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Abstract

Image deconvolution is an important problem which has seen plenty of progress
in the last decades. Due to its ill-posedness, a common approach is to formulate
the reconstruction as an optimisation problem, regularised by an additional sparsity-
enforcing term. This term is often modeled as an ℓ1 norm measured in the domain of
a suitable signal transform. The resulting optimisation problem can be solved by an
iterative approach via Landweber iterations with soft thresholding of the transform
coefficients. Previous approaches focused on thresholding in the wavelet-domain.
In particular, recent work [1] has shown that the use of Shannon wavelets results
in particularly efficient reconstruction algorithms. The present paper extends this
approach to Shannon shearlets, which we also introduce in this work. We show that
for anisotropic blurring filters, such as the motion blur, the novel shearlet-based
approach allows for further improvement in efficiency. In particular, we observe
that for such kernels using shearlets instead of wavelets improves the quality of
image restoration and SERG when compared after the same number of iterations.
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1 Introduction

This paper proposes a new shearlet-based algorithm for the image-deconvolution problem
of reconstructing a given signal xorig from measurements

y = Hxorig + b,

where H denotes the blurring operator, defined via a blurring kernel h, i.e. Hx = h ∗ x

(the symbol ’∗’ denoting convolution), and b represents measurement noise.
Several algorithms exist for this problem, we refer to [2] and the references therein for

an overview of the literature on this problem.
The focus of the present paper is on frame-based regularization methods that assume

the existence of a dictionary T in which the sought signal xorig possesses a sparse repre-
sentation. A common choice for such a dictionary are wavelets, which optimally compress
functions with pointlike singularities [2].

Adding this sparse representability as an additional constraint, in form of an ℓ1 norm of
the transform coefficients, allows us to regularize the original restoration problem. Thus,
we arrive at the optimization problem of estimating xorig by minimizing the functional

J(x) = ‖Hx − y‖2
2 + λ‖Tx‖1. (1)

Several algorithms for the numerical solution of optimization problems of this sort exist.
Among those algorithms we shall focus on iterative methods that are based on thresholded
Landweber iterations, as proposed in [3], which amount to a forward-backward splitting
scheme for J .

From a computational perspective the bottleneck of this class of algorithms is their
typically slow convergence speed, which enforces the computation of many iterations in
order to arrive at a reasonable restoration quality. More precisely, the convergence speed
of the thresholded Landweber algorithm is determined by the spectral radius of H, which
might be large.

In order to overcome this limitation the paper [1] has introduced a method that takes
Shannon wavelets as the underlying sparsifying dictionary T. The specific frequency
structure of Shannon wavelets allows the splitting of the original optimization problem
into separate problems, with each problem localized in a distinct frequency band. Fur-
thermore, it turns out that for reasonable blurring operators, i.e., those with a smooth
blurring kernel h, the convergence speed of the thresholded Landweber method can be
greatly increased in the high-frequency regime. This is due to the fact that a restric-
tion of H to some high frequency band typically has a much smaller spectral radius than
the full operator H. Consequently, the approach proposed in [1] allows for a dramatic
speedup in the reconstruction of xorig due to the fact that far fewer iterations are needed
in comparison with the usual thresholded Landweber method as described in [3]. The
resulting algorithm is called the Fast Thresholded Landweber (FTL) algorithm [1].

The purpose of this paper is to extend the method of [1] to the case of Shannon
shearlets which we shall introduce below in Section 3. Shearlets are a recent addition
to the arsenal of sparse transforms used in image processing. Compared to wavelets,
shearlets show a superior ability to resolve anisotropic structures such as edges, which
makes them a good choice for the sparsifying transform T. Furthermore, as we shall

2



see, the finer frequency resolution of the Shannon shearlet construction, as compared to
Shannon wavelets, allows for a further speedup of the FTL algorithm of [1], in terms of
the number of iterations needed for reaching a desired reconstruction quality. This is
especially true for anisotropic blur kernels such as the motion blur.

We present a brief outline of our work. We begin in Section 2 by describing the
general setup of this paper. Building on ideas of [1] we introduce the FTL algorithm for
general operators H, and Parseval frames T in which H assumes a block-diagonal form.
Compared with [1], we allow T to be an overcomplete dictionary, which requires some
care. In particular, we will not minimize the energy functional itself, as defined in (1),
but rather its synthesis-based version, as defined in (2). In Section 3 we will introduce
shearlets, first in the continuous setting and then in the discrete setting, focusing on
Shannon shearlets. Section 4 is devoted to experiments, which are aimed to give evidence
that the shearlet-based approach provides better image restoration quality than wavelet-
based approach. Table 1 and Figure 4 seem to give evidence that this indeed is the case
as shearlets outperform wavelets (measured through the signal-to-error ratio gain) in the
experiments we conducted.
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2 Problem Formulation and Algorithm Description

2.1 Preliminaries

The goal of image restoration is the recovery of an original image xorig from its corrupted
observation y. Images, that is, signals, in question are d-dimensional objects; given Ni

samples along dimension i the dimensionality of the variables is N = N1 ×N2 × · · · ×Nd.
The observations come with several limitations: we can only get a hold of finitely many
samples and furthermore, the observations are polluted by noise and/or blur. In the
following we shall assume that the standard image acquisition model holds, pertaining to
the equation

y = Hxorig + b,

where xorig, y,b ∈ R
N are vectors representing the original signal, measured signal and

the measurement error, respectively, and H ∈ R
N×N is the observation operator that

approximates blurring (or convolution). More specifically, H is taken to be a (block-)
circulant matrix.

Problems of this sort, recovery of xorig from y, are called image restoration problems,
or image deconvolution. Generally speaking, a perfectly accurate recovery of the original
signal xorig from the observation y is impossible, since the error b is unknown and H is
not necessarily invertible, at the very least it is ill-conditioned. In fact, recovery of xorig

from y is an ill-posed problem. To escape this unfortunate predicament the problem of
estimating xorig is formulated as an optimization problem, and it is carried out through
minimizing a cost functional. The optimization in question combines regularization of
the given variable and penalization of its deviation from predictions, stemming from prior
information about the signal.

In this paper we are concerned with signals that have a good representation with
respect to some regularization transform T ∈ C

M×N , M ≥ N , which is, in the discrete
case, a matrix whose rows form a Parseval frame, that is

T⊤T = IN .

A popular method of choice for the estimation of the original signal xorig is to define
the estimate x∗ as

x∗ = T⊤d∗,

with d∗ ∈ C
M being a minimiser of the functional

J(d) := Jdata(d) + λJreg(d), (2)

where
Jdata(d) := ‖HT⊤d − y‖2

2,

and
Jreg(d) := ‖d‖1.

The choice of 1-norm in the regularization term leads to a nonlinear deconvolution
algorithm. The rationale behind choosing 1-norm over the more standard 2-norm is that
the 1-norm promotes sparse vectors, i.e., we are looking for solutions which possess a
sparse representation in the transform domain induced by T.

The optimization strategy (2) is well-known under the name synthesis-based ℓ1-norm

minimization [4].
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2.2 Forward-Backward Splitting of J(d)

In the general case, we cannot minimize J(d) in a straightforward fashion because the
convolution operator H makes the coefficients interdependent. Therefore, unless we are in
a special case, we have to resort to other, bit more circuitous, methods of minimizing J(d).
Bound optimization algorithms, initially derived in [3], tackle this issue by minimizing a
sequence of easy-to-minimize functionals J̃n(d). Given d(n) these functionals satisfy the
following properties

1. If d = d(n) then J̃n(d) = J(d).

2. Otherwise, J̃n(d) ≥ J(d).

The minimiser d(n+1) is then defined as

d(n+1) = arg min J̃n(d).

The convergence criteria for this class of algorithms have been readily derived in [3].
Following [1] we discuss a specific choice of surrogate functionals J̃n(d). First we note

that, due to the fact that T⊤T = I, we can equivalently write

Jdata(d) := ‖H̃d − ỹ‖2
2

with
H̃ := THT⊤ ∈ C

M×M and ỹ := Ty ∈ C
M .

We can now define the surrogate functionals

J̃n(d) := α‖d(n) − d‖2
2 + J(d) − ‖H̃d(n) − H̃d‖2

2.

It follows that whenever
α > ρ(H̃⊤H̃)

holds, where ρ(H̃⊤H̃) is the spectral radius of H̃⊤H̃, the surrogate functionals J̃n(d) satisfy
conditions 1. and 2. from above, see [1]. In addition, we have the representation

J̃n(d) = α‖d(n) + α−1H̃⊤(ỹ − H̃d(n)) − d‖2
2 + λ‖d‖1 + c (3)

for a constant c ∈ R. The minimization of (3) can be computed explicitly using the
soft-thresholding function

Tν(x) =
x

|x| (|x|−ν)+ , (4)

where t+ = max(0, t). The minimiser of the functional (3) is then given by

d(n+1) := Tλτ/2

(

d(n) + α−1H̃⊤(d − H̃d(n))
)

,

where Tλτ/2(·) is the component-wise modification of (4).
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We thus arrive at Algorithm 1 for the iterative solution of J(d) as given in (2).

Algorithm 1: Thresholded Landweber Iteration d̂ε = TL
(

ε, α, H̃, ỹ
)

Data: Tolerance ε > 0, α > ρ(H̃⊤H̃), matrix H̃, right hand side ỹ

Result: Approximate minimiser d∗,ε of (2)
τ := α−1;
n := 0;
d(n) := 0;
while ‖d

(n) − d
(n−1)‖2 > ε do

d(n+1/2) := d(n) + τ H̃⊤(d − H̃d(n));
d(n+1) := Tλτ/2(d

(n+1/2));
n := n+ 1;

d∗,ε := d(n);

It is important to emphasize the fact that the convergence speed of Algorithm 1
crucially depends on the size τ of the timesteps: the larger the τ the fewer iterations are
needed. In particular, it is desirable to have a representation system which makes the
quantity ρ := ρ(H̃⊤H̃) as small as possible.

2.3 Block-Diagonal Operators

It has been demonstrated recently in [1] that it is possible to improve the performance
of Algorithm 1 by considering Shannon wavelets. We would like to further expand that
approach.

We shall assume that the transform T is built in such way that the matrix H̃ has a
block-diagonal structure. Denoting

[M ] := {1, . . . ,M}

we assume that there exists a disjoint partitioning

[M ] =
⋃

l∈L

Il

such that with
Vl :=

{

d ∈ C
M : di = 0 for all i ∈ [M ] \ Il

}

we have
H̃(Vl) ⊂ Vl.

It follows that H̃ induces mappings

H̃l : Vl → Vl,

hence, the minimization problem (2) can be recast as

d∗ :=
∑

l∈L

d∗,l,
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where d∗,l is the minimiser of the functional

Jl(d) := Jdata,l(d) + λJreg,l(d) : Vl → R, (5)

where
Jdata,l(d) := ‖H̃ld − ỹl‖2

2,

and
Jreg,l(d) := ‖d‖1

are both defined on Vl, while ỹl denotes the orthogonal projection of ỹ onto Vl. Therefore,
we can apply Algorithm 1 to subproblems (5), for all l ∈ L.

Herein lies the crucial difference from the standard approach [3]: the stepsizes can
be chosen independently for each subspace Vl. Analogously to previous considerations,
constants αl ought to satisfy

αl > ρl := ρ(H̃⊤
l H̃l) = max

‖d‖2=1,d∈Vl

‖H̃d‖2
2.

Therefore, each term in (5) can be minimized independently, with parameters depending
only on the governing subspace. Further elaboration regarding the details and conse-
quences of this approach can be found in [3, 1].

In order to estimate the quantities ρl we employ the following lemma.

Lemma 2.1. With Wl := T⊤Vl ⊂ C
N we have

ρl = ρ
(

(H|Wl
)⊤H|Wl

)

= max
‖d‖2=1,d∈Wl

‖Hd‖2
2.

Proof. By the definition of H̃ and the fact that T⊤T = IN we have

ρl = max
‖d‖2=1,d∈Vl

‖THT⊤d‖2
2= max

‖d‖2=1,d∈Vl

‖HT⊤d‖2
2

Solving each subproblem (5) separate, rather than solving the full problem (2), comes
with two advantages. Firstly, splitting a big problem into subproblems lends itself to
parallelisation in a trivial way. Secondly, in several cases we have the property that
for most l ∈ L the quantity ρl is significantly smaller than ρ := ρ(HT H). Hence, for
subproblems (5) the parameter αl can be chosen to be much smaller than for the full
problem, which results in bigger stepsizes and thus, in faster convergence.

We end up with the following algorithm.

Algorithm 2: Fast Thresholded Landweber Iteration d∗,ε = FTL
(

ε, α, H̃, ỹ
)

Data: Tolerances ε = (εl > 0)l∈L, α = (αl > ρl)l∈L, matrix H̃, right hand side ỹ

Result: Approximate minimiser d∗,ε of (2)
for l ∈ L do

d∗,ε,l := TL(εl, αl, H̃l, ỹl);
d∗,ε :=

∑

l∈L d∗,ε,l;
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2.4 Shannon Systems

In the remainder of this paper we will restrict our attention to blurring operators H which
are defined via a convolution with a blurring kernel, i.e., operators given by

Hx = h ∗ x = (ĥ · x̂)∨,

where the symbol x̂ denotes the discrete Fourier transform and (x̂)∨ = x. In the paper
[1] the Fast Landweber Iteration, as in Algorithm 2, has been introduced and studied for
T being a Shannon wavelet transform that naturally splits the operator H into different
frequency subbands. Furthermore, the authors showed in in [1] that this approach greatly
enhances the performance of the resulting deblurring algorithm due to the fact that large
stepsizes can be chosen for high frequency bands provided the kernel h is sufficiently
smooth.

For convolution operators H we describe a general class of representation systems
which we call Shannon systems. We assume that our signals are sampled on a d-
dimensional cube

Ω :=
d∏

i=1

[Ni]

with N = N1 ×N2 × · · · ×Nd.

Definition 2.1. We call T a Shannon system if there exists a disjoint partitioning Ω =
⋃

i∈L Ωi and a disjoint partitioning [M ] =
⋃

i∈L Il such that the discrete Fourier transform
of tj is supported in Ωl for all j ∈ Il, where tj denotes the j-th row of T.

It is easy to see that convolution operators H admits a block-diagonal structure in a
Shannon system.

Lemma 2.2. Let H be a blurring operator with kernel h and T a Shannon system. Then,

with respect to the associated partitioning [M ] =
⋃

i∈L Il, operator H possesses a block-

diagonal form. Moreover, we have

ρl ≤ sup
k∈Ωl

|ĥ(k)|

for all l ∈ L.

Proof. The proof follows from the fact that in the Fourier domain the blurring operator
becomes a multiplication by ĥ which implies

Ĥx(k) = ĥ(k)x̂(k), k ∈ Ω.

Clearly, the Fourier transform of tj is supported in Ωl for all indices j ∈ Il, i.e., we have
supp x̂ ⊂ Ωl for all x ∈ Wl. Hence, by Plancherel’s theorem, for x ∈ Wl we have

‖Hx‖2 = ‖ĥx̂‖2 ≤ sup
k∈Ωl

|ĥ(k)|‖x̂‖2 = sup
k∈Ωl

|ĥ(k)|‖x‖2.
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(a) Frequency support (b) Frequency support and
the FFT of a Gaussian
filter

(c) Frequency support and
the FFT of a motion fil-
ter

Figure 1: Shannon wavelets

A well-known example of a Shannon system are Shannon wavelets as described e.g. in
[1]. The partitioning of Ω is illustrated in Figure 1a. In [1] it is observed that for smooth
filters the quantities ρl associated to high frequencies become very small (see Figure
1c) which allows for a dramatic speedup in efficiency when using the FTL algorithm.
However, for anisotropic filters h, such as motion blurs, the partitioning induced by the
Shannon wavelet construction need not be optimal, see Figure 1c.

In the following sections we will extend this approach to what we call Shannon shear-

lets. The advantage of this approach lies in the fact that the finer frequency partitioning
associated with the shearlet transform allows for better choices of parameters αl in several
cases. Furthermore, it is well-known that shearlets are superior to wavelets in terms of
resolution of anisotropic phenomena such as edges.
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3 Shearlets

After having described the setup and adapted the FTL to more general transforms, our
next goal is to describe the shearlet transform that we are going to use to minimize the
cost function J(x). Shearlets are a part of fairly recent development in the multiscale
analysis family of transforms, along with curvelets, ridgelets, and others [5, 6] . They
provide optimally sparse representations of several classes of multivariate data exhibiting
anisotropic behavior. Shearlets are a family of analyzing functions that, as opposed to
wavelets, are defined not only with respect to scale and location parameters but take
directionality into account as well. These changes allow us to consider and gain access to
many notions beyond the reach of wavelets [7, 5, 8, 9].

An important trait distinguishing these families of transforms from one another is how
they handle directionality. Shearlets adhere to shearing, a geometrical transformation
that leaves all entries of a vector, except for one, unchanged. This remaining entry is
displaced with respect to another, predetermined, entry according to the value of a given
shearing parameter.

The crucial advantage of shearing is that it does not destroy the rectangular grid,
hence, it allows a unified treatment of the continuous and the discrete settings. An
interested reader is referred to a number of resources about this topic, e.g. [10].

3.1 Continuous Shearlets

Shearlets are an affine system, generated by a single mother shearlet and parametrized
through scaling, translation and shearing. Directionality of singularities is handled through

the aforementioned shearing, given by a shearing matrix Ss =

(

1 s

0 1

)

for a real valued

s. For ψ ∈ L2(R2) we define the analyzing function

ψa,s,b(x) = a−3/4ψ
(

Da−1S−1
s (x − b)

)

= a−3/4ψ

(

x1 − b1 − s(x2 − b2)
a

,
x2 − b2

a1/2

)

,

where Da = diag(a,
√
a) is the dilation matrix, a > 0 the dilation parameter and b ∈ R

2

denotes the location.
The continuous shearlet transform of a function f ∈ L2(R2) is then defined through

SH(f)(a, s,b) = 〈f, ψa,s,b〉 = 〈f̂ , ψ̂a,s,b〉

where (a, s,b) ∈ S = R
+ × R × R

2. Additional assumptions are needed to ensure that
continuous shearlet transform is an isometry. For example, ψ should posses M ≥ 1
vanishing moments in the x1 direction, by which we mean that ψ should satisfy

∫

R2

|ψ̂(ξ)|2
|ξ1|2M

dξ < ∞.

There is another issue that merits our attention. Continuous shearlets exhibit a certain
directional bias, in the sense that if a function has a singularity along the x1 axis then
this singularity can in the shearlet domain only be detected as the shearing parameter s
tends to infinity. It should not come as a surprise that behavior of this type can give rise
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y

x

Figure 2: Partioning of the (frequency) plane into a low-frequency box and four higher fre-
quency cones

to serious limitations when it comes to practical applications. Hence, it is an issue that
needs to be addressed. A standard way to work around this issue is to split the Fourier
domain into four high-frequency cones and one low-frequency square centred around the
origin, as in Figure 2. It can be seen that by doing things this way we keep the shearing
parameter in a finite set in each of the cones and that the corresponding shearlet system
does not exhibit a directional bias. Shearlet systems of this type are eponymously called
Cone-Adapted.

3.2 Discrete Shearlets

Discrete shearlet systems are defined by sampling continuous shearlets on a discrete subset
of S [10]. For these discretization we need to discretize all of the involved parameters.
This means choosing maximum number of scales jmax, maximum number kmax(j) of shears
on each given scale 0 ≤ j < jmax, scaling parameters aj > 0, shearing parameters sj,k, and
the grid scaling parameter γ. To avoid the consequences of shearlets’ directional bias we
will be using the cone-adapted shearlets which adds an additional parameter κ ∈ {1, 2}
indicating the appropriate cone. One of the underlying ideas is that piecing together
Parseval frames of each respective cone yields a Parseval frame for the whole space.

For the sampling of the frequency domain we take

Ω :=
{(

γ
m1

N1

, γ
m2

N1

)

∈ R
2

∣
∣
∣
∣ −N1

2
≤ m1,m2 <

N1

2
, m1,m2 ∈ Z

}

.

while the horizontal cone C1 and the vertical cone C2 are defined by

C1 := {ω | ω ∈ Ω \ {0}, |ω2| ≤ |ω1|} ,
C2 := {ω | ω ∈ Ω \ {0}, |ω2| > |ω1|} .

Before we consider cone adapted shearlets, we will define the untranslated discretized
shearlets ψj,k in the frequency domain

ψ̂j,k (ω) := ψ̂1 (ajω1) ψ̂2

(

a
−1/2
j

(
ω2

ω1

+ sj,k

))

. (6)
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The untranslated, cone-adapted, discretized shearlets ψj,k,κ can now be defined in the
frequency domain through

ψ̂j,k,κ (ω) :=







ψ̂j,k (ω1, ω2) , if κ = 1, |k| 6= kmax(j), ω 6= 0,

ψ̂j,k (ω2, ω1) , if κ = 2, |k| 6= kmax(j), ω 6= 0,

ψ̂j,k (ω1, ω2)χC1
(ω) + ψ̂j,k (ω2, ω1)χC2

(ω), if |k| = kmax(j), ω 6= 0,

0, if ω = 0.

for ω ∈ Ω, 0 ≤ j < jmax and −kmax(j) ≤ k ≤ kmax(j). Furthermore, we define

kmax(j, κ) :=







kmax(j), if κ = 1,

kmax(j) − 1, if κ = 2

and the set I

I := {(aj, sj,k, κ) | 0 ≤ j < jmax, −kmax(j, κ) ≤ k ≤ kmax(j, κ)} ∪ {(0, 0, 0)} .

The element (0, 0, 0) ∈ I refers to the scaling function φ = ψ0,0,0.
What is left is to define the shearlet transformation operator TS , which should leave

us squarely in the framework set out in the previous section. First, we define diagonal
matrices Ψi as

Ψi := diag
(

(ψ̂i (ω))ω∈Ω

)

∈ R
N×N .

The matrix Ψ is then defined through concatenation of matrices Ψi, that is

Ψ := (Ψi)i∈I ∈ R
M×N .

The discrete shearlet transform matrix TS can hence be written as

TS := F⊤
|I|ΨF.

where F|I| := diag(F, . . . ,F
︸ ︷︷ ︸

|I| times

).

A salient detail missing thus far is with regards to the very functions ψ1, ψ2 and φ

which are the building blocks of our shearlet system. Different shearlet discretizations
offer various choices for these functions. The following theorem states the conditions
functions ψ1, ψ2 and φ have to satisfy so that TS indeed forms a Parseval frame.

Theorem 3.1. Assume




jmax−1
∑

j=0

|ψ̂1 (ajωκ) |2


+ |φ(ω)|2 = 1 ∀ κ ∈ {1, 2}, ω ∈ Cκ (7)

for an appropriate choice of φ : Ω → R with φ(0) = 1 and also assume

kmax(j)
∑

k=−kmax(j)

∣
∣
∣
∣ψ̂2

(

a
−1/2
j

(
ω2

ω1

+ sj,k

))∣
∣
∣
∣

2

= 1 ∀ ω ∈ C1, 0 ≤ j < jmax. (8)

Then

T⊤
S TS = IN .
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(a) Frequency support (b) Frequency support and
the FFT of a Gaussian
filter

(c) Frequency support and
the FFT of a motion fil-
ter

Figure 3: Shannon shearlets

3.3 Discrete Shannon Shearlets

The shearlet system we are going to use in the FTL algorithm is what we will refer to
as the Shannon shearlet transform. The Shannon shearlets have disjoint supports in the
frequency domain and are generated by

ψ̂1(ω) = χ[−1,− 1

2
)∪( 1

2
,1](ω),

ψ̂2(ω) = χ[− 1

2
, 1

2
)(ω).

The corresponding discretization parameters are given by

jmax ≤ ⌊log2 N1⌋
kmax(j) = ⌈2

j

2 ⌉
aj = 2−j

sj,k = k2− j

2

γ = 2jmax−1.

It can be shown that for an appropriate choice of φ, concerned with low-frequency cases,
Shannon shearlet transform satisfies Parseval’s property. Furthermore, shearlets in such a
family have disjoint frequency supports. Therefore, the corresponding shearlet transform
can be decomposed on a per-shearlet basis, i.e., as

TS =
∑

i∈I

T
(i)
S , T

(i)
S := (0, 0, . . . ,FΨ⊤

i F⊤, . . . , 0)⊤ ∈ C
M×N .

Therefore, it fits perfectly into the FTL framework. The partitioning of Ω induced by
Shannon shearlets is shown in Figure 3. One can see that for anisotropic filters, such as
motion blurs, this partitioning is a better fit than Shannon wavelets, see Figure 3c.
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4 Experiments

What is important for implementations of the FTL algorithm is how do we choose the
stepsizes. In general, a stepsize is chosen as the maximum of the squared norm of fre-
quency components, within a certain region, of the filter that has been used.

In the case of Shannon shearlets the stepsizes are chosen on a per-shearlet basis, that
is, for each shearlet the region over which we choose its stepsize is the support of that
given shearlet. For purposes of comparison we also implemented the FTL algorithm for
undecimated Shannon wavelets. The algorithms work by performing the Landweber step
in the DFT basis and computing the regularisation transform used therein.

Since H is diagonalised in the DFT basis the transforms can be easily performed using
that basis. This is computationally more efficient than going back to the image space
during the iterations. Furthermore, instead of using the same regularisation parameter
λ for all coefficients during the soft thresholding step, the algorithms are extended to
accept regularisation parameters λj, corresponding to each scale. This is a straightforward
extension of the FTL algorithm that aims to improve algorithm’s performance by offering
more freedom in its treatment of different scales. The regularisation parameter for the
scaling coefficients of shearlet (wavelet) transforms is independent of other regularisation
parameters and is usually set to zero, which means that by default no soft thresholding
takes place for these coefficients.

The discrete shearlet transforms themselves work very similar to the theory we have
presented in Section 3.3. The matrix Ψ is far to large to work with in practice. Hence, it
is represented through its non-zero components and their indices, which are computed in
a preprocessing step. Since the standard FFT formulation assumes that high frequency
components of an image in the frequency domain are located at the center, the indices are
adjusted appropriately. Decomposition and reconstruction can then easily be achieved
by computing d∗ = F⊤

imax
ΨFx∗ and x∗ = F⊤Ψ⊤Fimax

d∗, with aforementioned reduced
representation of Ψ and the help of the FFT and the inverse FFT in place of F and F⊤.
Note that this requires as many full-sized FFTs as there are shearlets. Together with
large number of coefficients in the shearlet decomposition the soft thresholding operation
is applied to, this makes the FTL algorithm for Shannon shearlets significantly slower
than the FTL algorithm for Shannon wavelets. The number of shearlets is controlled
with the maximum number of scales jmax and with an additional parameter j0 ∈ N0, the
scale offset, which was not included in the presented theory. The purpose of j0 is to shift
the range of scales j used during the discretisation, that is, to go from 0 ≤ j < jmax to
j0 ≤ j < jmax + j0, with the effect that the number of shears at every scale is increased.

4.1 General Notes

The experiments which we undertook are synthetic experiments. This means that the
blurred and noisy images for the algorithm input were generated by convolving a reference
image with a predefined filter and applying white Gaussian noise with a given standard
deviation σ. In order to measure algorithm’s performance we used the signal-to-error

ratio gain to facilitate quantitative comparisons. For the estimate x∗, original signal xorig

and input signal y we define signal-to-error ratio gain as

SERG(x∗) := SER(x∗) − SER(y),
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where

SER(v) := 10 log10

(

‖xorig‖2

‖v − xorig‖2

)

, v ∈ C
N .

The SERG values listed in Table 1 are averages from 10 different algorithm outputs
obtained through inputs with different noise realizations. If the "convergence rate" of
one of the algorithms or regularisation methods is mentioned, it refers to the speed of
SERG improvement with respect to the number of iterations. A caveat associated with
using SERG, or similar measures of restoration quality, lies in the fact that it does not
necessarily correspond well to the perceived restoration quality.

Unless the standard deviation σ of the Gaussian noise is explicitly given, it will be
calculated by fixing the blurred signal-to-noise ratio, abbreviated as BSNR and a filter
with convolution matrix H. It is defined as follows:

BSNR = 10 log10

(

‖Hxorig‖−Nmean(Hxorig)2

Nσ2

)

The advantage of specifying the BSNR is that σ will be chosen according to the signal
strength of the blurred original image without noise, and thus the degradation of image
quality, caused by the noise, is similar across different filters and images, provided that
BSNR level remains unchanged. The filter we have used for the experiments is a motion
blur filter generated by the Matlab function fspecial with motion as the filter type, 12

as the motion length and 45 as the angle.
Although the complete program offers different choices for the initial estimate x(0),

we adhere to the Tikhonov estimate [11]

x(0) = (H̃⊤H̃ + βσ2IN)−1H̃⊤y

where we have used β = 10−3 in all experiments. Using the Tikhonov estimate helps
to reduce unwanted artifacts produced by the algorithm during preliminary testings.
Furthermore, the regularisation parameter was chosen uniformly for all scales in most
experiments.

4.2 Comparison Between Regularisation Methods for the FTL

Algorithm

The goal of the first and largest experiment we have conducted was to compare different
versions of the FTL algorithm against each other. Algorithms were applied to blurred
and noisy versions of the two standard test images "Lena" and "Cameraman". This was
done for three different BSNR levels. Both images measure 256 pixels in each direction.
The regularisation parameters were the same for every scale and chosen by hand to
approximately yield the highest SER gain after 300 iterations. The performance of the
algorithm was evaluated through the SERG after 10, 30 and 150 iterations.

The results regarding the motion filter are summarized in Table 1. Shannon shearlets
outperform Shannon wavelets for any of the numbers of iterations tested, except at BSNR
value of 30, where only the algorithm convergence is faster. A visual comparison for the
"Lena" image with the Shannon wavelet and shearlet algorithms can be found in Figure
4, where the parameters again have been adjusted to reduce artifacts. Note that the
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BSNR Method
SERG after n iterations

n = 10 n = 30 n = 150

C
am

er
am

an 30 sw 3.82 4.76 5.62
ds 5.27 5.61 5.78

40 sw 6.71 7.42 9.31
ds 8.70 9.32 9.77

50 sw 11.43 11.83 13.57
ds 12.68 13.73 14.60

L
en

a 30 sw 3.47 4.23 5.49
ds 5.04 5.35 5.48

40 sw 6.63 7.07 8.71
ds 8.33 8.94 9.34

50 sw 11.53 11.84 13.16
ds 12.37 13.06 14.03

Table 1: Comparison of regularisation methods for the motion filter.
sw: Shannon wavelets, ds: Shannon shearlets

noise of the estimates obtained with the Shannon wavelet regularisation can of course be
reduced through increasing λ, but only at the cost of making the estimate less sharp.
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Figure 4: Estimates after 10 and 30 iterations with Shannon wavelets (middle) and Shannon
shearlets (bottom).
Filter: motion, BSNR: 30
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5 Conclusion

We have introduced discrete Shannon shearlet systems and generalized the Shannon
wavelet-based Fast Thresholded Landweber deconvolution algorithm of [1] to Shannon
shearlets. Due to the finer frequency resolution of these shearlet systems our approach
achieves superior convergence rates for specific problems, such as motion deblurring, as
compared to the approach of [1].

The results of [1] have been generalized to arbitrary wavelet systems in the paper
[12]. In future work we aim to generalize the results of [12] to arbitrary (non-Shannon)
shearlet systems.
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