although the RTE looks simple, standard numerical techniques for solving it do not perform well for two
reasons:

• The transport term s · ∇u leads to ill-conditioned systems of equations.

• With the dimension of the domain of u being 3 in 2-dimensional physical space and 5 in 3-dimensional
space, the problem is fairly high-dimensional.

Both of these points make the accurate numerical solution of the RTE very costly or even impossible due to
memory and compute power limitations of today’s hardware. But there is hope that they can be mitigated
by discretizing the RTE with a novel class of basis functions called ridgelets. This paper investigates this
approach, using FFT-based ridgelets.

3



(a) Physical space (green denotes 0) (b) Fourier space (blue denotes 0)

Figure 1.1: An illustration of a ridgelet in the two relevant spaces

1.2 Ridgelets

At the most superficial level, a ridgelet is a function which “looks like a ridge”, i.e. a function which is located
along a line orthogonal to which it oscillates heavily and along which it varies only little (see Figure 1.1a for
an example). The idea is to build a basis (or rather, a frame) out of such ridgelets with varying locations,
directions and widths, with which we can nicely represent a function whose features are located along curves
by a linear combination of relatively few of them. Solutions of the RTE typically fall into this category of
functions that can be efficiently represented by such a system, as the variations along the transport direction
are smoothed out while the ones orthogonal to it are not – in particular, singularities in the input data may
remain.

The above heuristic in physical space becomes less ambiguous by looking at it in Fourier space – in fact,
the ridgelets are constructed from a particular partition of unity in Fourier space (in the same way that
wavelets can be constructed from another particion of unity in Fourier space) – there, a ridgelet is located at
some line along which it has a length of O(2j) while orthogonal to it its width is bounded by some constant
independent of j (see Figure 1.1b). By discretising in the right way, one can even make use of FFT for the
correspondence between physical and Fourier space, which will greatly accelerate the procedure.

In addition to representing solutions of the RTE efficiently (thus alleviating memory problems), one other
advantage is that there exists a preconditioner for the linear system of equations that arises from a ridgelet
discretization of the RTE that has been proven [Gro12] to bound the condition number by some constant
independent of the number of ridgelets that are used for discretization. In combination, these two points
thus make ridgelets very good candidates for the discretization of the RTE.

1.3 Outline

We start with the introduction of several conventions related to notation and the definition of the finite
Fourier transform in Section 2. Our construction of the FFRT is described in detail in Section 3. The
subsequent Section 4 discusses the applicability of ridgelets for the discretization of the RTE. In particular
we study a discrete ordinates method together with a source iteration scheme to include scattering. In
addition convergence results are provided. The final Section 5 reports numerical experiments.

At http://www.math.ethz.ch/~pgrohs/FFRT/, the Matlab codes of our implementation can be down-
loaded freely.

4

http://www.math.ethz.ch/~pgrohs/FFRT/


2 Preliminaries

2.1 Discrete intervals

Throughout this document, we will be working with functions sampled on equispaced grids over an interval.
Therefore, it is useful to have some notation at hand to easily specify such a grid which we named a discrete
interval.

Definition 2.1.1 (Discrete intervals). Let a, b, c ∈ R and a < c, c−a
b

∈ N0. Then,

[a : b : c] := {a, a+ b, ..., c− b, c}

If b is omitted, then b = 1 is meant. Both the opening and the closing square brackets can be replaced by
parentheses and if done so, the last point at the respective end is excluded from the set.

Example 2.1.2. [0 : 0.5 : 2] = {0, 0.5, 1, 1.5, 2}, whereas [0 : 0.5 : 2) = {0, 0.5, 1, 1.5}

2.2 Sobolev spaces

Sobolev spaces are an important tool to measure the smoothness of a function. For our purposes, we will
need a definition which is slightly different from the one usually given.

Definition 2.2.1 ((Periodic) Sobolev spaces). Let k ∈ N, Lx, Ly ∈ R>0 and Ω = [0, Lx) × [0, Ly) some
rectangular domain. Then, the Sobolev space Hk is defined as

Hk(Ω) :=

{
f ∈ V

∣∣∣∣
∫

Ω

∣∣∣ ∂
kx+kyf

∂kxx∂kyy

∣∣∣
2

dxdy <∞ ∀kx, ky ∈ N, kx + ky ≤ k

}

where V is the subspace of L2(Ω) of periodic functions (Lx-periodic in x and Ly-periodic in y).

For convenience we implemented the condition that our functions be periodic directly into the definition
of the Sobolev spaces.

For characterising Sobolev spaces (and their duals), as well as for other purposes, we introduce the
regularised absolute value

〈x〉 :=

√
1 + |x|

2
,

with which we can write

Hk(Ω̂) :=

{
f̂ ∈ L2(Ω̂)

∣∣∣∣
〈(x̂

ŷ

)〉
f̂(x̂, ŷ) ∈ L2(Ω̂)

}

2.3 Fourier Transform

Due to the many different versions of the Fourier transform, we introduce our notation and list the most
important properties for easy reference.

Definition 2.3.1 (Fourier transform). Let Lx, Ly ∈ R+, Ω = [0, Lx)× [0, Ly) some rectangular domain and
f ∈ L1(Ω) a function. Then, the function F [f ] : Z2 → C given by

F [f ](x̂, ŷ) =
1

LxLy

∫

Ω

f(x, y) e
−2πi (x̂ x

Lx
+ŷ y

Ly
)
dxdy

is called the Fourier transform of f .

5



Definition 2.3.2 (Inverse Fourier transform). Let Lx, Ly and Ω be as above and f̂ ∈ ℓ1(Z2) (interpreted as

a function). Then, the function F−1[f̂ ] : Ω → C given by

F−1[f̂ ](x, y) =
∑

(x̂,ŷ)∈Z2

f̂(x̂, ŷ) e
2πi (x̂ x

Lx
+ŷ y

Ly
)

is called the inverse Fourier transform of f̂ . To interpret this function for values outside of Ω, it is extended
periodically (which is consistent with the definition). This is implicitly assumed in the rest of this article.

Fact 2.3.3. • The Inverse Fourier Transform as defined lives up to its name;

F−1Ff = f, for f ∈ L1(Ω) ∩ F−1(ℓ1(Z2)),

FF−1f̂ = f̂ , for f̂ ∈ ℓ1(Z2) ∩ F(L1(Ω)).
(2.1)

• The correspondence between translation and modulation behaves as usual:

F [f(· − tx, · − ty)](x̂, ŷ) = e
−2πi (x̂ tx

Lx
+ŷ

ty
Ly

)
F [f ](x̂, ŷ) (2.2)

• The Plancherel Theorem holds:
∫

Ω

f(x, y) g(x, y) dxdy = LxLy

∑

(x̂,ŷ)∈Z2

F [f ](x̂, ŷ)F [g](x̂, ŷ) (2.3)

2.4 Finite Fourier Transform

While the above definition of the Fourier transform provides a solid basis for theoretical work, it is useless if
one wants to use it on a finite computing machine because of the integrals and the series. Therefore, what
is needed is a finitely computable approximation to the ideal Fourier transform.

Definition 2.4.1 (Finite Fourier transform). Let Lx, Ly ∈ R+, Nx, Ny ∈ N,

Ωfin =

[
0 :

Lx

Nx

: Lx

)
×

[
0 :

Ly

Ny

: Ly

)

an equispaced rectangular grid,

Ω̂fin =

[
−
⌈Nx − 1

2

⌉
:
⌊Nx − 1

2

⌋]
×

[
−
⌈Ny − 1

2

⌉
:
⌊Ny − 1

2

⌋]

a part of the Fourier space and f : Ωfin → C a function. Then, the function ft[f ] : Ω̂fin → C given by

ft[f ](x̂, ŷ) =
1

NxNy

∑

(x,y)∈Ωfin

f(x, y) e
−2πi (x̂ x

Lx
+ŷ y

Ly
)

is called the finite Fourier transform of f .

It is worth noting that ft corresponds to a trapezoidal rule approximation of the integral in the definition
of F .

Definition 2.4.2 (Inverse finite Fourier transform). Let Lx, Ly, Nx, Ny, Ωfin and Ω̂fin as above and f̂ :

Ω̂fin → C a function. Then, the function ift[f̂ ] : Ωfin → C given by

ift[f̂ ](x, y) =
∑

(x̂,ŷ)∈Ω̂fin

f̂(x̂, ŷ) e
2πi (x̂ x

Lx
+ŷ y

Ly
)

is called the inverse finite Fourier transform of f̂ .

6



Instead of restricting ift[f̂ ] to Ωfin, the above formula would also allow to define ift[f̂ ] as a function
[0, Lx)× [0, Ly) → C. In that case, we would have

ift[f̂ ](x, y) = F−1
[
Z[f̂ ]

]
∀(x, y) ∈ Ωfin (2.4)

where Z is defined as follows.

Definition 2.4.3 (Zero padding operator). Let Ω̂fin and f̂ be as in Definition 2.4.2. Then, Z[f̂ ] : Z2 → C

is a function defined by

Z[f̂ ](x̂, ŷ) =

{
f̂(x̂, ŷ) (x̂, ŷ) ∈ Ω̂fin

0 otherwise

and the symbol Z is called the zero padding operator.

Later on, we will also need an operator undoing the effect of Z, which for symmetry we introduce already
here.

Definition 2.4.4 (Truncation operator). Let Ω̂fin be as in Definition 2.4.1, and f̂ : Z2 → C. Then, T [f̂ ] :

Ω̂fin → C is a function defined by
T [f̂ ](x̂, ŷ) = f̂(x̂, ŷ)

and the symbol T is called the truncation operator.

The advantage of defining ift the way we did is that only in this case the transform is truly finitely
computable and all of the later statements about properties of the finite Fourier transforms are correct. On
the other hand, for the purpose of error estimation it will be useful to take the continuous viewpoint (2.4).

Fact 2.4.5. • The defined transformations are inverse to each other,

ft ◦ ift = ift ◦ ft = I,

which is an immediate consequence of the summation property of roots of unity,

N−1∑

k=0

e2πi j
k
N = N δ(j mod N), ∀j ∈ Z (2.5)

• ft and ift can be computed using the discrete Fourier transform, more precisely,

ft[f ](x̂, ŷ) =
1

NxNy

DFT[F ], where Fkx,ky
:= f

(
Lx

kx
Nx

, Ly

ky
Ny

)

kx=0,...,Nx−1
ky=0,...,Ny−1

.

• As an immediate consequence of being able to calculate ft and ift using DFT, the complexity of
evaluating them is O(NxNy log(NxNy)).

7



20 21 22 23

(a) Rotational partition from [Gro12]

20 21 22 23

(b) Sheared partition used for implementation

Figure 3.1: Two different partitions for ridgelets in Fourier space

3 Ridgelets

As briefly sketched in the introduction, the construction of the ridgelets is done via an appropriately chosen
partition of unity in Fourier space (inspired by Littlewood-Paley-type dyadic partitions). In [Gro12], this was
based on a spherically symmetric partition (see Figure 3.1a), with scaling and rotation as the transformations
relating the different elements to each other. Numerically, shearing is a much more convenient operation
than rotation and therefore we use a square partition in the following, see Figure 3.1b.

To make smooth transitions possible – smoothness plays an important role in the properties of the
Galerkin matrix – one ridgelet has to be supported on neighbouring shears and scales. This is illustrated
below in Figure 3.2.

In this section, we will show how these ridgelets can be constructed explicitly for a given transition func-
tion. Furthermore, we will show that the ridgelets form a frame in physical space. Finally, efficient methods
will be presented which allow to switch from an explicit representation of a function to its representation
as a linear combination of ridgelets and vice versa. Many ideas in this section are taken from [Häu12] and
[Gro12].

3.1 Construction

The basis for the transition between neighbouring ridgelets is a shape function t : R → R satisfying

t(0) = 0, t(1) = 1, t ∈ Cm([0, 1]) for an m ≥ 0

Using this function, we construct a radial an a spherical window function:

wr(x) :=





sin
(
π
2 t(|x| − 1)

)
1 ≤ |x| ≤ 2,

cos
(
π
2 t(

1
2 |x| − 1)

)
2 < |x| < 4,

0 otherwise,

(3.1)

8



and

ws(x) :=

{√
t(1 + x) x ≤ 0,√
t(1 + x) x > 0.

(3.2)

With these helper functions at hand, we can start defining our ridgelets.

Definition 3.1.1 (Basic ridgelet). Let ρx, ρy ∈ N and Ω = [0, Lx)× [0, Ly) some rectangular domain. Then,
the basic ridgelet ψ(1,x,0) : Ω → C is a function defined via its Fourier transform,

ψ(1,x,0) := F−1
[
ψ̂(1,x,0)

]

where ψ̂(1,x,0) : Z
2 → [0, 1] is defined as

ψ̂(1,x,0)(x̂, ŷ) := wr

(
x̂

ρx

)
ws

(
ŷ/ρy
x̂/ρx

)

Definition 3.1.2 (x-cone ridgelets). Let Ω be as above. Then, the x-cone ridgelets are a family of functions

ψ̂(j,x,k) : Z
2 → [0, 1] parametrized by j ∈ N and k ∈ Z defined in Fourier space by

ψ̂(j,x,k)(x̂, ŷ) := ψ̂(1,x,0)

(
x̂

2j−1
, ŷ −

k

2j−1
x̂

)
,

and with corresponding physical space functions ψ(j,x,k) : Ω → C given by

ψ(j,x,k) := F−1
[
ψ̂(j,x,k)

]

Note that the x-cone ridgelets correspond to a scaling (in x-direction) with subsequent shearing (in y-
direction) of the basic ridgelet. Since we can only cover the y-axis in the limit |x| → ∞ when shearing

from ψ̂(1,x,0), we only shear to the diagonal and cover the vertical cone by shearing from a vertical ridgelet
(compare Figure 3.1b), or rather, by transposing the horizontal ridgelets.

Definition 3.1.3 (y-cone ridgelets). The y-cone ridgelets are a family of functions ψ̂(j,y,k) : Z2 → [0, 1]
parametrized by j ∈ N and k ∈ Z defined in Fourier space by

ψ̂(j,y,k)(x̂, ŷ) := ψ̂(j,x,k)(ŷ, x̂),

and with corresponding physical space functions ψ(j,y,k) : Ω → C given by

ψ(j,y,k) := F−1
[
ψ̂(j,y,k)

]

Although both variants are well-defined for arbitrary k ∈ Z, having both variants means that we can
restrict ourselves to k ∈ [−2j−1 + 1 : 2j−1 − 1]. The only missing part is the “diagonal” |k| = 2j−1, which
we need to define differently to achieve a continuous (but not necessarily differentiable) transition between
the x- and y-cone ridgelets.

Definition 3.1.4 (Diagonal ridgelets). Let ρx, ρy and Ω be as above. Then, the diagonal ridgelets are a

family of functions ψ̂(j,d,k) : Z
2 → [0, 1] parametrized by j ∈ N and k = ±2j−1 defined in Fourier space by

ψ̂(j,d,k)(x̂, ŷ) :=

{
ψ̂(j,x,k)(x̂, ŷ)

|x̂|
ρx

≥ |ŷ|
ρy

ψ̂(j,y,k)(x̂, ŷ)
|x̂|
ρx
< |ŷ|

ρy

and with corresponding physical space functions ψ(j,d,k) : Ω → C given by

ψ(j,d,k) := F−1
[
ψ̂(j,d,k)

]

9



−8
−8

−6

−6

−4

−4

−2

−2

0

0

2

2

4

4

6

6

8

8

(a) Basic ridgelet ψ̂(1,x,0)

−8
−8

−6

−6

−4

−4

−2

−2

0

0

2

2

4

4

6

6

8

8

(b) x-cone ridgelet ψ̂(2,x,0)

scaled from (a)

−8
−8

−6

−6

−4

−4

−2

−2

0

0

2

2

4

4

6

6

8

8

(c) x-cone ridgelet ψ̂(2,x,1)

sheared from (b)

−8
−8

−6

−6

−4

−4

−2

−2

0

0

2

2

4

4

6

6

8

8

(d) y-cone ridgelet ψ̂(1,y,0)

transposed from (a)

−8
−8

−6

−6

−4

−4

−2

−2

0

0

2

2

4

4

6

6

8

8

(e) Central ridgelet ψ̂(0,s,0)

−8
−8

−6

−6

−4

−4

−2

−2

0

0

2

2

4

4

6

6

8

8

(f) y-cone ridgelet ψ̂(2,y,1)

transposed from (c)

−8
−8

−6

−6

−4

−4

−2

−2

0

0

2

2

4

4

6

6

8

8

(g) Diagonal ridgelet ψ̂(1,d,1)

transition between (a) and (d)

−8
−8

−6

−6

−4

−4

−2

−2

0

0

2

2

4

4

6

6

8

8

(h) Diagonal ridgelet ψ̂(2,d,−2)

−8
−8

−6

−6

−4

−4

−2

−2

0

0

2

2

4

4

6

6

8

8

(i) Diagonal ridgelet ψ̂(2,d,2)

transition between (c) and (f)

Figure 3.2: Fourier space supports of several ridgelets.
Units are ρx for the x-axes and ρy for the y-axes

10



With the ridgelets defined so far, we cover all directions. However, we still need some function that covers
the low frequency part (which corresponds to the mass of the function in real space).

Definition 3.1.5 (Scaling function). Given ρx, ρy and Ω as above, the scaling function ψ̂(0,s,0) : Z
2 → [0, 1]

is a function defined in Fourier space by

ψ̂(0,s,0)(x̂, ŷ) :=





1 ẑ < 1

cos
(
π
2 t(ẑ − 1)

)
1 ≤ ẑ < 2

0 2 ≤ ẑ

with ẑ := max

{
|x̂|

ρx
,
|ŷ|

ρy

}

with corresponding physical space function ψ(0,s,0) : Ω → C given by

ψ(0,s,0) := F−1
[
ψ̂(0,s,0)

]

With the scaling function, the set of ridgelets is now complete. In the remainder of this chapter, it will
become clear that the most important property of a ridgelet is its well-defined support in the Fourier space
- the supports for a few selected ridgelets are illustrated in Figure 3.2.

Definition 3.1.6 (Index set). The index set Λ is defined as the set of all triples

Λ =



λ = (κ, j, k)

∣∣∣∣∣∣

κ = s ∧ j = 0 ∧ k = 0
κ = x,y ∧ j ∈ N ∧ k ∈ [−2j−1 + 1 : 2j−1 − 1]
κ = d ∧ j ∈ N ∧ k = ±2j−1



,

where j is called the scale parameter, κ the direction parameter and k the shear parameter.

Lemma 3.1.7 (Partition of unity). The ψ̂λ with λ ∈ Λ constitute a partition of unity, i.e.

∑

λ∈Λ

ψ̂2
λ(x̂, ŷ) = 1 ∀(x̂, ŷ) ∈ Z

2 (3.3)

Proof. The full proof can be found in [Gro12], we mention the main points.
First, note that w2

s(x) + w2
s(x− 1) = 1 for all x ∈ [0, 1]. Therefore, we have that e.g.

ψ̂2
(j,x,k)(x̂, ŷ) + ψ̂2

(j,x,k+1)(x̂, ŷ) = w2
r

(
|x̂|

ρx2j−1

)
∀ (x̂, ŷ) ∈ supp ψ̂(j,x,k) ∩ supp ψ̂(j,x,k+1).

If we extend this argument to all ridgelets on the same scale j, we see that the dependence on the spherical
part ws completely drops out and that we are left with only the radial part wr. But since we have that
w2

r(x) +w2
r(

x
2 ) = 1 for all x ∈ [−4,−2]∪ [2, 4], this will become one as well once we square and sum over all

scales j ∈ N0.

As in [Häu12] and [Gro12], this partition of unity property of the ridgelets will be the key point in proving
the invertibility of the ridgelet transform in Theorem 3.2.8.

In the introduction, we specified the ridgelets as a set of functions with varying locations, directions
and width. So far, we have only covered the direction and width. Next, we will thus have a look at the
translations of the ridgelets.

For the ridgelets to form a frame, the different modulations of one ridgelet must form a basis on the
support of the ridgelet. This immediately gives the necessary resolution for each ridgelet.

Definition 3.1.8 (Translation sets). Let ρx, ρy and Λ be as above, and define the x- and y-resolutions as

T λ
x :=





4ρx if κ = s

2j+2ρx if κ = x

8ρx if κ = y

2j+2ρx if κ = d

and T λ
y :=





4ρy if κ = s

8ρy if κ = x

2j+2ρy if κ = y

8ρy if κ = d

11



Then, the translation set T λ with to a given parameter choice λ ∈ Λ is defined as

T λ :=

[
0 :

Lx

T λ
x

: Lx

)
×

[
0 :

Ly

T λ
y

: Ly

)

Here one of the advantages of using shearing instead of rotations comes to light – normally, the translations
would have to be rotated/sheared differently for each parameter combination, but since shearing leaves our
translation grid T λ invariant, we can omit this.

We conclude this section by collecting all the defined functions in a set.

Lemma 3.1.9 (Ridgelet frame [Gro12]). The set of functions

{ψλ}Λ,Tλ :=
{
ψλ(· − tx, · − ty)

∣∣λ ∈ Λ, t ∈ T λ
}

is a frame. This is shown in [Gro12] and implies that (suitably scaled) {ψλ}Λ,Tλ satisfy

∥∥f
∥∥2
2
∼
∑

λ∈Λ

∑

t∈Tλ

〈
f, ψλ(· − tx, · − ty)

〉
2

where f : Ω → C is some arbitrary function and the ∼-symbol means that the left side is bounded by a
constant times the right side and vice versa.

Remark 3.1.10. Compared to [Gro12], the translations for ψλ do not have to be transformed, since the
grid T λ already incorporates the scaling and is invariant to shearing.

3.2 Ridgelet Transform

In analogy to the Fourier transforms, the process of expressing a given function as a linear combination
of ridgelets is called a ridgelet transform, and the opposite operation an inverse ridgelet transform. These
transforms introduce a new space of linear combination coefficients which is called the ridgelet coefficient
space.

Definition 3.2.1 (Ridgelet coefficient space). The set of pairs

Ω̃ :=
{
(λ, t)

∣∣λ ∈ Λ, t ∈ T λ
}

is called the ridgelet coefficient space. The notation is chosen in analogy to Ω and Ω̂.

Definition 3.2.2 (Ridgelet transform). Let Ω = [0, Lx) × [0, Ly) some rectangular domain and f : Ω → C

a function. Then, the function R[f ] : Ω̃ → C given by

R[f ](λ, t) :=
1

LxLy

1

T λ
x T

λ
y

∫

Ω

f(x, y)ψλ(x− tx, y − ty) dxdy

is called the ridgelet transform of f .

Definition 3.2.3 (Inverse ridgelet transform). Let Ω = [0, Lx) × [0, Ly) be some rectangular domain and

f̃ : Ω̃ → C a function. Then, the function R−1[f̃ ] : Ω → C given by

R−1[f̃ ](x, y) :=
∑

λ∈Λ

∑

t∈Tλ

f̃(λ, t)ψλ(x− tx, y − ty)

is called the inverse ridgelet transform of f .

As implied in the beginning, for both theoretical work as well as implementation, it is more useful to
work with their Fourier transforms, however, since we can then discretise in a way that allows us to use FFT.

12



Definition 3.2.4 (Fourier ridgelet transform). Let f̂ : Z2 → C be a function. Then, the function R̂[f̂ ] :

Ω̃ → C given by
R̂[f̂ ](λ, t) := R

[
F−1[f̂ ]

]
(λ, t)

is called the Fourier ridgelet transform of f̂ .

Theorem 3.2.5. The Fourier ridgelet transform is given by

R̂[f̂ ](λ, t) =
1

T λ
x T

λ
y

∑

(x̂,ŷ)∈Z2

f̂(x̂, ŷ)ψ̂λ(x̂, ŷ)e
2πi (x̂ tx

Lx
+ŷ

ty
Ly

)

Proof. Direct consequence of the Plancherel formula (2.3), the translation property of the Fourier transform

(2.2) and the fact that the ridgelets ψ̂λ are real.

Definition 3.2.6 (Inverse Fourier ridgelet transform). Let f̃ : Ω̃ → C be a function. Then, the function
R̂−1[f̃ ] : Z2 → C given by

R̂−1[f̃ ](x̂, ŷ) := F
[
R−1[f̃ ]

]
(x̂, ŷ)

is called the inverse Fourier ridgelet transform of f̃ .

Theorem 3.2.7. The inverse Fourier ridgelet transform is given by

R̂−1[f̃ ](x̂, ŷ) =
∑

λ∈Λ

∑

t∈Tλ

f̃(λ, t)ψ̂λ(x̂, ŷ)e
−2πi (x̂ tx

Lx
+ŷ

ty
Ly

)

Proof. Direct consequence of the linearity of the Fourier transform and the translation property (2.2).

Thanks to these Fourier ridgelet transforms, we are now able to prove the first main result of this paper.

Theorem 3.2.8 (Inverse property of the Fourier ridgelet transforms). The inverse Fourier ridgelet transform
is the left inverse of the Fourier ridgelet transform, i.e. R̂−1 ◦ R̂ = I

Proof. Let f̂ : Z2 → C. Then,

R̂−1
[
R̂[f̂ ]

]
(x̂, ŷ) = . . .

=
∑

λ∈Λ

∑

t∈Tλ

1

T λ
x T

λ
y

∑

(v̂,ŵ)∈Z2

f̂(v̂, ŵ) ψ̂λ(v̂, ŵ) ψ̂λ(x̂, ŷ)e
2πi

(
(v̂−x̂) tx

Lx
+(ŵ−ŷ)

ty
Ly

)

=
∑

λ∈Λ

∑

(v̂,ŵ)∈Z2

f̂(v̂, ŵ) ψ̂λ(v̂, ŵ) ψ̂λ(x̂, ŷ)
1

T λ
x T

λ
y

∑

t∈Tλ

e
2πi

(
(v̂−x̂) tx

Lx
+(ŵ−ŷ)

ty
Ly

)

=
∑

λ∈Λ

∑

(v̂,ŵ)∈Z2

f̂(v̂, ŵ) ψ̂λ(v̂, ŵ) ψ̂λ(x̂, ŷ) δ
(
(v̂ − x̂) mod T λ

x

)
δ
(
(ŵ − ŷ) mod T λ

y

)
.

The fact that 1
Tλ
x Tλ

y

∑
t∈Tλ e

2πi
(
(v̂−x̂) tx

Lx
+(ŵ−ŷ)

ty
Ly

)

collapses to delta functions is due to the summation

property of the root of unity, see (2.5).
Here, the choice of T λ

x and T λ
y in Definition 3.1.8 comes into play again, namely that if (x̂, ŷ) ∈ Z2 lies in

the support of ψ̂λ, then all (x̂− nxT
λ
x , ŷ − nyT

λ
y ), (nx, ny) ∈ Z2 \ {(0, 0)} do not. Therefore, we do not have

to bother with the moduli in the delta functions and can instead just write

R̂−1
[
R̂[f̂ ]

]
(x̂, ŷ) =

∑

λ∈Λ

f̂(x̂, ŷ) ψ̂2
λ(x̂, ŷ) = f̂(x̂, ŷ)

due to the partition of unity property (3.3) of the ridgelets.

13



The above theorem implies that the Fourier ridgelet transform is injective and that the inverse Fourier
ridgelet transform is surjective. However, it is important to stress that neither of them is bijective! An easy
way to see this is to think about what happens if you Fourier ridgelet transform a ridgelet ψ̂λ: Obviously,
we have R̂−1[f̃ ] = ψ̂λ if we let f̃(µ, t) := δ(µ − λ) δ(t) (here, µ − λ for µ, λ ∈ Λ is defined as zero iff µ = λ

and anything different from zero otherwise). But f̃ is not the function produced by R̂[ψ̂λ]! Rather, since ψ̂λ

overlaps with some other ridgelets ψ̂µ in Fourier space, these ψ̂µ will have nonzero coefficients as well. In
conclusion, we thus observe the following:

Fact 3.2.9. The Fourier ridgelet transform is not surjective. The inverse Fourier ridgelet transform is not
injective.

Of course, both results hold equally for the original ridgelet transforms in physical space.

Corollary 3.2.10 (Inverse property of the ridgelet transforms). The inverse ridgelet transform is the left
inverse of the ridgelet transform, i.e. R−1 ◦ R = I.

Proof. By the definition of the (inverse) Fourier ridgelet transform (Definitions 3.2.4 and 3.2.6) and the
inverse property of the Fourier transforms (2.1), we can write R = R̂ ◦ F and R−1 = F−1 ◦ R̂−1. Then, the
claim follows by the inverse property of the Fourier transforms (2.1) and the above theorem.

Fact 3.2.11. The ridgelet transform is not surjective. The inverse ridgelet transform is not injective.

3.3 Finite Ridgelet Transform

In the same way as we introduced the finite Fourier transform as finitely computable approximations to the
ideal Fourier transforms, we will introduce here the finite ridgelet transforms as approximations to the ideal
ridgelets transforms defined in the previous section. Since the formulae for the Fourier ridgelet transform
already contain only series and sums, we only have to specify how we truncate the series.

Definition 3.3.1 (Finite index set). Let J ∈ N. Then the finite index set Λfin is given by

Λfin =
{
λ ∈ Λ

∣∣ j ≤ J
}
.

Definition 3.3.2 (Finite ridgelet coefficient space). The set of pairs

Ω̃fin :=
{
(λ, t)

∣∣λ ∈ Λfin, t ∈ T λ
}

is called the finite ridgelet coefficient space.

Definition 3.3.3 (Finite ridgelet transform). Let

Ω̂fin =
[
−ρx 2

J+1 : ρx 2
J+1 − 1

]
×
[
−ρy 2

J+1 : ρy 2
J+1 − 1

]

be a subset of the Fourier space and f̂ : Ω̂fin → C a function. Then, the function rt[f̂ ] : Ω̃fin → C given by

rt[f̂ ](λ, t) =
1

T λ
x T

λ
y

∑

(x̂,ŷ)∈Ω̂fin

f̂(x̂, ŷ) ψ̂λ(x̂, ŷ) e
2πi (x̂ tx

Lx
+ŷ

ty
Ly

)

is called the finite (Fourier) ridgelet transform of f̂ .

Remark 3.3.4. The choice of Ω̂fin corresponds to the finest possible grid in each direction i.e. to

Ωfin =
⋃

λ∈Λfin

T λ.

Thus the choice of J and ρx, ρy determines the Nx, Ny of Ωfin.

14



Definition 3.3.5 (Finite inverse ridgelet transform). Let Ω̂fin be as above and f̃ : Ω̃fin → C a function.

Then, the function irt[f̃ ] : Ω̂fin → C given by

irt[f̃ ](x̂, ŷ) =
∑

λ∈Λfin

∑

t∈Tλ

f̃(λ, t) ψ̂λ(x̂, ŷ) e
−2πi (x̂ tx

Lx
+ŷ

ty
Ly

)

is called the finite inverse (Fourier) ridgelet transform of f̂ .

To achieve a well-localised discretisation in space, the ψ̂λ have to be smooth, which necessitates that the
different scales mix in the partition of unity

{
ψ̂λ

}
λ
. Due to this fact, some unwelcome side effects at the

highest scale J of the discretisation are unavoidable, but depend on the specific treatment of the highest
scale.

As we saw in the proof of Theorem 3.2.8 (and will see below), the invertibility of the transform is closely
related to the partition of unity property. To have invertibility on the full range Ω̂, it would therefore be
necessary to include scale J + 1 as well, but, crucially, the functions on this scale would be cut off by Ω̂.
Through the implicit periodicity of the Fourier transform, this cut-off would lead to substantial artefacts in
the reconstruction after transforming back to physical space (as soon as one of corresponding coefficients
would be non-negligible).

To prevent this possibility, we have decided to discard the contributions of the (J + 1)st scale entirely,
which, however, also means that we do not have full invertibility of the discrete transform.

Lemma 3.3.6 (Finite partition of unity). The ψ̂λ with λ ∈ Λfin constitute a partition of unity on a part of
Z2, namely ∑

λ∈Λfin

ψ̂2
λ(x̂, ŷ) = 1 ∀(x̂, ŷ) ∈

[
−ρx2

J : ρx2
J
]
×
[
−ρy2

J : ρy2
J
]
=: Ω̂uni

In particular, irt[rt[f̂ ]] = f̂ holds only if f̂ is zero outside of this region. For general f̂ , irt ◦ rt can be
interpreted as a low-pass filter with a very high cut-off frequency.

Proof. Proceeding exactly as in the proof of Theorem 3.2.8 for the full frame, we arrive at

irt[rt[f̂ ]](x̂, ŷ) =
∑

λ∈Λfin

f̂(x̂, ŷ) ψ̂2
λ(x̂, ŷ) =

{
f̂(x̂, ŷ), (x̂, ŷ) ∈ Ω̂uni,

f̂(x̂, ŷ)w2
r

(
max

{
|x̂|
ρx
, |ŷ|
ρy

})
, otherwise.

Remark 3.3.7. As is obvious from the overlap of the different ridgelets, there is some degree of redundancy
in the ridgelet frame. By summing all contributions,

∑

λ∈Λfin

T λ
y T

λ
y = ρxρy

(
16 +

256

3
(4J − 1)

)
,

we see that the redundancy |Ω̃fin|
|Ωuni|

is bounded by 64
3 and |Ω̃fin|

|Ωfin|
by 16

3 .

3.4 Implementation Overview

The rest of this section will be dedicated to showing how the finite ridgelet transforms can be evaluated
efficiently. The bottom line will be that both of them can be performed in O

(∣∣Ω̃fin

∣∣ log
(∣∣Ω̃fin

∣∣)), i.e. that up
to a logarithmic factor, optimal computational complexity is achievable.

When trying to evaluate

f̃λ(t) :=
1

T λ
x T

λ
y

∑

(x̂,ŷ)∈Ω̂fin

f̂(x̂, ŷ) ψ̂λ(x̂, ŷ) e
2πi (x̂ tx

Lx
+ŷ

ty
Ly

)
,

15



we can observe that the support of ψ̂λ restricts the area where we need to evaluate from Ω̂fin to (actually the
support is much more restricted, compare Figure 3.2, but this is the smallest quadrilateral which contains
it). For example, for κ = x, we have (since T λ

x and T λ
y are by definition always divisible by two)

Ω̂> :=

[
−
T λ
x

2
:
T λ
x

2
− 1

]
×

[
−
(|k|+ 1)T λ

y

2
:
(|k|+ 1)T λ

y

2
− 1

]
.

This corresponds to having the following domain for ift[f̂ ψ̂λ],

Ω> :=

[
0 :

Lx

T λ
x

: Lx

)
×

[
0 :

Ly

(|k|+ 1)T λ
y

: Ly

)
,

but we only need to evaluate f̃λ on

Ω< := T λ =

[
0 :

Lx

T λ
x

: Lx

)
×

[
0 :

Ly

T λ
y

: Ly

)
.

This motivates the following discussion of the interplay between such subgrids and ft. The definitions and
statements do not depend materially on the fact that we restrict ourselves to even Nx, Ny (which is always
the case for us), but rather saves notational effort by eliminating the floor- and ceiling-operations.

Definition 3.4.1 (Folding operations). Let n ∈ N, Nx, Ny ∈ 2N,

Ω̂> =

[
−
nNx

2
:
nNx

2
− 1

]
×

[
−
Ny1

2
:
Ny

2
− 1

]

Ω̂< =

[
−
Nx

2
:
Nx

2
− 1

]
×

[
−
Ny

2
:
Ny

2
− 1

]

and f̂> : Ω̂> → C. Then, foldx[f̂>, n,Nx] : Ω̂< → C is defined as

foldx[f̂>, n,Nx](x̂, ŷ) :=





∑
v̂∈[−⌈n−1

2 ⌉:⌊n−1
2 ⌋]

f̂>(x̂+Nxv̂, ŷ) x̂ ≥ 0

∑
v̂∈[−⌊n−1

2 ⌋:⌈n−1
2 ⌉]

f̂>(x̂+Nxv̂, ŷ) x̂ < 0

(the only difference between the cases is in the rounding operations) and the symbol foldx is called the
x-folding operator.

The y-folding operator foldy is defined likewise.

Lemma 3.4.2 (Folding Lemma). Let n ∈ N, Nx, Ny ∈ 2N, as well as Lx, Ly ∈ R>0 and

Ω> =

[
0 :

Lx

nNx

: Lx

)
×

[
0 :

Ly

Ny

: Ly

)
, Ω̂> =

[
−
nNx

2
:
nNx

2
− 1

]
×

[
−
Ny

2
:
Ny

2
− 1

]
,

Ω< =

[
0 :

Lx

Nx

: Lx

)
×

[
0 :

Ly

Ny

: Ly

)
, Ω̂< =

[
−
Nx

2
:
Nx

2
− 1

]
×

[
−
Ny

2
:
Ny

2
− 1

]
.

Furthermore, let f̂> : Ω̂> → C and f< := ift[f̂>]
∣∣
Ω<

. Then, we have

ft[f<] = foldx[f̂>, n,Nx]

16



Proof. First, assume x̂ ≥ 0. Then,

ft[f<](x̂, ŷ) =
1

NxNy

∑

(x,y)∈Ω<

ift[f̂>](x, y) e
−2πi (x̂ x

Lx
+ŷ y

Ly
)

=
1

NxNy

∑

(x,y)∈Ω<

1

n

(
∑

v̂∈[−⌈n−1
2 ⌉:⌊n−1

2 ⌋]

e−2πiNxv̂
x

Lx

)

︸ ︷︷ ︸
=1

ift[f̂>](x, y) e
−2πi (x̂ x

Lx
+ŷ y

Ly
)
+ . . .

. . .+
1

NxNy

∑

(x,y)∈Ω<

∑

v∈∆Ωx

1

n

(
∑

v̂∈[−⌈n−1
2 ⌉:⌊n−1

2 ⌋]

e−2πiNxv̂
x+v
Lx

)

︸ ︷︷ ︸
=0

ift[f̂>](x+v, y) e
−2πi (x̂ x+v

Lx
+ŷ y

Ly
)

where ∆Ωx :=
(
0 : Lx

nNx
: Lx

Nx

)
. The first underbrace equals one because Nx

x
Lx

is always an integer for

x ∈ Ω<. On the other hand, Nx
x+v
Lx

for x ∈ Ω< and v ∈ ∆Ωx is always a proper fraction, therefore the
second underbrace collapses to zero due to the summation property of the roots of unity.

Note that ∑

(x,y)∈Ω<

g(x, y) +
∑

(x,y)∈Ω<

∑

v∈∆Ωx

g(x+ v, y) =
∑

(x,y)∈Ω>

g(x, y)

Therefore, we can continue the above equations with

ft[f<](x̂, ŷ) =
1

nNxNy

∑

(x,y)∈Ω>

∑

v̂∈[−⌈n−1
2 ⌉:⌊n−1

2 ⌋]

ift[f̂>](x, y) e
−2πi

(
(x̂+Nxv̂)

x
Lx

+ŷ y
Ly

)

=
∑

v̂∈[−⌈n−1
2 ⌉:⌊n−1

2 ⌋]

1

nNxNy

∑

(x,y)∈Ω>

ift[f̂>](x, y) e
−2πi

(
(x̂+Nxv̂)

x
Lx

+ŷ y
Ly

)

=
∑

v̂∈[−⌈n−1
2 ⌉:⌊n−1

2 ⌋]

ft[ift[f̂>]](x̂+Nxv̂, ŷ)

=
∑

v̂∈[−⌈n−1
2 ⌉:⌊n−1

2 ⌋]

f̂>(x̂+Nxv̂, ŷ)

= foldx[f̂>, n,Nx](x̂, ŷ),

recalling that we assumed x̂ ≥ 0).
The proof for x̂ < 0 is the same, except that the range of v̂ is shifted by +1 if n is even. Since

e−2πi (−n
2 ) k

n = e−2πi n
2

k
n , the term which is dropped on the negative side in the sums over v̂ in that case is

equal to the new term on the positive side, therefore the above arguments showing that the first underbrace
is one whereas the other is zero work out exactly the same.

This result can now be used for evaluating the ridgelet transform for some fixed λ ∈ Λ.

Lemma 3.4.3. Let Ω̂fin be as in Definition 3.3.3 and f̂ : Ω̂fin → C. The complexity of evaluating

f̃λ(t) :=
1

T λ
x T

λ
y

∑

(x̂,ŷ)∈Ω̂fin

f̂(x̂, ŷ) ψ̂λ(x̂, ŷ) e
2πi (x̂ tx

Lx
+ŷ

ty
Ly

)

for some fixed λ ∈ Λ and all t ∈ T λ is O
(
T λ
x T

λ
y log(T λ

x T
λ
y )
)
.

17



Proof. We will show the lemma only for the case λ = (j, κ = x, k). For κ ∈ {y, d}, the proof is analogous
and for κ = s it is trivial.

Note that the above expression corresponds to f̃λ = 1
Tλ
x Tλ

y
ift[f̂ ψ̂λ], except that the sum contains many

more points than necessary. Because the support of ψ̂λ is contained within

Ω̂> :=

[
−
T λ
x

2
:
T λ
x

2
− 1

]
×

[
−
(|k|+ 1)T λ

y

2
:
(|k|+ 1)T λ

y

2
− 1

]

we can restrict the domain of f̂ ψ̂λ from Ω̂fin to Ω̂> such that the domain of ift[f̂ ψ̂λ] will be

Ω> :=

[
0 :

Lx

T λ
x

: Lx

)
×

[
0 :

Ly

(|k|+ 1)T λ
y

: Ly

)

As mentioned in the beginning of this subsection, we only need f̃λ on

Ω< := T λ =

[
0 :

Lx

T λ
x

: Lx

)
×

[
0 :

Ly

T λ
y

: Ly

)
,

thus we apply the Folding Lemma 3.4.2 and compute f̃λ as

f̃λ(t) =
1

T λ
x T

λ
y

ift
[
foldy

[
f̂ ψ̂λ, |k|+ 1, T λ

y

]]

Since the number of points in the support of ψ̂λ is bounded by T λ
x T

λ
y , we can evaluate the sums in foldy for

all (x̂, ŷ) ∈
[
−
⌈Tλ

x −1
2

⌉
:
⌊Tλ

x −1
2

⌋]
×
[
−
⌈Tλ

y −1

2

⌉
:
⌊Tλ

y −1

2

⌋]
in only O(T λ

x T
λ
y ). The dominating computational

effort is thus the ift whose complexity is known to be O
(
T λ
x T

λ
y log(T λ

x T
λ
y )
)
– see Fact 2.4.5.

The following diagram can be helpful for understanding the above arguments:

f̂ ψ̂λ : Ω̂> → C ft[f̃λ] : Ω̂< → C

ift[f̂ ψ̂λ] : Ω> → C f̃λ : T λ → C

A ift

B

restrict domain

C

fold

Dift

First, the Folding Lemma 3.4.2 establishes arrow C by going along A, B and the inverse of D. Then,
Lemma 3.4.3 proves that the overall complexity of going along arrows C and D is O

(
T λ
x T

λ
y log(T λ

x T
λ
y )
)
.

Note that this is less than going along A and B since in step A we would destroy the sparsity structure of
supp f̂ ψ̂λ.

With the work done so far, proving the overall complexity of the rt becomes easy.

Theorem 3.4.4 (Complexity of rt). The complexity of evaluating rt for all λ ∈ Λfin and t ∈ T λ is

O
(
log(ρxρy) ρxρy(J4

J )
)

18



Proof. By Lemma 3.4.3 and Definition 3.1.8 of the translation sets T λ we know that the complexity of
evaluating rt[f̂ ](λ, t) for some fixed λ ∈ Λ and all t ∈ T λ is O

(
log(ρxρy) ρxρy j 2

j
)
. On a fixed scale j we

have O(2j) ridgelets, and thus the overall complexity is

J∑

j=0

O
(
2j
)
O
(
log(ρxρy) ρxρy j 2

j
)
= O

(
log(ρxρy) ρxρy(J4

J)
)

The algorithm for evaluating the irt is derived in exactly the same way.

Definition 3.4.5 (Unfolding operations). Let n ∈ N, Nx, Ny ∈ 2N,

Ω̂> =

[
−
nNx

2
:
nNx

2
− 1

]
×

[
−
Ny1

2
:
Ny

2
− 1

]

Ω̂< =

[
−
Nx

2
:
Nx

2
− 1

]
×

[
−
Ny1

2
:
Ny

2
− 1

]

and f̂< : Ω̂< → C. Then, unfoldx[f̂<, n,Nx] : Ω̂> → C is defined as

unfoldx[f̂<, n,Nx](x̂, ŷ) :=
1

n
f<

(
x̂−Nx

[ x̂
Nx

]
, ŷ

)

([·] denotes rounding to nearest integer, with tie-breaking in favor of the next-larger number, i.e.
[
− 3

2

]
= −1)

and the symbol unfoldx is called the x-unfolding operator. Note that – strictly speaking – the first argument
is not the same as x̂ mod Nx, since the latter is in [0 : Nx) instead of Ω̂<.

The y-unfolding operator unfoldy is defined likewise.

Lemma 3.4.6 (Unfolding lemma). Let n ∈ N, Nx, Ny ∈ 2N, Lx, Ly ∈ R
>0, Ω>, Ω̂>, Ω<, Ω̂< as in

Lemma 3.4.2 and f̂< : Ω̂< → C. Furthermore, let f> : Ω> → C be given by

f>(x, y) :=

{
ift[f̂<](x, y) if (x, y) ∈ Ω<

0 otherwise

Then, we have
ft[f>] = unfoldx[f̂<, n,Nx]

Proof.

ft[f>](x̂, ŷ) =
1

nNxNy

∑

(x,y)∈Ω>

f>(x, y) e
−2πi (x̂ x

Lx
+ŷ y

Ly
)

=
1

nNxNy

∑

(x,y)∈Ω<

ift[f̂<](x, y) e
−2πi (x̂ x

Lx
+ŷ y

Ly
)

=
1

n

1

NxNy

∑

(x,y)∈Ω<

ift[f̂<](x, y) e
−2πi

(
(x̂−Nx[

x̂
Nx

]) x
Lx

+ŷ y
Ly

)

Again, the additional term in the exponential can be added because Nx
x
Lx

is always an integer.

=
1

n
ft[ift[f̂<]]

(
x̂−Nx

[ x̂
Nx

]
, ŷ

)

=
1

n
f̂<

(
x̂−Nx

[ x̂
Nx

]
, ŷ

)

= unfoldx[f̂<, n,Nx](x̂, ŷ)

19



Lemma 3.4.7. The complexity of evaluating

f̂λ(x̂, ŷ) :=
∑

t∈Tλ

f̃(λ, t) ψ̂λ(x̂, ŷ) e
−2πi (x̂ tx

Lx
+ŷ

ty
Ly

)

for some fixed λ ∈ Λ and all (x̂, ŷ) ∈ supp ψ̂λ is O
(
T λ
x T

λ
y log(T λ

x T
λ
y )
)
.

Proof. We will show the lemma only for the case λ = (j, κ = x, k). For κ ∈ {y, d}, the proof is analogous
and for κ = s it is trivial.

Note that the above expression corresponds to f̂λ = T λ
x T

λ
y ft[f̃(λ, ·)] except that we want the domain of

ft[f̃(λ, ·)] to be not

Ω̂< :=

[
−
T λ
x

2
:
T λ
x

2

]
×

[
−
T λ
y

2
:
T λ
y

2

]

but rather a subset of

Ω̂> :=

[
−
T λ
x

2
:
T λ
x

2

]
×

[
−
(|k|+ 1)T λ

y

2
:
(|k|+ 1)T λ

y

2

]

We can achieve this by defining

T λ
> :=

[
0 :

Lx

T λ
x

: Lx

)
×

[
0 :

Ly

(|k|+ 1)T λ
y

: Ly

)

f̃>(λ, ·) : T
λ
> → C, t 7→

{
f̃(λ, t) if t ∈ T λ

0 otherwise

Because all new terms in the ft sum are zero, writing f̂λ = T λ
x (|k| + 1)T λ

y ft[f̃>(λ, ·)] is now correct both
in terms of equal values as well as equal domains. Running the ft on a function which is mostly zero seems
to be a waste of effort, however, and indeed the Unfolding Lemma 3.4.6 shows that the above expression is
equivalent to

f̂λ(x̂, ŷ) = T λ
x (|k|+ 1)T λ

y unfoldy
[
ft[f̃(λ, ·)], |k|+ 1, T λ

y

]
(x̂, ŷ)

We evaluate the unfoldy only on O(T λ
x T

λ
y ) points, and each point evaluation can be done in O(1) once

ft[f̃(λ, ·)] is available. The dominating computational effort is thus computing the ft which can be done in
O
(
T λ
x T

λ
y log(T λ

x T
λ
y )
)
, see Fact 2.4.5.

Again, it is helpful to visualize what is happening in a diagram:

f̃(λ, ·) : T λ → C f̃>(λ, ·) : T
λ
> → C

ft[f̃(λ, ·)] : Ω̂< → C f̂λ : supp ψ̂λ ⊂ Ω̂> → C

A ft

B

unfold

C

extend domain

Dft

20



10
0

10
2

10
4

10
6

10
8

10
−2

10
0

10
2

10
4

N

R
un

tim
e 

[s
ec

]

 

 
rt
irt

O(N3/2)
O(N)

Figure 3.3: Scaling plot of rt and irt with ρx = ρy = 1 and J ∈ [1 : 10] compared to N = 4J .

The Unfolding Lemma 3.4.6 establishes arrow B by going along the inverse of A and C, D. Then,
Lemma 3.4.7 proves that the overall complexity of going along arrows A and B is O

(
T λ
x T

λ
y log(T λ

x T
λ
y )
)
.

Note that this is less than going along C and D since in step D we would have to compute the ft of the
extended f̃>(λ, ·).

As before, the overall complexity of the irt simply follows from the above lemma.

Theorem 3.4.8 (Complexity of irt). The complexity of evaluating irt for all (x̂, ŷ) in its domain is

O
(
log(ρxρy) ρxρy(J4

J )
)

Proof. The only thing which is different from the proof of the complexity of rt in Theorem 3.4.4 is that
in the end we have to sum up all the f̂λ. Since every point in the Fourier space lies in the support of at
most four ridgelets and we evaluate the irt on O

(
ρxρy(4

J)
)
points, that sum does not dominate the overall

complexity.

We have seen that the finite ridgelet transforms can in theory achieve an almost optimal computational
complexity ofO(N log(N)) whereN is (proportional to) the number of input and output parameters. Achiev-
ing the same complexity in a practical implementation requires a lot of work, however, since the fold and
unfold methods need to be able to exploit the special sparsity structures exhibited by the supports of the
ridgelets [ELL08]. The Matlab implementation for this paper achieves only a theoretical scaling of O(N

3
2 ),

since the implementation was done using built-in Matlab algorithms for folding and unfolding – Figure 3.3
shows this. However, the O(N

3
2 ) scaling can only be observed for very large N where the algorithms reach

their compute power and memory limits anyway.

3.5 Scalar Products

To differentiate the different scalar products in the spaces we introduced, we mark them by the respective
space they’re operating in. The following collects their precise definitions and correspondences.

Definition 3.5.1. Let Nx, Ny, as well as Ωfin, Ω̂fin be as in Definition 3.3.3 of the finite Fourier transform,

21



resp. as in Remark 3.3.4. For f, g : Ωfin → C, the finite real space scalar product of f and g is given by

〈
f, g
〉
Ωfin

:=
1

NxNy

∑

(x,y)∈Ωfin

f(x, y) g(x, y)

Furthermore, for f̂ , ĝ : Ω̂fin → C, the finite Fourier space scalar product of f̂ and ĝ is given by

〈
f̂ , ĝ
〉
Ω̂fin

:=
∑

(x̂,ŷ)∈Ω̂fin

f̂(x̂, ŷ) ĝ(x̂, ŷ)

Let f̃ , g̃ : Ω̃fin → C. Then, the finite ridgelet coefficient space scalar product of f̃ and g̃ is given by

〈
f̃ , g̃
〉
Ω̃fin

:=
∑

λ∈Λfin

T λ
x T

λ
y

∑

t∈Tλ

f̃(λ, t) g̃(λ, t)

The above scalar products correspond to the standard ℓ2 scalar product with some additional prefactors.
The purpose of these prefactors is to assert that the scalar products are preserved under the Fourier and
ridgelet transforms.

In (3.4), we list the correspondences between these different products, respectively where they fail.

〈
f, g
〉
Ωfin

=
〈
ft[f ], ft[g]

〉
Ω̂fin

, but
〈
f̂ , ĝ
〉
Ω̂fin

6=
〈
rt[f̂ ], rt[ĝ]

〉
Ω̃fin

in general; (3.4a)
〈
f, ift[ĝ]

〉
Ωfin

=
〈
ft[f ], ĝ

〉
Ω̂fin

and
〈
f̂ , irt[g̃]

〉
Ω̂fin

=
〈
rt[f̂ ], g̃

〉
Ω̃fin

; (3.4b)
〈
ift[f̂ ], ift[ĝ]

〉
Ωfin

=
〈
f̂ , ĝ
〉
Ω̂fin

, but
〈
irt[f̃ ], irt[g̃]

〉
Ω̂fin

6=
〈
f̃ , g̃
〉
Ω̃fin

in general. (3.4c)

By way of explanation, the first half of (3.4a) is just the finite analogue of the Plancherel formula (2.3)
and is proved in exactly the same way with the corresponding finite counterparts. Since the finite Fourier
transforms are mutually inverse, we can substitute f with ift[f̂ ] or g with ift[ĝ] and the other equalities
on the left-hand side follow immediately.

For the second equality of (3.4b), the proof is

〈
f̂ , irt[g̃]

〉
Ω̂fin

=
∑

(x̂,ŷ)∈Ω̂fin

f̂(x̂, ŷ)
∑

λ∈Λfin

∑

t∈Tλ

g̃(λ, t) ψ̂λ(x̂, ŷ) e
−2πi (x̂ tx

Lx
+ŷ

ty
Ly

)

=
∑

λ∈Λfin

T λ
x T

λ
y

∑

t∈Tλ

(
1

T λ
x T

λ
y

∑

(x̂,ŷ)∈Ω̂fin

f̂(x̂, ŷ)ψ̂λ(x̂, ŷ) e
2πi (x̂ tx

Lx
+ŷ

ty
Ly

)
)
g̃(λ, t)

=
〈
rt[f̂ ], g̃

〉
Ω̃fin

.

The right-hand equality of (3.4a) fails because while R̂−1 ◦ R̂ = I, irt ◦ rt holds only on the region
where the frame constitutes a partition of unity (compare Lemma 3.3.6), which in this case is not the entire
domain of ĝ. For example, if we have a frame with highest scale J , ρx = ρy = ρ and choose

ĝ(x̂, ŷ) = δ
(
x̂+ ρ2J+1

)
+ δ
(
ŷ + ρ2J+1

)

we have that irt[rt[ĝ]](x̂, ŷ) = 0 for all (x̂, ŷ) because no ridgelet covers that highest frequency part. With

such a ĝ,
〈
rt[f̂ ], rt[ĝ]

〉
Ω̃fin

is zero for all f̂ while
〈
f̂ , ĝ
〉
Ω̂fin

isn’t necessarily.

Finally, the right-hand equality of (3.4c) would not even become an equality for the infinite ridgelet
transforms, because due to the redundancy in the ridgelet coefficient space (compare Remark 3.3.7), the
inverse ridgelet transform and its finite analogue must have a kernel, say K (for the latter). If we thus
choose e.g. f̃ , g̃ ∈ K, then

〈
irt[f̃ ], irt[g̃]

〉
Ω̂fin

is zero while
〈
f̃ , g̃
〉
Ω̃fin

doesn’t have to be.

22



4 Radiative Transport Equation

4.1 Basic RTE Solver

In order to get started, let us consider the following simplified version of the radiative transport equation

Au = ~s · ∇u+ κu = f (4.1)

where u, κ, f : Ω → R, i.e. we neglect scattering and consider only a fixed direction ~s ∈ S
1 (we set again

Ω := [0, Lx) × [0, Ly) and S1 :=
{
~s ∈ R2

∣∣ ‖~s‖2 = 1
}
). In the following, we will write the solution u as the

inverse Fourier transform F−1[û] of some Fourier space function û. A necessary consequence of this approach
is that we must consider periodic boundary conditions

u(0, y) = u(Lx, y), u(x, 0) = u(x, Ly) ∀x ∈ [0, Lx) and y ∈ [0, Ly)

(remember the discussion on the inherent periodicity of the Fourier transforms after Definition 2.3.2). Al-
though such boundary conditions are rarely physically justified, they do not prevent us from solving real-world
problems either. For example, if we want to allow actual outflow, we can enlarge the domain slightly and
artificially increase κ in this area such that all the radiation is absorbed before re-entering Ω. Similarly, we
can impose inflow boundary conditions by using appropriate forcing terms (combined with the absorption
trick above), again in an enlarged domain, see subsection 5.3.

Due to the simple representation (and computability) of the operator A in Fourier space, we want to
apply the operator in this form during the iteration.

Definition 4.1.1 (Fourier space RTE operator). Let Lx, Ly ∈ N, ~s ∈ S1, κ : [0, Lx) × [0, Ly) → R and

f̂ : Z2 → C. Then, Â[f̂ ] : Z2 → C is a function given by

Â[f̂ ](x̂, ŷ) := 2πi~s ·~ξf̂(x̂, ŷ) + F
[
κF−1[f̂ ]

]
(x̂, ŷ),

where ~ξ =
(

x̂
Lx
, ŷ
Ly

)⊤
and the symbol Â is called the Fourier space RTE operator.

To still be able to exploit the advantageous properties of the ridgelets, this makes it necessary to first
transform from ridgelet coefficients to Fourier space, then apply Â and then transform back to ridgelet
coefficients.

Definition 4.1.2 (Ridgelet coefficient space RTE operator). Let f̃ : Ω̃ → C. Then, Ã[f̃ ](λ, t) : Ω̃ → C is a
function given by

Ã[f̃ ](λ, t) := R̂
[
Â
[
R̂−1[f̃ ]

]]
(λ, t)

and the symbol Ã is called the ridgelet coefficient space RTE operator.

It can easily be verified that

s · ∇u+ κu = f ⇐⇒ Â[F [u]] = F [f ] ⇐⇒ Ã
[
R̂[F [u]]

]
= R̂[F [f ]] (4.2)

Since both F and R̂ have left inverses, we can thus solve (4.1) by solving

Ã[ũ] = R̂[F [f ]], u = F−1
[
R̂−1[ũ]

]
(4.3)

In this abstract formulation, problem (4.2) reads

B[u] = g (4.4)

where u and g are taken from some vector space V and B : V → V is a linear operator. For many
iterative methods to work (including the CG method we want to use), B has to be self-adjoint and positive

23



(semi-)definite in the chosen norm, i.e. 〈f,B[g]〉 = 〈B[f ], g〉 and 〈f,B[f ]〉 ≥ 0 have to hold. If B does not yet
satisfy these conditions, the standard approach is to solve the normal equations

B∗B[u] = B∗[g]

instead of (4.4), where B∗ denotes the adjoint of B. Because A and Â don’t satisfy the “self-adjoint and
positive semidefinite” criterion, we will have to use the normal equations as well.

Of course, also this problem cannot yet be solved numerically, as it involves infinitely many equations
in infinitely many unknowns. But with the finite transforms developed in Sections 2 and 3, the following
discretisation comes naturally.

Definition 4.1.3 (Finite Fourier space RTE operator). Let Lx, Ly ∈ N, s ∈ S1, Nx, Ny ∈ N,

Ωfin =

[
0 :

Lx

Nx

: Lx

)
×

[
0 :

Ly

Ny

: Ly

)

Ω̂fin =

[
−
Nx

2
:
Nx

2

]
×

[
−
Ny − 1

2
:
Ny

2

]

κ : Ωfin → R and f̂ : Ω̂fin → C. Then, Âfin[f̂ ] : Ω̂fin → C is a function given by

Âfin[f̂ ](x̂, ŷ) := 2πi~s ·~ξf̂(x̂, ŷ) + ft
[
κ ift[f̂ ]

]
(x̂, ŷ)

and the symbol Âfin is called the finite Fourier space RTE operator.

To formulate the normal equations, we determine the adjoint, which is easily calculated,

Â∗
fin[f̂ ](x̂, ŷ) = −2πi~s ·~ξf̂(x̂, ŷ) + ft

[
κ̄ ift[f̂ ]

]
(x̂, ŷ).

With these new operators, the normal equation to (4.3) becomes

B̃fin := rt
[
Â∗

finÂfin

[
irt[ũ]

]]
= rt

[
Â∗

fin

[
ft[f ]

]]
, u = ift[irt[ũ]], (4.5)

where here u and f mean the u and f from (4.1) sampled on the grid defined by the (i)ft. While it is
clear that this equation corresponds to a linear system of equations, formulating this system explicitly can
nevertheless be tedious. Luckily, though, it is neither necessary nor advisable. Rather, we can use iterative
methods like the conjugate gradient (CG) iterations which have the benefit that they are able to deal with
vectors in an abstract sense, i.e. vectors which only satisfy the vector axioms but are not necessarily taken
from R

n, and abstract linear operators acting on such vectors.
It is easy to see, however, that the directional derivative term in Âfin leads to very ill conditioned

operators. Therefore one needs to apply a preconditioner – which was constructed in [Gro12] – such that
the final equation reads

D̃finB̃finD̃finũp = D̃fin

[
rt
[
Â∗

fin

[
ft[f ]

]]]
, u = ift

[
irt
[
D̃finũp

]]
, (4.6)

where the subscript p is intended to distinguish the solutions to the preconditioned problem from the solutions
to (4.5). The preconditioner is defined as

D̃fin[f̃ ](λ, t) :=
f̃(λ, t)

1 + 2j |~sλ ·~s|

where ~s is the transport direction in the RTE and

~sλ =





(0, 0)⊤ if κ = s

(1, k
2j−1 )

⊤ if κ = x, d

( k
2j−1 , 1)

⊤ if κ = y

is the direction of the ridgelet ψ̂λ in Fourier space. It was shown in [Gro12] that this definition of the

preconditioner D̃fin leads to a bounded condition of the Galerkin matrix.

24



4.2 Convergence Of Basic RTE Solver

The following discussion of the convergence only deals with the case of constant κ > 0 – mainly in the
interest of saving space, since the added technical difficulties of non-constant κ are not very illuminating.
Furthermore, a much more general convergence theory for Ridgelet solvers is forthcoming in [GO14].

We begin with some anisotropic Sobolev spaces, and a lemma about estimating a quantity that will occur
later in these norms.

Definition 4.2.1. Let ~s ∈ S2, then we define the anisotropic Sobolev space

Hk+~s(Ω) :=
{
f ∈ L2(Ω)

∣∣ (~s · ∇)f ∈ Hk(Ω)
}
.

It is equipped with the norm

‖f‖
2
Hk+~s(Ω) := ‖f‖

2
Hk(Ω) + ‖(~s · ∇)f‖

2
Hk(Ω).

We set H~s := H0+~s. These spaces are more easily characterised on the Fourier side,

Hk+~s(Ω̂) :=
{
f̂ ∈ L2(Ω̂)

∣∣∣
〈
~s ·~ξ

〉〈
~ξ
〉k
f̂(x̂, ŷ) ∈ L2(Ω̂)

}

with norm

∥∥f̂
∥∥
Hk+~s(Ω̂)

:=
∥∥〈~s ·~ξ

〉〈
~ξ
〉k
f̂
∥∥
L2(Ω̂)

.

The finite dimensional spaces Hk+~s(Ω̂fin) and their norm are defined accordingly.

Lemma 4.2.2. For f ∈ Hk, the solution u of A∗Au = f is in Hk+~s and we have that
∥∥û
∣∣
Ω̂\[−N

2 :N2 )2

∥∥
H~s(Ω̂)

≤ O
(
N−k

)
.

Proof. The added regularity can be shown by a variation of constants and a bootstrapping argument, how-
ever, for the case of constant κ it is trivial as we can explicitly calculate the solution

û =
f̂

2πi~s ·~ξ + κ

in Fourier space, and the weight corresponding to the differentiation ~s · ∇ is balanced by the denominator,

(1 + (~s ·~ξ)2)
1
2

κ+ 2πi~s ·~ξ
. 1,

since 0 < κ <∞.
Therefore, we can estimate

∥∥û
∣∣
Ω̂\[−N

2 :N2 )2

∥∥
H~s(Ω̂)

.
∥∥〈~ξ
〉−k

︸ ︷︷ ︸
=O(N−k) on Ω̂\[−N

2 :N2 )2

∈L2(Ω̂)︷ ︸︸ ︷〈
~s ·~ξ

〉〈
~ξ
〉k
û
∣∣
Ω̂\[−N

2 :N2 )2

∥∥
L2(Ω̂)

= O(N−k).

Theorem 4.2.3. Let f ∈ Hk and u be the solution to

A∗Au = A∗f. (4.7)

Furthermore, let N = 2J , where J is the highest scale in the selected subframe for the ridgelet solver. Then
the output ûj of running the solver for the subframe up to scale j ≤ J , satisfies the error

∥∥u−F−1ZN ûj
∥∥
H~s(Ω)

≤ errN + errF + errj ,

25



where errN = O(N−k) and errj = O(2−jk).
The error errF =:

∥∥ft[f ] − F(f)
∣∣
Ω̂fin

∥∥
L2(Ω̂fin)

stems from the discretisation of the Continuous Fourier

Transform, resp. the FFT-algorithm – numerical evidence suggests that errF = O(N−k) as well (compare
Table 5.2) – however, we have no proof for this and didn’t find a suitable reference which deals with Sobolev
spaces (as opposed to classical derivatives or simply L2-functions).

Proof. We define the sesquilinear form

a(u, v) :=
〈
Au,Av

〉
L2(Ω)

=
〈
Âû, Âv̂

〉
L2(Ω̂)

=: â(û, v̂)

and the linear functional
ℓ(v) :=

〈
A∗f, v

〉
L2(Ω)

=
〈
Â∗f̂ , v̂

〉
L2(Ω̂)

=: ℓ̂(v̂).

Both are continuous, and also a is coercive due to κ > 0. Then, u from (4.7) is also the unique solution of

u ∈ H~s(Ω): a(u, v) = ℓ(v) ∀v ∈ H~s(Ω).

By introducing V̂N :=
{
f̂ : [−N

2 : N
2 )

2 → C
}
and VN = F−1ZN V̂N , we are abusing notation somewhat

(since the spaces don’t actually correspond to each other via the Fourier transform), but this allows the

following to be presented more concisely. Note that VN ⊂ H~s(Ω) and that V̂N is built over a finite domain.
Let

uN ∈ VN : a(uN , vN ) = ℓ(vN ) ∀vN ∈ VN . (4.8)

The norm ‖·‖a induced by the inner product a(·, ·), is equivalent to ‖·‖H~s(Ω), and Céa’s Lemma yields

‖u− uN‖H~s(Ω) . ‖u− uN‖a ≤ inf
vN∈VN

‖u− vN‖a . inf
vN∈VN

‖u− vN‖H~s(Ω).

Considering this difference on the Fourier side, we can obviously choose v̂N = F(u)
∣∣
[−N :N ]2

and thus the

error can be estimated by Lemma 4.2.2,

errN := ‖u− uN‖H~s(Ω) ≤ ‖u− vN‖H~s(Ω) = ‖û− v̂N‖
H~s(Ω̂) =

∥∥û
∣∣
Ω̂\[−N

2 :N2 )2

∥∥
H~s(Ω̂)

≤ O
(
N−k

)
.

Next, consider the operator Âfin, which is equal to the restriction of Â to [−N
2 : N

2 )
2, since κ is constant.

The solution of (4.8), uN , is thus also a solution to

ûN : Â∗
N ÂN ûN = (−2πi~s ·~ξ + κ)(2πi~s ·~ξ + κ)ûN = Â∗

N f̂N = (−2πi~s ·~ξ + κ)F(f)
∣∣
[−N

2 :N2 )2
.

We want to compare this to the solution ufin of

ûfin : Â
∗
N ÂN ûfin = Â∗

N f̂fin = (−2πi~s ·~ξ + κ)ft(f).

Due to κ being constant, we can just calculate the solution by dividing by 2πis ·~ξ + κ, thus

∥∥ûN − ûfin
∥∥
H~s(Ω̂fin)

=
∥∥∥ (1 + (~s ·~ξ)2)

1
2

κ+ 2πi~s ·~ξ︸ ︷︷ ︸
.1

(
f̂N (~ξ)− f̂fin(~ξ)

)∥∥∥
L2(Ω̂fin)

.
∥∥f̂N (~ξ)− f̂fin(~ξ)

∥∥
L2(Ω̂fin)

=: errF ,

which is the L2(Ω̂fin)-error of the discretisation of the continuous Fourier transform (up to a constant).
As the final step we consider the error made by discretising with ridgelets up to a certain scale. Let

N = 2J , j ≤ J ,
V̂j := span

{
ψ̂λ

∣∣λ ∈ Λj

}
⊂ V̂N ,

26



as well as
âN (ûN , v̂N ) =

〈
ÂN ûN , ÂN v̂N

〉
and ℓ̂fin =

〈
ÂN f̂fin, v̂N

〉

The sesquilinear form âN is again continuous and coercive, and we see that ûfin is the solution to

ûfin : âN (ûfin, v̂N ) = ℓ̂fin(v̂N ) ∀vN ∈ V̂N .

Now we restrict once more to a subspace in the search for a solution, namely

ûj : aN (ûj , v̂j) = ℓ̂fin(v̂j) ∀vj ∈ V̂j .

Then, Céa’s Lemma yields once more that (bearing in mind that the induced norm ‖·‖âN
is again equivalent

to the discrete analogue of the Sobolev norm ‖·‖
H~s(Ω̂fin)

)

‖ûfin − ûj‖H~s(Ω̂fin)
. ‖ûfin − ûj‖âN

≤ inf
v̂j∈V̂j

‖ûfin − v̂j‖âN
. inf

v̂j∈V̂j

‖ûfin − v̂j‖H~s(Ω̂fin)
.

Since we have no precise control of the behaviour of ûfin, we insert another ûN and, by the triangle inequality,
this results in

‖ûfin − ûj‖H~s(Ω̂fin)
≤
∥∥ûfin − ûN

∥∥
H~s(Ω̂fin)︸ ︷︷ ︸

.errF

+ inf
v̂j∈V̂j

‖ûN − ûj‖H~s(Ω̂fin)
.

Since we can choose v̂j = irt[(rt[ûN ])
∣∣
Λj
] in the infimum, Lemma 3.3.6 and Lemma 4.2.2 (up to scale j)

imply
inf

v̂j∈V̂j

‖ûN − ûj‖H~s(Ω̂fin)
≤
∥∥ûN

∣∣
Ω̂fin\Ω̂uni(j)

∥∥
︸ ︷︷ ︸

=:errj

= O
(
2−jk

)
.

Putting everything together, we see that

∥∥u−F−1ZN ûj
∥∥
H~s(Ω)

≤ ‖u− uN‖H~s(Ω) +
∥∥uN −F−1ZN ûfin

∥∥
H~s(Ω)

+
∥∥F−1ZN ûfin −F−1ZN ûj

∥∥
H~s(Ω)

= ‖u− uN‖H~s(Ω) + ‖ûN − ûfin‖H~s(Ω̂fin)
+ ‖ûfin − ûj‖H~s(Ω̂fin)

. errN + errF + errj ,

with error behaviour (for errN and errj) as claimed.

4.3 Discrete Ordinates Method

As a next step, we consider the same equation

~s · ∇u+ κu = f (4.9)

but this time we let ~s ∈ S1 also be an independent variable such that u, κ, f : Ω × S1 → R. The discrete
ordinates method (DOM) as outlined in [GS11, Section 2] solves this problem in the following way:

• Choose some directions {~si}
Ns

i=1 ⊂ S1, Ns ∈ N.

• Solve (4.9) for these fixed directions, which gives you the one-directional solutions u′i(x, y).

• Interpolate the (~si, u
′
i) to get a solution for the full domain Ω× S1.

In this report, we will use equispaced directions si := 2π i−1
N

and linear interpolation for simplicity. Step
two is done with the ridgelet based solver developed in the previous section.

27



Introducing the equispaced periodic linear interpolation operator

N

IS
i=1

[fi](x, y,~s) :=





fℓ+1(x, y) if ℓ := Nϕ(~s)
2π ∈ Z

(⌈ℓ⌉ − ℓ)f⌊ℓ⌋+1(x, y) + . . .

(ℓ− ⌊ℓ⌋)f(⌈ℓ⌉ mod N)+1(x, y)
otherwise

(ϕ(~s) denotes the angle between ~s ∈ S1 and the positive x-axis in the usual mathematical convention), we
can write the solution u′ produced by the DOM as

u′(x, y,~s) =
Ns

IS
i=1

[u′i](x, y,~s)

If we further let u : Ω × S1 be the exact solution and δui(x, y) := u(x, y,~si) − u′i(x, y) the error in the
approximate solutions u′i, we get for the total error

‖u− u′‖L2(Ω×S1) =
∥∥∥u−

Ns

IS
i=1

[ui + δui]
∥∥∥
L2(Ω×S1)

≤
∥∥∥u−

Ns

IS
i=1

[ui]
∥∥∥
L2(Ω×S1)

+
∥∥∥
Ns

IS
i=1

[δui]
∥∥∥
L2(Ω×S1)

The first term describes a pure interpolation error, which for linear interpolation is known to be O
(
N−2

s

)
if

u(x, y, ·) ∈ C2. The second term is the error due to the basic RTE solver, which in the previous section was
shown to be O

(
2−J(k−1)

)
. In conclusion, we thus have

‖u− u′‖L2(Ω×S1) = O
(
N−2

s

)
+O

(
2−J(k−1)

)

As we can see, we have to choose Ns ∼ bJ with b = 2−
1
2 (k−1) in order for the angular and spatial errors

to be balanced. The outlined discrete ordinates method scales thus as O
(
Ns 2

Jx+Jy
)
= O

(
(4b)J

)
, which can

quickly become prohibitively expensive.

4.4 Sparse Discrete Ordinates Method

In order to mitigate the scaling problem of the (full) discrete ordinates method, the sparse discrete ordinates
method (SDOM) was developed in [GS11, Section 4]. Adapted to the situation here, the SDOM reads the
following: Given a finite ridgelet frame with Jx = Jy =: J and a constant b ∈ N≥2, let j = 1, ..., J and i =

1, ..., bJ−j+1. Then, for each pair (j, i), we solve the RTE in direction ~sj,i :=
(
cos
(
2π i−1

bJ−j+1

)
, sin

(
2π i−1

bJ−j+1

))⊤
using the ridgelet RTE solver developed in subsection 4.1 with a subframe of the original frame where J = j.
These partial solutions are stored in u′j,i(x, y) and eventually the full solution u′(x, y, s) is computed as

u′(x, y,~s) =
bJ

IS
i=1

[
u′1,i
]
(x, y,~s) +

J∑

j=2

(
bJ−j+1

IS
i=1

[
u′j,i
]
(x, y,~s)−

bJ−j+1

IS
i=1

[
u′j−1, b (i−1)+1

]
(x, y,~s)

)

A graphical representation of the SDOM is given in Figure 4.1.
In [GS11, Lemma 4.3], Grella and Schwab show that in their setting the convergence of the SDOM

deteriorates only by a logarithmic factor compared to the full DOM with physical and angular resolutions
equal to the highest resolutions used in the SDOM. The same proof works in our case as well, but since
the basic RTE solver is not a mere projection of the true solution to some subspace, our notation will be
somewhat different.

Let u : Ω×S1 be the exact solution and δuj,i(x, y) := u(x, y,~si)−u
′
j,i(x, y). Furthermore, let δuj(x, y,~s) :=

u(x, y, s) − u′j(x, y,~s) where u
′
j is the solution obtained with the basic RTE solver in any direction ~s ∈ S1.

28



Figure 4.1: Illustration of the SDOM for J = 3 and b = 4. In the upper row, the lengths of the arrows
represent the number of scales that were used whereas their number and directions indicate how many
and which directions are used for angular interpolation. The bottom row shows in which detail spaces the
functions obtained in this way live (the J-arrow denotes increasing frame size, the S-arrow denotes increasing
number of angular interpolation points).

We can then write

‖u− u′‖L2(Ω×S1) =

∥∥∥∥u−
bJ

IS
i=1

[u(~s1,i) + δu1,i]− . . .

. . .−

J∑

j=2

(
bJ−j+1

IS
i=1

[u(~sj,i) + δuj,i]−
bJ−j+1

IS
i=1

[
u(~sj−1,b (i−1)+1) + δuj−1, b (i−1)+1

])∥∥∥∥
L2(Ω×S1)

where u(~s) is a shorthand notation for u(·, ·,~s). Since ~sj,i = ~sj,b (i−1)+1, the u in the sum cancel, and the
remaining terms can be rearranged to

‖u− u′‖L2(Ω×S1) ≤ . . .

≤

∥∥∥∥u−
bJ

IS
i=1

u(~s1,i)

∥∥∥∥
L2(Ω×S1)

+

J−1∑

j=1

∥∥∥∥
bJ−j+1

IS
i=1

δuj,i −
bJ−j

IS
i=1

δuj,b (i−1)+1

∥∥∥∥
L2(Ω×S1)

+

∥∥∥∥
b

IS
i=1

δuJ,i

∥∥∥∥
L2(Ω×S1)

≤

∥∥∥∥u−
bJ

IS
i=1

u(~s1,i)

∥∥∥∥
L2(Ω×S1)

+

J−1∑

j=1

∥∥∥∥δuj −
bJ−j+1

IS
i=1

δuj,i

∥∥∥∥
L2(Ω×S1)

+ . . .

. . .+

J−1∑

j=1

∥∥∥∥δuj −
bJ−j

IS
i=1

δuj,b (i−1)+1

∥∥∥∥
L2(Ω×S1)

+

∥∥∥∥
b

IS
i=1

δuJ,i

∥∥∥∥
L2(Ω×S1)

Inserting the known convergence rates for linear interpolation and the basic RTE solver, and estimating the

29



sums by their largest term, we get

‖u− u′‖L2(Ω×S1) = O
(
b−2J

)
+

J−1∑

j=1

O
(
b−2(J−j+1)

)
O
(
2−j(k−1)

)
+ . . .

. . .+

J−1∑

j=1

O
(
b−2(J−j)

)
O
(
2−j(k−1)

)
+O

(
2−J(k−1)

)

= O
(
J
(
b−2J + 2−J(k−1)

))

Note that for this estimate to work, we have to assume the solution u and the error functions δuj to be at
least C2 in ~s. Compared to the convergence estimate for the DOM which only required u ∈ C2(S1), we thus
have one additional smoothness assumption for the SDOM. Since we know only very little about the structure
of the error functions, it is not a priori clear whether they exhibit the required smoothness properties even
in the case when the solution u does. We will come back to this issue when discussing numerical findings in
subsection 5.4.

The following complexity estimate is nothing but a reformulation of [GS11, Lemma 3.1].

Theorem 4.4.1 (Complexity of SDOM). The SDOM has O
(
Jδb,4 max{b, 4}J

)
degrees of freedom.

Proof. Simply sum the numbers of degrees of freedom of the uj,i:

J∑

j=1

bJ−j+1 O(4j) = O

(
bJ+1

J∑

j=1

(
4

b

)j)

If we assume b 6= 4, we can continue with

O

(
bJ+1

J∑

j=1

(
4

b

)j)
= O

(
4J+1 − bJ+1

4− b

)
= O

(
max{b, 4}J

)

Otherwise, we get

O

(
bJ+1

J∑

j=1

(
4

b

)j)
= O

(
J 4J

)

Thus, if we assume the above convergence estimate to be correct, we see that the SDOM achieves a
speedup of

O(Jδb,4 max{b,4}J)
O(J(b−2J+2−J(k−1)))

O((4b)J )

O(b−2J+2−J(k−1))

= O

(
min{b, 4}J

J1+δb,4

)

as compared to the DOM.

4.5 Source Iterations

Finally, we are able to tackle the complete RTE including the scattering term:

~s · ∇u + κu = f +

∫

S1

σu d~s′

This problem can be solved using the source iteration method, which is:

30



• Set u′(0)(x, y,~s) = 0.

• For t = 1, ..., T , solve

~s · ∇u′(t) + κu′(t) = f +

∫

S1

σu′(t−1) d~s′

using e.g. the DOM or SDOM based on the basic ridgelet RTE solver.

Obviously, the idea of the source iterations is that the u(t) will converge to the true solution u for large
enough t. We are not aware of any mathematical results proving this convergence or giving some estimates
on the speed of convergence, but the numerical findings presented in subsection 5.5 will show that this
method works fairly well.

31



5 Numerical Experiments

Some parameters of the previously developed theory remain constant throughout this chapter. In order to
avoid repeating them over and over again, we introduce them here:

• The real space domain is the unit square Ω = [0, 1]2 (i.e. Lx = Ly = 1)

• Frames with highest scale J , as well as ρx = ρy = 1 and square finite Fourier spaces with Nx = Ny = N
are used.

• The transition function for the radial and spherical window functions (see (3.1), (3.2)), t : [0, 1] → [0, 1],
is given by

t(x) := 35x4 − 84x5 + 70x6 − 20x7

This choice is the same as the one made in [Häu12], which in turn took the polynomial v from [Mey01].

• Since three-dimensional functions are difficult to visualize, we will only look at the incident radiation

G[u](x, y) :=

∫

S1

u(x, y, s) ds

when solving the multi-directional RTE. Note that both the DOM and SDOM produce solutions which
are piecewise linear in s, therefore we can compute the above integral exactly for these functions.

5.1 Convergence Of CG

We know from [Gro12] that the operator can be preconditioned such that for the full continuous frame, the
condition remains bounded. We verify this numerically in Figure 5.1, and observe that the direction ~s affects
the speed of convergence substantially.

A possible explanation for this behaviour could be the clustering of eigenvalues: CG is known to converge
much faster if the eigenvalues of the coefficient matrix are clustered around some few points [AL86]. For
the Fourier case, this can be calculated explicitly, and it becomes apparent that if e.g. ~s = (1, 0)⊤, this
clustering occurs, because then all Fourier space points with same x̂ lead to the same eigenvalue. On the
other hand, if the least common multiple of the denominators of sx and sy is not small, a lot more eigenvalues
are scattered over the entire range – in practice the threshold (for the least common multiple) to achieve
better convergence than with general ~s is quite low.

32



0 20 40 60 80 100 120

10
−15

10
−10

10
−5

10
0

Number of cg steps / n

E
rr

or
 in

 H
s −

no
rm

 

 
Measured
Fitted ρj with ρ=0.34

(a) ϕ = 0

0 20 40 60 80 100 120

10
−15

10
−10

10
−5

10
0

Number of cg steps / n

E
rr

or
 in

 H
s −

no
rm

 

 
Measured
Fitted ρj with ρ=0.45

(b) ϕ = π

4

0 20 40 60 80 100 120

10
−15

10
−10

10
−5

10
0

Number of cg steps / n

E
rr

or
 in

 H
s −

no
rm

 

 
Measured
Fitted ρj with ρ=0.55

(c) ϕ = tan−1( 1
2
)

0 20 40 60 80 100 120

10
−15

10
−10

10
−5

10
0

Number of cg steps / n

E
rr

or
 in

 H
s −

no
rm

 

 
Measured
Fitted ρj with ρ=0.76

(d) ϕ = π

4
− 0.1

0 20 40 60 80 100 120

10
−15

10
−10

10
−5

10
0

Number of cg steps / n

E
rr

or
 in

 H
s −

no
rm

 

 
Measured
Fitted ρj with ρ=0.68

(e) ϕ = tan−1( 1
4
)

0 20 40 60 80 100 120

10
−15

10
−10

10
−5

10
0

Number of cg steps / n

E
rr

or
 in

 H
s −

no
rm

 

 
Measured
Fitted ρj with ρ=0.81

(f) ϕ = 0.1

Figure 5.1: Convergence of CG applied to the ridgelet space RTE (4.6) using J = 4, ~s = (cos(ϕ), sin(ϕ))⊤, κ =

1 and f(x, y) = e−100((x−0.5)2+(y−0.5)2). The error was measured in the H~s-norm, compare Definition 4.2.1.

33



5.2 Convergence Of Basic RTE Solver

We tested the convergence theory from subsection 4.2 in two ways. The first scheme follows Theorem 4.2.3:

• Fix κ and ~s to some constant value; in our case κ = 8 and ~s = (1, 12 )
⊤ (normed to S1)

• Take a right-hand side f with known smoothness Hk (taking r powers of an appropriately dilated sinc
in each coordinate in Fourier space gives order k = r − 1

2 − ε for any ε > 0)

• Compute explicit reference solution u in Fourier space for the chosen values of κ, s and u

• Estimate the convergence rate ρ such that the error of the ridgelet based RTE solver is approximately
O
(
ρj
)
for j = 1, ..., 6

In this way, we obtained the data presented in Table 5.1, which agree with the predicted ρ = 2−k with
good accuracy.

Power of sinc r 2 3 4 5 6
Sobolev order of f k 1.5 2.5 3.5 4.5 5.5

Base ρ 0.3675 0.1721 0.0849 0.0470 0.0225
Corresp. power of 2 log2(ρ) -1.4440 -2.5383 -3.5579 -4.4103 -5.4736

Table 5.1: Experimental convergence rates for FFRT-solver for right-hand side f of given Sobolev order

Where the first scheme doesn’t follow Theorem 4.2.3 is in the calculation of the error – since we don’t
have an explicit solution in physical space, the error is calculated in the Fourier domain. To underscore the
claim that errF does not dominate the overall error, we proceeded with another test (which only differs in
the following points from the first):

• Take solution u with known smoothness Hk

• Compute right-hand side f for the chosen values of κ, s and u

• Compute the error in physical space and estimate the convergence rate

Note that the loss of an order of convergence (i.e. ρ = 2−(k−1)) in Table 5.2 is expected, because in general,

the H~s(Ω̂)-norm of û restricted to Ω̂ \ [−N
2 : N

2 ) will only be O(N−(k−1)) since we cannot compensate the
weight of the anisotropic derivative as in Lemma 4.2.2, where u had one additional order of smoothness
along ~s. Of course, f is then only in Hk−1, therefore the resulting rates substantiate the above claim that
the power of N in the decay in errF corresponds to the Sobolev order of f .

Power of sinc r 2 3 4 5 6
Sobolev order of u k 1.5 2.5 3.5 4.5 5.5

Base ρ 0.6778 0.3552 0.1689 0.0926 0.0438
Corresp. power of 2 log2(ρ) -0.5611 -1.4931 -2.5659 -3.4327 -4.5144

Table 5.2: Experimental convergence rates for FFRT-solver for recovering solution u of given Sobolev order

Figure 5.2 gives further examples of convergence rates. In particular, Figure 5.2b shows that the magni-
tude of the jump in one of the derivatives influences the convergence rate as well: If we increase the jump in
κ, the kink in u at x = 0.4 becomes more pronounced and the convergence rates approaches ρ = 0.5. If the
kink in u is only small, however, the convergence rate can be significantly better.

34



0 1 2 3 4 5 6
10

−10

10
−5

10
0

10
5

J

E
rr

or

(a) ~s = (1, 0)⊤, κ = 8, f(x, y) = e−300 ((x−0.3)2+(y−0.5)2)

0 1 2 3 4 5 6
10

−2

10
−1

10
0

J

E
rr

or

 

 
Measured

0.59J

(b) ~s = (1, 0)⊤, κ =

{

4 x ≤ 0.4

10 otherwise
, f(x, y) = e−300 (x−0.3)2−50 (y−0.5)2

Figure 5.2: (Continued on next page)

35



0 1 2 3 4 5 6

10
−0.8

10
−0.6

10
−0.4

10
−0.2

J
E

rr
or

 

 
Measured

0.73J

(c) ~s = 1√
2
(1, 1)⊤, κ = 8, f(x, y) =

{

1 |x− 0.3| < 0.1 ∧ |y − 0.3| < 0.1

0 otherwise

0 1 2 3 4 5 6

10
−0.9

10
−0.7

10
−0.5

10
−0.3

10
−0.1

J

E
rr

or

 

 
Measured

0.72J

(d) ~s = (1, 0)⊤, κ = 8, f(x, y) =

{

1 |x− 0.3| < 0.1 ∧ |y − 0.5| < 0.1

0 otherwise

Figure 5.2: Convergence of the ridgelet based basic method as a function of the frame size J . The error
was computed as the difference in Fourier space norm to the “exact” solution obtained with J = 6, which
is shown in real space on the left. CG iterations were aborted once either the relative residual (measured in
ridgelet coefficient space) dropped below 10−8 or 100 iteration steps were executed.

36



5.3 General Dirichlet Boundary Conditions

Assuming that κ and f are constant in the transport direction s, it is easily checked that the solution of the
mono-directional RTE

~s · u+ κu = f

is given by

u(x, y) = C(x−, y−) e
−κ~s·(x,y)⊤ +

f

κ

where C(x−, y−) is a function of the values on the inflow boundary

Γin :=
{
(x, y)⊤ ∈ ∂Ω

∣∣~s · n
(
(x, y)⊤

)
< 0
}
,

where n
(
(x, y)⊤

)
is the outward-facing normal vector, and x− and y− are the projections along ~s to Γin.

This result can be used to generalize the basic RTE solvers from subsection 4.1 – which require periodic
boundaries – to arbitrary inflow boundary conditions.

The main problem is that, by construction, the domain is periodic and anything leaving Ω re-enters at
the opposite point on Γin. One work-around to eliminate this, is to enlarge the domain slightly by adding
Ωaux := [−β, 1]2 \Ω, and setting the absorption coefficient high enough there, such that (practically) nothing
leaves Ωaux, compare Figure 5.3.

For constant κ, the reduction is at least e−κauxβ. Smoother choices of κ work similarly, but without
limiting convergence due to a lack of smoothness.

Similarly to forcing the outflow to zero by enlarging the domain and tweaking κ, we can impose inflow
boundary conditions

u(x, y) = uin(x, y) on Γin.

by enlarging the domain before (in the direction of the transport s) Γin, and setting an auxiliary forcing
term f there. This is illustrated in Figure 5.4, where κaux is again set high enough to prevent periodic
contributions (the forcing term has to scale with κaux).

Note that in principle, it doesn’t matter if the auxiliary domain enlargement is before or after Ω – in
particular for eliminating the periodic pollution. However, the inflow boundary condition is easier to impose
if the enlarged domain is before Γin.

5.4 Convergence Of SDOM Compared To DOM

When deriving the DOM and SDOM, we showed that their convergence estimates differ only in a logarithmic
factor. This theoretical result was put to the test for smooth functions in Figure 5.5 – Figures 5.5a and 5.5b
show that the results hold true approximately.

5.5 Source Iterations

Figure 5.6 shows the solutions of the complete RTE and the convergence of the source iterations for two
different values of σ. We observe exponential convergence in both cases, but the rate of convergence deteri-
orates with increasing σ. Since the source iterations are a fixed-point iteration and σ is proportional to the
change in the right hand sides between consecutive source iteration steps, both findings were to be expected.

37



(a) Periodic boundaries on [0, 1]2 (b) Permitting outflow

Figure 5.3: By extending Ω = [0, 1]2 slightly and increasing κ in the enlarged region, we can fully absorb the
otherwise periodised outflow. In both plots,

f(x, y) = e−300 ((x−0.2)2+(y−0.4)2)

For (a), κ(x, y) = 1, whereas for (b), we add Ωaux = [−0.2, 1]2 \ Ω and set

κ(x, y) =

{
1 (x, y) ∈ Ω,

30 (x, y) ∈ Ωaux.

38



(a) Inflow boundary condition on [0, 1]2 (b) Plot of the f used in (a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Boundary

V
al

ue

 

 
Effective
Desired

(c) Comparison between the effective boundary conditions and the desired ones. In the above plot, the negative half
axis shows the cross section along the line from (0, 1) to (0, 0), and the positive half axis from (0, 0) to (1, 0). The

blue line shows the effective value of u, the dashed line the boundary conditions we wanted to impose.

Figure 5.4: Imposing nonhomogeneous boundary conditions by choosing suitable values for κ and f near the
boundaries. Here, f is extending the boundary values of Γin along ~s into Ωaux, which is shown
in (b). For ease of imposing the inflow boundary condition, Ωaux = [−0.2, 1]2 \Ω is added before
Γin, and the absorption is set to

κ(x, y) =

{
1 (x, y) ∈ Ω,

30 (x, y) ∈ Ωaux.

39



0 1 2 3 4 5
10

−6

10
−4

10
−2

10
0

10
2

J

E
rr

or

 

 
Measured

0.052J

(a) DOM

2 3 4 5 6
10

−6

10
−4

10
−2

10
0

10
2

J

E
rr

or

 

 
Measured

0.076J

(b) SDOM

(c) DOM (d) DOM - SDOM

Figure 5.5: Convergence of DOM and SDOM. In all plots, κ = 4 and the source term is

f(x, y, ϕ) = e−300 ((x−0.5)2+(y−0.5)2) e−2min{ϕ,2π−ϕ},

while the parameters are Ns = 4J for the DOM and b = 4 for the SDOM. The error was
measured as ‖G[u](x, y)−G[ũ](x, y)‖Ω where the reference solution u was obtained by the DOM
with J = 6 – which allows us to calculate the SDOM convergence one scale further than the DOM.
CG iterations were aborted once either the relative residual (measured in ridgelet coefficients)
dropped below 10−8 or 100 iteration steps were executed.
In (c), we plot the incident radiation G[u] with the DOM using J = 6 and Ns = 46. (d) shows
the difference between the DOM solution showed in (c) and the SDOM solution obtained with
J = 6 and b = 4.

40



(a) Solution without scattering

(b) The parameters of the problem

Figure 5.6: (Continued on next page)

41



(c) Solution with σ = 0.2 after 10 source iteration steps

(d) Solution with σ = 0.5 after 40 source iteration steps

Figure 5.6: (Continued on next page)

42



(e) Convergence for σ = 0.2 (f) Convergence for σ = 0.5

Figure 5.6: Scattering of radiation around an obstacle. Subfigures (a), (c) and (d) show the incident radiation
for three different value of the scattering coefficient σ. In (b), the f and κ are illustrated: The
red line on the left shows the shape of the source term

f(x, y, ϕ) = e−500 (x−0.15)2−10min{ϕ,2π−ϕ}2

for some constant ϕ. The light blue area in the middle represents the obstacle which corresponds
to the second term in

κ(x, y) = 2 + 18 e−2000 (x−0.4)4−1000 (y−0.5)4 + 98 e−900 (x−0.9)2

The last term in κ, shown in dark blue in (b), was introduced in order to avoid that radiation
flows across the y-boundary (Compare also with Figure 5.3). Subfigures (e) and (f) show the
convergence of the source iterations in the L2-norm for the two nonzero values of σ. The error
was measured as the difference to the solution after 10 and 40 source iteration steps for (e) and
(f), respectively. We used the SDOM with J = 5 and b = 4 to solve the RTE for each source
iteration step. CG iterations were aborted once either the relative residual (measured in ridgelet
coefficients) dropped below 10−4 or 100 steps were executed.

43



References

[AL86] O. Axelsson and G Lindskog. On the rate of convergence of the preconditioned conjugate gradient
method. Numer. Math., 48(5):499–523, 1986.

[Can98] E. Candès. Ridgelets: Theory and applications. PhD thesis, Stanford University, 1998.

[CD05a] E. Candès and D.L. Donoho. Continuous curvelet transform: I. Resolution of the Wavefront Set.
Appl. Comput. Harmon. Anal., 19(2):198–222, 2005.

[CD05b] E. Candès and D.L. Donoho. Continuous curvelet transform: II. Discretization and frames. Appl.
Comput. Harmon. Anal., 19(2):198–222, 2005.

[CDDY06] E. Candès, L. Demanet, D.L. Donoho, and L. Ying. Fast discrete curvelet transforms. Mult.
Model. Simul., 5:861–899, 2006.

[DV03] M.N. Do and M. Vetterli. The finite ridgelet transform for image representation. Image Process-
ing, IEEE Transactions on, 12(1):16–28, 2003.

[DV05] M.N. Do and M. Vetterli. The contourlet transform: an efficient directional multiresolution image
representation. IEEE Trans. Image Proc., 14:2091–2106, 2005.

[ELL08] G. Easley, D. Labate, and W.-Q Lim. Sparse directional image representations using the discrete
shearlet transform. Appl. Comput. Harmon. Anal., 25(1):25–46, 2008.

[GK14] P. Grohs and G. Kutyniok. Parabolic molecules. Foundations of Computational Mathematics,
14(2):299–337, 2014.

[GO14] P. Grohs and A. Obermeier. Optimal adaptive ridgelet schemes for linear transport equations.
forthcoming, 2014.

[Gro12] P. Grohs. Ridgelet-type frame decompositions for Sobolev spaces related to linear transport. J.
Fourier Anal. Appl., 18(2):309–325, 2012.

[GS11] K. Grella and Ch. Schwab. Sparse discrete ordinates method in radiative transfer. Comput.
Methods Appl. Math., 11(3):305–326, 2011.

[Häu12] S. Häuser. Fast finite shearlet transform: A tutorial. University of Kaiserslautern, 2012.

[KL12] G. Kutyniok and D. Labate. Shearlets: Multiscale Analysis for Multivariate Data, chapter Intro-
duction to Shearlets, pages 1–38. Birkhäuser, 2012.

[KLLW05] G. Kutyniok, D. Labate, W.-Q Lim, and G. Weiss. Sparse multidimensional representation using
shearlets. Wavelets XI(San Diego, CA), SPIE Proc., 5914:254–262, 2005.

[Mey01] Y. Meyer. Oscillating patterns in image processing and nonlinear evolution equations, volume 22
of University Lecture Series. American Mathematical Society, Providence, RI, 2001. The fifteenth
Dean Jacqueline B. Lewis memorial lectures.

[Mod13] M.F. Modest. Radiative heat transfer. Academic press, 2013.

44



Recent Research Reports

Nr. Authors/Title

2014-01 M. Eigel and C.J. Gittelson and Ch. Schwab and E. Zander
A convergent adaptive stochastic Galerkin finite element method with quasi-optimal
spatial meshes

2014-02 R. Kaeppeli and S. Mishra
Structure preserving schemes

2014-03 K. Grella
Sparse tensor phase space Galerkin approximation for radiative transport

2014-04 A. Hiltebrand and S. Mishra
Efficient preconditioners for a shock capturing space-time discontinuous Galerkin
method for systems of conservation laws

2014-05 X. Claeys and R. Hiptmair and C. Jerez-Hanckes and S. Pintarelli
Novel Multi-Trace Boundary Integral Equations for Transmission Boundary Value
Problems

2014-06 X. Claeys and R. Hiptmair
Integral Equations for Acoustic Scattering by Partially Impenetrable Composite
Objects

2014-07 P. Grohs and S. Keiper and G. Kutyniok and M. Schaefer
Cartoon Approximation with $\alpha$�-Curvelets

2014-08 P. Grohs and M. Sprecher and T. Yu
Scattered Manifold-Valued Data Approximation

2014-09 P. Grohs and U. Wiesmann and Z. Kereta
A Shearlet-Based Fast Thresholded Landweber

Algorithm for Deconvolution


	Introduction
	Radiative Transport Equation
	Ridgelets
	Outline

	Preliminaries
	Discrete intervals
	Sobolev spaces
	Fourier Transform
	Finite Fourier Transform

	Ridgelets
	Construction
	Ridgelet Transform
	Finite Ridgelet Transform
	Implementation Overview
	Scalar Products

	Radiative Transport Equation
	Basic RTE Solver
	Convergence Of Basic RTE Solver
	Discrete Ordinates Method
	Sparse Discrete Ordinates Method
	Source Iterations

	Numerical Experiments
	Convergence Of CG
	Convergence Of Basic RTE Solver
	General Dirichlet Boundary Conditions
	Convergence Of SDOM Compared To DOM
	Source Iterations

	Bibliography

