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Abstract

We consider the problem of approximating a smooth function f from an Euclidean domain to a
manifold M by scattered samples (f(ξi))i∈I , where the data sites (ξi)i∈I are assumed to be locally
close but can otherwise be far apart points scattered throughout the domain. We introduce a natural
approximant based on combining the moving least square method and the Karcher mean. We prove
that the proposed approximant inherits the accuracy order and the smoothness from its linear coun-
terpart. The analysis also tells us that the use of Karcher’s mean (dependent on a Riemannian metric
and the associated exponential map) is inessential and one can replace it by a more general notion
of ‘center of mass’ based on a general retraction on the manifold. Consequently, we can substitute
the Karcher mean by a more computationally efficient mean. We illustrate our work with numerical
results which confirm our theoretical findings.
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Keywords: Riemannian data, manifold-valued function, approximation, scattered data, model reduction

1 Introduction

Let f : Ω ⊂ R
d → M with M a Riemannian manifold be an unknown smooth function and we only know

its value at a set of distinct points (ξi)i∈I ⊂ Ω. We are concerned with finding an approximant to f .
Such an approximation problem for manifold-valued data arises in numerical geometric integration [16]
and more recently in fast online methods for dimensionality reduced-order models [4]. In a Stanford press
release associated with the aeronautical engineering publications [4, 2, 3], it is emphasized that being able
to accurately and efficiently interpolate on manifolds is a key to fast online prediction of aerodynamic
flutter, which, in turn, may help saving lives of pilots and passengers.

In the aforementioned references it was implicitly assumed that the data points (f(ξi))i∈I ∈ M are
close enough so that they can all be mapped to a single tangent space TpM by the inverse exponential
map log. In these previous works the base point p ∈ M is typically one of (f(ξi))i∈I and the choice can
be quite arbitrary. In this setting, the problem simply reduces to a linear approximation problem on the
tangent space TpM . To approximate the value f(x) ∈ M , use any standard linear method (polynomial,
spline, radial basis function etc.) to interpolate the values (log(p, (f(ξi)))i∈I ⊂ TpM at the abscissa
(ξi)i∈I , then evaluate the interpolant Q at the desired value x, and followed by applying the exponential
map to get the approximation f(x) ∼ exp(p,Q(x)).

This ‘push-interpolate-pull’ technique only works when all the available data points (f(ξi))i∈I fall
within the injectivity radius of the point p, and the method only provides an approximation for f(x)
where x is near p. In this case the problem is local, and the topology of the manifold plays no role. One
may then question what would be the difference if one uses the push-interpolate-pull approach but with
the exponential map replaced by an arbitrary chart. With the exponential map, the push-interpolate-
pull method respects the symmetry, if any, of the manifold and in some sense respects the metric of the
manifold. However, it is not clear what is the practical advantage of the latter and if respecting symmetry
is not the main concern, one is free to replace the exponential map by a retraction (see, e.g., [1, 18]) on
the manifold.
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is supported in part by the National Science Foundation grant DMS 1115915.
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The problem is more challenging when we have available data points (f(ξi))i∈I ∈ M scattered at
different parts of the manifold, and the manifold has a nontrivial topology. In this setting, we desire an
approximation method with the following properties:

(i) The method is well-defined as long as the scattered data sites are reasonably close locally, but can
otherwise be far apart globally.

(ii) The approximant should provide a decent approximation order when f is smooth. Since standard
approximation theory tells us that for linear data there are methods which provide an accuracy
of O(hm) when f is Cm smooth, and h is the meshwidth, it is natural to ask for a method for
manifold-valued data with the same accuracy order.

(iii) The approximant itself should be smooth.

(iv) The approximant should be efficiently computable for any given x.

Such a method ought to ‘act locally but think globally’, meaning that the approximating value should
only depend on the data f(ξi) for ξi near x, but yet the approximant should be smooth and accurate for
all x in the domain. This forces the method to be genuinely nonlinear.

In the shift-invariant setting, i.e. when Ω = R
d and (ξi)i∈I = hZd, the above problem was solved

successfully first by a subdivision technique [23, 9] and more recently by a method based on combining a
general quasi-interpolant with the Karcher mean [10]. Even more recently, the work [13] used a projection-
based approach to generalize B-spline quasiinterpolation for regularly spaced data. In either case, it was
shown that an approximation method for linear data can be suitably adapted to manifold-valued data
without jeopardizing the accuracy or smoothness properties of the original linear method. This kind of
(smoothness or approximation order) equivalence properties are analyzed by a method known as proximity
analysis. It is also shown that in certain setups, the smoothness or approximation order equivalence can
breakdown in unexpected ways [18, 23, 7, 13].

In this paper we provide a solution to the above problem in the multivariate scattered data set-
ting. More precisely we combine the ideas of [10, 12] with the classical linear theory of scattered data
approximation [22] to arrive at approximants which satisfy (i)-(iv) above.

We give a brief outline of this work. The following Section2 presents a brief overview of approxi-
mation results for scattered data approximation of Euclidean data. Then in Section 3 we present our
generalization of the linear theory to the manifold-valued setting. This section also contains our main
result regarding the approximation power of our nonlinear construction. It turns out that our scheme
retains the optimal approximation rate as expected from the linear case. This is formalized in Theorem
3.5. In this theorem the dependence of the approximation rate on the geometry of M is made explicit
and appears in form of norms of iterated covariant derivatives of the log function of M . To measure
the smoothness of an M -valued function we utilize a smoothness descriptor introduced in [12] and which
forms a natural generalization of Hölder norms to the manifold-valued setting. Our results also hold true
for arbitrary choices of retractions. We discuss this extension in Subsection 3.3. Finally in Section 4
we present numerical experiments for the approximation of functions with values in the sphere and in
the manifold of symmetric positive definite matrices. In all cases the approximation results derived in
Section 3 are confirmed. We also examine an application to the interpolation of reduced order models
and compare our method to the method introduced in [5] where it turns our that our method delivers
superior approximation power.

2 Scattered Data Approximation in Linear Spaces

In this section we present classical results concerning the approximation of scattered data in Euclidean
space. Our exposition mainly follows the monograph [22].

2.1 General Setup

We start by describing a general setup for scattered data approximation. Given a set Ξ = (ξi)i∈I ⊂ Ω ⊂
R

d and associated basis functions Φ := (ϕi)i∈I ⊂ C(Ω,R), where C(Ω,R) denotes the set of real-valued
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continuous function on Ω. The linear quasi-interpolation procedure, applied to a continuous function
f : Ω → R, is defined as

Q(Ξ,Φ)f(x) :=
∑

i∈I

ϕi(x)f(ξi). (1)

Essential for the approximation power of the operator Q(Ξ,Φ) is the property that polynomials up to
a certain degree are reproduced:

Definition 2.1. The pair (Ξ,Φ) reproduces polynomials of degree m if

∑

i∈I

ϕi(x)p(ξi) = p(x) for all p ∈ Pm(Rd), (2)

where Pm(Rd) denotes the space of polynomials of (total) degree ≤ m on R
d.

In particular, if (Ξ,Φ) reproduces polynomials of degree m ≥ 0 then necessarily

∑

i∈I

ϕi(x) = 1 for all x ∈ Ω. (3)

Definition 2.2. We define the local meshwidth h(Ξ,Φ) : Ω → R≥0 by

h(Ξ,Φ)(x) :=
∑

i∈I(x)

|ξi − x|,

where
I(x) := {i ∈ I|ϕi(x) 6= 0}

and | · | denotes the Euclidean norm.

The following example gives a simple procedure to approximate univariate data with polynomial
reproduction degree 1.

Example 2.3. Let Ω = [0, 1], 0 = ξ1 < ξ2 · · · < ξn = 1 and

ϕi(x) :=







x−ξi−1

ξi−ξi−1
if i > 1 and ξi−1 ≤ x < ξi

ξi+1−x
ξi+1−ξi

if i < n and ξi ≤ x < ξi+1

0 otherwise.

These functions, also known as hat functions, satisfy the polynomial reproduction property with m = 1.
The local meshwidth for ξi < x < ξi+1 is h(Ξ,Φ)(x) = ξi+1 − ξi.

The following result gives a bound for the approximation error in terms of the local meshwidth and
the polynomial reproduction degree. We will denote by Ω the closure of Ω.

Theorem 2.4. Assume that Ω ⊂ R
d is a domain with smooth boundary and that (Ξ,Φ) reproduces

polynomials of degree m. Then for all 1 ≤ k < m + 1 and f ∈ Ck(Ω,R) there exists a generic constant
C > 0, independent of f , Φ and Ξ, such that

|f(x)−Q(Ξ,Φ)f(x)| ≤ C sup
i∈I

|ϕi(x)|‖f‖Ck(Ω,R)h(Ξ,Φ)(x)
k for all x ∈ Ω.

Remark 2.5. The theorem could be generalized to hold also for a larger class of domains Ω satisfying
an interior cone condition, see [22].

We omit a proof here as a general theorem will be proven in the next section. In contrast to other
results, such as those in [22] Theorem 2.4 poses no restrictions on the data Ξ = (ξi)i∈I . In the following
subsection we will show how the approximation results in [22] follow as a corollary to the previous
Theorem 2.4.
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2.2 Moving Least Squares

In this subsection, we will follow [22] and show how to construct a set of basis functions ΦΞ,m,δ =

(ϕΞ,m,δ
i )i∈I with polynomial reproduction degree m for a set Ξ = (ξi)i∈I ⊂ Ω ⊂ R

d which is (m, δ)-
unisolvent.

Definition 2.6. A set Ξ = (ξi)i∈I ⊂ Ω ⊂ R
d is called (m, δ)-unisolvent if there exist no x ∈ Ω and

p ∈ Pm(Rd) with p 6= 0 and p(ξi) = 0 for all ξi ∈ Ξ with |ξi − x| ≤ δ.

Let α : [0,∞) → [0, 1] with α(0) = 1, α(z) = 0 for z ≥ 1 and α′(0) = α′(1) = 0, e.g. the Wendland
function

α(x) =

{

(1 + 4x)(1− x)4 0 ≤ x ≤ 1

0 x > 1.

We define
ϕΞ,m,δ
j (x) = αδ(|x− ξj |)px(ξj)

where αδ(x) = α(x/δ) and px ∈ Pm(Rd) is the unique solution of

∑

j∈I

αδ(|x− ξj |)px(ξj)p(ξj) = p(x) ∀ p ∈ Pm(Rd).

It is an easy task to verify that px is well-defined and (Ξ,ΦΞ,m,δ) satisfies the polynomial reproduction
property (2) of degree m.

Theorem 2.4 represents an approximation result for a single set of data sites Ξ and basis functions
Φ. Let S be an index set. The approximation theory of the moving least squares method, as presented
e.g. in [22] considers sets (Ξj ,Φ

Ξj ,m,δj )j∈S of data sites. The theory in [22] requires (Ξj , δj)j∈S to be
quasi-uniform as defined below.

Definition 2.7. A set X = (Ξj , δj)j∈S of tuples is said to be quasi-uniform if there exists a constant
c > 0, independent of j ∈ S such that

δj ≤ c qΞj
,

where qΞ is the separation distance defined by

qΞ := 1/2 min
i,j∈I
i 6=j

|ξi − ξj |. (4)

Example 2.8. Let Ω = [−1, 1] and IN = {0, . . . , N−1}. For i ∈ IN and m ∈ N we choose the node ξNi
uniformly at random in the interval (−1 + 2i/N,−1 + 2(i+ 1)/N) and δN = 2(m+ 1)/N . Then the set
ΞN = (ξNi )N−1

i=0 is (m, δN )-unisolvent for all N ∈ N and h(Ξ,Φ)(x) ≤ 2(m+ 1)(2m+ 3)/N for all x ∈ Ω.

However X = (ΞN ,ΦΞN ,m,δN )N∈N is in general not quasiuniform.

Example 2.9. Let Ω = [−1, 1] and IN = {0, . . . , N−1}. For i ∈ IN and m ∈ N we choose the node
ξNi uniformly at random in the interval [−1 + (4i + 1)/(2N),−1 + (4i + 3)/(2N)], δN = (2m + 3)/N .
Then the set ΞN = (ξNi )N−1

i=0 is (m, δN )-unisolvent for all N ∈ N, h(Ξ,Φ)(x) ≤ (2m + 3)(2m + 5)/N for

all x ∈ Ω and X = (ΞN ,ΦΞN ,m,δN )N∈N is quasiuniform with c = 2(2m+ 3).

The following theorem is the main result of [22] regarding the approximation with moving least
squares.

Theorem 2.10 ([22]). Assume that Ω ⊂ R
d is a domain with smooth boundary, X = (Ξj , δj)j∈S is

quasi-uniform, Ξj is (m, δj)-unisolvent for all j ∈ S and Φj = ΦΞj ,m,δj are the basis functions as defined
above. Then for all 1 ≤ k < m+ 1 and f ∈ Ck(Ω,R) there exists a generic constant C > 0, independent
of f , such that

‖f −Q(Ξj ,Φj)f‖L∞(Ω) ≤ C‖f‖Ck(Ω,R)δ
k
j for all x ∈ Ω.

for all j ∈ S.

4



We show that Theorem 2.10 is a consequence of Theorem 2.4.

Proof. In the proof we use the letter C as a symbol for a generic constant whose value may change from
equation to equation. Denote by Ij the index set associated with the sampling set Ξj = (ξji )i∈Ij

. We
first show that maxx∈Ω |Ij(x)| ≤ C where C is independent of j. Note that

Ij(x) ⊆ {i ∈ Ij ||x− ξji | ≤ δj}.

Hence the pairwise disjoint balls with centers (ξji )i∈Ij(x) and radius qΞj
lie in the ball with center x and

radius δj+qΞj
. As the fraction (δj+qΞj

)/qΞj
is bounded from above by (1+c), with c being the constant

from Definition 2.7, we have that maxx∈Ω |Ij(x)| is bounded by the number of balls with radius 1 that
fit into a ball of radius (1 + c). Consequently

h(Ξj ,Φj)(x) =
∑

i∈Ij(x)

|ξji − x| ≤ Cδj

and hence by Theorem 2.4 we have, writing Φj = (ϕj
i )i∈Ij

,

‖f −Q(Ξj ,Φj)f‖L∞(Ω) = sup
x∈Ω

|f(x)−Q(Ξj ,Φj)f(x)|

≤ sup
x∈Ω

C sup
i∈Ij

|ϕj
i (x)|‖f‖Ck(Ω,R)h(Ξj ,Φj)(x)

k

≤ C sup
i∈Ij

|ϕj
i (x)|‖f‖Ck(Ω,R)δ

k
j .

Finally we note that, due to [22, Theorem 4.7 (2)] we have

sup
x∈Ω, j∈S

sup
i∈Ij(x)

|ϕj
i (x)| < ∞,

which yields the desired result.

3 Scattered Data Approximation in Manifolds

The present section extends Theorem 2.4 and Theorem 2.10 to the case of manifold-valued functions
f : Ω → M with a Riemannian manifoldM . First, in Subsection 3.1 we present a geometric generalization
of the operator Q(Ξ,Φ) to the manifold-valued case. The construction is based on the idea to replace affine
averages by a Riemannian mean as studied e.g. in [15]. Subsequently, in Subsection 3.2 we study the
resulting approximation error. Finally, in Subsection 3.3 we extend our results to the case of more general
notions of geometric average, induced by arbitrary retractions as studied e.g. in [11].

3.1 Definition of Riemannian Moving Least Squares

In this section we consider a Riemannian manifold M with distance metric d : M ×M → R≥0 and metric
tensor g, inducing a norm | · |g(p) on the tangent space TpM at p ∈ M .

Extending the classical theory which we briefly described in Section 2 we now aim to construct
approximation operators for functions f : Ω → M . We follow the ideas of [19, 20, 21, 10, 12] where the
sum in (1) is interpreted as a weighted mean of the points (f(ξi))i∈I(x). Due to (3) this is justified.

In particular, for weights Γ = (γi)i∈I ⊂ R with
∑

i∈I γi = 1 and points Π = (pi)i∈I ⊂ M we can
define the Riemannian average

avM (Γ,Π) := argmin
p∈M

∑

i∈I

γid(p, pi)
2. (5)

One can show [15, 21] that avM (Γ,Π) is a well-defined operation, if the diameter of the set Π is small
enough:
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Theorem 3.1 ([21]). Given a weight sequence Γ = (γi)i∈I ⊂ R with
∑

i∈I γi = 1. Let p0 ∈ M and
denote for ρ > 0 by Bρ the geodesic ball of radius ρ around p0. Then there exist 0 < ρ1 ≤ ρ2 < ∞,
depending only on

∑

i∈I |γi| and the geometry of M such that for all points Π = (pi)i∈I ⊂ Bρ1
the

functional
∑

i∈I γid(p, pi)
2 assumes a unique minimum in Bρ2

.

Whenever the assumptions of Theorem 3.1 hold true, the Riemannian average is uniquely determined
by the first order condition

∑

i∈I

γi log (avM (Γ,Π), pi) = 0, (6)

which could alternatively be taken as a definition of the weighted average in M , see also [21].
We can now define an M -valued analogue for Equation (1).

Definition 3.2. Denoting Φ(x) := (ϕi(x))i∈I ⊂ R and f(Ξ) := (f(ξi))i∈I ⊂ M we define the nonlinear
moving least squares approximant

QM
(Ξ,Φ)f(x) := avM (Φ(x), f(Ξ)) ∈ M. (7)

It is clear that in the linear case this definition coincides with (1). Furthermore it is easy to see that
the smoothness of the basis functions Φ gets inherited by the approximation procedure QM

(Ξ,Φ), see e.g.

[20].

Remark 3.3. We wish to emphasize that the approximation procedure as defined in Definition 3.2 is
completely geometric in nature. In particular it is invariant under isometries of M . In mechanics this
leads to the desirable property of objectivity.

3.2 Approximation Error

We now wish to assess the approximation error of the nonlinear operator QM
(Ξ,Φ) and generalize Theorem

2.4 to the M -valued case.

3.2.1 The Smoothness Descriptor of Manifold-Valued Functions

Two basic things need to be considered to that end. First we need to decide how we measure the error
between the original function f and its approximation QM

(Ξ,Φ)f . This will be done pointwise using the
geodesic distance d : M×M → R≥0 on M . Slightly more subtle is the question what is the right analogue
to the term ‖f‖Ck(Ω,R) in the manifold-valued case? In [12] a so-called smoothness descriptor has been
introduced to measure norms of derivatives of M -valued functions. Its definition requires the notion of
covariant derivative in a Riemannian manifold. With D

dxl we denote the covariant partial derivative along

f with respect to xl. That is, given a function f : Ω → M and a vector field W : Ω → TM attached to f ,
i.e., W (x) ∈ Tf(x)M for all x ∈ Ω. Then in coordinates on M , the covariant derivative of W in xl reads

D

dxl
W r(x) :=

dW r

dxl
(x) + Γr

ij(f(x))
df i

dxl
W j(x),

where we sum over repeated indices and denote with Γr
ij the Christoffel symbols associated to the metric

of M , [6]. For iterated covariant derivatives we introduce the symbol D~lf which means covariant partial

differentiation along f with respect to the multi-index ~l in the sense that

D~lf :=
D

dxlk
. . .

D

dxl2

df

dxl1
, ~l ∈ {1, . . . , d}k, k ∈ N0. (8)

Additionally we define D~lf := 1 (a constant function Ω → R) if dim~l = 0. Note that (8) differs from the
usual multi-index notation, which cannot be used because covariant partial derivatives do not commute.
The smoothness descriptor of an M -valued function is defined as follows.
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Definition 3.4 (Smoothness Descriptor). For a function f : Ω → M , k ≥ 1 we define the homogeneous
k-th order smoothness descriptor

Θ̇∞,k,Ω(f) :=
∑

~lj∈[d]
mj , j=1,...,k

∑k
j=1

mj=k

sup
x∈Ω

k∏

j=1

∣
∣
∣
∣
D~ljf(x)

∣
∣
∣
∣
g(f(x))

,

and its inhomogeneous version

Θ∞,k,Ω(f) :=

k∑

l=1

Θ̇∞,l,Ω(f).

The smoothness descriptor as defined above represents a geometric analogue of the classical notions of
Hölder norms and seminorms. Note that, even in the Euclidean case (for instance M = R) the expression
Θ̇∞,k,Ω(f) is not equal to the Hölder seminorm |f |Ck(Ω,R), as additional terms are present in the definition

of Θ̇∞,k,Ω(f). But we have the implications

|f |Ck(Ω,R) < ∞ ⇔ Θ̇∞,k,Ω(f) < ∞.

In the proof of Theorem 3.5 it will become clear why the additional terms in Θ̇∞,k,Ω(f) are needed in
the case of general M where, in contrast to M = R, higher order covariant derivatives of the logarithm
mapping need not vanish, compare also Remark 3.6 below.

3.2.2 Further Geometric Quantities

Coming back to the anticipated generalization of Theorem 2.4, we also aim to quantify exactly to which
extent the approximation error depends on the geometry of M . To this end let log(p, ·) : M → TpM be
the inverse of the exponential map at p. Denote by ∇1, ∇2 the covariant derivative of a bivariate function
with respect to the first and second argument, respectively. In particular, for l ∈ N we will require the
derivatives

∇l
2 log(p, q) : (TqM)l → TpM

and their norms

‖∇l
2 log(p, q)‖ = sup

v1,...,vl∈TqM

∣
∣∇l

2 log(p, q) (v1, . . . , vl)
∣
∣
g(p)

∏l
i=1 |vi|g(q)

. (9)

its convex hull.

3.2.3 Main Approximation Result

Now we are ready to state and prove our main result. We write

Ωx := conv({x} ∪ {ξi : i ∈ I(x)})

for x ∈ Ω where we denote by conv(D) the convex hull of a set D ⊂ R
d. Now our main result reads as

follows.

Theorem 3.5. Assume that Ω ⊂ R
d is a domain with smooth boundary and (Ξ,Φ) reproduces polynomials

of degree m. Then for all 1 ≤ k < m + 1 and f ∈ Ck(Ω,M) there exists a generic constant C > 0,
independent of f , Ξ, Φ and the geometry of M such that

d
(

QM
(Ξ,Φ)f(x), f(x)

)

≤

CΘ∞,k,Ω(f) sup
i∈I(x)

|ϕi(x)| sup
1≤r≤k

sup
y∈Ωx∩Ω

∥
∥
∥∇r

2 log
(

QM
(Ξ,Φ)f(x), f(y)

)∥
∥
∥h(Ξ,Φ)(x)

k (10)

for all x ∈ Ω.
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Proof. In the proof we use the letter C as a symbol for a generic constant whose value may change from
equation to equation. Furthermore we will assume for simplicity that Ω is convex, the general case can
be handled by smoothly extending the function f across the boundary of Ω. Note that if Ω is convex we
have that Ωx ⊂ Ω for all x ∈ Ω. The existence of a bounded extension operator for smooth domains is
classical [14].

We shall use the balance law (6) which implies that we can write

ε(x) := log
(

QM
(Ξ,Φ)f(x), f(x)

)

= log
(

QM
(Ξ,Φ)f(x), f(x)

)

−
∑

i∈I(x)

ϕi(x) log
(

QM
(Ξ,Φ)f(x), f(ξi)

)

. (11)

Now we consider the function G : Ω× Ω → TM defined by

G(x, y) := log
(

QM
(Ξ,Φ)f(x), f(y)

)

∈ TQM
(Ξ,Φ)

f(x)M. (12)

Since, for fixed x ∈ Ω, the function G maps into a linear space we can perform a Taylor expansion of G
in y around the point (x, x) ∈ Ω× Ω and obtain

G(x, y) =
∑

~l∈N
d

|~l |<k

(y − x)
~l

~l !
∂
~l
2G(x, x) +

∑

~l∈N
d

|~l |=k

R~l(x, y)(y − x)
~l, (13)

where for any l = (l1, . . . , ld) ∈ N
d and z = (z1, . . . , zn) ∈ R

d we define

|~l | :=
d∑

i=1

li, z
~l :=

n∏

i=1

(zi)
li , ~l ! :=

n∏

i=1

li!, ∂
~l
2G(x, z) :=

∂|~l |G(x, z)
∏n

i=1 (∂zi)
li

and

R~l(x, y) :=
|~l |
~l !

∫ 1

0

(1− t)|
~l |−1∂

~l
2G(x, x+ t(y − x))dt. (14)

We insert (13) into (11) and get the following expression for ε(x):

ε(x) = G(x, x)−
∑

i∈I(x)

ϕi(x)








∑

~l∈N
d

|~l |<k

(ξi − x)
~l

~l !
∂
~l
2G(x, x) +

∑

~l∈N
d

|~l |=k

R~l(x, ξi)(ξi − x)
~l








(15)

Exchanging summation order in (15) yields

ε(x) = G(x, x)−
∑

~l∈N
d

|~l |<k

∑

i∈I(x)

ϕi(x)
(ξi − x)

~l

~l !
∂
~l
2G(x, x)

︸ ︷︷ ︸

(I)

+
∑

~l∈N
d

|~l |=k

∑

i∈I(x)

ϕi(x)R~l(x, ξi)(ξi − x)
~l

︸ ︷︷ ︸

(II)

.

We will show that (I) = 0 and (II) = O(h(x)k) which implies our claim.
Let us start by showing that (I) = 0. As a first observation we note that, due to (3), we can write

(I) =
∑

~l∈N
d

0<|~l |<k

∑

i∈I(x)

ϕi(x)
(ξi − x)

~l

~l !
∂
~l
2G(x, x)

︸ ︷︷ ︸

(I~l)

. (16)

We claim that (I~l) = 0 for all ~lNd with |~l | < k. Indeed, pick x∗ ∈ Ω arbitrary. Then, by the polynomial
reproduction property (2) and k ≤ m+ 1 we get

∑

i∈I(x)

ϕi(x)
(ξi − x∗)

~l

~l !
∂
~l
2G(x∗, x∗) = ∂

~l
2G(x∗, x∗)

(x− x∗)
~l

~l !
for all x, x∗ ∈ Ω. (17)
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Setting x∗ = x in (17) yields

(I~l) =
∑

i∈I(x)

ϕi(x)
(ξi − x)

~l

~l !
∂
~l
2G(x, x) = ∂

~l
2G(x, x)

(x− x)
~l

~l !
= 0

which proves the desired claim.
We now move on to prove our second claim, namely that (II) = O(h(x)k). To this end we need to

estimate, for any ~l ∈ N
d with |~l | = k the quantity

(II)~l :=
∑

i∈I(x)

ϕi(x)R~l(x, ξi)(ξi − x)
~l. (18)

To this end we consider, for fixed ~l and i ∈ I(x), the quantity R~l(x, ξi). Inserting Definition (12) and
using the chain rule we obtain that

∣
∣
∣∂

~l
2G(x, y)

∣
∣
∣
g
(

QM
(Ξ,Φ)

f(x)
) ≤ C

∑

1≤r≤k, ~lj∈[d]mj
∑r

j=1 mj=k

∣
∣
∣∇r

2 log
(

QM
(Ξ,Φ)f(x), f(y)

)(

D~l1f(y), . . . ,D~lrf(y)
)∣
∣
∣
g
(

QM
(Ξ,Φ)

f(x)
) ,

which can be estimated by

∣
∣
∣∂

~l
2G(x, y)

∣
∣
∣
g
(

QM
(Ξ,Φ)

f(x)
) ≤ C sup

1≤r≤k

∥
∥
∥∇r

2 log
(

QM
(Ξ,Φ)f(x), f(y)

)∥
∥
∥

∑

1≤r≤k, ~lj∈[d]mj
∑r

j=1 mj=k

∣
∣
∣D~l1f(y)

∣
∣
∣
g(f(y))

· · · · ·
∣
∣
∣D~lrf(y)

∣
∣
∣
g(f(y))

≤ C sup
1≤r≤k

∥
∥
∥∇r

2 log
(

QM
(Ξ,Φ)f(x), f(y)

)∥
∥
∥Θ∞,k,Ω(f). (19)

Inserting Estimate (19) into the definition (14) of R~l we get that

∣
∣R~l(x, ξi)

∣
∣
g
(

QM
(Ξ,Φ)

f(x)
) ≤ CΘ∞,k,Ω(f)

∫ 1

0

(1− t)k−1 sup
1≤r≤k

∥
∥
∥∇r

2 log
(

QM
(Ξ,Φ)f(x), f(x+ t(ξi − x))

)∥
∥
∥ dt

≤ CΘ∞,k,Ω(f) sup
1≤r≤k

sup
y∈Ωx

∥
∥
∥∇r

2 log
(

QM
(Ξ,Φ)f(x), f(y)

)∥
∥
∥ . (20)

Finally, putting (20) into (18) we get that

∣
∣(II)~l

∣
∣
g
(

QM
(Ξ,Φ)

f(x)
) ≤ CΘ∞,k,Ω(f) sup

1≤r≤k
sup
y∈Ωx

∥
∥
∥∇r

2 log
(

QM
(Ξ,Φ)f(x), f(y)

)∥
∥
∥

∑

i∈I(x)

|ϕi(x)||ξi − x||~l |

≤ CΘ∞,k,Ω(f) sup
1≤r≤k

sup
y∈Ωx

∥
∥
∥∇r

2 log
(

QM
(Ξ,Φ)f(x), f(y)

)∥
∥
∥

sup
i∈I(x)

|ϕi(x)|h(Ξ,Φ)(x)
k. (21)

Summing up over all |~l | = k we get the desired estimate.

Two remarks are in order regarding Theorem 3.5.

Remark 3.6. Clearly, in the linear case higher order (i.e. higher than order 1) derivatives of the
logarithm mapping log(p, q) = q − p vanish. Using this fact it is easy to see that our proof of Theorem
3.5 reduces to Theorem 2.4 in the linear case.
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Remark 3.7. The estimate in Theorem 3.5 completely separates the error contributions of f and of the
geometry of M . We thus see that the only geometric quantity which influences the approximation consists
of iterated covariant derivatives of the logarithm mapping.

Using Theorem 3.5 we can now state and prove a geometric generalization to Wendland’s main theorem
on moving least squares approximation, e.g., Theorem 2.10.

Theorem 3.8. Assume that Ω ⊂ R
d is a domain with smooth boundary, X = (Ξj , δj)j∈S is quasi-

uniform, Ξj is (m, δj)-unisolvent for all j ∈ S and Φj = ΦΞj ,m,δj are the basis functions as defined
in Section 2. Then for all 1 ≤ k < m + 1 and f ∈ Ck(Ω,M) there exists a generic constant C > 0,
independent of f , such that

sup
x∈Ω

d
(

f(x),QM
(Ξj ,Φj)

f(x)
)

≤ C sup
1≤r≤k

sup
y∈Ωx∩Ω

∥
∥
∥∇r

2 log
(

QM
(Ξ,Φ)f(x), f(y)

)∥
∥
∥Θ∞,k,Ω(f)δ

k
j

for all j ∈ S.

Proof. The proof proceeds exactly as the proof of Theorem 2.10, using Theorem 3.5 instead of Theorem
2.4.

Our approximation operator QM
(Ξ,Φ) satisfies (i), (ii) and (iii) from the introduction.

3.3 Generalization to Retraction Pairs

The computation of the quasiinterpolant QM
(Ξ,Φ)f(x) requires the efficient computation of the exponential

and logarithm mapping of M . For many practical examples of M this is not an issue, however in certain
cases (for instance the Stiefel manifold [11]) it is computationally expensive to compute the exponential
or logarithm function of a given manifold. Then, alternative functions can sometimes be used. This idea
is formalized by the concept of retraction pairs.

Definition 3.9 ([11], see also [1, 8]). A pair (P,Q) of smooth functions

P : TM → M, Q : M ×M → TM

is called a retraction pair if

P (x,Q (x, y)) = y, for all x, y ∈ M, and P (x, 0) = x,
d

dv
P (x, v)

∣
∣
∣
v=0

= Id for all x ∈ M.

In general P may only be defined locally around M , and Q around the diagonal of M ×M .

Example 3.10. Certainly, the pair (exp, log) satisfies the above assumptions [6], and therefore forms
a retraction pair. Let Sm = {x ∈ R

m+1||x| = 1} be the m-dimensional sphere. Here we can define a
retraction pair (P,Q) by

P (x, y) =
x+ y

|x+ y| and Q(x, y) =
y

〈x, y〉 − x,

where 〈·, ·〉 is the standard inner product. We refer to [1] for further examples of retraction pairs for
several manifolds of practical interest.

Given a retraction pair (P,Q), we can construct generalized quasiinterpolants Q
(P,Q)
(Ξ,Φ)f(x) based on

the first order condition (6), which defines a geometric average based on (P,Q) via
∑

i∈I

γiQ (avP,Q(Γ,Π), pi) = 0 (22)

The results in [11] show that this expression is locally well-defined. The construction above allows us to
define a geometric quasiinterpolant based on an arbitrary retraction pair as follows.

Definition 3.11. Given a retraction pair (P,Q) and denoting Φ(x) := (ϕi(x))i∈I ⊂ R and f(Ξ) :=
(f(ξi))i∈I ⊂ M we define the nonlinear moving least squares approximant

Q
(P,Q)
(Ξ,Φ)f(x) := avP,Q(Φ(x), f(Ξ)) ∈ M. (23)
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The following generalization of Theorem 3.5 holds true.

Theorem 3.12. Assume that (P,Q) is a retraction pair. Assume further that (Ξ,Φ) reproduces polyno-
mials of degree m. Then for all 1 ≤ k < m+ 1 and f ∈ Ck(Ω,M) there exists a generic constant C > 0,
independent of f , Ξ, Φ, P , Q and the geometry of M such that

∣
∣
∣Q

(

Q
(P,Q)
(Ξ,Φ)f(x), f(x)

)∣
∣
∣
g(Q

(P,Q)

(Ξ,Φ)
f(x))

≤

CΘ∞,k,Ω(f) sup
i∈I(x)

|ϕi(x)| sup
1≤r≤k

sup
y∈Ωx∩Ω

∥
∥
∥∇r

2Q
(

Q
(P,Q)
(Ξ,Φ)f(x), f(y)

)∥
∥
∥h(Ξ,Φ)(x)

k (24)

for all x ∈ Ω.

Proof. The proof is completely analogous to the proof of Theorem 3.5 with log replaced by Q.

4 Numerical Examples

We demonstrate our theoretical findings for three different manifolds, the sphere Sm, the manifold of
symmetric positive definite k× k matrices SPD(k) and the manifold of invertible k× k matrices GL(k).
The main task will be the computation of the Riemannian averages. Having that we can define our
approximations as in Definition 3.2. Throughout this section we assume that I is a finite set.

4.1 Interpolation of Sphere-Valued Functions

To find the Riemannian average p ∈ Sm of points (pi)i∈I ⊂ Sm and weights (λi)i∈I ⊂ R with
∑

i∈I λi = 1
we use the intrinsic version of Newton’s method introduced in [1] on Equation (5). The metric d : Sm ×
Sm → R+ induced by the euclidean metric on R

m+1 is

d(u, v) = arccos(〈u, v〉) (25)

for all u, v ∈ Sm. Hence we have to find the minimum of the functional J : Sm → R defined by

J(x) :=
∑

i∈I

λi arccos
2(〈x, pi〉). (26)

The intrinsic version of Newton’s method generates a sequence (xj)j>0 ⊂ Sm that converges to p ∈ Sm.
The first element x1 ∈ Sm is a first guess. In Step j > 0 a quadratic approximation Jxj

of J at xj ∈ Sm

is defined. The next element xj+1 is defined as the minimizer of Jxj
. The quadratic approximation Jxj

has the form
Jxj

(x) = J(xj) + J1
xj
(r(x)) + 1/2J2

xj
(r(x), r(x)) (27)

where r(x) = log(xj , x), J
1
xj
: TSm

xj
→ R a linear form and J2

xj
: TSm

xj
× TSm

xj
→ R a symmetric bilinear

form. These functions are uniquely determined by the condition

J(x) = Jxj
(x) +O(|r(x)|3).

In [1] it was shown that if the first guess x1 ∈ Sm is close enough to p ∈ Sm then the sequence (xj)
∞
j=1

converges quadratically to p ∈ Sm. The minimizer xj+1 ∈ Sm of Jxj
is the unique solution of

J1
xj
(y) + J2

xj
(r(xj+1), y) = 0 ∀ y ∈ TSm

xj
. (28)

This solution xj ∈ Sm can be found be choosing a basis of TSm
xj

and then solve the corresponding linear

system of equations. Hence if we have the forms J1
xj

and J2
xj

we can compute the minimizer xj+1 ∈ Sm. A

simple way to find J1
xj

and J2
xj

is to first extend the function J : Sm → R to a function J̄ defined on a set

U ⊂ R
m+1 and then to compute the derivatives of J̄ at xj . As arccos(x) = − i ln(x + i

√
1− x2) for all

x ∈ (−1, 1] where i ∈ C is the imaginary unit and ln : C\{x|x ≤ 0} → {z = x+ yi|x ∈ R, −2π < y ≤ 0}
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is the main branch of the logarithm function we can extend arccos2 defined on [−1, 1] to a function
α : [−1,∞) → R defined by

α(x) :=

{

−ln2(x+ i
√
1− x2) if x > −1

π2 if x = −1
.

The function α is analytic for all x > −1. The derivatives of α in the interval (−1, 1) are

α′(x) =
−2 arccos(x)√

1− x2
and α′′(x) =

2 + α′(x)x

1− x2
. (29)

The expressions get numerically unstable around x ≈ 1. There, the series expansions

α′(x) = −2 +
2

3
(x− 1) +O((x− 1)2), (30)

α′′(x) =
2

3
− 8

15
(x− 1) +O((x− 1)2), (31)

have to be used instead. The function J : Sm → R can now be extended to a function J̄ : U ⊂ R
m+1 → R

defined by

J̄(x) =
∑

i∈I

λiα(〈x, pi〉)

where
U := {x ∈ R

m+1|〈x, pi〉 ≥ −1 for all i ∈ I}.
We have

Sm ∩ Int(U) = Sm\{−pi|i ∈ I}
where Int(U) denotes the interior of U . Hence whenever xj 6= −pi for all i ∈ I we can do a Taylor
expansion of J̄ up to order 2 at xj and obtain

J̄(x) = J̄(xj) + d1J̄xj
(x− xj) + 1/2d2J̄xj

(x− xj , x− xj) +O(|x− xj |3). (32)

where

d1J̄xj
(y) =

∑

i∈I

λiα
′ (〈xj , pi〉) 〈pi, y〉 and (33)

d2J̄xj
(y, z) =

∑

i∈I

λiα
′′ (〈xj , pi〉) 〈pi, y〉〈pi, z〉. (34)

The Taylor expansion of the exponential map exp up to order 2 is

exp(xj , s) = cos(|s|)xj +
sin(|s|)

|s| s (35)

= xj + s− |s|2
2

xj +O(|s|3). (36)

Let r = log(xj , x). Replacing x by exp(xj , r) in Equation (32) and using Equation (36) yields

J̄(x) = J̄(xj) + d1J̄xj
(r) + 1/2(d2J̄xj

(r, r)− d1J̄xj
(xj)|r|2) +O(|r|3). (37)

Comparison of Equation (37) and (27) yields

J1
xj
(y) = d1J̄xj

(y) (38)

J2
xj
(y, y) = d2J̄xj

(y, y)− d1J̄xj
(xj)|y|2 (39)

(40)

for all y ∈ TSm
xj
. In summary we arrive at Algorithm 1.
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Algorithm 1: Find Riemannian Average on the Sphere

Input : (pi)i∈I ⊂ Sm, (λi)i∈I ⊂ R with
∑

i∈I λi = 1, tolerance tol and initial guess x1 ∈ Sm.
Output: Riemannian average avSm((pi)i∈I , (λi)i∈I)

1 x0 = 0, j = 1.
2 while |xj − xi−1| < tol do
3 compute d1J̄xj

and d2J̄xj
as in Equation (33) and (34).

4 compute J1
xj

and J2
xj

as in Equation (38) and (39).

5 choose a basis y1, . . . , ym of TSm
xj
.

6 solve system of Equation J1
xj
(yj) + J2

xj
(r, yj) = 0 ∀j = 1, . . . ,m for r.

7 compute xj+1 = exp(xj , r).
8 set j = j + 1.

9 end
10 return xj

0 0.2 0.4 0.6 0.8 1
0

1

2

3

·10−2

x

approximation error
local meshwidth

Figure 1: Approximation error for a sphere-valued function

Example 4.1. We consider the function f : [0, 1] → Sm defined by

[0, 1] ∋ x 7→
(
1, x, x2

)

∣
∣
(
1, x, x2

)∣
∣

and the nodes {0}∪{2−j |j ∈ {0, 1, . . . , 10}}. For interpolation we use the hat functions defined in Example
2.3. Figure 1 shows the error and the local meshwidth (multiplied by a constant). It illustrates that the
error can be bounded by a constant times the local meshwidth as stated in Theorem 3.8.

4.2 Interpolation of Functions With Symmetric Positive Definite Matrices
As Values

For k ∈ N we denote the space of positive definite k× k matrices by SPD(k). The following information
on the geometry of SPD(k) can be found in [17]. Let S(k) be the space of symmetric k × k matrices.
The tangent space of a point P ∈ SPD(k) is equivalent to S(k). The natural inner product on this space
is

〈A,B〉P = tr(AP−1BP−1)

where tr denotes the trace. The induced Riemannian metric is

dSPD(X,Y ) = ‖ ln(X−1/2Y X−1/2)‖tr. (41)

Here ln denotes the matrix logarithm and ‖ · ‖tr the trace norm, i.e. ‖X‖tr =
√

tr(XXT ) where
XT denotes the transpose of X. The exponential map exp and logarithm map log on the manifold
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of symmetric positive definite matrices are

exp(P,Q) = P 1/2E(P−1/2QP−1/2)P 1/2, (42)

log(P,Q) = P 1/2 ln(P−1/2QP−1/2)P 1/2, (43)

where E(·) denotes the matrix exponential.
To find the Riemannian average X of matrices (Xi)i∈I ⊂ R

k×k and weights (λi)i∈I ⊂ R with
∑

i∈I λi = 1
we solve Equation (6) which reduces in the case of positive definite matrices to

∑

i∈I

λi ln(X
−1/2XiX

−1/2) = 0. (44)

To solve this equation we use the standard Newton method. To do this we need to compute derivatives of
the square root function, the matrix logarithm ln, the inverse function, the trace norm and compositions
of these. To compute the derivative of the square root function observe that Y k,l := d

√
X/dxkl ∈ R

k×k

is the solution of the Lyapunov equation

Y k,l
√
X +

√
XY k,l = Ekl, (45)

where Ekl ∈ R
n,n is the matrix defined by (Ekl)mn := δkmδln. To compute the logarithm and its

derivatives we use the identity
ln(X) = 2n ln(X1/2n) (46)

for all X ∈ SPD(k) and the power series

ln(I +X) =

∞∑

i=1

(−1)i+1X
i

i
(47)

for all X ∈ R
k×k with the norm of its eigenvalues smaller than 1. With compositions of these two

identities we are able to compute the logarithm of any SPD matrix up to a given tolerance. To compute
the derivative of the matrix logarithm we need to be able to compute the derivative of the square root,
which we already discussed (see Equation (45)), and the derivatives of powers of matrices which is

d(Xn)jk
dXlm

=

n−1∑

i=0

(Xi)jl(X
n−i−1)mk

for all X ∈ R
N×N and j, k, l,m ∈ {1, . . . , N}. The derivative of the inverse function is

d(X−1)ij
dXkl

= −(X−1)ik(X
−1)lj

for all X ∈ GL(N) and i, j, k, l ∈ {1, . . . , N}.

Algorithm 2: Find Riemannian Average on the Manifold of SPD-matrices

Input : (Xi)i∈I ⊂ R
k×k, (λi)i∈I ⊂ R with

∑

i∈I λi = 1 and initial guess Y0 ∈ Sm.
Output: Riemannian average avSPD(k)((Xi)i∈I , (λi)i∈I)

1 Use Newton’s method to solve Equation (44) with initial value Y0.

Example 4.2. Let Ω = [0, 1], 0 = ξ1 < ξ2 . . . < ξ6 = 1 and f(x) = cos(xπ/2)A0 + sin(xπ/2)A1, where
A0 and A1 are randomly chosen SPD-matrices. For all i ∈ {1, 2, . . . , 6} let ϕi(x) be the hat functions
from Example 2.3. In Figure 2 the error measured by the metric defined in Equation (41) and the local
meshwidth (multiplied by a constant) is shown. It illustrates that the error can be bounded by a constant
times the local meshwidth as stated in Theorem 3.8.
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Figure 2: Approximation error for a SPD-valued function

4.3 Approximation of Reduced Order Models (ROMs)

We start by introducing linear time invariant systems. Then we present the ROM approximation method
as well as an adaption of this method, based upon the theory in this paper, for approximating reduced
order models (ROMs).

4.3.1 Linear time-invariant Systems

In a parameter dependent LTI (linear time-invariant) system as in [5] we assume that for each x ∈ Ω
there exists a unique solution zx : [0, T ] → R

q of

dwx

dt
(t) = A(x)wx(t) +B(x)u(t), (48)

zx(t) = C(x)wx(t) +D(x)u(t), (49)

where A : Ω → GL(n), with GL(n) denoting the set of invertible matrices of size n × n, B : Ω →
R

n×p, C : Ω → R
q×n, D : Ω → R

q×p and u : [0, T ] → R
p. Typically zx is an output functional of a

dynamical system with control function u and n ≫ p, q. Furthermore we assume that A, B, C and D are
continuous. Define

Mn,k := {U ∈ R
n×k|UTU = Ik},

where Ik is the k × k identity matrix. Let U, V : Ω → Mn,k define test and trial bases, respectively.
The state vector wx(t) will be approximated as a linear combination of column vectors of V (x), i.e.
wx(t) ≈ V (x)wx,U,V (t) where wx,U,V will be defined by substituting wx by V (x)wx,U,V and multiplying
Equation (48) from the left by U(x)T . Hence we get the system of equations

UTV (x)
dwx,U,V

dt
(t) = UTAV (x)wx,U,V (t) + UTB(x)u(t), (50)

zx,U,V (t) = CV (x)wx,U,V (t) +D(x)u(t), (51)

where all operations on matrix valued functions are defined in the natural way. Multiplying Equation
(50) from the left by (UTV (x))−1 yields the new LTI system

dwx,U,V

dt
(t) = AU,V (x)wx,U,V (t) +BU,V (x)u(t), (52)

zx,U,V (t) = CV (x)wx,U,V (t) +D(x)u(t), (53)

where for all x ∈ Ω

AU,V (x) := (UTV )−1UTAV (x) ∈ R
k×k, (54)

BU,V (x) := (UTV )−1UTB(x) ∈ R
k×p and (55)

CV (x) := CV (x) ∈ R
q×k. (56)
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The aim is that zx,U,V has the same properties and features as z. Furthermore k should be much smaller
than n so that zx,U,V (t) can be computed (with the help of the matrices AU,V , BU,V , CV and D)
significantly faster than zx(t) .
Let O(k) := {Q ∈ R

k×k|QQT = Ik} be the space of orthogonal matrices. A coordinate transformation
Ṽ (x) = V Q(x), Ũ(x) = UQ(x) with an orthogonal matrix Q(x) ∈ O(k) does transform the solution

zx,U,V isometrically to zx,Ũ,Ṽ = QT (x)zx,U,V . We introduce the equivalence relation

(U, V ) ∼ (Ũ , Ṽ ) :⇔ ∃Q ∈ O(k) s.t. Ũ = UQ and Ṽ = V Q

on (Mn,k)2. Given a parameter dependent LTI-system and assume that for each choice of the parameter
x ∈ Ω there exists a ROM with matrices U(x), V (x), AU,V (x), BU,V (x), CV (x). Furthermore assume that
the map

f : Ω → (Mn,k)2/ ∼ (57)

x 7→ Π(U(x), V (x)), (58)

where Π: (Mn,k)2 → (Mn,k)2/ ∼ denotes the natural projection, is continuous. Note that U , V , AU,V ,
BU,V and CV do not have to be continuous. The problem of interpolating reduced-order models (ROMs)
is: Given a reduction (AU,V (ξi), B

U,V (ξi), C
V (ξi)) for several parameters ξi, i ∈ I find an approximation

for a new parameter x ∈ Ω for a reduction (AŨ,Ṽ (x), BŨ,Ṽ (x), C Ṽ (x)) with (Ũ(x), Ṽ (x)) ∼ (U(x), V (x)).
As we are aiming for a fast method the running time should be independent of n. In addition to the
matrices (AU,V (ξi), B

U,V (ξi), C
V (ξi)) we can also use precomputed matrices of size ≪ n. A key role for

the algorithm in the next section will play the matrix-valued function PV,V0
defined by

PV,V0
(x) := V (x)TV0 ∈ R

k×k

for all x ∈ Ω where V0 ∈ R
n×k. In [5] an l0 ∈ I was chosen and V0 was defined by V0 := V (ξl0). We will

assume that PV,V0
(x) ∈ GL(k) for all x ∈ Ω.

4.3.2 The ROM Approximation Method

We sketch the method proposed by Amsallem and Farhat in [5]. The algorithm is divided into two steps.
In the first step we construct a continuous function f̃U,V : Ω → (Mn,k)2 with f̃U,V (x) ∼ (U(x), V (x))
for all x ∈ Ω, i.e. we choose a representant f̃U,V (x) of f(x) for each x ∈ Ω where f̃U,V is continuous. We
define

f̃U,V
V0

: Ω → (Mn,k)2 (59)

x 7→ (Ũ(x), Ṽ (x)) := (U(x)QPV,V0
(x), V (x)QPV,V0

(x)) (60)

where QPV,V0
(x) := ΠO(k)(PV,V0

(x)) with ΠO(k) being the shortest point projection onto O(k) defined
below.

Definition 4.3. We define the shortest point projection ΠO(k) : GL(k) → O(k) by

ΠO(k)(X) := argmax
Y ∈O(k)

tr(XTY ).

To compute the shortest point projection we use the following well-known result based on the singular
value decomposition (SVD).

Lemma 4.4. Let (U,Σ, V ) be the SVD of a matrix X ∈ GL(k), i.e. X = UΣV T with U, V ∈ O(k) and
Σ a diagonal matrix with positive real numbers on the diagonal. Then we have ΠO(k)(X) = UV T .

Proof. We have for Y ∈ O(k)

tr(XTY ) = tr(V ΣUTY ) = tr(ΣUTY V )

Let Z = UTY V . As U, Y, V ∈ O(k) we have Z ∈ O(k). In particular the entries zij of Z satisfy zij ≤ 1
Now we have

tr(ΣZ) =

k∑

i=1

σizii ≤
k∑

i=1

σi
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with equality if and only if Z is the identity matrix I. Hence

UTPO(k)(X)V = I ⇒ ΠO(k)(X) = UV T .

Lemma 4.5. Let R : Ω → O(k) then

f̃UR,V R
V0

= f̃U,V
V0

for all x ∈ Ω.

Proof. We have
PV R,V0

= (V R)TV0 = RTPV,V0
,

QPV R,V0
= ΠO(k)(PV R,V0) = ΠO(k)(R

TPV,V0) = RTΠO(k)(PV,V0) = RTQPV,V0
,

and therefore

f̃UR,V R
V0

= (URQPV R,V0
, V RQPV R,V0

) = (URRTQPV,V0
, V RRTQPV,V0

)

= (UQPV,V0
, V QPV,V0

) = f̃U,V
V0

.

As f : Ω → (Mn,k)2/ ∼ is continuous there exists a continuous function

f̄ : Ω → (Mn,k)2 (61)

x 7→ (Ū(x), V̄ (x)) (62)

with Π(f̄) = f . By Lemma 4.5 we have f̃U,V
V0

= f̃ Ū,V̄
V0

. Furthermore it is easy to check that f̃ Ū,V̄
V0

is
continuous. The matrices of the reduced order model are

AŨ,Ṽ = (ŨT Ṽ )−1ŨTAṼ = QT
PV,V0

AU,V QPV,V0
,

BŨ,Ṽ = (ŨT Ṽ )−1ŨTB = QT
PV,V0

BU,V and

C Ṽ = CṼ = CV QPV,V0
.

The first step of the algorithm requires knowledge of the quantities

PV,V0
(ξi) = V (ξi)

TV0 ∈ R
k×k

for all i ∈ I. The values

(Ã(ξi), B̃(ξi), C̃(ξi)) := (AŨ,Ṽ (ξi), B
Ũ,Ṽ (ξi), C

Ṽ (ξi))

are computed for all i ∈ I.

Algorithm 3: Step 1 of ROM Approximation Algorithm

Input : (ξi)i∈I ⊂ Ω, (Aξi)i∈I ⊂ GL(k), (Bξi)i∈I ⊂ R
k×p, (Cξi)i∈I ⊂ R

q×k, and
PV,V0

(ξi) ∈ R
k×k for all i ∈ I

Output: (Ã(ξi), B̃(ξi), C̃(ξi)) for all i ∈ I
1 Choose V0 ∈ Mn,k.

2 Compute (Ã(ξi), B̃(ξi), C̃(ξi)) for all i ∈ I.

In step 2 the data B̃(x) and C̃(x) is approximated with a method for linear spaces. Hence we can
deal with each entry independently. The data Ã(x) is approximated with respect to the space GL(k).
The exponential and logarithm map on GL(k) are given by

exp(X,Y ) = E(Y )X and log(X,Y ) = ln(Y X−1),

Note that the matrix logarithm ln can be defined for all matrices with nonnegative eigenvalues and
Equations (46) and (47) are still valid. An i0 ∈ I is chosen and the data Ã(ξi) is mapped by the
logarithm map log with base point Ã(ξi0) to the tangent space of this manifold at Ã(ξi0). Then the new
data is approximated with a method for linear spaces and finally mapped back to the manifold by the
exponential map exp.
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Algorithm 4: Step 2 of ROM Approximation Algorithm

Input : (Ã(ξi), B̃(ξi), C̃(ξi)) for all i ∈ I and x ∈ Ω
Output: Approximation (Ax, Bx, Cx) for (Ã(x), B̃(x), C̃(x))

1 Interpolate each entry of the matrices B̃(ξi), C̃(ξi), i ∈ I(x) independently to obtain Bx and Cx.
2 Choose i0 ∈ I(x).
3 Compute Ā(ξi) = log(Ã(ξi0), Ã(ξi)) for all i ∈ I(x).
4 Interpolate each entry of the matrices Ā(ξi), i ∈ I(x) independently to obtain Āx.

5 Compute Ax = exp(Ã(ξi0), Āx).

4.3.3 Variation of the ROM Approximation Algorithm

We slightly change Step 2 of the algorithm described in Section 4.3.2. The data Ã(x) is directly approx-
imated on GL(k). For this purpose we solve the Equation (6) which reduces in our case to

∑

i∈I(x)

ϕi(x) ln(Ã(ξi)X
−1) = 0 (63)

forX ∈ R
k×k by the standard Newton method. As starting value we chooseX0 :=

∑

i∈I(x) ϕi(x) ln(Ã(ξi)).

Algorithm 5: Adaption of Step 2 of ROM Approximation Algorithm

Input : (Ã(ξi), B̃(ξi), C̃(ξi)) for all i ∈ I and x ∈ Ω
Output: Approximation (Ax, Bx, Cx) for (Ã(x), B̃(x), C̃(x))

1 Interpolate each entry of the matrices B̃(ξi), C̃(ξi), i ∈ I(x) independently to obtain Bx and Cx.

2 Interpolate the matrices Ã(ξi), i ∈ I(x) on the space of non-singular matrices with Equation (63).

4.3.4 Numerical Experiments

In Section 5.1 of [5] a simple academic example where the ROM approximation method yields good
results is shown. In the next example we have to use the variation of the algorithm to get reasonable
approximations.

Example 4.6. In this example we consider an interpolation of LTI-systems without a reduction. Hence
we can set (Ã, B̃, C̃) = (A,B,C) and omit step 1 of the ROM Approximation Algorithm. Let

A(x) :=

(
cos(h(x)) sin(h(x)
− sin(h(x) cos(h(x))

)

,

where h(x) = 4 sin(πx) and ξi =
i
4 for i ∈ {−2,−1, 0, 1, 2}. We choose i0 = 0 and the hat functions ϕi(x)

from Example 2.3 as basis functions. The error for A in the trace norm for the ROM-Approximation and
its adapted algorithm are illustrated in Figure 3. An illustration why the ROM approximation method has
a large error is shown in Figure 4. As the matrices A(x) are two dimensional rotation matrices we can
see them as points on a circle. The Riemannian average of points A1 and A2 with weights λ1 = λ2 = 0.5
is M . However if we transform the points by the logarithm to the tangent space at A0, interpolate on this
tangent space and transform back by the exponential map we get a different point M̃ 6= M .

Example 4.7. We consider the values n = 3, p = q = 1 and the matrices A(x) := A0+xA1, B(x) := B
and C(x) := C for all x ∈ [−1, 1] where

A0 :=





6 4 2
8 4 2
12 4 20



 , A1 :=





1 2 3
4 5 6
3 2 1



 , B :=





1
0
0



 and C :=
(
1 2 3

)
.

We set U(x) and V (x) equal to the first 2 columns of the orthogonal matrices of the SVD of A(x).
We choose the data sites from Example 2.8 with m = 2. The L2-norm of the error made in Step 2 of
Algorithm 5 is shown in Figure 5. As we can see the convergence rate is as predicted by Theorem 3.8.
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