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Abstract

We study direct first-kind boundary integral equations arising from transmission prob-
lems for the Helmholtz equation with piecewise constant coefficients and Dirichlet bound-
ary conditions imposed on a closed surface. We identify necessary and sufficient conditions
for the occurrence of so-called spurious resonances, that is, the failure of the boundary
integral equations to possess unique solutions.

Following rA. Buffa and R. Hiptmair, Regularized combined field integral equations,
Numer. Math., 100 (2005), pp. 1–19s we propose a modified version of the boundary
integral equations that is immune to spurious resonances. Via a gap construction it will
serve as the basis for a universally well-posed stabilized global multi-trace formulation
that generalizes the method of rX. Claeys and R. Hiptmair, Multi-trace boundary
integral formulation for acoustic scattering by composite structures, Communications on
Pure and Applied Mathematics, 66 (2013), pp. 1163–1201s to situations with Dirichlet
boundary conditions.

1 Introduction

We are concerned with boundary integral equations (BIE) describing the propagation of
acoustic waves in so-called composite media composed of parts with linear and spatially
homogenous material properties. Such media are rather common in mathematical models in
engineering and well-posed BIE are important as foundation for boundary element methods
(BEM), a well established and widely used technique for computational acoustics.

The bulk of mathematical investigations on BIE has addressed the case of only two dif-
ferent homogeneous media, with one occupying a bounded volume in space, see, for instance,
[16], [25, Ch. 9], [31, Sect. 3.9], and the monographs [26, 15]. Apparently, the first profound
mathematical derivation and analysis of particular direct BIEs for acoustics with compos-
ite media was given in [36]. Of course, boundary element methods for composite scattering
had been devised before in computational engineering, notably the so-called Poggio-Miller-
Chew-Harrington-Wu-Tsai (PMCHWT) integral equations [30, 7, 38, 18] for electromagnetic
scattering.

The BIEs proposed in [36] may be dubbed a single trace formulation (STF), because
they involve a single pair of Cauchy data on each interface as unknowns. If all participating
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media are penetrable, the BIEs are well-posed in natural trace spaces, see [12, Sect. 3.2], [11,
Prop. A.1]. However, if impenetrable media are admitted, the standard STF may be affected
by the notorious spurious resonance phenomenon, that is, for particular combinations of wave
numbers the BIE may fail to possess unique solutions. This has not been properly addressed
in [36] and in Section 4 we provide a detailed analysis of when the STF becomes vulnerable
to spurious resonances. In short, spurious resonances can occur, if an impenetrable part is
completely surrounded by another homogeneous medium, see Theorem 4.10.

To restore unconditional well-posedness of the STF, we adapt the classical idea of com-
bined field integral equations (CFIE), both in its indirect and direct version, cf. [1, 24, 27] for
the former, and [6] for the latter. To be precise, we rely on regularized or modified versions
of CFIEs from [3, 35], which are compatible with variational formulations in natural trace
spaces. The corresponding extensions of the single trace boundary integral equations are
studied in Section 5.

Another drawback of the classical STF-BIEs, when used as the foundation for low-order
Galerkin boundary element discretization, is their failure to be amenable to the powerful and
popular Calderón preconditioning techniques [19, 33, 8]. For lucid explanations refer to [12,
Sect. 4]. Lately, this shortcoming of the STF has prompted the development of so-calledmulti-
trace formulations (MTF) for scattering at composite objects. They feature four unknown
traces at (some) material interfaces and come in two flavors: global MTFs as introduced in
[9, 11, 12, 10] and [12, Sect. 5], and local MTFs presented in [20, 21]. All these articles eschew
non-penetrable media, except for [13], where pure diffusion problems are treated. It is only
some recent variants of local MTF for computational electromagnetics [28, 29] that include
CFIE ideas in order to treat impenetrable, that is, perfectly electrically conducting, bodies.

Here, in Section 5, we propose a CFIE-type extension of the global MTF introduced in
[11]. It naturally emerges from single trace CFIEs appealing to the ”gap idea” described
in [11, Sect. 5] and [12, Sect. 5.2]. The new global multi-trace CFIEs inherit unconditional
stability and turn out to be a compact perturbation of the previously known global MTF.
Thus, the customary Calderón preconditioning technique [12, Sect. 4] can be applied to them.

Discretization, for instance, by Galerkin boundary element methods, will not be addressed
in this article. However, coercivity of variational formulations in spaces of Cauchy traces
together with uniqueness of solutions, immediately allows to conclude quasi-optimality of
conforming Galerkin BEM, see [17], [37], and [31, Sect 4.2.3]. Hence, our theory paves the
way for predicting the convergence of all varieties of Galerkin BEM for both single- and
multi-trace CFIE provided that the smoothness of Cauchy traces of the exact field solution
is known.

List of notations

Ωi material sub-domains Ă R
d, Ω0 unbounded, see Fig. 1

n number of (bounded) sub-domains with penetrable medium
Σ :“ BΩΣ Boundary where homogeneous Dirichlet boundary conditions are imposed
Γ union of interfaces (skeleton), see (1)

γ
j
d, γ

j
n Dirichlet and Neumann trace operators on BΩj , see (4)

γj Cauchy trace operator defined in (5)
HpBΩjq Cauchy trace space associated with BΩj , see (6)
HpΓq Multi-trace space as defined in (6)
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〈¨, ¨〉j Duality pairing between Dirichlet and Neumann traces on BΩj

r¨, ¨s self-duality pairing on HpΓq
X

˘ 1

2 pΓq, XpΓq single trace Dirichlet/Neumann/Cauchy spaces, see (10), (11)
Td, Tn, T restriction of single trace functions onto Σ, see Propositions 3.1, 3.2

SL
j
κ single layer potential defined on BΩj

DL
j
κ double layer potential defined on BΩj

G
j
κ total potential defined on BΩj

CκpBΩjq space of Cauchy data on BΩj

A
j
κj

boundary integral operator on BΩj

Bi,j non-local “remote” coupling boundary integral operators
X0pΓq single trace space with vanishing Dirichlet data on Σ, see (16)

2 Setting of the problem

In the present article, we consider a partition R
d “ Yn

j“0Ωj Y ΩΣ where ΩΣ and the Ωj for
j ‰ 0 are open, bounded, and mutually disjoint, and each ΩΣ, Ωj is a Lipschitz domain [25,
Def. 3.28].

In addition, we assume that ΩΣ, R
dzΩΣ, and each Ωj are connected. An important

consequence of these assumptions is that ΩΣ does not contain any hole which rules out the
presence of an internal resonant cavity. We set

Γ :“ Yn
j“0BΩj (the “skeleton”) and Σ :“ BΩΣ . (1)

As in Figure 1 there may exist points where three or more sub-domains abut, which is precisely
the situation that we wish to tackle. We consider the following transmission problem for the
Helmholtz equation: Find U P H1

locpRdzΩΣq1such that

" ´∆U ´ κ2jU “ 0 in Ωj

U ´ Uinc is outgoing in Ω0
(2a)

"
U |BΩj

´ U |BΩk
“ 0

Bnj
U |BΩj

´ Bnk
U |BΩk

“ 0
on BΩj X Ωk (2b)

t U |Σ “ 0 . (2c)

For the sake of simplicity and clarity, we asume that all wave numbers are positive

κj ą 0 , j “ 0, . . . , n . (3)

Then Problem (2) admits a unique solution U , as proved in [36, Sect. 2].

1We follow the usual notations; given some open subset ω Ă R
d, we define H1pωq :“ tv P L2pωq | ∇v P

L2pωqu with }v}2
L2pωq :“ }v}2

L2pωq ` }∇v}2
L2pωq, and H1p∆, ωq :“ tv P H1pωq | ∆v P L2pωqu. If Hpωq is any one

of these spaces, Hlocpωq :“ tv | ϕv P Hpωq @ϕ P C
8
K pRdqu, where C

8
K pRdq refers to the space of C8 function

with compact support.
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n0

n1

n2

nΣ

Ω0 = exterior domain

For each j the vector nj refers to the normal
vector on BΩj directed toward the exterior of
Ωj , and nΣ denotes the vector normal to Σ
directed toward the exterior of ΩΣ. The ex-
istence of such vector fields is guaranteed by
Rademacher’s theorem [31, Thm. 2.7.1].

Ω1
Ω2

ΩΣ

Figure 1: Geometric setting for the Helmholtz transmission problem for composite media
with impenetrable ΩΣ.

As it involves transmission conditions, and since we will be interested in the derivation
of boundary integral equations adapted to this problem, we need to introduce suitable trace
operators. According to [31, Thm. 2.6.8 and Thm. 2.7.7], for every subdomain Ωj , j “ 0 . . . n,

there exist continuous trace operators γjd : H1
locpΩjq Ñ H1{2pBΩjq and γ

j
n : H1

locp∆,Ωjq Ñ
H´1{2pBΩjq (so-called Dirichlet and Neumann traces) by density defined through

γ
j
dpϕq :“ ϕ|BΩj

and γ
j
npϕq :“ nj ¨ ∇ϕ|BΩj

@ϕ P C
8pΩjq . (4)

We use similar notations for traces on Σ with nΣ fixing the orientation of the Neumann trace,
see Figure 1. Both traces can be merged into the interior Cauchy trace operators

γjpvq :“
«
γ
j
dpvq
γ
j
npvq

ff
@v P H1

locp∆,Ωjq . (5)

Traces from the exterior of Ωj spawn the exterior Cauchy trace operators γjc : H1
locp∆,RdzΩjq Ñ

H1{2pBΩjq ˆ H´1{2pBΩjq, whose Neumann trace is still based on the normal nj .

Remark 2.1. Forgoing generality in favor of clarity and brevity, we focus on the rather sim-
ple problem (2) as typical specimen of transmission problem describing acoustic scattering.
Straightforward extensions of the approach in this article can cope with the following situa-
tions:

• several impenetrable subdomains (not just one),

• Neumann (instead of Dirichlet) boundary conditions imposed on Σ,

• wave-numbers κj with non-vanishing imaginary part,

• piecewise constant coefficients in the second-order part of the differential operator as in
[12],

• more general source terms (for example, general inhomogeneous transmission and bound-
ary conditions).
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These points would entail only minor adjustments in our analysis. We refer the reader to
[11, 12] for more details on how to deal with more complex situations. In [12] electromagnetic
scattering problems are treated alongside their acoustic counterparts in a unified setting.
Following this policy and the CFIE ideas of [2], the considerations of this article could also
be generalized to electromagnetic wave propagation.

3 Trace spaces

We want to recast Problem (2) into variational boundary integral equations, so that these
are immune to spurious resonances. We aim for BIE set in natural trace spaces. The most
fundamental trace space we can introduce consist is the multi-trace space [11, Sect. 2.1], the
Cartesian product of local traces:

HpΓq :“ HpBΩ0q ˆ ¨ ¨ ¨ ˆ HpBΩnq where HpBΩjq :“ H` 1

2 pBΩjq ˆ H´ 1

2 pBΩjq . (6)

We endow each HpBΩjq with the norm }pv, qq}
HpBΩjq :“ p}v}2

H1{2pBΩjq
` }q}2

H´1{2pBΩjq
q1{2, and

equip HpΓq with the norm naturally associated with the cartesian product

}u}
HpΓq :“

´
}u0}2

HpBΩ0q ` ¨ ¨ ¨ ` }un}2
HpBΩnq

¯ 1

2

for u “ pu0, . . . , unq P HpΓq2. We write 〈¨, ¨〉j for the duality pairing between H` 1

2 pBΩjq and

H´ 1

2 pBΩjq. We also need a bilinear duality pairing for HpBΩjq and HpΓq; we opt for the
skew-symmetric version

ru, vs :“
nÿ

j“0

ruj , vjsj where

„ˆ
uj
pj

˙
,

ˆ
vj
qj

˙

j

:“ 〈uj , qj〉j ´ 〈vj , pj〉j . (7)

This particular choice of a duality pairing is well adapted to the forthcoming analysis. Note
that under the duality pairing r , s, the space HpΓq is its own topological dual, and it is easy to
show, using the duality between H1{2pBΩjq and H´1{2pBΩjq, that the pairing r , s induces an
isometric isomorphism between HpΓq and its dual HpΓq1, equivalent to the inf-sup condition

inf
vPHpΓq

sup
uPHpΓq

| ru, vs |
}u}HpΓq}v}HpΓq

“ 1. (8)

We also write HpΣq :“ H1{2pΣq ˆ H´1{2pΣq and equip this space of Cauchy traces with the
norm }pv, qq}2

HpΣq :“ }v}2
H1{2pΣq

`}q}2
H´1{2pΣq

. Analogous to (7), on this space we shall consider

the following skew-symmetric duality pairing

„ˆ
u

p

˙ˆ
v

q

˙

Σ

:“ 〈u, q〉Σ ´ 〈v, p〉Σ . (9)

2Functions in Dirichlet trace spaces like H` 1

2 pBΩjq will be denoted by u, v, w, whereas we use p, q, r for

Neumann traces. Small fraktur font symbols u, v, w are reseved for Cauchy traces, with an integer subscript

indicating restriction to a subdomain boundary. Capital letters will be used to designate scalar functions on

domains, whereas small bold letters will be used for vector fields.
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3.1 Single-trace spaces

Next, as in [11, Sect. 2.2], [12, Sect. 3.1], we introduce subspaces of traces that respect the
transmission conditions (2b) across interfaces. We first focus on traces of Dirichlet/Neumann
type introducing

X
` 1

2 pΓq :“
 

pujqnj“0 P
nâ

j“0

H
1

2 pBΩjq
ˇ̌

DV P H1pRdq s.t. V |BΩj
“ uj @j

(
,

X
´ 1

2 pΓq :“
 

ppjqnj“0 P
nâ

j“0

H´ 1

2 pBΩjq
ˇ̌

Dq P Hpdiv,Rdq s.t. nj ¨ q|BΩj
“ pj @j

(
.

(10)

The Cartesian product (up to some permutation of indices) X
1{2pΓq ˆ X

´1{2pΓq yields the
single-trace space

XpΓq :“
!
u “

ˆ
uj
pj

˙n

j“0

ˇ̌
ˇ pujqnj“0 P X

` 1

2 pΓq, ppjqnj“0 P X
´ 1

2 pΓq
)

Ă HpΓq . (11)

Observe that a function U P H1p∆,Ω0q ˆ ¨ ¨ ¨ ˆH1p∆,Ωnq satisfies the transmission conditions
(2b), if and only if pγjpUqqnj“0 P XpΓq. In particular, if U P H1p∆,RdzΩΣq then pγjpUqqnj“0 P
XpΓq. Indeed, from an intuitive point of view, the space XpΓq can be viewed as the space of
traces of functions that satisfy the transmission conditions (2b). Thus, in the sequel, we will
use this space to enforce transmission conditions.

Since every x P Σ also belongs to some BΩj , j “ 0, . . . , n, functions in X
˘1{2pΓq can be

expected to induce traces in H˘1{2pΣq. This is made precise in the following proposition.

Proposition 3.1. For every element pujqnj“0 P X
`1{2pΓq, there exists a unique uΣ P H1{2pΣq

such that V |Σ “ uΣ for any V P H1pRdq that satisfies V |BΩj
“ uj, j “ 0 . . . n. Moreover

the linear operator Td : XpΓq Ñ H1{2pΣq defined by Tdp puj , pjqnj“0 q :“ uΣ is continuous and
surjective.

Similarly, for every element ppjqnj“0 P X
´1{2pΓq, there exists a unique pΣ P H´1{2pΣq such

that nΣ ¨p|Σ “ pΣ for any p P Hpdiv,Rdq that satisfies nj ¨p|BΩj
“ pj, j “ 0 . . . n . Moreover

the linear mapping Tn : XpΓq Ñ H´1{2pΣq defined by Tnp puj , pjqnj“0 q :“ pΣ is continuous and
surjective.

Proof: We prove only the first part of the proposition, as the proof of the second part follows
along the same lines. Assume that uΣ P H´1{2pΣq satisfies V |Σ “ uΣ for one particular
V P H1pRdq such that V |BΩj

“ uj , @j “ 0 . . . n. If V 1 P H1pRdq also satisfies V |BΩj
“ uj ,

j “ 0 . . . n, then V and V 1 coincide on Σ since Σ Ă Yn
j“0BΩj . Hence uΣ “ V 1|Σ. This proves

the uniqueness of uΣ.
Let us construct the map Td explicitely. First, for every subdomain Ωj we consider

a continuous lifting operator Ej : H1{2pBΩjq Ñ H1pΩjq satisfying γ
j
d ¨ Ejpvjq “ vj . Then

define E : X1{2pΓq Ñ L2pRdzΩΣq by combining the Ej according to Ep pujqnj“0q|Ωj
:“ Ejpujq,

j “ 0 . . . n.
Actually EpX1{2pΓqq Ă H1pRdzΩΣq. Indeed, note that γkd ¨ Ep pujqnj“0q “ uk for all k “

0 . . . n and for any choice of the uj ’s. Choose u :“ pujqnj“0 arbitrarily in X
1{2pΓq. There exists

V P H1pRdq such that γjdpV q “ uj “ γ
j
dpEpuqq, which implies γjdpV ´ Epuqq “ 0. From this we

conclude Epuq ´ V P H1pRdzΩΣq and finally Epuq P V ` H1pRdzΩΣq “ H1pRdzΩΣq.
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Now consider any continuous extension operator rE : H1pRdzΩΣq Ñ H1pRdq such that
rEpV q|

RdzΩΣ
“ V . Whenever u “ puj , pjqnj“0 belongs to XpΓq, we have in particular pujqnj“0 P

X
1{2pΓq, so we can define

TdpUq :“
`
γΣd ˝ rE ˝ E

˘`
pujqnj“0

˘
for any u “ puj , pjqnj“0 P XpΓq .

With this definition, Td is clearly continuous. In addition, it fulfills the other requirements:
setting V “ rE˝E

`
pujqnj“0

˘
we have V P H1pRdq and V |BΩj

“ uj , j “ 0 . . . n, by construction.
In particular, this implies that uΣ “ V |Σ “ TdpUq. l

The following elementary result generalizes [11, Eq. (2.2)] and [12, Theorem 3.1] and it
will be crucial for many manipulations.

Proposition 3.2. Define the continuous operator T : XpΓq Ñ HpΣq by the formula Tpuq “
pTdpuq,Tnpuqq. Then we have

ru, vs “ ´ rTpuq,TpvqsΣ @u, v P XpΓq .

Proof: According to the explicit expression of r , s and r , sΣ given by (7) and (9), it suffices
to show that, whenever u “ puj , pjqnj“0 P XpΓq and v “ pvj , qjqnj“0 P XpΓq, we have

nÿ

j“0

〈uj , qj〉j “ ´ 〈Tdpuq,Tnpvq〉Σ and
nÿ

j“0

〈vj , pj〉j “ ´ 〈Tnpuq,Tdpvq〉Σ .

We will prove only the first identity above, as the second can be shown in exactly the same
manner, exchanging the roles of u and v. First of all note that pujqnj“0 P X

1{2pΓq since

u P XpΓq, and pqjqnj“0 P X
´1{2pΓq since v P XpΓq. In addition, according to Proposition 3.1,

there exist G P H1pRdq and h P Hpdiv,Rdq such that

G|BΩj
“ uj , G|Σ “ Tdpuq and nj ¨ h|BΩj

“ qj , nΣ ¨ h|Σ “ Tnpvq .

As a consequence, applying Green’s formula in each Ωj , ΩΣ and then in R
d, we obtain

〈Tdpuq,Tnpvq〉Σ `
nÿ

j“0

〈uj , qj〉j

“
ż

ΩΣ

divphqG` h ¨ ∇Gdx `
nÿ

j“0

ż

Ωj

divphqG` h ¨ ∇Gdx

“
ż

Rd

divphqG` h ¨ ∇Gdx “ 0 .

l

3.2 Review of potential operators

In this paragraph we recapitulate well-known results concerning the integral representation
of solutions of the homogeneous Helmholtz equation in Lipschitz domains. Detailed proofs
can be found, for example, in [31, Chap.3].
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Let the function Gκpxq designate the outgoing fundamental solution for the Helmholtz
operator ´∆´ κ2. For each subdomain Ωj , for any u “ pu, pq P HpBΩjq and any x P R

dzBΩj ,
define the single/double layer potential operators by3

SL
j
κppqpxq :“

ż

BΩj

ppyq Gκpx ´ yq dσpyq ,

DL
j
κpuqpxq :“ ´

ż

BΩj

upyqnjpyq ¨ ∇y

`
Gκpx ´ yq

˘
dσpyq ,

G
j
κpuqpxq :“ DL

j
κpuqpxq ` SL

j
κppqpxq ,

x R BΩj . (12)

The operator Gj
κ defined above maps continuously HpBΩjq into H1

locp∆,Ωjq ˆH1
locp∆,RdzΩjq,

see [31, Thm 3.1.16]. In particular Gj
κ can be applied to a pair of traces, i.e. Cauchy traces,

of the form u “ γjpV q. This potential operator can be used to write a representation formula
for solutions of the homogeneous Helmholtz equation, see [31, Thm 3.1.6].

Proposition 3.3. Let U P H1
locpΩjq satisfy ∆U ` κ2jU “ 0 in Ωj. In addition, assume that

U is outgoing, if j “ 0. Then we have the representation formula

G
j
κj

pγjpUqqpxq “
#
Upxq for x P Ωj ,

0 for x P R
dzΩj .

Similarly, if V P H1
locpRdzΩjq satisfies ∆V ` κ2jV “ 0 in R

dzΩj, as well as a radiation

condition in the case j ‰ 0, then we have G
j
κj

pγjpV qqpxq “ ´V pxq for x P R
dzΩj, and

G
j
κj

pγjpV qqpxq “ 0 for x P Ωj.

The potential operator G
j
κ also satisfies a remarkable identity, known as jump relations, de-

scribing the relationship of traces of Gj
κj

puq from both sides of BΩj . Using the jump operator

for Cauchy traces rγjs :“ γj ´ γ
j
c , they can concisely be expressed as

rγjs ¨ Gj
κj

pujq “ uj @uj P HpBΩjq , j “ 0, . . . , n . (13)

We refer the reader to [31, Thm.3.3.1] (the jump formulas are often given in the form of
four equations in literature). Proposition 3.3 shows that, if U is solution to a homogeneous
Helmholtz equation in Ωj (and is outgoing, if j “ 0) then

`
γj ˝ G

j
κj

˘
pγjpUqq “ γjpUq. This

actually provides a caracterization of solutions of the homogeneous Helmholtz equation, cf.
[11, Prop. 3.2], [26, Thm. 3.1.3], [31, Sect. 3.6].

Proposition 3.4. Define the space of Cauchy data

CκpBΩjq :“ tγjpUq P H1
locpΩjq | ∆U ` κ2U “ 0 in Ωj , U outgoing, if j “ 0 u .

Then γj ˝ G
j
κ : HpBΩjq Ñ HpBΩjq is a continuous projector, called the interior Calderón

projector of Ωj, whose range coincides with CκpBΩjq, i.e. for any uj P HpBΩjq

γj ¨ Gj
κpujq “ uj ðñ uj P CκpBΩjq .

3We point out that in order to maintain symmetry of formulas our choice of signs differs from what is

commonly adopted in the literature.
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For a detailed proof of this proposition, see [31, Prop. 3.6.2]. This characterization of
Cauchy traces of (outgoing) Helmholtz solutions is instrumental for deriving direct boundary
integral equations for the subdomains Ωj . The next lemma gives another caracterization of
the space of Cauchy data, which was established in [11, Lemma 6.2].

Lemma 3.5. Consider any j “ 0, . . . n, and any κ P Czt0u such that Re etκu ě 0, Imtκu ě 0.
Then for any uj P HpBΩjq we have

uj P CκpBΩjq ðñ ruj , vjsj “ 0 @vj P CκpBΩjq . (14)

Applying traces to potentials yields boundary integral operators. In our compact notation,
the crucial local boundary integral operators are

A
j
κj

:“ tγju ˝ G
j
κj

:“ 1
2pγj ` γjc q ˝ G

j
κj

“
ˆ

´Kj Vj

Wj K
1
j

˙
, j “ 0, . . . , n . (15)

We adopted the notations of [31, Sect. 3.1] for the atomic boundary integral operators, the
double layer operators Kj , the single layer operators Vj , the adjoint double layer operators
K

1
j , and the hypersingular boundary integral operators Wj .

The operators Aj
κj

satisfy an intriguing symmetry property, which seems to be well known
in literature, see for example [4, Thm 3.9] (that concerns the Maxwell case, though). Since,
apparently, the proof for acoustic waves is not published, we give it for the sake of complete-
ness.

Lemma 3.6. For any j “ 0, . . . , n, and any wave number κj we have,

”
A
j
κj

pujq, vj
ı
j

“
”
A
j
κj

pvjq, uj
ı
j

@uj , vj P HpBΩjq .

Proof: This result is just a consequence of the jump formulas (13), as well as of Lemma 3.5
applied repeatedly in Ωj and R

dzΩj :

”
A
j
κj

uj , vj

ı
j

(15)“
”
tγjuGj

κj
uj , vj

ı
j

(13)“
”
tγjuGj

κj
uj , rγjsGj

κj
vj

ı
j

(14)“ ´
”
γj Gj

κj
uj , γ

j
c G

j
κj

vj

ı
j

`
”
γjc G

j
κj

uj , γ
j
G
j
κj

vj

ı
j

(14)“ ´
”
rγjsGj

κj
uj , tγjuGj

κj
vj

ı
j

(13)“
”
tγjuGj

κj
vj , uj

ı
j

(15)“
”
A
j
κj

vj , uj

ı
j
.

l

Another symmetry of potentials and their traces applies to the coupling between different
subdomains:

Lemma 3.7. Take two arbitrary subdomains Ωj ,Ωk with j ‰ k, any wave number κ0. We
have

”
γj Gk

κ0
pvkq, vj

ı
j

“
”
γk Gj

κ0
pvjq, vk

ı
k

@vj P HpBΩjq, @vk P HpBΩkq .
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Proof: First of all, applying Lemma in 3.5 in Ωj yields

”
γj Gk

κ0
pvkq, vj

ı
j

“
”
γj Gk

κ0
pvkq, rγjsGj

κ0
pvjq

ı
j

“ ´
”
γj Gk

κ0
pVkq, γjc Gj

κ0
pVjq

ı
j
.

Consider two Cauchy traces wj “ pwj
qqnq“0, w

k “ pwk
q qnq“0, defined by the following formulas

(with α “ j, k)

wα
q :“ γq Gα

κ0
pvαq for q ‰ α, wα

α :“ γαc G
α
κ0

pvαq .

With these notations
”
γj Gk

κ0
pukq, γjc Gj

κ0
pvjq

ı
j

“
”
wk

j ,w
j
j

ı
j
.

Observe that wj ,wk P XpΓq. As a consequence, we can apply Proposition 3.2 and obtain
”
wk

j ,w
j
j

ı
j

“ ´
”
Tpwkq,Tpwjq

ı
Σ

´
ÿ

q“0...n
q‰j

”
wk

q ,w
q
j

ı
q
.

In addition, note that wj
q,w

k
q P Cκ0

pBΩqq for q ‰ j, k, and similarly Tpwjq,Tpwkq P Cκ0
pBΩΣq.

Now we apply Lemma 3.5 on BΩq for q ‰ j, k and on BΩΣ, which shows that all the terms
vanish on the right hand side of (3.2), except the one associated to q “ k. This yields”
wk

j ,w
j
j

ı
j

“
”
wk

k,w
j
k

ı
k
. Finally we conclude the proof by applying Lemma 3.5 once more in

Ωk to obtain

”
wk

k,w
j
k

ı
k

“
”
γkc G

k
κ0

pvkq, γk Gj
κ0

pvjq
ı
k

“ ´
”
rγksGk

κ0
pvkq, γk Gj

κ0
pvjq

ı
k

“
”
γk Gj

κ0
pvjq, vk

ı
k
. l

Since we will also use potential operators SLΣκ , DL
Σ
κ and G

Σ
κ that are defined by (12) with

Ωj replaced by ΩΣ, we would like to mention that all the above results also hold for the
subdomain ΩΣ.

4 Classical single-trace formulation of the first kind

Now we present a first direct boundary integral formulation for Problem (2). This first
formulation was already introduced and analysed in [36]. Since it is pivotal for our later
developments, we recall its derivation and main properties.

4.1 Boundary and transmission conditions

The classical single-trace formulation takes into account the homogenous Dirichlet boundary
conditions (2c) on Σ by incorporating them into the variational space. Set u :“ pγjpUqqnj“0

where U is the unique solution to Problem (2). To arrive at an integral equation formulation,
one first enforces the transmission conditions across the interfaces, and the Dirichlet boundary
conditions on Σ by demanding that u P X0pΓq where

X0pΓq :“ t u P XpΓq | Tdpuq “ 0 u . (16)
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Note that in the case n “ 0 where R
d “ Ω0 Y ΩΣ and Γ “ Σ, this space is simply given

by X0pΓq “ t0u ˆ H´1{2pΣq. Thanks to the continuity of Td : XpΓq Ñ H1{2pΣq, the space
X0pΓq is a closed subspace of XpΓq. In addition, the function U P H1

locp∆,RdzΩΣq satisfies
the boundary and transmission conditions in (2), if and only if pγjpUqqnj“0 P X0pΓq. In order
to impose these conditions in a variational manner, one may rely on the following elementary
characterization of X0pΓq.

Lemma 4.1. For any u P HpΓq, we have u P X0pΓq ðñ ru, vs “ 0 @v P X0pΓq.

Proof: Let u P X0pΓq. Take any element v P X0pΓq. Denote by u, v P H1{2pΣq and p, q P
H´1{2pΣq the traces such that Tpuq “ pu, pq and Tpvq “ pv, qq. According to the definition of
X0pΓq we must have u “ v “ 0. Applying Proposition 3.2, we obtain

ru, vs “ ´ rTpuq,TpvqsΣ “ 〈0, q〉Σ ´ 〈0, p〉Σ “ 0 .

Now assume that u P HpΓq satisfies ru, vs “ 0, for all v P X0pΓq. It is a direct consequence
of Proposition 7.1 in [11] that actually u P XpΓq (note that notations are different in [11]). Let
u P H1{2pΣq and p P H´1{2pΣq satisfy Tpuq “ pu, pq. Take any trace q P H´1{2pΣq and consider
q P Hpdiv,Rdq such that nΣ ¨ q|Σ “ q. Finally denote qj :“ nj ¨ q|BΩj

and set v “ p0, qjqnj“0.

Clearly v P XpΓq since q P Hpdiv,Rdq, and Tdpvq “ 0,Tnpvq “ q by construction, so v P X0pΓq.
Finally we obtain

0 “ ru, vs “ ´ rTpuq,TpvqsΣ “ ´ 〈u, q〉Σ .

Since this holds for every q P H´1{2pΣq, we finally conclude that u “ Tdpuq “ 0, which implies
u P X0pΓq. l

4.2 Integral formulation

Define uinc :“ pγ0pUincq, 0, . . . , 0q. According to the characterization of Cauchy data given by
Proposition 3.4, the trace u :“ pγ0U, . . . , γnUq of a solution U of the boundary transmission
problem (2) satisfies

p´Id{2 ` Aqpu ´ uincq “ 0 ,

where the operator A : HpΓq Ñ HpΓq is defined subdomain-wise by

Apuq :“ p Aj
κj

pujq qnj“0 “ p tγju ¨ Gj
κj

pujq qnj“0 “

»
————————–

A
0
κ0

0 ¨ ¨ ¨ 0

0 A
1
κ1

. . .
...

...
. . .

. . . 0

0 ¨ ¨ ¨ 0 A
n
κn

fi
ffiffiffiffiffiffiffiffifl

¨

»
————————–

u0

...

...

un

fi
ffiffiffiffiffiffiffiffifl

, (17)

for u “ pu0, . . . , unq P HpΓq. Summing up, Problem (2) spawns the boundary integral equations

u P X0pΓq such that p´Id{2 ` Aqpu ´ uincq “ 0 . (18)

11



To cast Equation (18) into a variational form, one must first test it with suitable traces.
Choosing test traces v P X0pΓq, and taking into account Lemma 4.1, we see that if u satisfies
(18), then it also solves the STF variational formulation [12, Eq. (3.19)]

$
&
%

find u P X0pΓq such that

rApuq, vs “ ´
“
uinc, v

‰
@v P X0pΓq .

(19)

It was established, in [36, §4.1], that the bilinear form pu, vq ÞÑ rApuq, vs satifies a generalized
G̊arding inequality, see also [13, Thm. 3.4], [11, Thm. 10.4], [12, Thm. 3.3].

Proposition 4.2. Let the isometric isomorphism Θ : HpΓq Ñ HpΓq be defined by4 Θpvq :“
p´vj , qjqnj“0 for v “ pvj , qjqnj“0 P HpΓq. There exists a compact operator K : HpΓq Ñ HpΓq,
and a constant β ą 0 such that

| rpA`Kqv,Θpvqs | ě β}v}2
HpΓq @v P HpΓq .

A direct consequence of this proposition is that the operator A : X0pΓq Ñ X0pΓq is of
Fredholm type with index 0. As a consequence, dimpkerpAqq is finite and will depend on the
wave numbers κ0, κ1, . . . , κn. Fredholm alternative arguments [31, Sect. 2.1.4] bear out that
injectivity of A already ensures stability of the variational problem (19).

Corollary 4.3. If kerpAq “ t0u then there is α ą 0 such that

inf
uPX0pΓq

sup
vPX0pΓq

| rApuq, vs |
}u}HpΓq}v}HpΓq

ą α and inf
vPX0pΓq

sup
uPX0pΓq

| rApuq, vs |
}u}HpΓq}v}HpΓq

ą 0 . (20)

The link between the STF variational formulation (19) and the transmission boundary
value problem (2) has been established in [36, §4.1]:

Proposition 4.4. Provided that kerpAq “ t0u, the traces u “ pγjpUqqNj“0 solve (19), if and

only if U P L2
locpRdzΩΣq is solution to (2), where Upxq is defined by

Upxq :“ Uincpxq ` G
0
κ0

pu0qpxq for x P Ω0 ,

Upxq :“ G
j
κj

pujqpxq for x P Ωj , j “ 1, . . . , n .
(21)

4.3 Spurious resonances

As mentioned in the introduction, an important drawback of Formulation (19), is the possi-
bility that kerpAq ‰ t0u, which is commonly referred to as “spurious resonance phenomenon”
in literature. Of course, this is highly undesirable, because, in case kerpAq ‰ t0u, then (19)
is not well posed, whereas Problem (2) always has a unique solution. In this section, we
examine in what situations spurious resonances can occur. First of all, we need to establish
an auxiliary result.

Lemma 4.5. Let u “ pu0, . . . , unq P X0pΓq satisfy rApuq, vs “ 0 for all v P X0pΓq, and set
Wjpxq “ G

j
κj

pujqpxq, x P R
dzΩj Then, for each j “ 0 . . . n, we have Wj ” 0 on any connected

component of RdzΩj that does not coincide with ΩΣ.

4We use overbars to designate complex conjugation.
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Proof: The proof takes the cue from [36, Sect. 2] and combines elements of the proofs of [12,
Lemma 3.4], [11, Prop. A.1]. We split it into three steps.

➊ Let u satisfy the assumptions of the lemma and define Wj as above. By the definition
of A and Lemma 4.1 (ñ) we conclude

rApuq, vs “
nÿ

j“0

“
γjc pWjq, vj

‰
j

“ 0 @v P X0pΓq .

Appealing to Lemma 4.1 (ð), this implies that

w :“ pγjc pWjqqnj“0 P X0pΓq . (22)

➋ Next we establish that Wj ” 0 in any unbounded connected component of RdzΩj . To
see this, note that for any j “ 0 . . . n, we have ∆Wj `κ2jWj “ 0 in R

dzΩj and Wj is outgoing

(radiating). Take ρ ą 0 large enough to ensure that RdzΩ0 Ă Bρ, where Bρ Ă R
d denotes the

ball centered at 0 with radius ρ. Applying Green’s formula in BρzΩj for j “ 0 . . . n yields

ż

BBρ

WjBrW j dσ “
ż

BρzΩj

|∇Wj |2 ´ κ2j |Wj |2 dx `
ż

BΩj

γ
j
d,cpWjqγjn,cpW jq dσ

0 “
ż

BρzΩ0

|∇W0|2 ´ κ20|W0|2 dx `
ż

BΩ0

γ0d,cpW0qγ0n,cpW 0q dσ

In the equations above, Br refers to the radial derivative. Take the imaginary part of the
identity above, and sum over j “ 0 . . . n, taking into account that w :“ pγjc pWjqq0ďjďn P XpΓq.
This yields

nÿ

j“1

Im
 ż

BBρ

WjBrW jdσ
(

“ Im
 nÿ

j“0

ż

BΩj

γ
j
d,cpWjqγjn,cpW jq dσ

(
“ 1

2
Imt rw,ws u “ 0

In the last equality above we used Lemma 4.1. By construction, the functionsWj are outgoing
radiating, so that 0 “ limrÑ8

ş
BBρ

|BrWj ´ iκjWj |2dσ. As a consequence we obtain

nÿ

j“1

1

κj

ż

BBρ

|BrWj |2 ` κ2j |Wj |2 dσ

“
nÿ

j“1

1

κj

ż

BBρ

|BrWj ´ iκjWj |2dσ ´ 2
nÿ

j“1

Im
! ż

BBρ

WjBrW j dσ
)

“
nÿ

j“1

1

κj

ż

BBρ

|BrWj ´ iκjWj |2dσ ÝÑ
ρÑ`8

0 .

This shows in particular that limρÑ8

ş
BBρ

|Wj |2dσ “ 0 for all j “ 1 . . . n. As a consequence,

we can apply Rellich Lemma, see Lemma 2.11 in [14], which implies that Wj “ 0 in the
unbounded component of RdzΩj , j “ 1 . . . n.

➌ Consider an arbitrary j P t0, . . . nu, and let Oj be a bounded connected component of
R
dzΩj with Oj ‰ ΩΣ. Since (i) ΩΣ,Ω0, . . . ,Ωn form a partition of Rd, (ii) all these domains

are connected, and (iii) RdzΩΣ is connected, we find that

• Σ “ BOj ,
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• there is a ℓ P t1, . . . , nu, ℓ “ j, such that Ωl Ă Oj and |BΩℓ X BΩj | ą 0.

A typical situation is depicted in Figure 2. Hence, there exists xj P BOj X BΩℓ and an open
ball D “ Bpxj , ρjq, ρj ą 0, such that

D X BOj “ D X BΩℓ ‰ H .

Ω1

Ω2

Ω3

ΩΣ

D

Figure 2: Geometrical situation for part ➌ of the proof of Lemma 4.5. Here j “ 1, O1 “
ΩΣ Y Ω2 Y Ω3 and ℓ “ 3.

Since both Oj and Ωj are connected and bounded, the set R
dzOj is unbounded and

connected. Thus, it is entirely contained in the unbounded connected component of RdzΩℓ

that we denote by Uℓ. From part ➋ of the proof we know that Wℓ “ 0 in Uℓ.
Obviously, BUℓ Ă BΩℓ as well as BOj Ă BΩj . Moreover we know that D X BOj “ D X BUℓ

has positive measure. Since w “ pγkc pWkqqnk“0 P X0pΓq according to (22) from Part ➊ of the
proof, we deduce that on D X BOj X BUℓ Ă BΩj X BΩℓ holds

γ
j
d,cpWjq “ γℓd,cpWℓq “ 0

γ
j
n,cpWjq “ ´γℓn,cpWℓq “ 0 on D X BOj X BUℓ .

This means that γjc pWjq “ 0 on BOj XD. As ∆Wj `κ2jWj “ 0 in Oj , by analytic continuation
this implies Wj “ 0 in Oj according to Lemma 2.2 in [36]. l

Our final goal is to find sufficient and necessary conditions, under which the assumptions of
Lemma 4.5 imply u “ 0. The next result teaches that we need to examine the functions Wj

outside Ωj .

Lemma 4.6. Let u P X0pΓq satisfy rA u, vs “ 0 for all v P X0pΓq. Set Wjpxq :“ G
j
κj

pujqpxq,
x R BΩj, and assume that γjc pWjq “ 0 for all j “ 0 . . . n. Then u “ 0.

Proof: We have γjpWjq “ rγjpWjqs “ rγjs ¨ Gj
κj

pujq “ uj so pγjpWjqqnj“0 “ u P X0pΓq.
Moreover, by construction ∆Wj ` κ2jWj “ 0 in Ωj for all j “ 0, . . . , n. We conclude that

V P H1
locpRdzΩΣq defined by V |Ωj

“ Wj |Ωj
satisfies all the equations of Problem (2) without
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incident field, Uinc “ 0. Since this transmission problem is well-posed V must vanish. Hence
γjpWjq “ 0 for all j “ 0 . . . n, and finally uj “ rγjpWjqs “ 0 for all j “ 0 . . . n, i.e. u “ 0. l

The previous lemma together with Lemma 4.5 sends the message that kerpAq ‰ t0u can occur
only if ΩΣ agrees with a connected component of the complement of some subdomain. Now
we describe a simple setting in which this is the case.

Example 4.7 ([32, Sect. 3.1]). Consider the case where n “ 0, so that the scatterer reduces to
a single impenetrable part Rd “ Ω0 YΩΣ, and Γ “ BΩ0 “ Σ, see Figure 3. In this geometrical
setting we have X0pΓq “ t0u ˆ H´1{2pΣq.

Choose κ0 P R` such that there exists V P H1p∆,ΩΣqzt0u that satisfies ∆V ` κ20V “ 0
in ΩΣ, and V “ 0 on BΩΣ. The existence of such non-trivial functions V is a classical
consequence of spectral theory. Formulation (19) then reduces to the well-known single-layer

integral formulation of the first kind: seek p P H´ 1

2 pΓq such that

〈

q, ptγ0du ˝ SL
0
κ0

qppq
〉

0
“ ´

〈

q, γ0dpUincq
〉

0
@q P H´ 1

2 pΓq . (23)

Note that rγ0ds ¨ SL0κ0
“ 0 according to (13), so we have tγ0du ¨ SL0κ0

“ γ0d,c ¨ SLκ0
. Coming

back to the function V considered above, we have γ0d,cpV q “ 0 and γ0n,cpV q ‰ 0. In addition,

a direct application of Proposition 3.3 yields V pxq “ ´ SL
0
κ0

p γ0n,cpV q qpxq for x P ΩΣ, so

tγ0du ¨ SL0κ0
p γ0n,cpV q q “ γ0d,c ¨ SL0κ0

p γ0n,cpV q q “ 0, which means that p :“ γ0n,cpV q “ 0 solves
(23), although Uinc “ 0.

ΩΣ Ω0

Figure 3: Homogeneous impenetrable
scatterer giving rise to an exterior Dirich-
let problem for the Helmholtz equation.

Ω1ΩΣ Ω0

Figure 4: Situation without spurious res-
onances, cf. Corollary 4.8

We have assumed that RdzΩΣ is connected. Therefore it is evident, that, if ΩΣ coincides
with a bounded component of RdzΩj , the boundary Σ of ΩΣ must be contained in BΩj .

Corollary 4.8. Assume that Σ Ć BΩj for all j “ 0 . . . n. Then, for any choice of wave
numbers satisfying (3), we have kerpAq “ t0u

The insights we have gained so far are not exactly intuitive as demonstrated by the
following example.

Example 4.9. Consider Problem (2) where n “ 1, so that Rd “ Ω0 Y Ω1 Y ΩΣ. Assume that
κ0 “ κ1 so that the interface BΩ0XBΩ1 is “artificial”. In fact, we face the very same scattering
problem as in Example 4.7 above. Suppose that mespΣ X BΩ0q ą 0 and mespΣ X BΩ1q ą 0
like in Figure 4. Then, no matter what the value of κ0 (even if κ0 P Sp∆,ΩΣq), there is no
spurious resonance!
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The following lemma generalizes the observation made in Example 4.7. In the interest of
a concise statement we introduce the (discrete) set of interior Dirichlet eigenvalues of ´∆ on
ΩΣ:

Sp∆,ΩΣq :“
"
κ ą 0 | DV P H1p∆,ΩΣqzt0u :

´∆V “ κ2V in ΩΣ ,

V “ 0 on BΩΣ

*
. (24)

Theorem 4.10. For Problem (2), for any choice of wave numbers satisfying (3), we have
the equivalence

kerpAq ‰ t0u ðñ

$
’&
’%

Σ Ă BΩj for a j P t0, . . . , nu
and

κj P Sp∆,ΩΣq

,
/.
/-

.

Proof: Without loss of generality assume that Σ Ă BΩ0 (the proof below can easily be
adapted to the case Σ Ă BΩj for j ‰ 0).

➊ There exists a connected component O0 of RdzΩ0 such that Σ Ă BO0. We necessarily
have Σ “ BO0, otherwise Σ would admit a boundary as a Lipschitz manifold of dimension
d ´ 1, and this is not possible since Σ “ BΩΣ. The set R

dzO0 is connected, it is contained
in R

dzΩΣ, and it is maximal as a connected subset of RdzΩΣ. As a consequence R
dzO0 “

R
dzΩΣ since R

dzΩΣ is assumed to be connected. In conclusion, ΩΣ is exactly one bounded
connected component of RdzΩ0. In particular, ΩΣ is separated from the other subdomains
Ωj , j “ 1, . . . , n:

ΩΣ X Yn
j“1Ωj “ H. (25)

➋ Assume first that κ0 P Sp∆,ΩΣq. As in Example 4.7, consider a function V P
H1pΩΣqzt0u such that ∆V `κ20V “ 0 in ΩΣ, and V “ 0 on Σ. Consider u0 “ pu0, p0q P HpBΩ0q
with u0 “ 0, p0 “ 0 on BΩ0zΣ, and p0 “ γΣn pV q “ 0 on Σ. Applying Proposition 3.3 to V , we
see that G0

κ0
pu0qpxq “ SL

Σ
κ0

pp0qpxq “ 0 for x P Ω0 Ă R
dzΩΣ, so that γ0d SL

Σ
κ0

pp0q “ 0. Now set
u “ pu0, 0, . . . , 0q P X0pΓqzt0u. For any v “ pv0, . . . , vnq P X0pΓq we have

rApuq, vs “
“
γ0 SL0κ0

pp0q, v0
‰
0

“
〈

γ0d SL
0
κ0

pp0q, q0
〉

0
“ 0 ,

where v0 “ p0, q0q on Σ. Hence, u P KerpAqzt0u.
➌ Now assume that κ0 R Sp∆,ΩΣq. We have to confirm that necessarily u “ 0. Thanks

to Lemma 4.5 Wj “ 0 in R
dzΩj for j “ 1 . . . n, and W0 “ 0 in R

dzpΩ0 Y ΩΣq, which implies

γjc pWjq “ 0 for j “ 1 . . . n, and γ0c pW0q|BΩ0zΣ “ 0 .

Now let us show that γ0c pW0q “ 0 on Σ as well, i.e. γΣpW0q “ 0. We already know that, with
w from (22), Tdpwq “ γΣd pW0q “ 0 since w P X0pΓq. According to Proposition 3.3, we have

W0pxq “ ´G
0
κ0

pγ0c pW0qqpxq “ G
Σ
κ0

pTpwqqpxq “ SL
Σ
κ0

pTnpwq qpxq

for all x P ΩΣ Ă R
dzΩ0. So we conclude that 0 “ γΣd pW0q “ γΣd ¨ SLΣκ0

pTnpwq q. It is well
known, see for example [31, Thm. 3.9.1], that KerpγΣd SLκ0

q “ t0u, if κ0 R Sp∆,ΩΣq, hence
we finally conclude that Tnpwq “ γ0n,cW0 “ 0, which means γ0c pW0q “ 0. To finish the proof
we apply Lemma 4.6. l
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5 Single-trace combined field integral equation

We have discovered that the STF (19) is free of spurious resonance except for the situation
Σ Ă BΩj . As a remedy we are going to devise an augmented STF taking the cue from
the CFIE approach already mentioned in the Introduction. We will not restrict ourselves
to geometries that allow spurious resonances because, if Σ is largely contained in BΩj with
the exception of a small section, discretizations of the STF may already suffer from poor
conditioning. Thus, even when spurious resonances cannot occur, the CFIE augmentation
may enhance numerical stability!

The classical CFIEs resort to simple complex combinations of Dirichlet and Neumann
traces, ignoring the fact that they belong to different function spaces. This compounds the
difficulties of a rigorous analysis of the resulting boundary integral equations. We refer to the
discussion in [3, Sect. 3.1 ]. This problem can be overcome by using regularized CFIE that
rely on compact operators which map between Dirichlet and Neumann traces. This was first
employed for theoretical investigations [27] and, more recently, used for the design of stable
Galerkin boundary element methods [5, 3, 22, 23, 34, 2]. Our approach is inspired by [3].

5.1 Transformed traces

The principle of regularized CFIE boils down to enforcing generalized impedance (Robin
type) boundary conditions for potentials on Σ. As in [3, Sect. 3.2], these impedance boundary
conditions rely on a regularizing linear operator M : H´1{2pΣq Ñ H`1{2pΣq that satisfies

(i) M is compact , (26a)

(ii) Imt〈ϕ,Mϕ〉Σu ą 0 @ϕ P H´1{2pΣqzt0u . (26b)

Based on M we define the space of traces complying with generalized impedance boundary
conditions

XMpΓq :“
 
u P XpΓq | Tdpuq “ MTnpuq

(
. (27)

Appealing to the duality of the trace spaces H´1{2pΣq and H`1{2pΣq we can define the adjoint
regularizing operator M˚ : H´1{2pΣq Ñ H`1{2pΣq by the formula

〈q,M˚ p〉Σ :“ 〈p,M q〉Σ @p, q P H´1{2pΣq . (28)

It is immediate that M˚ satisfies (26), if and only if M does. As a consequence, we can define
the space XM

˚pΓq analogously to (27). It can be used to obtain a weak characterization of
XMpΓq:
Lemma 5.1. For any u P HpΓq, we have u P XMpΓq ðñ ru, vs “ 0 @v P XM

˚pΓq.
Proof: ➊ (ñ) From Proposition 3.2 and (9) we obtain the identity

ru, vs “ 〈Tnpuq,Tdpvq〉Σ ´ 〈Tdpuq,Tnpvq〉Σ , u, v P XpΓq . (29)

For u P XMpΓq we infer

ru, vs “ 〈Tnpuq,Tdpvq〉Σ ´ 〈MTnpuq,Tnpvq〉Σ

“
〈

Tnpuq, pTdpvq ´ M
˚
Tnpvqqlooooooooooomooooooooooon

“0

〉

Σ

“ 0 @v P XM
˚pΓq .
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➋ (ð) To begin with, as in the proof of [12, Thm. 3.1], we conclude with (29) that u P XpΓq.
Then, for v P XM

˚pΓq, (29) becomes

ru, vs “ 〈Tnpuq,M˚
Tnpvq〉Σ ´ 〈Tdpuq,Tnpvq〉Σ “ 〈pTdpuq ´ MTnpuqq,Tnpvq〉Σ .

As Tn is surjective, the second assertion of the lemma follows. l

The regularizing operator will enter the definition of a trace transformation R : XpΓq Ñ
XpΓq that realizes an isomorphism of the form “identity + compact”. Its definition involves

a continuous extension operator EΣ : H` 1

2 pΣq Ñ H1pRdq that furnishes a right inverse of the
trace γΣd . Then we define

R “ Id ` C , C :“
´`
γ
j
d ˝ EΣ ˝M ˝Tn, 0

˘¯n

j“0
, (30)

where C : XpΓq Ñ XpΓq inherits compactness from M.

Lemma 5.2. R is an isomorphism and we have RpX0pΓq q “ XMpΓq.

Proof: Observe that C2 “ 0, so that R´1 “ Id´C, which proves the first statement. Now let
γd : H1pRdq Ñ XpΓq refer to the global trace operator defined by γdpuq “ pγjdpuqqnj“0. Since
Td ˝γd ˝ EΣ “ Id and TnpC uq “ 0, we easily see that for u P X0pΓq

TdpR uq ´ MTnpR uq “ Tdpuqloomoon
“0

`MTnpuq ´ MTnpuq “ 0 .

this shows that RpX0pΓq q Ă XMpΓq. We show in the same manner that pId ´ CqpXMpΓq q Ă
X0pΓq, which finishes the proof. l

Remark 5.3. If Σ Ă BΩj for some j P t0, . . . , nu, we can pick an extension EΣ that is local in
the sense that

supppEuq Ă ΩΣ Y Σ Y Ωj , u P H`1{2pΣq . (31)

5.2 Direct single trace CFIE

The STF (19) is a direct BIE in the sense that its unknowns are Cauchy traces of the solution
of the transmission problem (2). This property is preserved by the CFIE augmentation
proposed in this section.

As in Section 4.2 let u “ pujqnj“0 P X0pΓq denote the Cauchy traces of the solution U of

Problem (2) i.e. uj “ γjpuq, j “ 0, . . . , n. We have seen that it satisfies the integral equation
(18). The derivation of a direct combined field integral equation starts from this identity
and, as before, casts it into a weak form similar to (19). However, this time we employ test
functions rv P XMpΓq instead of taking v P X0pΓq! We end up with: seek u P X0pΓq such that

“
p´Id{2 ` Aqu,rv

‰
“

nÿ

j“0

”
γjc G

j
κj

pujq,rvj
ı
j

“ ´
“
uinc,rv

‰
@rv P XMpΓq . (32)

Thanks to Lemmas 5.2 and 4.1, an equivalent reformulation of (32) is

rp´Id{2 ` Aqu, pId ` Cqvs “ rA u, vs ` cpu, vq “ ´
“
uinc, pId ` Cqv

‰
@v P X0pΓq , (33)
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where we define the compact bilinear form c : XpΓq ˆ XpΓq Ñ C according to

cpw, vq :“ rp´Id{2 ` Aqw,C vs , w, v P XpΓq . (34)

Compactness of c is an immediate consequence of the compactness of C : XpΓq Ñ XpΓq. We
may also introduce the unique element ruinc P HpΓq such that rruinc, vs “ ´

“
uinc, pId ` Cqv

‰
.

This makes it possible to write the direct single trace CFIE in variational form:

#
seek u P X0pΓq such that

rA u, vs ` cpu, vq “ ´ rruinc, vs @v P X0pΓq . (35)

Below we write aM for the bilinear form from (35). Obviously, (35) amounts to a compact
perturbation of (19) so that it preserves many key properties. In particular, it satisfies a
generalized G̊arding inequality analogous to Proposition 4.2.

Corollary 5.4. Recall the isomorphism Θ : HpΓq Ñ HpΓq from Proposition 4.2, defined by
Θpvq “ p´vj , qjqnj“0 for v “ pvj , qjqnj“0 P HpΓq. The bilinear form aM on the left side of (35)
satisfies

| aMpv,Θpvqq ` kpv,Θpvqq| ě β }v}2
HpΓq @v P X0pΓq ,

with a compact sesqui-linear form k : XpΓq ˆ XpΓq Ñ C.

Denote AM : X0pΓq Ñ X0pΓq1 the operator induced by aM. The previous proposition
shows that AM is of Fredholm type with index 0. Thanks to Fredholm alternative arguments
injectivity of AM is sufficient for stability of the variational problem (35) (in the sense of an
inf-sup condition like (20)).

Lemma 5.5. For any choice of the wave numbers κ0, . . . κn satisfying (3), KerpAMq is trivial.

Proof: By and large, the proof runs parallel to that of Lemma 4.5 and Theorem 4.10. Thus,
some parts will only be sketched and for details the reader may refer to Section 4.3.

➊ Pick u “ pu0, u1, . . . , unq P X0pΓq such that it solves (32)/(33) with uinc “ 0. As in

Section 4.3 we set Wjpxq “ G
j
κj

pujqpxq and w :“
´
γ
j
cWj

¯n

j“0
P HpΓq, cf. (22). Since (32)

with uinc “ 0 implies
“
w,rv

‰
“ 0 for all rv P XMpΓq, Lemma 5.1 confirms w P XM

˚pΓq.
➋ We exploit (26b) and exactly as in Step ➋ of the proof of Lemma 4.5 we show that

Wj ” 0 in any unbounded connected component of RdzΩj .
➌ The arguments employed in Step ➌ of the proof of Lemma 4.5 completely carry over

to the present situation and confirm that Wj ” 0 in any connected component of RdzΩj that
does not coincide with ΩΣ. This is the counterpart of the statement of Lemma 4.5 for (35).

➍ If Σ Ć BΩj for every j “ 0, . . . , n, we find w “ 0 as explained when justifying Corol-
lary 4.8. Then apply Lemma 4.6 and the proof is finished.

➎ Assume Σ Ă BΩj for some j “ 0, . . . , n. By above arguments all Wk, k “ j, vanish
on R

dzΩk. However, Wj may not vanish on ΩΣ, recall Step ➋ of the proof of Theorem 4.10.
However, from w P XM

˚pΓq we conclude

γΣd pWjq “ M
˚ γΣn pWjq .
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Thus, In ΩΣ the function Wj satisfies ∆Wj `κ2jWj “ 0 in ΩΣ and γΣd pWjq “ M
˚ γΣn pWjq. By

Green’s formula, we obtain as in [3]

0 “ Im
! ż

ΩΣ

|∇Wj |2 ´ κ2j |Wj |2dx
)

“ Im
! ż

Σ
γΣn pW jq ¨ M˚ ¨γΣn pWjq dσ

)
.

According to property (26b) ofM˚, this implies γΣn pWjq “ 0, hence γΣd pWjq “ M
˚ γΣn pWjq “ 0.

Finally this yields γjc pWjq “ 0 and Wj ” 0 in ΩΣ, so that we know w “ 0. Appealing to
Lemma 4.6 finishes the proof. l

As in Section 4.2, via Fredholm theory, from this lemma we conclude that (35) always
possesses a unique solution.

Remark 5.6. In the case n “ 0 of a single impenetrable scatterer the spaces and operators
reduce to

X0pΓq “ t0u ˆ H` 1

2 pΣq , A
(17)“ A

0
κ0
, C

(30)“
ˆ
M ˝Tn

0

˙
. (36)

As a consequence, with (15) the variational equation (33) becomes: seek u “ p0, p0q P X0pΓq
„ˆ

´ Id

2
`
ˆ

´K0 V0

W0 K
1
0

˙˙ˆ
0
p0

˙
,

ˆ
Id ´

ˆ
0 M

0 0

˙˙ˆ
0
q0

˙
“ ´

„ˆ
uinc
pinc

˙
,

ˆ
Id ´

ˆ
0 M

0 0

˙˙ˆ
0
q0

˙

for all q0 P H´ 1

2 pΣq. Owing to (7) and with uinc “ puinc, pincq this is equivalent to finding

p0 P H´ 1

2 pΣq such that

〈V0 p0, q0〉 `
〈

p´Id{2 ` K
1
0qp0,M q0

〉

“ 〈uinc, q0〉 ` 〈pinc,M q0〉

õ
〈`
V0 `M

˚p´Id{2 ` K
1
0q
˘
p0, q0

〉

“ 〈uinc ` M
˚ pinc, q0〉 ,

for all q0 P H´ 1

2 pΣq. This agrees with the regularized CFIE from [3, Sect. 4].

5.3 Indirect CFIE

Both the STF (19) and the regularized CFIE (35) are direct BIE, since their unique solutions
provide true Cauchy traces of the solution U of (2). If the solution of a BIE does not agree
with traces of the solution of the related boundary value problem, it is classified as indirect.
In [3, Sect. 3] a regularized indirect CFIE was devised for the simple situation n “ 0. In this
section we adapt this approach to the STF. We obtain a variational equation that is dual to
the direct CFIE introduced in the previous section.

The indirect CFIE stems from a representation of the solution to Problem (2) in the
following form

Upxq “ G0
κ0

pũ0qpxq ` Uincpxq for x P Ω0,

Upxq “ Gj
κj

pũjqpxq for x P Ωj , j “ 1 . . . n,

where ũ “ pũjqnj“0 P XMpΓq .

(37)
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Admittedly, existence of such a representation of U is not obvious at first glance. Assume
for a moment that such a representation can be found. Then the boundary and transmission
conditions of Problem (2) can be expressed as pγjpUqqnj“0 P X0pΓq. Using Lemma 4.1 and
representation (37) yields

“
γ0pUincq, v0

‰
0

`
nÿ

j“0

”
γj Gj

κj
pũjq, vj

ı
j

“ 0 @v “ pvjqnj“0 P X0pΓq . (38)

Definition (15) together with the jump relations (13) give the equivalent statement

„
p1
2
Id ` Aqũ, v


“ ´

“
γ0pUincq, v0

‰
0

@v “ pvjqnj“0 P X0pΓq . (39)

Thanks to Lemma 5.2 there exists u “ pu0, . . . , unq P X0pΓq such that ũ “ R u “ pId ` Cqu.
Plugging this into (39), and taking account of the definition of uinc and Lemma 4.1, we obtain

rApuq, vs `
„

pA`1

2
IdqC u, v


“ ´

“
uinc, v

‰
@v P X0pΓq . (40)

Clearly, this equation is a perturbed version of Formulation (19). Introduce the bilinear form

c
1pw, vq :“

„
pA`1

2
IdqC u, v


, (41)

the variational problem of the indirect single trace CFIE can be stated as:

#
seek u P X0pΓq such that

rA u, vs ` c
1pu, vq “ ´ ruinc, vs @v P X0pΓq . (42)

Lemma 5.7. We have c1pw, vq “ cpv,wq for all v,w P X0pΓq.

Proof: This is an immediate consequence of the definitions (34), (41), of Lemma 3.6, and of
the skew-symmetry of the pairing 〈¨, ¨〉. l

Corollary 5.8. For any choice of the wave numbers κ0, . . . κn satisfying (3), the indirect
single trace CFIE (42) has a unique solution.

Proof: Lemma 5.7 tells us that the bilinear forms of (42) and (35) are adjoint to each other.
As a consequence, Corollary 5.4 and Lemma 5.5 carry over to (42) verbatim. A Fredholm
alternative argument clinches the case. l

The previous proposition makes clear that Formulation (42) is always well posed. Now,
assume that u is defined as the solution to Formulation (42). Undo the substitution made
above by setting ũ “ R

´1 u “ pId ´ Cqu. Then, by construction, the function U defined by
(37) solves Problem (2) and coincides with its unique solution. Ultimately, this proves that
a representation according to (37) can always be found for a solution of Problem (2). In
addition, by means of (37) the field can be recovered.

Remark 5.9. In the case n “ 0 already discussed in Remark 5.6 the variational problem (42)
boils down to the indirect CFIE derived in [3, Sect. 3].
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5.4 Mixed variational formulations

A convenient concrete choice for an operator M satisfying (26a) and (26b) was proposed in
[3, Sect. 4], namely M “ p∆Σ ` Idq´1 : H´1pΣq Ñ H1pΣq, where ∆Σ stands for the Laplace-
Beltrami operator on the closed surface Σ. The variational definition of this operator reads:

Mϕ P H1pΣq : dΣpMϕ, vΣq “ ´ı 〈ϕ, vΣ〉Σ @vΣ P H1pΣq, ϕ P H´1pΣq , (43)

with sesqui-linear form (gradΣ is the surface gradient on Σ)

dΣpz, vq :“
ż

Σ
gradΣ z ¨ gradΣ v ` z v dS , z, v P H1pΣq . (44)

Compactness of M : H´1{2pΣq Ñ H`1{2pΣq is immediate from the continuity M : H´1pΣq Ñ
H1pΣq and the compact embeddings H´1{2pΣq Ă H´1pΣq and H1pΣq Ă H`1{2pΣq. This
operator is also symmetric in the sense that

〈Mϕ, ψ〉Σ “ 〈Mψ,ϕ〉Σ , ϕ, ψ P H´1pΣq . (45)

The bilinear forms of the variational formulations (35) and (40) of single-trace CFIEs
involve evaluations of M. With Galerkin boundary element discretization in mind, it is desir-
able to avoid these and rely on the variational definition of M instead. As in [3, Sect. 4.2 &
Sect. 3.2], this can be achieved by introducing auxiliary variables. In light of Lemma 5.7 we
will restrict the discussion to the direct formulation (33).

Using (17), the bilinear form c from (34) can be rewritten as (w, v P X0pΓq)

cpw, vq “
nÿ

j“0

”`
´Id{2 ` A

j
κj

˘
wj ,

`
C v

˘
j

ı
j

“ ´1
2 rw,C vs `

nÿ

j“0

”
A
j
κj

wj ,
`
C v

˘
j

ı
j

➀“ 1
2 rTw,TpC vqsΣ ´

nÿ

j“0

〈`
A
j
κj

wj

˘
n
, γ

j
d EΣMpTn vq

〉

j

➁“ ´1

2
〈Tnpwq,MpTn vq〉Σ ´

nÿ

j“0

〈

pγjd EΣq1
`
A
j
κj

wj

˘
n
,MpTn vq

〉

Σ

➂“
〈

M

´
´1

2 Tnpwq ´
nÿ

j“0

pγjd EΣq1
`
A
j
κj

wj

˘
n

¯
,Tnpvq

〉

Σ

In step ➀ we appeal to Proposition 3.2 for the first term and use the notation p¨qn to extract
the Neumann component of Cauchy traces. We also exploit that C v has vanishing Neumann
component and the definition (30) of C. The step ➁ uses that Td ˝EΣ “ Id and the adjoint
operator pγjd EΣq1 : H´1{2pBΩjq Ñ H´1{2pΣq. In ➂ we apply (45).

These manipulations suggest that we introduce the new unknown

zΣ :“ M

´
´1

2 Tnpwq ´
nÿ

j“0

pγjd EΣq1
`
A
j
κj

wj

˘
n

¯
P H1pΣq , (46)
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which satisfies

dΣpzΣ, vΣq “
〈

´1
2 Tnw ´

nÿ

j“0

pγjd EΣq1
`
A
j
κj

wj

˘
n
, vΣ

〉

Σ

“ ´1
2 〈Tnw, vΣ〉Σ ´

nÿ

j“0

〈`
A
j
κj

wj

˘
n
, γ

j
d EΣpvΣq

〉

j
@vΣ P H1pΣq .

(47)

By means of zΣ we can express cpw, vq “ 〈zΣ,Tn v〉Σ, which converts the variational problem
(35) of the direct single-trace CFIE into mixed form: seek u P X0pΓq, zΣ P H1pΓq such that

rA u, vs ` 〈zΣ,Tn v〉Σ “ ´ rruinc, vs @v P X0pΓq ,
〈

1
2 Tnpuq `

nř
j“0

pAj
κj

ujqn, γjd EΣpvΣq
〉

Σ

` dΣpzΣ, vΣq “ 0 @vΣ P H1pΣq .

(48)

This variational problem inherits coercivity from (35), because the compact embedding H1pΣq Ă
H`1{2pΣq renders the off-diagonal operators of (48) compact. Uniqueness also carries over
from (35). Moreover, (48) is amenable to Galerkin discretization by means of standard bound-
ary elements, for instance, piecewise linear continuous functions on a triangular surface mesh
of Σ for the approximation of zΣ.

6 Multi-trace Combined Field Integral Equations

As pointed out in the Introduction, a shortcoming of the classical global multi-trace formu-
lation (19) and also of its stabilized versions (35) and (42) is the tight coupling between
subdomains implicit in the use of the single trace variational space X0pΓq, which contains the
transmission conditions “in strong form”. This limits flexibility in using Galerkin trial spaces
locally on the subdomains. More severely, it turned out to be a big obstacle to the use of
operator preconditioning techniques. We skip a detailed explanation here and recommend
that the reader study [12, Sect. 4]. We only quote the conclusion drawn in [12] and [13] that
switching to variational formulations posed on decoupled local trace spaces will pave the way
for effective operator preconditioning.

This has been the main motivation behind the development of so-called multi-trace for-
mulations (MTFs). Here the expression “multi-trace” refers to a family of BIE where the
unknowns are doubled on each interface that separates two (bounded) subdomains. In [11]
and [12, Sect. 5] a global MTF has been devised based on the classical STF (19). In this
section we are going to derive and study its extension to Dirichlet boundary conditions and
its CFIE counterpart, both related to the formulations that we have established in Sections
4 and 5.

6.1 The gap idea

The global MTF was discovered through a heuristic geometric limit process, which is eluci-
dated and justified in [11, Sect. 5], [12, Sect. 5.2], and [13, Sect. 4.2]. Tersely speaking, we
imagine an (infinitely) narrow gap between bounded subdomains Ωj , j “ 1, . . . , N , including
ΩΣ. This gap is filled with the same ambient medium as Ω0, see Figure 5 for an illustration.
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For this arrangement where all bounded subdomains are isolated from each other we consider
variational single trace formulations. Sloppily speaking, the corresponding global MTFs then
boil down to STFs applied to gap configurations with vanishing gap.

Ω1

ΩΣ

Ω2

Ω0

ñ

Ω1

ΩΣ

Ω2

Ω0

Figure 5: Illustration of the gap idea (gap highlighted)

Recalling Theorem 4.10, the alert reader will have noticed that the gap configuration
as in Figure 5 (right) is exactly the situation, in which spurious resonances may afflict the
classical STF (19), because Σ Ă BΩ0. More precisely, uniqueness of solutions will be lost, if
κ0 P Sp∆,ΩΣq, where the latter set comprises the interior Dirichlet eigenvalues for ´∆ on
ΩΣ, see (24). Thus,

(E1) we expect that the standard global MTF will suffer from spurious resonances whenever
κ0 P Sp∆,ΩΣq.

On the other hand,

(E2) we also expect that the MTFs we obtain from pursuing the gap construction for CFIE
extensions of the STF, will be stable for all combinations of wave numbers.

This hope relies on Lemmas 5.5 and Corollary 5.8. In the sequel we give rigorous justifications
of our conjectures. We are not going to employ vanishing gap arguments, which entail difficult
geometric limit processes, but directly scrutinize the variational formulations as in [11].

In the gap setting (Figure 5, right) we face a partitioning BΩ0 “ Yn
j“1BΩj Y Σ so that, in

this special case, the variational space X0pΓq from (16) for the STF variational formulations
is clearly isomorphic to a product of Cauchy trace spaces on the subdomain boundary and
Neumann traces on Σ:

pHpΓq :“ HpBΩ1q ˆ ¨ ¨ ¨ ˆ HpBΩnq ˆ H´ 1

2 pΣq . (49)

This space will supply the functional framework for the global MTF, also for general config-
urations without gap (such as in Figure 5, left). The main difference between pHpΓq and the
space HpΓq introduced in (6) is that the former does not contain any contribution from BΩ0.
Instead, it comprises contributions from Σ, via a trace chosen in H´1{2pΣq. We equip the new
space pHpΓq with a norm defined by

}pu}2pHpΓq
:“ }pu1}2

HpBΩ1q ` ¨ ¨ ¨ ` }pun}2
HpBΩnq ` }pΣ}2H´1{2pΣq
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for all pu “ ppu1, . . . ,pun, pΣq. Clearly, the dual space of pHpΓq with respect to local L2-
type duality pairings is qHpΓq :“ HpBΩ1q ˆ ¨ ¨ ¨ ˆ HpBΩnq ˆ H1{2pΣq. In concrete terms, for
pu “ ppu1, . . . ,pun, uΣq P qHpΓq, and pv “ ppv1, . . . ,pvn, qΣq P pHpΓq the underlying duality pairing
between pHpΓq and qHpΓq is defined by the bilinear form

q
pu,pv

y
:“

nÿ

j“1

“
puj ,pvj

‰
j

` 〈uΣ, qΣ〉Σ .

Routine verifications show that this bilinear form is non-degenerate and satisfies inf-sup con-
ditions. We will use it to derive variational formulations.

6.2 Multi-trace formulations (MTFs)

Guided by the gap idea, and the STF (19) in gap settings, we can embark on the lengthy
manipulations elaborated in [11, Sect. 8] and [12, Eq. (5.8)]. Since no new complications arise
in the presence of essential boundary conditions, we omit the details. In the end we arrive at a
multi-trace formulation for the transmission boundary value problem with Dirichlet boundary
conditions on Σ:

$
’&
’%

find pu P pHpΓq such that

r
pAppuq,pv

z
“

r
pf,pv

z
@pv P pHpΓq ,

(50)

where pf “ ppf1, . . . ,pfn, fΣq P qHpΓq is defined by pfj “ γjpUincq and fΣ “ γΣd pUincq, and pA :
pHpΓq Ñ qHpΓq is a continuous linear operator defined by

pA :“

»
———————————–

A
1
κ1

`A
1
κ0

γ1 G2
κ0

¨ ¨ ¨ γ1 Gn
κ0

γ1 SLΣκ0

γ2 G1
κ0

A
2
κ2

`A
2
κ0

¨ ¨ ¨ γ2 Gn
κ0

γ2 SLΣκ0

...
...

. . .
...

...

γn G1
κ0

γn G2
κ0

¨ ¨ ¨ A
n
κn

`A
n
κ0

γn SLΣκ0

γΣd G
1
κ0

γΣd G
2
κ0

¨ ¨ ¨ γΣd G
n
κ0

V
Σ
κ0

fi
ffiffiffiffiffiffiffiffiffiffiffifl

(51)

Definitions of the potentials SLΣκ and G
j
κ0

can be found in (12), and V
Σ
κ0

:“ γΣd SL
Σ
κ0

is a single
layer boundary integral operator on Σ. Hence, with pu “ ppu1, . . . ,pun, pΣq, pv “ ppv1, . . . ,pvn, qΣq,
the bilinear form of (50) boils down to

r
pAppuq,pv

z
“

nÿ

j“1

”
pAj

κj
`A

j
κ0

qppujq,pvj
ı
j

`
nÿ

j“1

ÿ

i“1

i‰j

“
γj Gippuiq,pvj

‰
j

`

nÿ

j“1

“
γj SLΣκ0

ppΣq,pvj
‰
j

`
nÿ

j“1

〈

γΣd G
j
κ0

ppujq, qΣ
〉

Σ
`
〈

γΣd SL
Σ
κ0

ppΣq, qΣ
〉

Σ

(52)

Remark 6.1. The key observation is that all building blocks of pA and the terms in (52) remain
well defined, even if we dispense with a gap between the subdomains Ωj , j ě 1 and ΩΣ. Thus,
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pA and the multi-trace variational problem (50) remain meaningful in the generic setting with
junction points depicted in Figure 5, left, and introduced in Section 2. The gap idea instills
confidence that (50) will inherit all properties of the single-trace problem (19) on isolated
subdomains. In the next section, we are going to provide a rigorous justification of this
intuitive belief.

6.3 Analysis of standard MTF

Let us consider the standard global MTF variational problem (50)/(52) in the general ”non-
gap” setting with possible junction points (Figure 5, left). Obviously, the bilinear form
ppu,pvq Ñ JpAppuq,pvK is continuous on pHpΓq. Also let us point out a symmetry property of this
bilinear form that will be useful later. Due to the definition of pA from (51), the next result is
a direct consequence of Lemma 3.6 and Lemma 3.7:

r
pAppuq,pv

z
“

r
pAppvq,pu

z
@pu,pv P pHpΓq . (53)

Now, extending Proposition 4.4 to the standard global MTF, the following proposition
exhibits the precise relationship between Formulation (50) and Problem (2). Corresponding
results for the pure transmission problem can be found in [11, Sect. 9].

Proposition 6.2. If pu “ ppu1, . . . ,pun, pΣq P pHpΓq solves (50) then U P L2
locpRdzΩΣq defined by

Upxq “ G
j
κj

ppujqpxq for x P Ωj , j “ 1 . . . n

Upxq “ Uincpxq ´ SL
Σ
κ0

ppΣqpxq ´ řn
j“1 G

j
κ0

ppujqpxq for x P Ω0

(54)

is the unique solution of Problem (2).

Proof: By construction, the function U defined by (54) satisfies ∆U ` κ2jU “ 0 in Ωj for
j “ 0 . . . n, and the radiation conditions at 8 (with respect to κ0). The only property we have
to verify is the transmission conditions (2b), that is, pγjpUqqnj“0 P X0pΓq. Owing to Lemma 4.1

this is equivalent to showing that for all v “ pvjqnj“0 P X0pΓq we have
řn

j“0

“
γjpUq, vj

‰
j

“ 0

which, see (54), is equivalent to

«
γ0Uinc ´ γ0 SLΣκ0

ppΣq ´
nÿ

j“1

γ0 Gj
κ0

ppujq,pv0
ff

0

`
nÿ

j“1

“
γj Gj

κ0
ppujq, vj

‰
j

“ 0 . (55)

We fix some v P X0pΓq, and denote v‹ :“ pv1, . . . , vn,Tnpvqq P pHpΓq. For the remainder of the
proof it is important to remember that Tdpvq “ 0. From the jump relations (13) and (15) we
can conclude A

j
κj

`A
j
κ0

“ γj Gj
κj

`γjc Gj
κ0
. We use this identity and infer from (50) and (52)
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with pv “ v‹

0 “
r
pApu, v‹

z
´

r
pf, v‹

z
“

nÿ

j“1

´”
γj Gj

κj
ppujq, vj

ı
j

`
“
γjc G

j
κ0

ppujq, vj
‰
j

`
nÿ

i“1

i “j

“
γj Gi

κ0
ppuiq, vj

‰
j

`
〈

γΣD G
j
κ0

ppujq,Tnpvq
〉

Σ

¯
(56a)

`
nÿ

j“1

“
γj SLΣκ0

ppΣq, vj
‰
j

`
〈

γΣd SL
Σ
κ0

ppΣq,Tnpvq
〉

Σ
(56b)

´
nÿ

j“1

“
γjUinc, vj

‰
j

´
〈

γΣd Uinc,Tnpvq
〉

Σ
. (56c)

For j “ 1, . . . , n, evidently G
j
κ0

ppujq P H1
locp∆,RdzΩjq. As a consequence, when we take the

trace on BΩj from outside, we have z :“
`
γ0 Gj

κ0
ppujq, . . . , γjc Gj

κ0
ppujq, . . . , γn Gj

κ0
ppujq

˘
P XpΓq.

Thus, we can invoke Proposition 3.2, and find rz, vs “ ´ rTpzq,TpvqsΣ, which means

“
γjc G

j
κ0

ppujq, vj
‰
j

`
nÿ

i“1

i “j

“
γi Gj

κ0
puj , vi

‰
i

`
〈

γΣd G
j
κ0

ppujq,Tnpvq
〉

Σ
“ ´

“
γ0 Gj

κ0
puj , v0

‰
0
. (57)

In the same vein, we can set y :“
`
γ0 SLΣκ0

ppΣq, . . . , γn SLΣκ0
ppΣq

˘
P XpΓq, which, again by

Proposition 3.2, satisfies ry, vs “ ´ rTpyq,TpvqsΣ, equivalent to
nÿ

j“1

“
γj SLΣκ0

ppΣq, vj
‰
j

`
〈

γΣd SL
Σ
κ0

ppΣq,Tnpvq
〉

Σ
“ ´

“
γ0 SLΣκ0

ppΣq, v0
‰
0
. (58)

Similarly, since ∆Uinc ` κ20Uinc “ 0 everywhere, Proposition 3.2 yields
řn

j“0

“
γjUinc, vj

‰
j

“
´
“
γΣUinc,T v

‰
Σ

“ ´
〈

γΣd Uinc,Tn v
〉

Σ
. Obviously, we aim to use this last identity to tackle

(56c), (57) (summed over j “ 1, . . . , n) to simplify (56a), and (58) to replace (56b). Thus
from (56) we arrive at

0 “
nÿ

j“1

“
γj Gj

κ0
ppujq, vj

‰
j

´
nÿ

j“1

“
γ0 Gj

κ0
ppujq, v0

‰
0

´
“
γ0 SLΣκ0

ppΣq, v0
‰
0

`
“
γ0Uinc, v0

‰
Σ
, (59)

which agrees the equation (55)! Since v was chosen arbitrarily in X0pΓq, this finishes the
proof. l

The gap construction hints that the operators pA defined in (51) will enjoy coercivity
analogous to the assertions of Theorem 4.2. This is confirmed by the next result, which
generalizes [11, Thm. 10.4].

Proposition 6.3. Define the operators θj : HpBΩjq Ñ HpBΩjq by θjpv, qΣq “ p´v, qΣq,
and let Φ : pHpΓq Ñ pHpΓq denote the compound operator Φppvq “ pθ1ppv1q, . . . , θnppvnq, qq for
pv “ ppv1, . . . ,pvn, qq. There exists a compact operator K : pHpΓq Ñ qHpΓq, and a constant β ą 0
such that

ˇ̌
ˇ
r

ppA ` Kqpv,Φppvq
zˇ̌
ˇ ě β}pv}2pHpΓq

for all pv P pHpΓq .
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Proof: Since a change of the wave numbers κ0, κ1, . . . , κn only induces a compact perturba-
tion of pA [31, Lemma 3.9.8], it suffices to prove the result for the case where κ0 “ ¨ ¨ ¨ “ κn “ ı

where ı “
?

´1. Take any pv “ ppv1, . . . ,pvn, qΣq P pHpΓq. Denote Wjpxq :“ G
j
κ0

ppvjqpxq for

j “ 1 . . . n, and Wn`1pxq :“ G
Σ
κ0

ppvn`1q where pvn`1 :“ p0, qΣq P HpΣq.
For the sake of concise notations, in the remainder of this proof, we will write r¨, ¨sn`1 :“

r¨, ¨sΣ, Gn`1
κ0

:“ G
Σ
κ0
, An`1

κ0
:“ tγΣuGΣ

κ0
and Ωn`1 :“ ΩΣ. Then we have

Re
r
pAppvq,Φppvq

z
“ Re

“
A
n`1
κ0

ppvn`1q, θn`1ppvn`1q
‰
n`1

`
nÿ

j“1

2 Re
“
A
j
κ0

ppvjq, θjppvjq
‰
j

`
n`1ÿ

j“1

n`1ÿ

q“1

q‰j

Re
“
γq Gj

κ0
ppvjq, θqppvqq

‰
q
.

Proceeding exactly as in the proof of Proposition 10.3 in [11], and in particular applying
Proposition 10.1 and 10.2 of [11], we have

Re
r
pAppvq,Φppvq

z
“

n`1ÿ

q“0

nÿ

j“1

ż

Ωq

|∇Wj |2 ` |Wj |2dx

`
n`1ÿ

q“0

ż

Ωq

ˇ̌
ˇ∇

´ n`1ÿ

j“1

Wj

¯ˇ̌
ˇ
2

`
ˇ̌
ˇ
n`1ÿ

j“1

Wj

ˇ̌
ˇ
2
dx ě

n`1ÿ

q“0

nÿ

j“1

}Wj}2H1pΩqq .

(60)

Note that pa1 ` ¨ ¨ ¨ ` akq2 ď k pa21 ` . . . a2kq for any a1, . . . ak P R. Applying this elementary
identity to (60) allows to conclude that

2pn` 1qRe
r
pAppvq,Φppvq

z
ě 2n

n`1ÿ

q“0

nÿ

j“1

}Wj}2H1pΩqq ` 2
n`1ÿ

q“0

›››
n`1ÿ

j“1

Wj

›››
2

H1pΩqq

ě
n`1ÿ

q“0

}Wn`1}2H1pΩqq .

(61)

Now, since ´∆Wj ` Wj “ 0 in Ωq for any j, q, and since, by the jump relations (13),
pvj “ rγjpWjqs, the continuity of trace operations yields }pvj}HpBΩjq ď C

řn`1
q“0 }Wj}H1pΩqq.

Combining this with (60) and (61) concludes the proof. l

A direct consequence of the previous proposition is that the operator pA is Fredholm with
index 0. Hence it is an isomorphism once it is injective, which can fail only in case of spurious
resonances, since Problem (2) is well posed. Recalling the gap idea and the characterization
of the kernel of A from Theorem 4.10, the following result about spurious resonances of the
global MTF is not surprising, cf. Section 6.1.

Proposition 6.4. KerppAq “ t p0, . . . , 0, pq | p P KerpγΣd SL
Σ
κ0

q u. As a consequence, for any

choice of wave numbers κj, the operator pA is a bijection if and only if κ0 R Sp∆,ΩΣq.

Proof: Since pA is Fredholm with index 0, it is a bijection, if and only if it is injective. Assume
that pu “ ppu1, . . . ,pun, pΣq P pHpΓq satisfies pAppuq “ 0. In this case Proposition 6.2 applies with
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Uinc “ 0. Since Problem (2) is well posed this shows that, in Formula (54), U “ 0 as well, so
we conclude that Gj

κj
ppujqpxq “ 0 for x P Ωj , and finally

γj Gj
κj

ppujq “ 0 @j “ 1, . . . , n . (62)

Now pick an arbitrary l “ 1 . . . n, and an arbitrary vl P Cκl
pBΩlq from the space of Cauchy

data defined in (3.4). We have pv :“ p0, . . . , 0, vl, 0 . . . , 0q P pHpΓq. We can apply (50) in the

form
r
pAppuq,pv

z
“ 0, take into account the definition of pA, see (52), use (62), which yields

0 “
”
γl SLΣκ0

ppq, vl
ı
l

`
nÿ

j“1

”
γl Gj

κ0
ppujq, vl

ı
l

`
”
γlc G

l
κl

ppulq, vl
ı
l
. (63)

In the computations above, we used the identity A
l
κl

`A
l
κ0

“ γlc G
l
κl

`γl Gl
κ0
. Next, as vl P

Cκl
pBΩlq, Lemma 3.5 show that the following terms vanish

”
γl Gl

κ0
ppulq, vl

ı
l

“ 0 ,
”
γl SLΣκ0

ppq, vl
ı
l

“ 0 . (64)

In addition, we have HpBΩlq “ Impγlc Gl
κl

q ‘ Cκ0
pBΩlq according to [11, Lemma A.2]. Com-

bining (63) and (64) we obtain that

”
γlc G

l
κl

ppulq, vl
ı
l

“ 0 for all vl P HpBΩlq . (65)

Finally, we conclude that γlc G
l
κl

ppulq “ 0 for all l “ 1 . . . n. As a consequence, we obtain from
the jump relations

puj “ rγjsGj
κj

ppujq “ γj Gj
κj

ppujq ´ γjc G
j
κj

ppujq “ 0.

Since pAppuq “ 0, from the bottom row of 51 we finally obtain that γΣd SL
Σ
κ0

ppΣq “ 0. Hence

pΣ P KerpγΣd SL
Σ
κ0

q. Recall that the single layer operator γΣd SL
Σ
κ0

is a Fredholm operator with
index 0, and it is an ismorphism (i.e. admits a trivial kernel) if and only if κ0 R Sp∆,ΩΣq,
see [31, Thm 3.9.1]. From this we conclude that, if κ0 R Sp∆,ΩΣq, then pΣ “ 0, and
KerppAq “ t0u. In case κ0 P Sp∆,ΩΣq, then SL

Σ
κ0

ppΣqpxq “ 0 for all x P R
dzΩΣ, so that

γl SLΣκ0
ppΣq “ 0 @l “ 1 . . . n, hence p0, . . . , 0, pΣq P KerppAq. l

Comparing Proposition 4.10, Proposition 4.8 and Proposition 6.4, we see that if Formu-
lation (19) suffers spurious resonances, then so does Formulation (50). On the other hand,
we point out that for any geometric arrangement with ΩΣ “ H, there are certain κ0 where
Formulation (50) breaks down, while Formulation (19) remains well posed.

6.4 Direct multi-trace CFIE

Since we expect spurious resonances for (50), recall (E1), we also study multi-trace counter-
parts of CFIE formulations. The focus will be first on the direct single-trace CFIE proposed
in Section 5.2 and its variational formulation on pHpΓq. By the structure of (35), we need only
elaborate how to adapt the compact bilinear form c from (34).

Again we draw inspiration from geometrical configurations involving a gap between the
different subdomains (Figure 5, left). So, let us temporarily assume this situation. Obviously,
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in gap configurations there is a natural isomorphism pHpΓq – X0pΓq. Therefore, we look for
pc : pHpΓq ˆ pHpΓq Ñ C such that pcppu,pvq “ cpu, vq, where we have the correspondences pu Ø u

and pv Ø v induced by the isomorphism between pHpΓq and X0pΓq. Observe that c defined by
(34) can be re-written as

cpu, vq “
nÿ

j“0

”
γjc G

j
κj

pujq,Cpvjq
ı
j
, u, v P X0pΓq . (66)

In the gap situation (i.e. the situation of disjoint subdomains), the extension operator EΣ can
be chosen to map into functions, whose support is inside Ω0, which means that γjd ˝ EΣ “ 0
for j “ 0, and that, essentially, C maps into H1{2pΣq. This brings about a substantial
simplification of the operator C and leads to

cpu, vq “
“
γ0c G

0
κ0

pu0q, pC vq0
‰
0

“
〈

γΣn G
0
κ0

pu0q,MTnpvq
〉

Σ
, u, v P X0pΓq . (67)

For any pv, qq P H1{2pBΩjq ˆ H´1{2pBΩjq, denote θjpv, qq :“ pv,´qq. Since pujqnj“0 P X0pΓq
and BΩ0 “ Σ Y BΩ1 Y ¨ ¨ ¨ Y BΩn, the trace u0 is equal to θjpujq on each BΩj , j “ 1 . . . n, and
equal to p0,´pΣq on Σ. This yields G0

κ0
pu0q “ ´ SL

Σ
κ0

ppΣq ´ řn
j“0 G

j
κ0

pujq. Hence

pcppu,pvq “ ´
〈

M
˚
`
γΣn SL

Σ
κ0

ppΣq
˘
, qΣ

〉

Σ
´

nÿ

j“1

〈

M
˚
`
γΣn G

j
κ0

pujq
˘
, qΣ

〉

Σ
, (68)

for pu “ pu1, . . . , un, pΣq P pHpΓq, pv “ pv1, . . . , vn, qΣq P pHpΓq. From (35), (51), and (68) we
deduce the operator pAM : pHpΓq Ñ qHpΓq defined as

pAM :“
»
———————————–

A
1
κ1

`A
1
κ0

γ1 G2
κ0

¨ ¨ ¨ γ1 Gn
κ0

γ1 SLΣκ0

γ2 G1
κ0

A
2
κ2

`A
2
κ0

¨ ¨ ¨ γ2 Gn
κ0

γ2 SLΣκ0

...
...

. . .
...

...

γn G1
κ0

γn G2
κ0

¨ ¨ ¨ A
n
κn

`A
n
κ0

γn SLΣκ0

`
γΣd ´ M

˚ γΣn
˘
G
1
κ0

`
γΣd ´ M

˚ γΣn
˘
G
2
κ0

¨ ¨ ¨
`
γΣd ´ M

˚ γΣn
˘
G
n
κ0

`
γΣd ´ M

˚ γΣn
˘
SL

Σ
κ0

fi
ffiffiffiffiffiffiffiffiffiffiffifl

(69)
Similar considerations yield an expression in qHpΓq for the right hand side of the direct single
trace CFIE in the gap setting; we find

pfM :“
`
γ1Uinc, . . . , γ

nUinc, γ
Σ
d Uinc ´ M

˚pγΣn Uincq
˘

P qHpΓq . (70)

Then the direct multi-trace CFIE in variational form and in the gap setting reads:

$
’&
’%

find pu P pHpΓq such that

r
pAMppuq,pv

z
“

r
pfM,pv

z
@pv P pHpΓq ,

(71)
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Remark 6.1 still applies: Although we have derived Formulation (71) in a gap setting where
all scatterers were distant from each other, this formulation still makes sense in a general
geometric configuration (such as in Figure 5, left). In the next paragraph we justify the
validity of (71) for a general setting. In addition, we give rigorous arguments for conjecture
(E2) on Page 24, where we claimed that the direct global multi-trace CFIE (71) is immune
to spurious resonances for any choice of wave numbers κj .

Obviously, thanks to the compactness of M, see (26), the operator pAM from (69) is a
compact perturbation of pA from 51, and the bilinear form of (50) is a compact perturbation
of that of (71). The next result exhibits the precise relationship between the solution to (71)
and the solution to (50).

Proposition 6.5. A solution of the global multi-trace CFIE (71) is also a solution of the
standard global MTF (50).

Proof: Take a solution pu “ ppu1, . . . ,pun, pΣq P pHpΓq of (71). Consider the function W pxq :“
Uincpxq ´ SL

Σ
κ0

ppΣqpxq ´ řn
j“1 G

j
κ0

ppujqpxq. Take test traces pv P pHpΓq of the form pv “
p0, . . . , 0, qΣq, where qΣ P H´1{2pΣq is arbitrary. Formulation (71) yields

ż

Σ
q
`
γΣd pW q ´ M

˚ γΣn pW q
˘
dσ “ 0 @q P H´ 1

2 pΓq ,

which implies γΣd pW q “ M
˚ γΣn pW q. Since we have ∆W ` κ20W “ 0 in ΩΣ, applying Green’s

formula provides

0 “ Imt
ż

ΩΣ

|∇W |2 ´ κ20|W |2dxu “ 2 Imt
ż

Σ
γΣn pW qM γΣn pW qdσu ,

hence γΣn pψq “ 0. We conclude that γΣd pψq “ M
˚ γΣn pψq “ 0. This corresponds to the equation

of (50) associated with the last line of (51). Since the only difference between (71) and (50)
is this equation, we are done with the proof. l

A corollary of the previous result is that, if U solves (71), then the unique solution to
Problem (2) is given by (54). This justifies considering (71) for general geometric configu-
rations. Now, since pc is compact, Proposition 6.3 implies that the bilinear form of (71) also
satisfies a generalized Garding inequality.

Corollary 6.6. The assertion of Proposition 6.3 holds with pA replaced with pAM.

A consequence of the above proposition is that the operator pAM is of Fredholm type with
index 0. One advantage of Formulation (71) over Formulation (50) is the absence of spurious
resonances, which is proved by the following result.

Proposition 6.7. For any choice of wave numbers κj ą 0, the global multi-trace CFIE (71)
possesses a unique solution.

Proof: Pick an element pu P KerppAMq. This means that pu is a solution of (71) where pfM “ 0.
As a consequence of Proposition 6.5, we have pu P KerppAq, so that, by Proposition 6.4, pu “
p0, . . . , 0, pΣq for some pΣ P H´1{2pΣq. Coming back to (71), and choosing pv P pHpΓq of the
form pv “ p0, . . . , 0, qΣq with some qΣ P H´1{2pΣq, we obtain

ż

Σ
qΣ

`
γΣd SL

Σ
κ0

ppΣq ´ M
˚
`
γΣn SL

Σ
κ0

ppΣq
˘ ˘
dσ “ 0 .
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It was established in [3, Lemma 4.1] that the operator γΣd SL
Σ
κ0

´M
˚ γΣn SL

Σ
κ0

is injective for
all κ0 ą 0. So we conclude that pΣ “ 0, which finishes the proof. l

Corollary 6.8. For any choice of the wave numbers κ0, . . . κn satisfying (3), Formulation
(71) is well posed, i.e., pAM : pHpΓq Ñ qHpΓq is an isomorphism.

Proof: Since pAM is a Fredholm operator with index 0, this holds true if and only if it is
injective, which is the statement of Proposition 6.7. l

6.5 Indirect multi-trace CFIE

Of course, there is a multi-trace version also of the indirect CFIE presented in Section 5.3.
Since developments are largely parallel to that for the direct CFIE, we do not give details.
As is clear from (42), which serves as the starting point, the operator of the indirect multi-
trace CFIE will be a perturbed version of pA. More precisely, the potential operator SL

Σ
κ0

is

replaced with SL
Σ
κ0

`DL
Σ
κ0

¨M. As in Section 6.2 the perturbation is encoded in a bilinear

form pc˚ : pHpΓq ˆ pHpΓq Ñ C, defined by

pc˚ppu,pvq :“
nÿ

j“1

“
γj DLΣκ0

pM pΣq, vj
‰
j

`
〈

γΣd DL
Σ
κ0

pM pΣq, qΣ
〉

Σ
, (72)

for pu “ pu1, . . . , un, pΣq P pHpΓq and pv “ pv1, . . . , vn, qΣq P pHpΓq. This bilinear form inherits
compactness fromM. It can be used to state the indirect global multi-trace CFIE in variational
form $

’&
’%

Find pu P pHpΓq such that

r
pAppuq,pv

z
` pc˚ppu,pvq “

r
pf,pv

z
@pv P pHpΓq .

(73)

Compared to Formulation (50), this variational problem features an additional compact term.
The next proposition gives a precise description of the relation between the solutions of (73)
and the solutions to (2).

Proposition 6.9. If pu “ ppu1, . . . ,pun, pΣq P pHpΓq is a solution of (73), then U P L2
locpRdzΩΣq

defined by (for j “ 1, . . . , n)

Upxq “ G
j
κj

ppujqpxq , x P Ωj

Upxq “ Uincpxq ´ SL
Σ
κ0

ppΣqpxq ´ DL
Σ
κ0

pM˚ pΣqpxq ´ řn
j“1 G

j
κ0

ppujqpxq, x P Ω0 ,
(74)

is the unique solution of the transmission boundary value problem (2).

We do not give the proof of this result as it is identical to the proof of Proposition 6.2.
The only difference is that SLΣκ0

ppΣq has to be replaced by SL
Σ
κ0

ppΣq ` DL
Σ
κ0

pM pΣq. Now, let
us elaborate the close relationship between (73) and (71). They are dual to each other in the
sense of the following lemma.

Lemma 6.10. The bilinear forms of the direct global multi-trace CFIE (71) and its indirect
counterpart (73) are adjoint to each other:

r
pAppuq,pv

z
` pcppu,pvq “

r
pAppvq,pu

z
` pc˚ppv,puq @pu,pv P pHpΓq .
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Proof: We already know that JpAppuq,pvK “ JpAppvq,puK, according to (53), so we have to show
that pcppu,pvq “ pc˚ppv,puq. Take two elements pu “ pu1, . . . , un, pΣq and pv “ pv1, . . . , vn, qΣq in
pHpΓq. We have

pcppu,pvq “ ´
〈

M
˚pγΣn SL

Σ
κ0

ppΣqq, qΣ
〉

Σ
´

nÿ

j“1

〈

M
˚pγΣn G

j
κ0

pujqq, qΣ
〉

Σ
(75)

In turns, we examine each term in the sum above and first set vΣ :“ pM q, 0q P HpΣq and
uΣ :“ p0, pq P HpΣq. Applying symmetry property given by Lemma 3.6 in ΩΣ yields

´ xγΣn SL
Σ
κ0

ppq,M qyΣ “ xγΣd,cDLΣκ0
pM qq, pyΣ . (76)

Similarly, we have ´xM˚pγΣn G
j
κ0

pujqq, qyΣ “ rγΣ G
j
κ0

pujq, vΣsΣ. We can apply Lemma 3.7

(taking ΩΣ as one of the subdomains) to obtain rγΣ G
j
κ0

pujq, vΣsΣ “ rγj GΣ
κ0

pvΣq, ujsj which,
in this case, can be rewritten as

´ xM˚pγΣn G
j
κ0

pujqq, qyΣ “ rγj DLΣκ0
pM qq, ujsj , (77)

using the explicit expression for vΣ. Plugging (76) and (77) into the formula for pc given by
(75), and comparing with the definition of pc˚, this concludes the proof. l

Let pA1
M

: pHpΓq Ñ qHpΓq refer to the continuous operator associated with the bilinear form
on the left-hand side of (73). The previous lemma, combined with the inf-sup conditions
satisfied by pA, shows that pA1

M
is bijective, if and only if pAM is bijective, which is confirmed

by Proposition 6.6. In addition, since pA and pA1
M

only differ by a compact contribution,
Proposition 6.3 implies that the bilinear form associated with Formulation (73) satisfies a
generalized Garding inequality. We sum up all these results in the next and final proposition.

Proposition 6.11. The assertion of Proposition 6.3 holds with pA replaced by pA1
M
. In addition,

for any choice of the wave numbers κ0, . . . κn satisfying (3), Formulation (73) is well posed,
i.e., it admits a unique solution and pA1

M
: pHpΓq Ñ qHpΓq is an isomorphism.
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