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Zürich, CH-8092 Zürich, Switzerland

Abstract. We present two novel structure preserving numerical schemes for the Eu-
ler equations of hydrodynamics. The first method is concerned with the exact preser-
vation of certain hydrostatic equilibria. This is achieved by a hydrostatic preserving
reconstruction procedure and a well-balanced discretization of the gravitational source
term. The second method treats the deficiency of angular momentum conservation in
standard Eulerian Godunov-type numerical schemes. We show the geometric require-
ments on a scheme that conserves mass, linear momentum, total energy and angular
momentum simultaneously. We then present a scheme fulfilling these requirements.
The performance of the new structure preserving schemes is illustrated through numer-
ical examples.

1. Introduction

The Euler equations of hydrodynamics express the conservation of mass, linear momen-
tum and total energy (Landau et al. 1991). They are a non-linear system of conservation
laws, which feature certain structures in the form of companion laws that are fulfilled at
the analytical level. When the system is solved numerically, these companion laws may
be violated. The purpose of structure preserving numerical schemes is then to fulfill
a discrete form of these companion laws. In the following we will consider two such
structures, which are of particular interest for astrophysical numerical simulations.

The first concerns the steady states of the Euler equation with gravity. Of particular
interest is the hydrostatic equilibrium case

∇p = −ρ∇φ, (1)

where the pressure gradient is exactly balanced by the gravity force. As astrophysi-
cally relevant examples, we mention the simulation of small perturbations on a gravita-
tionally stratified atmosphere such as those arising in exoplanet climate modeling, the
simulation of waves in stellar atmospheres and convection in stellar interiors, amongst
others.

The numerical approximation of nearly hydrostatic configurations is very chal-
lenging since a standard numerical scheme does not necessarily satisfy a discrete ver-
sion of the above balance. In 2.1 we will present a so-called well-balanced scheme that
preserves a discrete version of this subtle balance (up to machine precision). As an ex-
ample, we compare the performance of the new well-balanced scheme and a standard
scheme on the simulation of a polytrope in three dimensions.

The second structure concerns the conservation of angular momentum. The con-
servation law for the angular momentum density j = x × ρv follows by simply taking
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2 R. Käppeli, S. Mishra

the cross product of the position vector x = [x, y, z]T and the linear momentum eq. (??):

∂j

∂t
+ ∇ ·

[

x × (ρv ⊗ v + pI)
]

= −ρx × ∇φ. (2)

As it is well known (and proved in 2.2), standard (Eulerian Godunov-type) numerical
schemes do not conserve angular momentum. This represents a great flaw of stan-
dard schemes since the importance of angular momentum conservation can hardly be
overemphasized in many, if not all, astrophysically relevant contexts. In 2.2 we will
present a scheme that conserves mass, linear momentum, total energy and angular mo-
mentum at the same time.

2. Structure preserving schemes

For the ease of presentation, we consider the Euler equations in two space dimensions

∂u

∂t
+
∂F

∂x
+
∂G

∂y
= S, (3)

where u = [ρ, ρvx, ρvy, E]T are the conserved variables. The flux functions in respective
directions and the source term are given by

F =



























ρvx

ρv2
x + p

ρvyvx

(E + p)vx



























, G =





























ρvy

ρvxvy

ρv2
y + p

(E + p)vy





























and S =



























0
−ρ
0
−ρvx



























∂φ

∂x
+



























0
0
−ρ
−ρvy



























∂φ

∂y
. (4)

We will denote by w = [ρ, vx, vy, p]T the primitive variables.

For simplicity we consider a Cartesian domain [0, Lx]× [0, Ly] discretized by Nx×

Ny regular cells Ci, j = [xi−1/2, xi+1/2] × [y j−1/2, y j+1/2], i = 1, ...,Nx and j = 1, ...,Ny,
where xi+1/2 − xi−1/2 = ∆x and y j+1/2 − y j−1/2 = ∆y. A standard semi-discrete scheme
for the evolution of the cell-averaged conserved variables ui, j reads (LeVeque 2002)

dui, j

dt
= −

1

∆x

(

Fi+1/2, j − Fi−1/2, j

)

−
1

∆y

(

Gi, j+1/2 −Gi, j−1/2

)

+ Si, j, (5)

where the Fi±1/2, j and Gi, j±1/2 are the numerical fluxes in respective direction and Si, j

is the discretized source term.

We compute the numerical fluxes in two ways. In the classical way, the numeri-
cal fluxes are obtained by the (approximate) solution of Riemann problems at the cell
interfaces

Fi+1/2, j = Fi+1/2, j = F (wi+1/2−, j,wi+1/2+, j) , Gi, j+1/2 = Gi, j+1/2 = G(wi, j+1/2−,wi, j+1/2+),
(6)

where the wi+1/2±, j, wi, j+1/2± are the cell interface extrapolated primitive variables in
respective direction (computed by some reconstruction procedure, see e.g. (LeVeque
2002)).

As a second way, the numerical fluxes are obtained in a genuinely multidimen-
sional manner as developed by Mishra & Tadmor (2011). The numerical fluxes are
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computed by averaging so-called numerical potentials, which are centered at the grid’s
vertices

Fi+1/2, j =
1

2

(

Φi+1/2, j−1/2 +Φi+1/2, j+1/2

)

, Gi, j+1/2 =
1

2

(

Ψi−1/2, j+1/2 +Ψi+1/2, j+1/2

)

.

(7)
We use the following simple definitions for the numerical potentials

Φi+1/2, j+1/2 =
1

2

(

Fi+1/2, j + Fi+1/2, j+1

)

, Ψi+1/2, j+1/2 =
1

2

(

Gi, j+1/2 + Gi+1, j+1/2

)

, (8)

i.e. simple averages of standard numerical fluxes. The numerical potentials can be
obtained in variety of ways and we refer to Mishra & Tadmor (2011) and references
therein for further details.

The time integration of eq. (5) can be performed by any suitable explicit or implicit
integrator. This ends the general discussion of numerical schemes and the specificities
of the respective structure preserving scheme is detailed in the following subsections.

2.1. Well-balanced schemes for the Euler equations with gravity

The stationary state eq. (1) specifies only a mechanical equilibrium, which is incom-
plete as the density and pressure stratifications are not uniquely determined. Hence,
(at least1) another state variable is needed (e.g. entropy or temperature) to fully spec-
ify the equilibrium. However, arbitrary entropy or temperature profiles are generally
physically unstable (Landau et al. 1991). Two relevant classes of physically stable hy-
drostatic equilibria are characterized by isentropic and isothermal conditions.

An analytical expression for an isentropic hydrostatic equilibrium can easily be
constructed. Under the constant entropy assumption and with the thermodynamic rela-
tion dh = Tds + dp/ρ, where h is the specific enthalpy h = e + p/ρ, T the temperature
and s the specific entropy, the hydrostatic equilibrium (1) can be integrated to

h + φ = const. (9)

Similar consideration for the isothermal hydrostatic equilibrium case lead to g + φ =
const, where g is the specific Gibbs free energy.

Standard piece-wise polynomial reconstructions in the conserved u or primitive
w variables do not preserve a hydrostatic equilibrium discretely. Instead, we build our
first order equilibrium preserving reconstruction in the variables z = [s, vx, vy, h]T , i.e.
the specific entropy, enthalpy and the velocity.

In the following we focus on the one-dimensional and spatially first order accu-
rate case. A piece-wise constant reconstruction is applied to the specific entropy and
the velocity. Then, the specific enthalpy is reconstructed by assuming eq. (9) within
the considered cell. As a result, the cell interface extrapolated values of the specific
enthalpy are given by

hi−1/2+ = hi + φi − φi−1/2 and hi+1/2− = hi + φi − φi+1/2, (10)

where φi±1/2 is the gravitational potential at the cell interface. If the gravitational po-
tential is a known function, the cell interface value can be directly evaluated φi±1/2 =

1If the matter composition is not uniform, further variables are needed.
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φ(xi±1/2). If the gravitational potential is only known discretely, e.g. at cell centers
because it is itself obtained numerically by solving the Poisson equation in the case of
self-gravity, a continuous interpolation2 procedure is needed. In the case of a uniform
mesh, it is simply given by the average φi±1/2 = (φi + φi±1)/2.

From the cell interface extrapolated variables zi±1/2∓ we recover the standard con-
served and primitive variables through the equation of state. For an ideal gas, Käppeli
& Mishra (2013) derive analytical expressions. In the case of a general equation of
state (e.g. tabulated) a non-linear equation has to be solved to recover the conserved
and primitive variables. However, this solving is very much alleviated by the fact that
we have excellent initial guesses, i.e. the known cell-averaged conserved ui and primi-
tive wi variables. The obtained ui±1/2∓ and wi±1/2∓ can then be fed into an approximate
Riemann solver to obtain the numerical fluxes eq. (6).

It remains to specify the source term. For the momentum source term discretiza-
tion, we follow the approach suggested by Audusse et al. (2004) for the shallow-water
equations and by Botta et al. (2004) for the Euler equations and define

S ρv,i =
pi+1/2− − pi−1/2+

∆x
= −

∫ xi+1/2

xi−1/2

ρ
∂φ

∂x
dx + O(∆x2). (11)

Here the cell interface pressure pi±1/2∓ stems from the above hydrostatic reconstruction.
The consistency of this momentum source term is shown by Käppeli & Mishra (2013).
The energy source term is discretized by a simple centered difference expression.

Assembling all the above components, we obtain a scheme that is well-balanced
for isentropic hydrostatic equilibra, i.e. the scheme is able to preserve a discrete equi-
librium up to the machine precision. The generalization of the well-balanced scheme
to two (3) and three dimensions as well as the extension to second order accuracy is
straightforward (Käppeli & Mishra 2013).

We demonstrate the performance of the well-balanced scheme on the simulation of
a three-dimensional polytrope with γ = 2. The polytrope is initialized in [−0.65, 0.65]3,
where its center coincides with the center of the computational domain. The detailed
initial setup is described by Käppeli & Mishra (2013). First we simulate the polytrope
for 20 sound crossing times with a standard and the new well-balanced scheme. The
well-balanced scheme produces errors on the order of machine precision, while the
standard scheme suffers from spurious deviations. This is illustrated in the left panel of
figure 1. As a second test, we apply a small pressure perturbation at the center of the
polytrope and simulate its evolution. The result is shown in the right panel of figure
1. As apparent from the figure, only the well-balanced scheme is able to resolve the
delicate wave pattern that develops. We conclude, that the well-balanced scheme is
much more efficient than the standard scheme, as a much higher resolution would be
needed to obtain a comparable accuracy.

2.2. Angular momentum conserving schemes

We now show that standard Godunov-type schemes do not conserve angular momen-
tum. Let’s consider the linear momentum components of eq. (3) without gravity forces.
Then the conservation law for the angular momentum density j = xρvy − yρvx results

2The gravitational potential is generally a continuous (or even more regular) function.
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Figure 1. Three-dimensional polytrope example with N3
= 1283 cells. Left:

Equilibrium preserving example. The solid blue and green lines represent the ini-
tial density and the gravitational potential profile along the x-axis with y = z = 0.
The solid and dashed red line represent the result of a computation for 20 sound
crossing times with a standard and the well-balanced schemes, respectively. Right:
Scatter plot of the radial velocity for the small pressure perturbation example. The
red and green dots correspond to the computation with a standard and the new well-
balanced schemes, respectively. The solid blue line represents a reference solution
obtained from a high resolution one-dimensional computation.

from the following elementary manipulations

∂ j

∂t
= −x

(

∂F3

∂x
+
∂G3

∂y

)

+ y

(

∂F2

∂x
+
∂G2

∂y

)

= −
∂

∂x

(

xF3 − yF2
)

−
∂

∂y

(

xG3 − yG2
)

= −F3
+G2

= 0, (12)

where the Fk and Gk denote the corresponding component in the flux vectors (4).
Hence, we observe that the conservation follows from the symmetry properties of the
linear momentum flux tensor, i.e. F3

= ρvyvx = ρvxvy = G2.

Let’s now repeat the above steps for a standard Godunov-type scheme eq. (5). The
evolution equation for the discrete angular momentum (defined as) ji, j = xi(ρvy)i, j −

y j(ρvx)i, j follows by

d ji, j

dt
= −xi

[

1

∆x

(

F3
i+1/2, j − F3

i−1/2, j

)

+
1

∆y

(

G3
i, j+1/2 −G3

i, j−1/2

)

]

+y j

[

1

∆x

(

F2
i+1/2, j − F2

i−1/2, j

)

+
1

∆y

(

G2
i, j+1/2 −G2

i, j−1/2

)

]

= −
1

∆x

[(

xi+1/2F3
i+1/2, j − y jF

2
i+1/2, j

)

−
(

xi−1/2F3
i−1/2, j − y jF

2
i−1/2, j

)]

−
1

∆y

[(

xiG
3
i, j+1/2 − y j+1/2G2

i, j+1/2

)

−
(

xiG
3
i, j−1/2 − y j−1/2G2

i, j−1/2

)]

= −
1

2

(

F3
i−1/2, j + F3

i+1/2, j

)

+
1

2

(

G2
i, j−1/2 +G2

i, j+1/2

)

, 0, (13)

where in the second equality we have used xi±1/2 = xi ± ∆x/2 and y j±1/2 = y j ± ∆y/2.
Hence, we observe that angular momentum is only conserved if the expression after
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Figure 2. Three isentropic vortices and explosion test. Left: density contour.
Right: total angular momentum conservation of several numerical schemes: dimen-
sionally split (solid red), dimensionally unsplit (dashed green), genuinely multidi-
mensional without (dashed magenta) and with constraint preservation (solid blue).

the third equality vanishes, which is generally not the case. Also note the similarity
between the analytical and the discrete symmetry condition, i.e. the expression after
the third equality in eq. (12) and (13).

The discrete symmetry constraint can easily be fulfilled within the framework of
genuinely multidimensional schemes. We simply set the transversal momentum fluxes
in both directions to Φ3

i+1/2, j+1/2
= Ψ

2
i+1/2, j+1/2

= χi+1/2, j+1/2, where we define

χi+1/2, j+1/2 =
1

4

(

F 3
i+1/2, j + F

3
i+1/2, j+1 + G

2
i, j+1/2 + G

2
i+1, j+1/2

)

, (14)

i.e. by simple averaging. More sophisticated definition are possible and this is subject
of current research.

The performance of the structure preserving scheme is demonstrated on a setup
involving three isentropic vortices (featuring a challenging distribution and transport
of angular momentum, see figure 2 and (Yee et al. 1999)) with a strong explosion. In
the right panel of figure 2 we compare the new structure preserving scheme to several
standard schemes including dimensionally split, unsplit and non-constraint preserving
genuinely multidimensional schemes. We observe that the new structure preserving
scheme conserves angular momentum up to machine precision.
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Landau, L. D., Lifschitz, E. M., & Weller, W. 1991, Lehrbuch der theoretischen Physik, 10
Bde., Bd.6, Hydrodynamik (Deutsch (Harri))



Structure preserving schemes 7

LeVeque, R. J. 2002, Finite Volume Methods for Hyperbolic Problems (Cambridge Texts in
Applied Mathematics) (Cambridge University Press), 1st ed.

Mishra, S., & Tadmor, E. 2011, SIAM Journal on Numerical Analysis, 49, 1023
Yee, H., Sandham, N., & Djomehri, M. 1999, Journal of Computational Physics, 150, 199



Recent Research Reports

Nr. Authors/Title

2013-42 S. Mishra and N. Risebro and F. Weber
Convergence rates of finite difference schemes for the wave equation with rough
coeffiicients

2013-43 U. Koley and S. Mishra and N. Risebro and F. Weber
Robust finite difference schemes for a nonlinear variational wave equation modeling
liquid crystals

2013-44 G. Coclite and S. Mishra and N. Risebro and F. Weber
Analysis and Numerical approximation of Brinkman regularization of two-phase flows
in porous media

2013-45 M. Hutzenthaler and A. Jentzen
Numerical approximations of stochastic differential equations with non-globally
Lipschitz continuous coefficients

2013-46 G. Da Prato and A. Jentzen and M. Röckner
A mild Itô formula for SPDEs

2013-47 P. Grohs and S. Keiper and G. Kutyniok and M. Schaefer
Parabolic Molecules: Curvelets, Shearlets, and Beyond

2013-48 R. Hiptmair and C. Jerez-Hanckes and C. Urzua
Optimal Operator Preconditioning for Boundary Elements on Open Curves

2013-49 P. Grohs and S. Hosseini
$\varepsilon$-Subgradient Algorithms for Locally Lipschitz Functions on Riemannian
Manifolds

2013-50 A. Andersson and R. Kruse and S. Larsson
Duality in refined Watanabe-Sobolev spaces and weak approximations of SPDE

2014-01 M. Eigel and C.J. Gittelson and Ch. Schwab and E. Zander
A convergent adaptive stochastic Galerkin finite element method with quasi-optimal
spatial meshes


