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Abstract. We analyze a-posteriori error estimation and adaptive refinement
algorithms for stochastic Galerkin Finite Element methods for countably-
parametric, elliptic boundary value problems. A residual error estimator which
separates the effects of gpc-Galerkin discretization in parameter space and of
the Finite Element discretization in physical space in energy norm is estab-
lished. It is proved that the adaptive algorithm converges, and to this end we
establish a contraction property satisfied by its iterates. It is shown that the
sequences of triangulations which are produced by the algorithm in the FE dis-

cretization of the active gpc coefficients are asymptotically optimal. Numerical

experiments illustrate the theoretical results.
Key Words: generalized polynomial chaos, adaptive Finite Element Methods,
contraction property, residual a-posteriori error estimation, uncertainty quan-
tification
AMS suject classification: 65N30

Introduction

The efficient numerical solution of high-dimensional, parametric elliptic partial
differential equations (PDEs for short) has attracted considerable attention in re-
cent years, in particular in the context of uncertainty quantification (UQ), but also
in connection with reduced basis approximation, optimization, and other compu-
tational techniques.

Depending on the particular goal of computation, numerical methods for para-
metric PDEs have particular advantages: we mention only the computation of en-
semble averages (which take the form of integrals over the entire parameter space
with respect to a probability measure on that space and which are treated by
high-dimensional numerical integration), but also questions of optimization where
a parsimonious, parametric numerical representation of the parametric solution
with uniform, guaranteed accuracy on the entire parameter space is required.

A major issue in the design and analysis of efficient algorithms for these purposes
has been the issue of intrusive vs. nonintrusive algorithms: the former are, roughly
speaking, methods which require some degree of redesign of existing simulation
code, whereas the latter rely on (possibly parallel) numerical solution with existing
(sometime referred to as “legacy”) code of the parametric PDEs in a number of
(judiciously chosen) parameter values from a possibly infinite-dimensional param-
eter domain Γ . Examples include methods for numerical integration (eg. [14, 16])
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of mathematical expectations, and sparse, adaptive interpolation methods aiming
at the adaptive computation of interpolants of the parametric PDE solution with
uniform accuracy over the entire parameter spaces (eg. [4, 3]).

As a rule, nonintrusive, collocation type methods are not amenable to reliable
computable error bounds for the parametric surrogate solutions, likewise the results
of approximate numerical integration; in order to ensure control of discretization
errors in the context of UQ, therefore, the question of reliable or even guaran-
teed error bounds (in particular upper bounds) in the numerical solution of high-
dimensional parametric PDE problems is of some interest. In the present paper, we
continue our investigation [6] which analyzed intrusive so-called stochastic Galerkin
discretizations of parametric elliptic PDEs. Here, approximations with respect to
the parameter are achieved by Galerkin projection in mean square with respect to
a probability measure π on the parameter domain Γ . Using Galerkin projections
on generalized polynomial chaos bases on Γ instead of collocation of the paramet-
ric PDE problem requires modifications of the computational procedure which are,
however, manageable in the context of Finite Element Methods (FEMs) for elliptic
problems as we explained in [6]: most routines for generation of stiffness and mass
matrices which are available in existing FE codes can be reused. In particular, due
to the tensor product structure, the stiffness matrix corresponding to stochastic
Galerkin discretization never needs to be formed explicitly, and efficient matrix-
vector multiplications can be realized for the factored form of the matrix. Again,
we refer to [6] for details on this. In that reference also the issue of numerical a-

posteriori discretization error control has been addressed and, in particular, reliable
computable a-posteriori error estimators for the (mean-square) discretization error
have been derived. The possibility to treat high- or even infinite-dimensional prob-
lems efficiently by adaptive numerical methods is based on sparsity of coefficient
sequences in polynomial chaos type expansions of the parametric solutions; we refer
to [5] for sparsity results for the presently considered problems.

In the present work, we show that these error estimators have an intrinsic struc-
ture which allows to separate (in the sense of mean square with regard to the
probability measure π in Γ and with respect to the natural energy inner product
of the problem of interest) the contributions of the stochastic Galerkin discretiza-
tion in the parameter domain as well as of the Finite Element discretization in the
physical domain. With this separation at hand, we show that it is possible to de-
sign adaptive refinement strategies in both the parameter domain Γ and the physical

domain. Also, we prove in the present paper convergence and certain optimality
properties of such an adaptive refinement strategy. In particular, we show that the
proposed strategy produces a sequence of finitely supported stochastic Galerkin FE
solutions which converges in mean square with respect to π in Γ and with respect
to the energy norm V in the physical domain, and we establish that the FE mesh

sequences generated by the proposed adaptive strategy for each of the gpc coefficients

is, in a suitable sense, asymptotically optimal.

As in [6], we consider here only an elementary, second order linearly elliptic
problem in divergence form whose dependence on the parameter vector is affine.
We hasten to add, however, that the principal conclusions of the present work also
apply to more general, affine-parametric, linear elliptic problems, such as linear
elasticity or Stokes, or parabolic evolution problems with parametric uncertainty
as considered in [10].

The outline of the present paper is as follows: in Section 1, we specify the model
problem and establish basic properties of its solution. Tensor product bases of FE
bases and generalized polynomial chaos bases are introduced in Section 2. Section 3
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then reviews the residual error estimator from [6] for the stochastic Galerkin trun-
cation error, whereas Section 4 is devoted to computable error estimators for the
spatial discretization error; here, we use a more or less standard residual error esti-
mator, but remark that other error estimators can be used here as well. In Section
5, we present the adaptive stochastic Galerkin FEM algorithm. The algorithm is
similar to the one proposed in [6], but differs from it in that a single finite element
mesh is used for all active modes of the solution, as well as in several details which
we have found to yield quantitative improvements in extensive numerical exper-
iments which we performed since [6] (some of which are reported in the present
paper’s section 8). Section 6 establishes the convergence of the adaptive algorithm
(without rates), in particular the crucial contraction property. Section 7 estab-
lishes an optimality property of the iterates which are produced by the algorithm
in the physical domain. Finally, Section 8 contains several illustrative numerical
examples.

1. Model problem

1.1. A parametric elliptic boundary value problem. For a bounded Lipschitz
domain D ⊂ R

d and a function

a(y, x) = ā(x) +

∞
∑

m=1

ymam(x), x ∈ D, (1.1)

depending on a sequence of scalar parameters ym, we consider the elliptic boundary
value problem

{

−∇ · (a∇u) = f in D,

u = 0 on ∂D.
(1.2)

For example, (1.1) may come from a Karhunen–Loève expansion of a random field.
In order to ensure convergence in (1.1) and positivity of a, we assume |ym| ≤ 1, i.e.
y := (ym)∞

m=1 ∈ Γ := [−1, 1]∞, and ā, am ∈W 1,∞(D) with

ess inf
x∈D

ā(x) > 0,

∞
∑

m=1

∥

∥

∥

am

ā

∥

∥

∥

L∞(D)
≤ γ < 1. (1.3)

Let V := H1
0 (D) with the ā-dependent norm ‖v‖V :=

√

(v, v)V induced by the
inner product

(w, v)V :=

∫

D

ā(x)∇w(x) · ∇v(x) dx. (1.4)

The operator

A(y) : H1
0 (D)→ H−1(D), v 7→ −∇ · (a(y)∇v), y ∈ Γ, (1.5)

can be expanded as

A(y) = Ā +

∞
∑

m=1

ymAm, y ∈ Γ, (1.6)

with unconditional convergence in L(V, V ∗) for the components

Ā : H1
0 (D)→ H−1(D), v 7→ −∇ · (ā∇v) (1.7)

and

Am : H1
0 (D)→ H−1(D), v 7→ −∇ · (am∇v), m ∈ N. (1.8)

The operator equation

A(y)u(y) = f, y ∈ Γ, (1.9)

constitutes a weak formulation in space of the parametric boundary value problem
(1.2).
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1.2. Weak formulation. The weak formulation of (1.2) with respect to the pa-
rameter y requires a measure on the parameter domain Γ = [−1, 1]∞. We consider
symmetric product Borel measures; from a probabilistic point of view, this entails
that the parameters ym are independent and have symmetric distributions.

For each m ∈ N, let πm be a symmetric Borel probability measure on [−1, 1];1

then

π :=

∞
⊗

m=1

πm (1.10)

is a probability measure on Γ with the Borel σ-algebra. For the sake of clarity and
ease of notation, we forbid the measures πm from being finite convex combinations
of Dirac measures, as this leads to finite instead of countably infinite bases in
Section 2.1 below.

Integrating (1.9) with respect to π leads to the weak formulation
∫

Γ

〈A(y)u(y), v(y)〉dπ(y) =

∫

Γ

∫

D

f(x)v(y, x) dx dπ(y) ∀v ∈ L2
π(Γ ; V ). (1.11)

The left hand side of (1.11) is a scalar product

(w, v)A :=

∫

Γ

〈A(y)w(y), v(y)〉dπ(y) =

∫

Γ

∫

D

a(y, x)∇w(y, x) · ∇v(y, x) dx dπ(y)

(1.12)
on L2

π(Γ ; V ), which induces the energy norm ‖·‖A. In particular, existence and
uniqueness of the solution u of (1.11) are a consequence of the Riesz isomorphism,
and u coincides with the solution of (1.9) for π-a.e. y ∈ Γ .

The operator

A : L2
π(Γ ; V )→ L2

π(Γ ; V ∗), v 7→ [y 7→ A(y)v(y)] (1.13)

allows (1.11) to be written succinctly as Au = f , and the inner product (1.12) is
(w, v)A = 〈Aw, v〉. Due to (1.6),

A = idL2
π(Γ )⊗Ā +

∞
∑

m=1

Km ⊗Am, (1.14)

where Km : L2
π(Γ ) → L2

π(Γ ) refers to multiplication by ym, which has operator
norm at most 1 since |ym| ≤ 1.2

2. Galerkin approximation

2.1. Tensor product orthogonal polynomial basis. For each m, let (P m
n )∞

n=0

denote an orthonormal polynomial basis of L2
πm

([−1, 1]) with deg(P m
n ) = n. As

a consequence of the symmetry of the measure πm, such bases satisfy recursion
formulas

βm
n P m

n (ym) = ymP m
n−1(ym)− βm

n−1P m
n−2(ym), n ≥ 1, (2.1)

with the initialization P m
0 := 1 and βm

0 := 0, and are unique e.g. if βm
n are chosen

as positive for all n ≥ 1, which we assume.
In case of a uniform distribution dπm(ym) = 1

2 dym, the polynomials (P m
n )∞

n=0

are Legendre polynomials, and βm
n = (4 − n−2)−1/2. Alternatively, if dπm(ym) =

1
π (1 − y2

m)−1/2 dym, then (P m
n )∞

n=0 are Chebyshev polynomials of the first kind,

with βm
1 = 1/

√
2 and βm

n = 1/2 for n ≥ 2. Further examples are tabulated e.g. in
[9, 11].

1i.e. πm is invariant under the transformation ym 7→ −ym.
2The tensor product ⊗ is meant with regards to the usual representation of the Bochner space

L2
π(Γ ; V ) as the Hilbert tensor product space L2

π(Γ ) ⊗ V , and similarly for V ∗ in place of V .
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Tensor products of the orthonormal polynomials P m
n across all dimensions m ∈ N

are indexed by the set

F := {µ ∈ N
∞
0 ; # supp µ <∞} (2.2)

of finitely supported integer sequences, where supp(µ) = {m ∈ N ; µm 6= 0}. For
any µ ∈ F , the function Pµ :=

⊗∞
m=1 P m

µm
is expressed as the finite product

Pµ(y) =

∞
∏

m=1

P m
µm

(ym) =
∏

m∈supp µ

P m
µm

(ym) (2.3)

for y = (ym)∞
m=1 ∈ Γ since P m

0 = 1 for all m due to the normalization of the
measure πm. The recursion (2.1) implies

ymPµ(y) = βm
µm+1Pµ+ǫm

(y) + βm
µm

Pµ−ǫm
(y), y ∈ Γ, (2.4)

where ǫm := (δmn)∞
n=1 denotes the Kronecker sequence for the coordinate m, and

we set Pµ := 0 if any µm < 0.
The tensorized polynomials (Pµ)µ∈F form an orthonormal basis of L2

π(Γ ). Equa-
tion (2.4) indicates the representation of the multiplication operator Km in this
basis.

Lemma 2.1. The map Km : ℓ2(F) → ℓ2(F) given by (cµ)µ∈F 7→ (βm
µm+1cµ+ǫm

+
βm

µm
cµ−ǫm

)µ∈F has operator norm at most one.

Proof. Due to (2.4), Km is the representation of multiplication by ym in the or-
thonormal basis (Pµ)µ∈F . By Parseval’s identity, the operator norm of Km on ℓ2(F)
coincides with that of Km on L2

π(Γ ), and this is at most 1 since |ym| ≤ 1. �

For any subset Λ ⊂ F , we define supp(Λ) ⊂ N as the set of active dimensions in
Λ,

supp Λ :=
⋃

µ∈Λ

supp µ. (2.5)

The boundary of Λ is the infinite set

∂Λ := {ν ∈ F \ Λ ; ∃m ∈ N : ν − ǫm ∈ Λ ∨ ν + ǫm ∈ Λ}. (2.6)

Restricting m in (2.6) to the support supp(Λ) leads to the active boundary

∂◦Λ := {ν ∈ F \ Λ ; ∃m ∈ supp Λ : ν − ǫm ∈ Λ ∨ ν + ǫm ∈ Λ}, (2.7)

which is a finite set with cardinality at most 2(# supp Λ)#Λ if Λ is finite.
A set Λ ⊂ F is monotone if µ − ǫm ∈ Λ for all µ ∈ Λ and m ∈ supp(µ). If

Λ is monotone, then ∂Λ and ∂◦Λ consist only of ν = µ + ǫm with µ ∈ Λ, and
consequently the cardinality of ∂◦Λ is at most (# supp Λ)#Λ.

2.2. Polynomial expansion. The expansion of the solution u of (1.11) with re-
spect to the basis (Pµ)µ∈F of L2

π(Γ ) has the form

u(y, x) =
∑

µ∈F

uµ(x)Pµ(y), (2.8)

with coefficients uµ in V = H1
0 (D) and convergence in L2

π(Γ ; V ). The vector of
coefficients (uµ)µ∈F ∈ ℓ2(F ; V ) is determined by the infinite coupled system

Āuµ +

∞
∑

m=1

Am(βm
µm+1uµ+ǫm

+ βm
µm

uµ−ǫm
) = fδµ0 ∀µ ∈ F . (2.9)

The coefficients βm
n in this system are the coefficients in the recursion formula (2.1).
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For any subset Λ ⊂ F , the Galerkin projection of u onto

V(Λ) :=

{

vΛ(y, x) =
∑

µ∈Λ

vΛ,µ(x)Pµ(y) ; vΛ,µ ∈ V ∀µ ∈ Λ

}

⊂ L2
π(Γ ; V ) (2.10)

is the unique uΛ ∈ V(Λ) satisfying
∫

Γ

〈A(y)uΛ(y), vΛ(y)〉dπ(y) =

∫

Γ

∫

D

f(x)vΛ(y, x) dx dπ(y) ∀vΛ ∈ V(Λ). (2.11)

If Λ is finite, then the sequence of coefficients (uΛ,µ)µ∈Λ ∈ V Λ =
∏

µ∈Λ V of uΛ is
determined by the finite system

ĀuΛ,µ +

∞
∑

m=1

Am(βm
µm+1uΛ,µ+ǫm

+ βm
µm

uΛ,µ−ǫm
) = fδµ0 ∀µ ∈ Λ, (2.12)

where uΛ,ν := 0 for ν ∈ F \ Λ. The infinite sum in (2.12) can be restricted to the
finite set supp(Λ) since uΛ,µ±ǫm

= 0 for all m ∈ N \ supp(Λ).

2.3. Finite element approximation. We discretize (1.11) further by restricting
to a finite element space Vp(T ) of continuous piecewise polynomials of a fixed degree
p on a conforming simplicial mesh T of D. For any finite set Λ ⊂ F ,

Vp(Λ, T ) :=

{

vN (y, x) =
∑

µ∈Λ

vN,µ(x)Pµ(y) ; vN,µ ∈ Vp(T ) ∀µ ∈ Λ

}

⊂ V(Λ)

(2.13)
is a finite-dimensional subspace of L2

π(Γ ; V ), and the Galerkin approximation of u
in Vp(Λ, T ) is the unique uN ∈ Vp(Λ, T ) satisfying

∫

Γ

〈A(y)uN (y), vN (y)〉dπ(y) =

∫

Γ

∫

D

f(x)vN (y, x) dx dπ(y) ∀vN ∈ Vp(Λ, T ).

(2.14)
The sequence of coefficients (uN,µ)µ∈Λ ∈ Vp(T )Λ =

∏

µ∈Λ Vp(T ) constitutes the

finite element approximation of the system (2.12), determined by

〈ĀuN,µ, vN 〉+

∞
∑

m=1

〈Am(βm
µm+1uN,µ+ǫm

+ βm
µm

uN,µ−ǫm
), vN 〉 = 〈fδµ0, vN 〉 (2.15)

for all vN ∈ Vp(T ) and all µ ∈ Λ, where uN,ν := 0 for ν ∈ F \ Λ.
More specifically, we consider meshes resulting from refinements of a prescribed

conforming simplicial mesh Tinit of D. For each cell T ∈ Tinit, let a sequence
of bisections of T into uniformly shape regular simplices be prescribed, and let T

consist of all conforming simplicial meshes of D attainable through these bisections.
We assume T ∈ T.

We denote the set of facets of the mesh T by S = S(T ), which are divided into
interior facets S ∩D and exterior facets S ∩∂D. For any cell T ∈ T , the set S ∩∂T
consists of the facets of T in the boundary of T . Similarly, for any T ∈ T , ∂T ∩D
denotes the facets in the boundary of T in the interior of D.

We define local mesh size parameters by hT := |T |1/d for T ∈ T , and the resulting
piecewise constant function hT on T taking the value hT (x) = hT for x ∈ T .

The set T is partially ordered by the relation T1 � T2 denoting that T2 is finer
than T1, i.e. T2 can be obtained from T1 through a suitable refinement. Furthermore,
for any T1, T2 ∈ T, the overlay T := T1 ⊕ T2 is the coarsest mesh in T with T1 �
T1⊕T2 and T2 � T1⊕T2. By [2, Lem. 3.7], the cardinality of T1⊕T2 is bounded by

#(T1 ⊕ T2) ≤ #T1 + #T2 −#T0 (2.16)

where T0 is any mesh T0 ∈ T with T0 � T1 and T0 � T2, e.g. T0 = Tinit.
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3. Estimation of the truncation error

3.1. Expansion of the residual. The residual R(wΛ) ∈ L2
π(Γ ; V ∗) of the any

approximation wΛ of u in V(Λ) is

R(wΛ) := f −AwΛ = A(u− wΛ). (3.1)

It can be expanded as R(wΛ) =
∑

ν∈F rν(wΛ)Pν with convergence in L2
π(Γ ; V ∗)

for the coefficients

rν(wΛ) = fδν0 − ĀwΛ,ν −
∞

∑

m=1

Am(βm
νm+1wΛ,ν+ǫm

+ βm
νm

wΛ,ν−ǫm
), ν ∈ F , (3.2)

i.e.

〈rν(wΛ), v〉 =

∫

D

fδν0v − σν(wΛ) · ∇v dx ∀v ∈ V (3.3)

for

σν(wΛ) := ā∇wΛ,ν +

∞
∑

m=1

am∇(βm
νm+1wΛ,ν+ǫm

+ βm
νm

wΛ,ν−ǫm
), ν ∈ F . (3.4)

Noting that rν(wΛ) is nonzero only for ν in Λ ∪ ∂Λ, we have the decomposition
R(wΛ) = RΛ(wΛ) +R∂Λ(wΛ) for

RΞ(wΛ) :=
∑

ν∈Ξ

rν(wΛ)Pν , Ξ ⊂ F , (3.5)

and consequently

‖R(wΛ)‖2
L2

π(Γ ;V ∗) = ‖RΛ(wΛ)‖2
L2

π(Γ ;V ∗) + ‖R∂Λ(wΛ)‖2
L2

π(Γ ;V ∗). (3.6)

Lemma 3.1. For any wΛ ∈ V(Λ),

‖wΛ − u‖2
A ≥

1

1 + γ

(

‖RΛ(wΛ)‖2
L2

π(Γ ;V ∗) + ‖R∂Λ(wΛ)‖2
L2

π(Γ ;V ∗)

)

, (3.7)

‖wΛ − u‖2
A ≤

1

1− γ

(

‖RΛ(wΛ)‖2
L2

π(Γ ;V ∗) + ‖R∂Λ(wΛ)‖2
L2

π(Γ ;V ∗)

)

. (3.8)

Proof. By the Riesz representation theorem in L2
π(Γ ; V ∗),

‖u− wΛ‖2
A = sup

v∈L2
π(Γ ;V )

|〈A(u− wΛ), v〉|2
‖v‖2

A

= sup
v∈L2

π(Γ ;V )

|〈R(wΛ), v〉|2
‖v‖2

A

,

and (1 − γ)‖v‖2
L2

π(Γ ;V ) ≤ ‖v‖2
A ≤ (1 + γ)‖v‖2

L2
π(Γ ;V ) due to (1.3). The assertion

follows with (3.6). �

The component ‖RΛ(wΛ)‖2
L2

π(Γ ;V ∗) of (3.6) can be interpreted as an interior

residual in the sense that it gauges the distance of wΛ to uΛ.

Lemma 3.2. For any wΛ ∈ V(Λ),

1

1 + γ
‖RΛ(wΛ)‖2

L2
π(Γ ;V ∗) ≤ ‖wΛ − uΛ‖2

A ≤
1

1− γ
‖RΛ(wΛ)‖2

L2
π(Γ ;V ∗). (3.9)

Proof. For any vΛ ∈ V(Λ),

〈A(uΛ − wΛ), vΛ〉 = 〈A(u− wΛ), vΛ〉 = 〈R(wΛ), vΛ〉 = 〈RΛ(wΛ), vΛ〉.
The assertion follows as in the proof of Lemma 3.1 using

‖uΛ − wΛ‖A = sup
vΛ∈V(Λ)

|〈A(uΛ − wΛ), v〉|
‖vΛ‖A

= sup
vΛ∈V(Λ)

|〈RΛ(wΛ), vΛ〉|
‖v‖A

. �
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Remark 3.3. Using Lemma 3.2, a statement similar to that of Lemma 3.1 for the
Galerikin projection wΛ = uN in a subspace of V(Λ) could be derived by means of
Galerkin orthogonality

‖uN − u‖2
A = ‖uN − uΛ‖2

A + ‖uΛ − u‖2
A, (3.10)

with each term on the right corresponding to one component of the residual. How-
ever, this leads to R∂Λ(uΛ) in place of R∂Λ(uN ), which is less accessible.

We estimate the two terms of (3.6) separately, beginning with R∂Λ(wΛ).

3.2. Upper bounds for the tail of the residual. Let Λ ⊂ F be a finite set. For
any wΛ ∈ V(Λ) and any ν ∈ ∂Λ, let

ζν(wΛ) :=

∞
∑

m=1

∥

∥

∥

am

ā

∥

∥

∥

L∞(D)

(

βm
νm+1‖wΛ,ν+ǫm

‖V + βm
νm
‖wΛ,ν−ǫm

‖V

)

. (3.11)

The sum in (3.11) is a finite sum over supp(Λ) since all other terms are zero. For
any subset ∆ ⊂ ∂Λ, let

ζ(wΛ, ∆) :=

(

∑

ν∈∆

ζν(wΛ)2

)1/2

. (3.12)

Lemma 3.4. If 0 ∈ Λ, then for any wΛ ∈ V(Λ),

‖R∂Λ(wΛ)‖L2
π(Γ ;V ∗) ≤ ζ(wΛ, ∂Λ). (3.13)

Proof. By Parseval’s identity,

‖R∂Λ(wΛ)‖2
L2

π(Γ ;V ∗) =
∑

ν∈∂Λ

‖rν(wΛ)‖2
V ∗ .

Since ν 6= 0, (3.3) and the Cauchy–Schwarz and triangle inequalities lead to

‖rν(wΛ)‖V ∗ = sup
v∈V

1

‖v‖V

∣

∣

∣

∣

∫

D

σν(wΛ) · ∇v dx

∣

∣

∣

∣

≤ ζν(wΛ).

�

Due to the infinite cardinality of ∂Λ, ζ(wΛ, ∂Λ) is defined as an infinite sum in
(3.12). However, for ν ∈ ∂Λ\∂◦Λ, i.e. ν = µ + ǫm with µ ∈ Λ and m ∈ N\ supp(Λ),

ζν(wΛ) =
∥

∥

∥

am

ā

∥

∥

∥

L∞(D)
βm

1 ‖wΛ,µ‖V . (3.14)

Summing these terms over all inactive dimensions m leads to the lumped error
indicator

ζ̄µ(wΛ, Λ) :=

(

∑

m∈N\supp Λ

ζµ+ǫm
(wΛ)2

)1/2

= ‖wΛ,µ‖V

(

∑

m∈N\supp Λ

(
∥

∥

∥

am

ā

∥

∥

∥

L∞(D)
βm

1

)2
)1/2

(3.15)

for µ ∈ Λ. The infinite sum remaining in ζ̄µ(wΛ, Λ) is independent of wΛ and µ,
depending only on supp(Λ); we assume that it can be computed. Then ζ(wΛ, ∂Λ)
is represented by the finite sum

ζ(wΛ, ∂Λ)2 =
∑

ν∈∂◦Λ

ζν(wΛ)2 +
∑

µ∈Λ

ζ̄µ(wΛ, Λ)2. (3.16)
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3.3. Lipschitz continuity of the error indicator. The error indicator ζ(wΛ, ∂Λ)
depends Lipschitz-continuously on the approximation wΛ in V(Λ).

Lemma 3.5. For all vΛ, wΛ ∈ V(Λ),

|ζ(vΛ, ∂Λ)− ζ(wΛ, ∂Λ)| ≤ γ‖vΛ − wΛ‖L2
π(Γ ;V ). (3.17)

Proof. Let eΛ := vΛ − wΛ ∈ V(Λ). For any ν ∈ ∂Λ,
∣

∣ζν(vΛ)2 − ζν(wΛ)2
∣

∣ =
∣

∣ζν(vΛ)− ζν(wΛ)
∣

∣

(

ζν(vΛ) + ζν(wΛ)
)

≤ ζν(eΛ)sν

with sν := ζν(vΛ) + ζν(wΛ). Appropriately rearranging terms and applying the
Cauchy–Schwarz inequality, Lemma 2.1 and (1.3),

∑

ν∈∂Λ

ζν(eΛ)sν ≤
∑

µ∈Λ

‖eΛ,µ‖V

[ ∞
∑

m=1

∥

∥

∥

am

ā

∥

∥

∥

L∞(D)

(

βm
µm+1sµ+ǫm

+ βm
µm

sµ−ǫm

)

]

≤ γ

(

∑

µ∈Λ

‖eΛ,µ‖2
V

)1/2(

∑

ν∈∂Λ

s2
ν

)1/2

,

and (
∑

ν∈∂Λ s2
ν)1/2 ≤ ζ(vΛ, ∂Λ) + ζ(wΛ, ∂Λ) by the triangle inequality. The error

indicator ζ satisfies
∣

∣ζ(vΛ, ∂Λ)− ζ(wΛ, ∂Λ)
∣

∣

(

ζ(vΛ, ∂Λ) + ζ(wΛ, ∂Λ)
)

=
∣

∣ζ(vΛ, ∂Λ)2 − ζ(wΛ, ∂Λ)2
∣

∣

≤
∑

ν∈∂Λ

∣

∣ζν(vΛ)2 − ζν(wΛ)2
∣

∣,

and the assertion follows by inserting the above estimate for |ζν(vΛ)2 − ζν(wΛ)2|
and cancelling ζ(vΛ, ∂Λ) + ζ(wΛ, ∂Λ) since

∑

µ∈Λ‖eΛ,µ‖2
V = ‖eΛ‖2

L2
π(Γ ;V ). �

4. A spatial error indicator

4.1. Residual-based estimation of the spatial error. For all wN ∈ Vp(Λ, T ),
T ∈ T and µ ∈ Λ, let

ηµ,T (wN ) :=
(

h2
T ‖ā−1/2(fδµ0+∇·σµ(wN ))‖2

L2(T )+hT ‖ā−1/2[[σµ(wN )]]‖2
L2(∂T ∩D)

)1/2
,

(4.1)
where [[·]] denotes the normal jump over S ∈ S(T ), i.e. if S̄ = T̄1 ∩ T̄2 and ni is the
exterior unit normal to Ti, then

[[σ]] := σ|T1
· n1 + σ|T2

· n2. (4.2)

Summing over µ ∈ Λ, we define the error indicator for the cell T as

ηT (wN , Λ) :=

(

∑

µ∈Λ

ηµ,T (wN )2

)1/2

, (4.3)

and for any subset M⊂ T , these terms combine to

η(wN , Λ,M) :=

(

∑

T ∈M

ηT (wN , Λ)2

)1/2

. (4.4)

Similarly, we define the oscillation of wN ∈ Vp(Λ, T ) as

oscµ,T (wN ) :=
(

h2
T ‖ā−1/2(id−Π2p−2)(fδµ0 +∇ · σµ(wN ))‖2

L2(T )

+ hT ‖ā−1/2(id−Π2p−1)[[σµ(wN )]]‖2
L2(∂T ∩D)

)1/2
,

(4.5)

where p is the local polynomial degree of the finite element space Vp(T ) and Πn

denotes the orthogonal projection in L2(T ) with respect to the weight ā−1 onto
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polynomials of degree n. Summing over µ ∈ Λ and T ∈ M ⊂ T gives the total
oscillations

oscT (wN , Λ) :=

(

∑

µ∈Λ

oscµ,T (wN )2

)1/2

, (4.6)

osc(wN , Λ,M) :=

(

∑

T ∈M

oscT (wN , Λ)2

)1/2

, (4.7)

where M is any nonempty subset of T . These terms are used only in our analysis,
and do not need to be computed in our adaptive algorithm. We note that the error
indicator dominates the oscillation,

oscT (wN , Λ) ≤ ηT (wN , Λ) (4.8)

for all T ∈ T , see [2, Rem. 2.1].

4.2. Equivalence to the interior residual. Up to a term involving the oscillation
in the lower bound, the spatial error indicator is equivalent to the residual of the
Galerkin projection in Vp(Λ, T ). The constants cη and Cη appearing in Theorem 4.1
are independent of the set Λ of active indices since, as described in the proof, bounds
for each coefficient of the residual hold with uniform constants.

Theorem 4.1. The Galerkin projection uN of u onto Vp(Λ, T ) satisfies

cη

(

η(uN , Λ, T )2 − osc(uN , Λ, T )2
)

≤ ‖RΛ(uN )‖2
L2

π(Γ ;V ∗) ≤ Cηη(uN , Λ, T )2 (4.9)

with constants cη, Cη > 0 depending only on ā, p and the shape regularity of T, but

not on Λ.

Proof. For any µ ∈ Λ, the proof of [7, Thm. 6.1] extends verbatim to arbitrary
polynomial degrees p to show

|〈rµ(uN ), v − IN v〉|2 ≤ Cη‖v‖2
V

∑

T ∈T

ηµ,T (uN )2

for all v ∈ V , where IN denotes the Clément interpolation operator onto Vp(T ).
By Galerkin orthogonality, 〈rµ(uN ), v〉 = 〈rµ(uN ), v − IN v〉, and thus

‖rµ(uN )‖2
V ∗ ≤ Cη

∑

T ∈T

ηµ,T (uN )2.

Similarly, the standard estimates from [18, 15] based on cell and facet bubble
functions lead to the lower bound

(

∑

T ∈T

ηµ,T (uN )2

)1/2

≤ c

[

‖rµ(uN )‖V ∗ +

(

∑

T ∈T

oscµ,T (uN )2

)1/2
]

for all µ ∈ Λ. Consequently,

cη

[

∑

T ∈T

ηµ,T (uN )2 −
∑

T ∈T

oscµ,T (uN )2

]

≤ ‖rµ(uN )‖2
V ∗

for cη = 1/2c2, and the assertion follows by summing over µ ∈ Λ. �

Theorem 4.1 and Lemma 3.2 provide the following bounds for the spatial error
of uN ∈ Vp(Λ, T ), i.e. the energy norm of the difference between uN and the
semidiscrete approximation uΛ.

Corollary 4.2. The Galerkin projection uN in Vp(Λ, T ) satisfies

cη

1 + γ

(

η(uN , Λ, T )2−osc(uN , Λ, T )2
)

≤ ‖uN −uΛ‖2
A ≤

Cη

1− γ
η(uN , Λ, T )2. (4.10)
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Similarly, Lemma 3.1, Lemma 3.4 and Theorem 4.1 lead to the following upper
and lower bounds for the full error of uN in the energy norm.

Corollary 4.3. The energy norm error of the Galerkin projection uN in Vp(Λ, T )
satisfies

‖uN − u‖2
A ≥

cη

1 + γ

(

η(uN , Λ, T )2 − osc(uN , Λ, T )2
)

, (4.11)

‖uN − u‖2
A ≤

Cη

1− γ

(

η(uN , Λ, T )2 + ζ(uN , ∂Λ)2
)

. (4.12)

The upper bound from Corollary 4.2 can be refined to estimate the difference of
two discrete solutions with different spatial meshes. In this case, the error indicator
is restricted to just the refined elements, and the estimate can thus be viewed as a
local upper bound. We refer to [2, Lem. 3.6] for a proof.

Lemma 4.4. Let T , T ∗ ∈ T such that T ∗ is a refinement of T , and let uN ∈
Vp(Λ, T ) and u∗

N ∈ Vp(Λ, T ∗) be the respective Galerkin projections. Then

‖uN − u∗
N‖2

A ≤ C̄ηη(uN , Λ,M)2 (4.13)

where M = T \ (T ∗ ∩T ) is the set of refined cells and C̄η is a uniform constant on

T independent of Λ.

4.3. Lipschitz continuity of the spatial error indicator. Similarly to the er-
ror indicator ζ(wN , ∂Λ), the spatial error indicator ηT (wN , Λ) depends Lipschitz-
continuously on the argument wN in Vp(Λ, T ).

For any finite set Λ ⊂ F and any T ∈ T, we introduce the constant

ca,δ(Λ, T ) := max

{
∥

∥

∥

∥

hT∇ϕ

ā

∥

∥

∥

∥

L∞(D)

/

∥

∥

∥

ϕ

ā

∥

∥

∥

L∞(D)
; ϕ ∈ {ā} ∪ {am ; m ∈ supp Λ}

}

,

(4.14)
i.e. the gradients of all am with m ∈ supp(Λ) satisfy

∥

∥

∥

∥

hT∇am

ā

∥

∥

∥

∥

L∞(D)

≤ ca,δ(Λ, T )
∥

∥

∥

am

ā

∥

∥

∥

L∞(D)
(4.15)

and the same estimate holds for ā in place of am. This constant is always finite
since supp(Λ) is a finite set, but ca,δ(Λ, T ) may degenerate if Λ is enlarged without
appropriate refinements of T .

The proof of the following statement mirrors that of Lemma 3.5. The seminorm
|·|L2

π(Γ ;V |T ) refers to the restriction of the Bochner norm in L2
π(Γ ; V ) to any sub-

domain T ⊂ D, which in the following will be a triangular or tetrahedral element
T ∈ T .

Lemma 4.5. For all vN , wN ∈ Vp(Λ, T ) and all T ∈ T ,

|ηT (vN , Λ)− ηT (wN , Λ)| ≤
(

ca,δ(Λ, T ) + ĉη

)

(1 + γ)|vN − wN |L2
π(Γ ;V |T ) (4.16)

with a uniform constant ĉη on T.

Proof. Let µ ∈ Λ and eN := vN − wN . We split ηµ,T (wN ) into η0
µ,T (wN ) :=

hT ‖ā−1/2(fδµ0+∇·σµ(wN ))‖L2(T ) and η1
µ,T (wN ) := h

1/2
T ‖ā−1/2[[σµ(wN )]]‖L2(∂T ∩D).

Let cinv > 0 such that, uniformly for all T ∈ T and all T ∈ T , ‖ā1/2
∆vN‖L2(T ) ≤

cinvh−1
T |vN |V,T and ‖ā1/2∇vN ·nT ‖L2(∂T ∩D) ≤ cinvh

−1/2
T |vN |V,T for all vN ∈ Vp(T ).
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The first of the above inverse inequalities ‖ā1/2
∆vN‖L2(T ) ≤ cinvh−1

T |vN |V,T for
vN ∈ Vp(T ) implies

|η0
µ,T (vN )− η0

µ,T (wN )| ≤ hT ‖ā−1/2∇ · σµ(eN )‖L2(T )

≤ α0
0|eN,µ|V,T +

∞
∑

m=1

α0
m

(

βm
µm+1|eN,µ+ǫm

|V,T + βm
µm
|eN,µ−ǫm

|V,T

)

for α0
0 := ca,δ(Λ, T )+cinv and α0

m := (ca,δ(Λ, T )+cinv)‖am/ā‖L∞(D). Furthermore,

using that ‖ā1/2∇vN · nT ‖L2(∂T ∩D) ≤ cinvh
−1/2
T |vN |V,T for all vN ∈ Vp(T ),

|η1
µ,T (vN )− η1

µ,T (wN )| ≤ h
1/2
T ‖ā−1/2[[σµ(eN )]]‖L2(∂T ∩D)

≤ α1
0|eN,µ|V,T +

∞
∑

m=1

α1
m

(

βm
µm+1|eN,µ+ǫm

|V,T + βm
µm
|eN,µ−ǫm

|V,T

)

with α1
0 := 2cinv and α1

m := 2cinv‖am/ā‖L∞(D).
Noting that

∣

∣ηµ,T (vN )2 − ηµ,T (wN )2
∣

∣ =
∣

∣η0
µ,T (vN )− η0

µ,T (wN )
∣

∣s0
µ +

∣

∣η1
µ,T (vN )− η1

µ,T (wN )
∣

∣s1
µ

for si
µ := ηi

µ,T (vN ) + ηi
µ,T (wN ), the above estimates combine to

|ηT (vN , Λ)2 − ηT (wN , Λ)2| ≤
∑

µ∈Λ

∣

∣ηµ,T (vN )2 − ηµ,T (wN )2
∣

∣

≤
∑

µ∈Λ

|eN,µ|V,T Sµ ≤
(

∑

µ∈Λ

|eN,µ|2V,T

)1/2(

∑

µ∈Λ

S2
µ

)1/2

with

Sµ = α0
0s0

µ +

∞
∑

m=1

α0
m

(

βm
µm+1s0

µ+ǫm
+ βm

µm
s0

µ−ǫm

)

+ α1
0s1

µ +

∞
∑

m=1

α1
m

(

βm
µm+1s1

µ+ǫm
+ βm

µm
s1

µ−ǫm

)

and due to Lemma 2.1,
(

∑

µ∈Λ

S2
µ

)1/2

≤
(

α0
0 +

∞
∑

m=1

α0
m

)(

∑

µ∈Λ

(s0
µ)2

)1/2

+

(

α1
0 +

∞
∑

m=1

α1
m

)(

∑

µ∈Λ

(s1
µ)2

)1/2

≤
(

α0
0 + α1

0 +

∞
∑

m=1

α0
m + α1

m

)

(

ηT (vN , Λ) + ηT (wN , Λ)
)

.

The assertion with ĉη = 3cinv follows using

|ηT (vN , Λ)2−ηT (wN , Λ)2| =
∣

∣ηT (vN , Λ)−ηT (wN , Λ)
∣

∣

(

ηT (vN , Λ)+ηT (wN , Λ)
)

. �

The spatial error indicators are also continuous in their second argument, as
described in the following statement.

Lemma 4.6. Let 0 ∈ Λ ⊂ Λ∗ ⊂ F , T ∈ T and wN ∈ Vp(Λ, T ). Then

η(wN , Λ∗ \ Λ, T ) ≤
(

2ca,δ(Λ∗, T ) + ĉη,ζ

)

ζ(wN , ∂Λ ∩ Λ∗) (4.17)

with a uniform constant ĉη,ζ on T.

Proof. By definition, using ην,T (wN ) = 0 for ν ∈ Λ∗ \ (Λ ∪ ∂Λ),

η(wN , Λ∗ \ Λ, T )2 =
∑

T ∈T

∑

ν∈∂Λ∩Λ∗

ην,T (wN )2
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As in the proof of Lemma 4.5, we split ην,T (wN ) into η0
ν,T (wN ) := hT ‖ā−1/2(fδν0 +

∇ · σν(wN ))‖L2(T ) and η1
ν,T (wN ) := h

1/2
T ‖ā−1/2[[σν(wN )]]‖L2(∂T ∩D) for any ν ∈

∂Λ ∩ Λ∗ and T ∈ T .
Let cinv > 0 such that the inverse inequalities ‖ā1/2hT ∆vN‖L2(D) ≤ cinv‖vN‖V

and
∑

T ∈T hT ‖ā1/2∇vN · nT ‖L2(∂T ∩D) ≤ c2
inv‖vN‖V hold for all vN ∈ Vp(T ) uni-

formly on T.
Due to first of the above the inverse inequalities and using wN,ν = 0,

(

∑

T ∈T

η0
ν,T (wN )2

)1/2

=

∥

∥

∥

∥

ā−1/2hT

∞
∑

m=1

∇ ·
(

am(βm
νm+1∇wN,ν+ǫm

+ βm
νm
∇wN,ν−ǫm

)
)

∥

∥

∥

∥

L2(D)

≤
∞

∑

m=1

∥

∥

∥

∥

hT∇am

ā

∥

∥

∥

∥

L∞(D)

(

βm
νm+1‖wN,ν+ǫm

‖V + βm
νm
‖wN,ν−ǫm

‖V

)

+ cinv

∞
∑

m=1

∥

∥

∥

am

ā

∥

∥

∥

L∞(D)

(

βm
νm+1‖wN,ν+ǫm

‖V + βm
νm
‖wN,ν−ǫm

‖V

)

With (4.15), the last term is bounded by (ca,δ(Λ∗, T ) + cinv)ζν(wN ). Similarly, the
triangle inequality on the skeleton S of T leads to

(

∑

T ∈T

η1
ν,T (wN )2

)1/2

≤
∞

∑

m=1

∥

∥

∥

am

ā

∥

∥

∥

L∞(D)
βm

νm+1

(

∑

T ∈T

hT

∥

∥ā1/2[[∇wN,ν+ǫm
]]
∥

∥

2

L2(∂T ∩D)

)1/2

+

∞
∑

m=1

∥

∥

∥

am

ā

∥

∥

∥

L∞(D)
βm

νm

(

∑

T ∈T

hT

∥

∥ā1/2[[∇wN,ν−ǫm
]]
∥

∥

2

L2(∂T ∩D)

)1/2

and the inverse inequality
∑

T ∈T hT ‖ā1/2∇vN ·nT ‖L2(∂T ∩D) ≤ c2
inv‖vN‖V for vN ∈

Vp(T ) implies
(

∑

T ∈T

η1
ν,T (wN )2

)1/2

≤ 2cinvζν(wN ).

Combining these bounds, we have
(

∑

T ∈T

ην,T (wN )2

)1/2

≤
(

(ca,δ(Λ∗, T ) + cinv)2 + 4c2
inv

)1/2
ζν(wN ),

and the assertion follows by summing over ν ∈ ∂Λ ∩ Λ∗. �

A continuity property similar to that in Lemma 4.5 holds for the oscillation
oscT (wN , Λ). The proof of the following lemma is analogous to the above argument;
see also [2, Lem. 3.3].

Lemma 4.7. For all vN , wN ∈ Vp(Λ, T ) and all T ∈ T ,

|oscT (vN , Λ)−oscT (wN , Λ)| ≤
(

ca,δ(Λ, T )+ ĉosc

)

(1+γ)|vN −wN |L2
π(Γ ;V |T ) (4.18)

with a uniform constant ĉosc on T.

5. The adaptive algorithm

5.1. Modules. Given a mesh T ∈ T and a finite set Λ ⊂ F containing 0, we
assume that a routine

uN ← Solve[Λ, T ] (5.1)

is available which returns the exact Galerkin projection uN determined by (2.14)
in the space Vp(Λ, T ) from (2.13), for a fixed local polynomial degree p.
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The error indicators from Sections 3.2 and 4.1 are computed by the modules

(ηT (uN , Λ))T ∈T , η(uN , Λ, T )← Estimatex[uN , Λ, T ], (5.2)

(ζν(uN ))ν∈∂◦Λ, ζ(uN , ∂Λ), (‖uN‖V )µ∈Λ ← Estimatey[uN , Λ], (5.3)

where (3.16) is used to compute ζ(uN , ∂Λ) as a finite sum. These error indicators
are subsequently used to mark cells of the spatial mesh T for refinement, and to
activate indices in ∂Λ.

We consider separate marking and refinement procedures for T and Λ. For a
parameter 0 < ϑx < 1, let the routine

M← Markx[ϑx, (ηT (uN , Λ))T ∈T , η(uN , Λ, T )] (5.4)

return a subset M⊂ T satisfying the Dörfler property

η(uN , Λ,M) ≥ ϑxη(uN , Λ, T ), (5.5)

and let the module

T ∗ ← Refinex[T ,M] (5.6)

construct a conforming mesh T ∗ ∈ T in which at least all elements ofM have been
bisected at least once compared to T . These methods are standard to adaptive
finite element algorithms, and do not depend on Λ ⊂ F .

A similar routine that constructs a finite set ∆ ⊂ ∂Λ with

ζ(uN , ∆) ≥ ϑyζ(uN , ∂Λ) (5.7)

for a parameter 0 < ϑy < 1 is discussed in the next section. Let

Λ∗ ← Refiney[Λ, ∆] (5.8)

return a set Λ ∪∆ ⊂ Λ∗ ⊂ Λ ∪ ∂Λ. A simple choice is Λ∗ := Λ ∪∆, but we do not
assume this particular definition, and indeed a larger set may be chosen in order to
ensure favorable properties of Λ∗, such as monotonicity.

Finally, in order to control the constant ca,δ(Λ, T ) from (4.14), we select an
arbitrary c̄a,δ > 0 and, for each m ∈ N, presume that a mesh Ta,m ∈ T is given
such that ‖hTa,m

∇am/ā‖L∞(D) ≤ c̄a,δ‖am/ā‖L∞(D). Similarly, let Tā ∈ T such that
‖hTā

∇ā/ā‖L∞(D) ≤ c̄a,δ. For any subset S ⊂ N, let

Ta,S := Tā ⊕
⊕

m∈S

Ta,m (5.9)

be the overlay of the meshes corresponding to m ∈ S. Then ca,δ(Λ, Ta,supp Λ) ≤ c̄a,δ

for any finite Λ ⊂ F .

5.2. Marking of parametric modes. A typical way to ensure the Dörfler prop-
erty (5.7) while minimizing the size of ∆ is to sort ν ∈ ∂Λ according to ζν(uN ) and
construct ∆ by successively selecting those ν with maximal ζν(uN ) until (5.7) is
fulfilled. However, this is infeasible due to the infinite cardinality of ∂Λ.

The routine

∆← Marky[ϑy, (ζν(uN ))ν∈∂◦Λ, ζ(uN , ∂Λ), (‖uN,µ‖V )µ∈Λ] (5.10)

functions by a slight extension of the above algorithm. Initially, only indices ν in
the finite set ∂◦Λ are considered for inclusion in ∆. Whenever an index of the form
ν = µ + ǫm with µ ∈ Λ and m = max(supp Λ) is added to ∆, the error indicator
ζν′(uN ) = ‖am/ā‖L∞(D)β

m
1 ‖uN,µ‖V for ν′ = µ + ǫm′ with m′ = min(N \ supp Λ) is

constructed and inserted into the sorted list of error indicators. Similarly, whenever
such a ν′ is added to ∆, the index ν′′ = µ + ǫm′′ is subsequently considered for the
next larger m′′ in N \ supp(Λ). Thus, at every step, only a finite subset of ∂Λ is
considered for addition to ∆. The dynamic computation of ζν(uN ) for ν ∈ ∂Λ\∂◦Λ
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is inexpensive due to the simple structure (3.14). This process is continued until
the Dörfler property (5.7) is satisfied.

Remark 5.1. If ‖am/ā‖L∞(D)β
m
1 are arranged in decreasing order and supp(Λ) =

{1, . . . , M} for an M ∈ N, then Marky constructs a set ∆ of minimal cardinality
subject to the Dörfler property (5.7) since indices ν ∈ ∂Λ \ ∂◦Λ are considered in
decreasing order of ζν(uN ), and these error indicators are bounded by ζν(uN ) with
ν ∈ ∂◦Λ. Furthermore, supp(Λ ∪ ∆) = {1, . . . , M ′} for an M ′ ∈ N, ensuring the
optimality of a subsequent marking, after the refinement to Λ∗ := Λ ∪∆, or after
applying some other reasonable refinement strategy.

5.3. Adaptive algorithm. The above modules combine to form the adaptive sto-
chastic Galerkin finite element algorithm ASGFEM. In each iteration, either a spatial
refinement is performed or the set of active indices is enlarged, depending on which
error indicator is larger.

uǫ ← ASGFEM[ǫ, Λ0, T0, ̺, ϑx, ϑy]

for j = 0, 1, 2, . . . do

uj ← Solve[Λj , Tj ]

(ζj,ν)ν∈∂◦Λj
, ζj , (‖uj,µ‖V )µ∈Λj

← Estimatey[uj , Λj ]

(ηj,T )T ∈Tj
, ηj ← Estimatex[uj , Λj , Tj ]

if η2
j + ζ2

j ≤ ǫ2 then

return uǫ ← uj

if ηj ≥ ̺ζj then

Λj+1 ← Λj

Mj+1 ← Markx[ϑx, (ηj,T )T ∈Tj
, ηj ]

Tj+1 ← Refinex[Tj ,Mj ]

else

∆j ← Marky[ϑy, (ζj,ν)ν∈∂Λj
, ζj , (‖uj,µ‖V )µ∈Λj

]

Λj+1 ← Refiney[Λj , ∆j ]

Tj+1 ← Tj ⊕ Ta,supp Λj+1

The following statement is a direct consequence of Corollary 4.3 and the termi-
nation criterion of the algorithm.

Theorem 5.2. Let ǫ > 0, Λ0 ⊂ F be finite and contain 0, T0 ∈ T with Ta,supp Λ0
�

T0, ̺ > 0 and 0 < ϑx, ϑy < 1. If ASGFEM[ǫ, Λ0, T0, ̺, ϑx, ϑy] terminates, it returns

an approximate solution uǫ with

‖uǫ − u‖2
A ≤

Cη

1− γ
ǫ2. (5.11)

We tacitly assume that the assumptions of Theorem 5.2 hold in the following.
In particular, Λ0 ⊂ F is any finite set containing 0, and T0 ∈ T is adapted to ā in
the sense that Ta,supp Λ0

� T0.

6. Contraction Property

6.1. A preliminary estimate. Our analysis is adapted from [2]. The following
statement is an analogue to [2, Cor. 3.4].

Lemma 6.1. For any nonempty finite sets Λ ⊂ Λ∗ ⊂ F and any meshes T � T ∗ ∈
T, let M := T \ (T ∗ ∩ T ) denote the set of refined cells in T ∗ compared to T , and
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let ∆ := ∂Λ ∩ Λ∗. For any vN ∈ Vp(Λ, T ), v∗
N ∈ Vp(Λ∗, T ∗), χ, τ > 0 and κ ≥ 0,

η(v∗
N , Λ∗, T ∗)2 + κζ(v∗

N , ∂Λ∗)2

≤ (1 + χ)
[

η(vN , Λ, T )2 − λη(vN , Λ,M)2
]

+ (1 + τ)κζ(vN , ∂Λ)2 −
[

(1 + τ)κ− c̄2
ζ(1 + χ)

]

ζ(vN , ∆)2

+ [(1 + χ−1)c̄2
η + (1 + τ−1)κγ2](1− γ)−1‖vN − v∗

N‖2
A (6.1)

with λ = 1− 21/d, c̄ζ := 2ca,δ(Λ∗, T ∗) + ĉη,ζ and c̄η := [ca,δ(Λ∗, T ∗) + ĉη](1 + γ).

Proof. Let vN ∈ Vp(Λ, T ) and v∗
N ∈ Vp(Λ∗, T ∗). Since Vp(Λ, T ) ⊂ Vp(Λ∗, T ∗),

Lemma 4.5 together with Young’s inequality imply

η(v∗
N , Λ∗, T ∗)2 ≤

∑

T ∗∈T ∗

[

ηT ∗(vN , Λ∗) + c̄η|vN − v∗
N |L2

π(Γ ;V |T ∗)

]2

≤ (1 + χ)η(vN , Λ∗, T ∗)2 + (1 + χ−1)c̄2
η‖vN − v∗

N‖2
L2

π(Γ ;V )

with c̄η := [ca,δ(Λ∗, T ∗)+ĉη](1+γ). Due to Lemma 4.6, for c̄ζ := 2ca,δ(Λ∗, T ∗)+ĉη,ζ ,

η(vN , Λ∗, T ∗)2 ≤ η(vN , Λ, T ∗)2 + c̄2
ζζ(vN , ∆)2.

Let T ∈M ⊂ T and let T ∗(T ) := {T ∗ ∈ T ∗ ; T ∗ ⊂ T}. For any µ ∈ Λ, [[σµ(vN )]] =
0 on all facets of T ∗ in the interior of T since vN is continuous on T . Furthermore,
hT ∗ = |T ∗|1/d ≤ (|T |/2)1/d = 2−1/dhT for all T ∗ ∈ T ∗(T ). Thus

η(vN , Λ, T ∗)2 ≤ η(vN , Λ, T \M)2 + 2−1/dη(vN , Λ,M)2

= η(vN , Λ, T )2 − λη(vN , Λ,M)2

with λ = 1− 21/d.
Similarly, Lemma 3.5 and Young’s inequality imply

ζ(v∗
N , Λ∗)2 ≤

(

ζ(vN , ∂Λ∗) + γ‖vN − v∗
N‖L2

π(Γ ;V )

)2

≤ (1 + τ)ζ(vN , ∂Λ∗)2 + (1 + τ−1)γ2‖vN − v∗
N‖2

L2
π(Γ ;V ).

Since ζν(vN ) = 0 for ν ∈ ∂Λ∗ \ ∂Λ and ∆ = ∂Λ ∩ Λ∗ = ∂Λ \ ∂Λ∗,

ζ(vN , ∂Λ∗)2 = ζ(vN , ∂Λ)2 − ζ(vN , ∂Λ \ ∂Λ∗)2 = ζ(vN , ∂Λ)2 − ζ(vN , ∆)2.

The assertion follows with ‖vN − v∗
N‖2

L2
π(Γ ;V ) ≤ (1− γ)−1‖vN − v∗

N‖2
A. �

6.2. Convergence of the adaptive algorithm. We show in Theorem 6.2 that
for certain ωη, ωζ > 0, the adaptive algorithm ASGFEM is a contraction for the
quasi-error

‖uN − u‖2
A + ωηη(uN , Λ, T )2 + ωζζ(uN , ∂Λ)2. (6.2)

As is evident from the proof, it is vital that ωη and ωζ may be distinct constants;
indeed, ωζ may be larger than ωη by a factor depending on c̄a,δ.

Theorem 6.2. Let ̺ > 0 and 0 < ϑx, ϑy < 1, and let uj, Tj, Mj, ∆j, ηj and ζj

denote the sequences of approximate solutions, finite element meshes, marked cells,

marked indices and error indicators, respectively, generated in ASGFEM. There exist

constants 0 < δ < 1, ωη > 0 and ωζ > 0 such that

‖uj+1 − u‖2
A + ωηη2

j+1 + ωζζ2
j+1 ≤ δ

(

‖uj − u‖2
A + ωηη2

j + ωζζ2
j

)

(6.3)

for all j ∈ N0.

Proof. We abbreviate ej := ‖uj − u‖A and dj := ‖uj − uj+1‖A. Lemma 6.1 implies

η2
j+1 + κζ2

j+1 ≤ (1 + χ)[η2
j − λη(uj , Λj ,Mj)2]

+ (1 + τ)κζ2
j − [(1 + τ)− (1 + χ)c̄2

ζκ−1]κζ(uj , ∆j)2

+ [(1 + χ−1)c̄2
η + (1 + τ−1)κγ2](1− γ)−1d2

j
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with λ = 1 − 21/d, c̄ζ := 2c̄a,δ + ĉη,ζ and c̄η := (c̄a,δ + ĉη)(1 + γ) provided that
(1 + τ) ≥ (1 + χ)c̄2

ζκ−1. Using Galerkin orthogonality to expand e2
j+1 = e2

j − d2
j

leads to

e2
j+1 + ω(η2

j+1 + κζ2
j+1) ≤ e2

j −
[

1− ω
(

(1 + χ−1)c̄2
η + (1 + τ−1)κγ2

)

(1− γ)−1
]

d2
j

+ ω(1 + χ)[η2
j − λη(uj , Λj ,Mj)2]

+ ω(1 + τ)κζ2
j − ω[(1 + τ)− (1 + χ)c̄2

ζκ−1]κζ(uj , ∆j)2.

We set ω := ω(χ, τ, κ) := (1− γ)/[(1 + χ−1)c̄2
η + (1 + τ−1)κγ2] such that the term

containing dj drops from this estimate. We expand e2
j = (1 − α)e2

j + αe2
j with

0 < α < 1 and apply the upper bound (4.12) to αe2
j to get

e2
j+1 + ω(η2

j+1 + κζ2
j+1) ≤ (1− α)e2

j + αCη(1− γ)−1(η2
j + ζ2

j )

+ ω(1 + χ)[η2
j − λη(uj , Λj ,Mj)2]

+ ω(1 + τ)κζ2
j − ω[(1 + τ)− (1 + χ)c̄2

ζκ−1]κζ(uj , ∆j)2.

If ηj ≥ ̺ζj , then ∆j = ∅, thus ζ(uj , ∆j) = 0, and by the Dörfler property (5.5),
using (1 + βx)τκζ2

j ≤ (1 + βx)τκ̺−2η2
j for any βx > 0,

e2
j+1 + ω(η2

j+1 + κζ2
j+1) ≤ (1− α)e2

j

+ ω
[

(1 + χ)(1− λϑ2
x) + (1 + βx)τκ̺−2 + αCη(1− γ)−1ω−1

]

η2
j

+ ω(1− βxτ + αCη(1− γ)−1ω−1κ−1)κζ2
j .

Conversely, if ηj < ̺ζj , then Mj = ∅ and consequently η(uj , Λj ,Mj) = 0. The
Dörfler property (5.7) along with (1 + βy)χη2

j ≤ (1 + βy)χ̺2ζ2
j for βy > 0 imply

e2
j+1 + ω(η2

j+1 + κζ2
j+1) ≤ (1− α)e2

j + ω(1− βyχ + αCη(1− γ)−1ω−1)η2
j

+ωκ
[

(1+τ)−ϑ2
y

(

(1+τ)−(1+χ)c̄2
ζκ−1

)

+(1+βy)χ̺2κ−1+αCη(1−γ)−1ω−1κ−1
]

ζ2
j .

All of the factors in the above estimates must be made less than one while ensuring
(1 + τ) ≥ (1 + χ)c̄2

ζκ−1. We select κ > c̄2
ζ and

0 < τ < min
(

ϑ2
y(1− c̄2

ζκ−1)(1− ϑ2
y)−1, λϑ2

x̺2κ−1
)

such that 1 + τ −ϑ2
y(1 + τ − c̄2

ζκ−1) < 1 and 1−λϑ2
x + τκ̺−2 < 1. Next, we choose

χ > 0 sufficiently small such that χ ≤ (1 + τ)κc̄−2
ζ − 1, which implies (1 + τ) ≥

(1 + χ)c̄2
ζκ−1, simultaneously with 1 + τ −ϑ2

y((1 + τ)− (1 + χ)c̄2
ζκ−1) + χ̺2κ−1 < 1

and (1+χ)(1−λϑ2
x)+τκ̺−2 < 1. This permits βx > 0 with (1+χ)(1−λϑ2

x)+(1+
βx)τκ̺−2 < 1 and βy > 0 with 1+τ−ϑ2

y((1+τ)−(1+χ)c̄2
ζκ−1)+(1+βy)χ̺2κ−1 <

1. Finally, we choose α > 0 sufficiently small such that all the factors in the
above estimates remain smaller than one. The assertion follows with δ equal to the
maximum of these factors, ωη := ω and ωζ := κω. �

6.3. Contraction of the spatial error. Theorem 6.2 achieves a contraction of
the quasi-error (6.2) by balancing a potential increase in one error indicator with
a decrease in the other. If the adaptive algorithm ASGFEM performs only spatial
refinements within a succession of iterations, and the set Λ of active indices in F
therefore remains fixed, then a similar contraction property holds for just the spatial
error, with constants independent of Λ. This is elaborated in following theorem,
which follows [2, Thm. 4.1].

Theorem 6.3. Let ̺ > 0 and 0 < ϑx < 1, and let uj, Tj, Mj, Λj and ηj

denote the sequences of approximate solutions, finite element meshes, marked cells,
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active indices and error indicators, respectively, generated in ASGFEM. There exist

constants 0 < δx < 1 and ωx > 0 such that for any j ∈ N0 with Λj+1 = Λj =: Λ,

‖uj+1 − uΛ‖2
A + ωxη2

j+1 ≤ δx

(

‖uj − uΛ‖2
A + ωxη2

j

)

. (6.4)

Proof. We abbreviate ej := ‖uj − uΛ‖A and dj := ‖uj − uj+1‖A. Lemma 6.1 with
κ = 0 and ∆ = ∅ implies

η2
j+1 ≤ (1 + χ)[η2

j − λη(uj , Λj ,Mj)2] + (1 + χ−1)c̄2
η(1− γ)−1d2

j ,

with c̄ζ := 2c̄a,δ + ĉη,ζ for any χ > 0. Since e2
j+1 = e2

j−d2
j by Galerkin orthogonality,

and using the Dörfler property (5.5), we have

e2
j+1 + ωxη2

j+1 ≤ e2
j − [1− ωx(1 + χ−1)c̄2

η(1− γ)−1]d2
j + ωx(1 + χ)(1− λϑ2

x)η2
j

for any ωx > 0. We choose ωx := (1− γ)/[(1 + χ−1)c̄2
η], depending on χ, such that

the term involving dj drops. Expanding e2
j as (1− α)e2

j + αe2
j with 0 < α < 1 and

applying Corollary 4.2 to αe2
j leads to

e2
j+1 + ωxη2

j+1 ≤ (1− α)e2
j + ωx[C1(χ) + C2(χ, α)]η2

j

with C1(χ) = (1 + χ)(1−λϑ2
x) and C2(χ, α) = α(1 + χ−1)Cη c̄2

η(1− γ)−2. Estimate
(6.4) follows with δx = max(1 − α, C1(χ) + C2(χ, α)) < 1 by selecting χ > 0
sufficiently small such that C1(χ) < 1, and then choosing α > 0 sufficiently small
such that C2(χ, α) < 1− C1(χ). �

7. Quasi-optimality of the spatial discretization

7.1. The total spatial error. Let wN ∈ Vp(Λ, T ) be any approximation of u for
a finite set Λ ∈ F and a mesh T ∈ T. The total spatial error

(

‖wN − uΛ‖2
A +

cη

1 + γ
osc(wN , Λ, T )2

)1/2

(7.1)

combines the energy-norm error with the oscillation. Due to Corollary 4.2 and
(4.8), for the Galerkin projection uN ∈ Vp(Λ, T ),

cη

1 + γ
η(uN , Λ, T )2 ≤ ‖uN − uΛ‖2

A +
cη

1 + γ
osc(uN , Λ, T )2

≤
(

cη

1 + γ
+

Cη

1− γ

)

η(uN , Λ, T )2, (7.2)

i.e. the total spatial error is equivalent to the spatial error indicator. Furthermore,
uN is a quasi-optimal approximation of uΛ in Vp(Λ, T ) with respect to the total
spatial error.

Lemma 7.1. If ca,δ(Λ, T ) ≤ c̄a,δ, then the Galerkin projection uN ∈ Vp(Λ, T )
satisfies

‖uN − uΛ‖2
A +

cη

1 + γ
osc(uN , Λ, T )2

≤ Ĉ inf
wN ∈Vp(Λ,T )

(

‖wN − uΛ‖2
A +

cη

1 + γ
osc(wN , Λ, T )2

)

(7.3)

with a constant Ĉ := 2 max(1, cη(c̄a,δ + ĉosc)2(1 + γ)(1 − γ)−1) independent of T
and Λ.

Proof. Let wN ∈ Vp(Λ, T ). Due to Lemma 4.7,

osc(uN , Λ, T )2 ≤ 2 osc(wN , Λ, T )2 +
2(c̄a,δ + ĉosc)2(1 + γ)2

1− γ
‖wN − uN‖2

A.
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By Galerkin orthogonality, ‖wN −uN‖2
A ≤ ‖wN −uΛ‖2

A and ‖uN −uΛ‖2
A ≤ ‖wN −

uΛ‖2
A. Consequently,

‖uN − uΛ‖2
A +

cη

1 + γ
osc(uN , Λ, T )2 ≤ Ĉ

(

‖wN − uΛ‖2
A +

cη

1 + γ
osc(wN , Λ, T )2

)

with Ĉ as in the statement of the lemma, and the assertion follows by taking the
infimum over wN ∈ Vp(Λ, T ). �

Similar to [2, Lem. 5.9], there is an intimate connection between a reduction of
the total spatial error and the Dörfler property (5.5).

Lemma 7.2. Let uN , u∗
N denote the Galerkin solutions in Vp(Λ, T ) and Vp(Λ, T ∗),

respectively, for meshes T , T ∗ with T � T ∗ and ca,δ(Λ, T ∗) ≤ c̄a,δ, and let

‖u∗
N − uΛ‖2

A +
cη

1 + γ
osc(u∗

N , Λ, T ∗)2 ≤ cred

(

‖uN − uΛ‖2
A +

cη

1 + γ
osc(uN , Λ, T )2

)

(7.4)
with cred < 1/2. Then

η(uN , Λ,M) ≥ ϑxη(uN , Λ, T ) (7.5)

for the set M := T \ (T ∗ ∩ T ) of refined cells and ϑ2
x = (1− 2cred)ϑ̂2

x, where

ϑ̂x :=

(

1 + C̄η

(1 + γ

cη
+ 2(c̄a,δ + ĉosc)

1 + γ

1− γ

)

)−1/2

. (7.6)

Proof. Due to the lower bound in Corollary 4.2,

cη

1 + γ
η(uN , Λ, T )2 ≤ ‖uN − uΛ‖2

A +
cη

1 + γ
osc(uN , Λ, T )2.

Inserting the estimate (7.4), we have

(1− 2cred)
cη

1 + γ
η(uN , Λ, T )2 ≤ ‖uN − uΛ‖2

A +
cη

1 + γ
osc(uN , Λ, T )2

− 2‖u∗
N − uΛ‖2

A − 2
cη

1 + γ
osc(u∗

N , Λ, T ∗)2.

By Galerkin orthogonality and Lemma 4.4,

‖uN − uΛ‖2
A − 2‖u∗

N − uΛ‖2
A ≤ ‖uN − u∗

N‖2
A ≤ C̄ηη(uN , Λ,M)2.

Furthermore, since oscT (uN , Λ) ≤ ηT (uN , Λ) for all T ∈M by (4.8) and

oscT (uN , Λ)2 ≤ 2 oscT (u∗
N , Λ)2 + 2(c̄a,δ + ĉosc)(1 + γ)|uN − u∗

N |L2
π(Γ ;V |T )

by Lemma 4.7 for T ∈ T \M, employing the local upper bound Lemma 4.4 again,
we have

osc(uN , Λ, T )2 − 2 osc(u∗
N , Λ, T ∗)2

≤ η(uN , Λ,M)2 + 2(c̄a,δ + ĉosc)
1 + γ

1− γ
‖uN − u∗

N‖2
A

≤
(

1 + 2C̄η(c̄a,δ + ĉosc)
1 + γ

1− γ

)

η(uN , Λ,M)2.

Thus

(1− 2cred)
cη

1 + γ
η(uN , Λ, T )2

≤
(

C̄η +
cη

1 + γ

(

1 + 2C̄η(c̄a,δ + ĉosc)
1 + γ

1− γ

)

)

η(uN , Λ,M)2,

which is (7.5). �
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7.2. An approximation class. For any finite set Λ ⊂ F and any N ∈ N, let

ΣN (u, Λ) := inf
(

‖w∗
N − uΛ‖2

A +
cη

1 + γ
osc(w∗

N , Λ, T ∗)2
)1/2

(7.7)

where the infimum is taken over all meshes T ∗ ∈ T with #T ∗ − #Tinit ≤ N and
ca,δ(Λ, T ∗) ≤ c̄a,δ, and all w∗

N ∈ Vp(Λ, T ∗). Furthermore, for any s > 0, let

|u|s,Λ := sup
{

ǫ
(

min{N ∈ N0 ; ΣN (u, Λ) < ǫ}
)s

; ǫ ≥ č‖uΛ − u‖A

}

(7.8)

for a constant č > 0 specified in (7.14) below. We consider u to be in the approxi-
mation class As if

|u|As
:= sup{|u|s,Λ ; Λ ⊂ F finite, 0 ∈ Λ} <∞. (7.9)

In this case, for any finite set Λ ⊂ F containing 0 and any error tolerance ǫ ≥
č‖uΛ − u‖A, i.e. no smaller than the error effected by the restriction to the set
Λ, up to a constant factor, there is an approximation w∗

N ∈ Vp(Λ, T ∗) with total
spatial error

‖w∗
N − uΛ‖2

A +
cη

1 + γ
osc(w∗

N , Λ, T ∗)2 ≤ ǫ2 (7.10)

for a mesh T ∗ ∈ T of size

#T ∗ −#Tinit ≤ ǫ−1/s|u|1/s
As

(7.11)

satisfying ca,δ(Λ, T ∗) ≤ c̄a,δ, i.e. the total spatial error decays as

(

‖w∗
N − uΛ‖2

A +
cη

1 + γ
osc(w∗

N , Λ, T ∗)2
)1/2

≤ |u|As
(#T ∗ −#Tinit)

−s. (7.12)

The full error of this approximation is bounded by ‖w∗
N − u‖A ≤ (1 + č−2)1/2ǫ and

decays at the same rate s with respect to the size of the mesh T ∗ as Λ is suitably
enlarged to maintain ‖uΛ − u‖A ≤ č−1ǫ.

7.3. Quasi-optimal convergence. We make the following assumptions:

(1) The routine M← Markx[ϑx, (ηT (uN , Λ))T ∈T , η(uN , Λ, T )] constructs a set
M⊂ T of minimal cardinality satisfying the Dörfler property (5.5).

(2) The Dörfler constant ϑx from (5.5) satisfies 0 < ϑx < ϑ̂x for ϑ̂x from (7.6).
(3) The distribution of refinement facets in Tinit satisfies (b) of [17, Sec. 4].

Lemma 7.2 and the assumed optimal marking lead to a bound on the cardinality
of the sets Mj of marked cells in ASGFEM, following [2, Lem. 5.10]. We abbreviate

cred :=
1

2

(

1− ϑ2
x

ϑ̂2
x

)

> 0 (7.13)

and define the constant č left arbitrary in Section 7.2 as

č :=

(

credcη(1− γ)

(1 + ̺−2)ĈCη(1 + γ)

)1/2

. (7.14)

Lemma 7.3. If u ∈ As, then

#Mj ≤ |u|1/s
As

c
−1/2s
red Ĉ1/2s

(

‖uj − uΛj
‖2

A +
cη

1 + γ
osc(uj , Λj , Tj)2

)−1/2s

(7.15)

for all j ∈ N0 with ηj ≥ ̺ζj.
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Proof. Let j ∈ N0 with ηj ≥ ̺ζj , such that a spatial refinement is performed

and thus Mj is defined in ASGFEM. Let ǫ2 = credĈ−1[‖uj − uΛj
‖2

A + cη(1 +

γ)−1 osc(uj , Λj , Tj)2], which satisfies

ǫ2 ≥ credcη

Ĉ(1 + γ)
η2

j ≥
credcη

Ĉ(1 + γ)(1 + ̺−2)
(η2

j + ζ2
j )

≥ credcη(1− γ)

Ĉ(1 + γ)(1 + ̺−2)Cη

‖uj − u‖2
A ≥ č2‖uΛj

− u‖2
A

due to (7.2), (4.12) and Galerkin orthogonality. Thus the assumption u ∈ As

implies that there exist T ǫ ∈ T and wǫ
N ∈ Vp(Λj , T ǫ) such that ca,δ(Λj , T ǫ) ≤ c̄a,δ,

#T ǫ −#Tinit ≤ ǫ−1/s|u|1/s
As

and

‖wǫ
N − uΛj

‖2
A +

cη

1 + γ
osc(wǫ

N , Λj , T ǫ)2 ≤ ǫ2.

Let u∗
N be the Galerkin solution in Vp(Λj , T ∗) for the overlay T ∗ := T ǫ⊕Tj . Since

T ǫ � T ∗, Lemma 7.1 implies

‖u∗
N − uΛj

‖2
A +

cη

1 + γ
osc(u∗

N , Λj , T ∗)2

≤ Ĉ
(

‖wǫ
N − uΛj

‖2
A +

cη

1 + γ
osc(wǫ

N , Λj , T ∗)2
)

≤ Ĉǫ2 = cred

(

‖uj − uΛj
‖2

A +
cη

1 + γ
osc(uj , Λj , Tj)2

)

,

where we used the monotonicity of the oscillation with respect to the mesh T ∈ T

in the second estimate. Consequently, Lemma 7.2 implies that the set M∗ :=
T \ (T ∗ ∩ T ) satisfies the Dörfler property η(uj , Λj ,M∗) ≥ ϑxη(uj , Λj , Tj). Due to
the minimality of #Mj and using (2.16) in the last step,

#Mj ≤ #M∗ ≤ #T ∗ −#Tj ≤ #T ǫ −#Tinit.

The assertion follows by applying the bound #T ǫ − #Tinit ≤ ǫ−1/s|u|1/s
As

and in-
serting the definition of ǫ. �

Using the above tools, we derive the following optimality statement by an argu-
ment similar to [2, Thm. 5.11]. As illustrated by a comparison with (7.12), within
any succession of spatial refinements in ASGFEM, the convergence of the total spatial
error achieves the maximal rate s afforded by the approximation class As.

Theorem 7.4. If u ∈ As, then for any j0 ∈ N0 and any j ≥ j0 with Λj = Λj0
=: Λ,

(

‖uj − uΛ‖2
A +

cη

1 + γ
osc(uj , Λ, Tj)2

)1/2

≤ C|u|As

(

#Tj −#Tj0

)−s
(7.16)

with a constant C depending only on T, ϑx/ϑ̂x, cη, Cη, c̄a,δ, γ, ωx, δx and ̺.

Proof. Let j ≥ j0 with Λj = Λj0
. Due to [1, Thm. 2.4], [17, Thm. 6.1], and

Lemma 7.3,

#Tj −#Tj0
≤ cT

j−1
∑

k=0

#Mk ≤M

j−1
∑

k=0

(

‖uk − uΛ‖2
A +

cη

1 + γ
osc(uk, Λ, Tk)2

)−1/2s

with M = |u|1/s
As

cTc
−1/2s
red Ĉ1/2s and a constant cT depending only on T. For any

j0 ≤ k ≤ j − 1, the lower bound in Corollary 4.2 implies

‖uk − uΛ‖2
A + ωxη2

k ≤
(

1 + ωx
1 + γ

cη

)

‖uk − uΛ‖2
A + ωx osc(uk, Λ, Tk)2

≤
(

1 + ωx
1 + γ

cη

)(

‖uk − uΛ‖2
A +

cη

1 + γ
osc(uk, Λ, Tk)2

)

.
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Furthermore, the contraction property from Theorem 6.3 implies

‖uk − uΛ‖2
A + ωxη2

k ≥ δk−j
x

(

‖uj − uΛ‖2
A + ωxη2

j

)

.

Consequently,

#Tj −#Tj0
≤M

(

1 + ωx
1 + γ

cη

)1/2s
(

‖uj − uΛ‖2
A + ωxη2

j

)−1/2s
j−1
∑

k=0

δ(j−k)/2s
x

and since 0 < δx < 1, the remaining sum is

j−1
∑

k=0

δ(j−k)/2s
x ≤

∞
∑

i=1

δi/2s
x =

δ
1/2s
x

1− δ
1/2s
x

=: D.

The assertion follows with the estimate

‖uj − uΛ‖2
A +

cη

1 + γ
osc(uj , Λ, Tj)2 ≤ max

(

1,
cη

ωx(1 + γ)

)

(

‖uj − uΛ‖2
A + ωxη2

j

)

from (4.8). �

By a similar argument as in Theorem 7.4 leveraging the contraction property in
Theorem 6.2 of the full error, we derive in Theorem 7.6 a statement concerning the
convergence behavior of ASGFEM across both types of refinements.

Lemma 7.5. For all j ∈ N,

#Tj ≤ #T0 + #Ta,supp Λj
+ cT

j−1
∑

k=0

#Mk (7.17)

with a constant cT depending only on T, where we define Mk := ∅ if ηk < ̺ζk.

Proof. If ηk ≥ ζk, then [1, Thm. 2.4] and [17, Thm. 6.1] imply

#Tk+1 −#Tk ≤ cT#Mk.

Conversely, if ηk < ̺ζk, then Tk+1 = Tk ⊕ Ta,supp Λk+1
, and thus (2.16) implies

#Tk+1 −#Tk ≤ #Ta,supp Λk+1
−#Ta,supp Λk

since Ta,supp Λk
� Tk and Ta,supp Λk

� Ta,supp Λk+1
. The assertion follows by sum-

ming over k = 0, . . . , j − 1. �

Theorem 7.6. If u ∈ As, then for all j ∈ N0,
(

‖uj − u‖2
A + ωηη2

j + ωζζ2
j

)1/2 ≤ C|u|As

(

#Tj −#T0 −#Ta,supp Λj

)−s
(7.18)

with a constant C depending only on T, ϑx/ϑ̂x, cη, Cη, c̄a,δ, γ, ωη, ωζ , δ and ̺.

Proof. Lemmas 7.5 and 7.3 imply

#Tj −#T0 −#Ta,supp Λj
≤ cT

j−1
∑

k=0

#Mk

with #Mk = 0 if ηk < ̺ζk and

#Mk ≤ |u|1/s
As

c
−1/2s
red Ĉ1/2s

(

‖uk − uΛ‖2
A +

cη

1 + γ
osc(uk, Λ, Tk)2

)−1/2s

if ηk ≥ ̺ζk. In this latter case, we use the upper bound in Corollary 4.3 and the
lower bound in Corollary 4.2 to estimate

‖uk − u‖2
A + ωηη2

k + ωζζ2
k ≤

(Cη(1 + ̺−2)

1− γ
+ ωη + ωζ̺−2

)

η2
k

≤ E
(

‖uk − uΛ‖2
A +

cη

1 + γ
osc(uk, Λ, Tk)2

)
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with E := cη(1 + γ)−1[Cη(1 + ̺−2)(1− γ)−1 + ωη + ωζ̺−2]. Theorem 6.2 provides
the bound

‖uk − u‖2
A + ωηη2

k + ωζζ2
k ≥ δj−k

(

‖uj − u‖2
A + ωηη2

j + ωζζ2
j

)

,

and thus

#Tj−#T0−#Ta,supp Λj
≤ |u|1/s

As
cTc

−1/2s
red Ĉ1/2sE1/2sD

(

‖uj−u‖2
A+ωηη2

j +ωζζ2
j

)−1/2s

with D = δ1/2s(1− δ1/2s)−1. �

Since the error indicator ηj alone is equivalent to the total spatial error by (7.2),
the estimate in Theorem 7.6 carries over to the total spatial error with a different
constant, thereby extending Theorem 7.4 to the full set of approximations generated
in ASGFEM.

Remark 7.7. Theorem 7.6 can be interpreted as a bound on the number of cells in
the mesh Tj ,

#Tj ≤ #T0 + #Ta,suppΛj
+ C1/s|u|1/s

As

(

‖uj − u‖2
A + ωηη2

j + ωζζ2
j

)1/2s
. (7.19)

If the meshes Tā and Ta,m are minimal in T with respect to the partial order
� subject to the conditions ‖hTā

∇ā/ā‖L∞(D) ≤ c̄a,δ and ‖hTa,m
∇am/ā‖L∞(D) ≤

c̄a,δ‖am/ā‖L∞(D), then Ta,supp Λj
is minimal in T subject to ca,δ(Λj , Ta,supp Λj

) ≤
c̄a,δ, i.e. for any mesh T ∈ T, ca,δ(Λj , T ) ≤ c̄a,δ implies Ta,supp Λ � T . In particular,
the term #Ta,suppΛj

in (7.19) is minimal subject to ca,δ(Λj , Tj) ≤ c̄a,δ, and the

spatial refinement performed in ASGFEM in the case ηj−1 < ̺ζj−1 is the minimal
refinement required to ensure this property.

8. Numerical Examples

The implementation of the proposed adaptive algorithm of Section 5 uses the
open source framework ALEA [8] which was already the basis for the ASGFEM pre-
sented in [7]. In comparison to that paper, the main difference here is the use of a
single adaptively refined mesh for all gpc modes. Moreover, higher order conform-
ing finite element spaces are employed. By the restriction to a single mesh, the
projection of solutions between different meshes is no longer required which was
one of the main computational tasks of the first adaptive algorithm. Hence, this
approach represents a substantial simplification for the actual implementation and
evaluation of the numerical solution. In order to distinguish the two approaches,
we denote by ASGFEM2 the algorithm presented in this paper and the preceding
algorithm by ASGFEM1. The implementation of ASGFEM2 is based on the code
of ASGFEM1 and follows to a large extend the description given in [7]. There, the
construction of the operator and the treatment of inhomogeneous Dirichlet bound-
ary conditions in the given setting was discussed. For the adaptive algorithm of
Section 5, a different bound for the tail estimation and a modified marking strategy
had to be implemented. Apart from these extensions, only minor adjustments of
the existing code were required.

The evaluation of the energy error of the numerical solution with regard to some
reference solution is described in Section 8.1. The performance of the new algorithm
employed to some of the benchmark problems from [7] is assessed in Section 8.2.

Since the construction of different adapted meshes with ASGFEM1 results in
an optimised sparse representation of the problem, it is interesting to compare the
adaptive approaches for multi (sparse) and single mesh adaptivity. This is done
in Section 8.3. A central observation in [13] is that higher order approximations
can (under certain conditions) compensate for sparsity which is illustrated by the
results.
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8.1. Evaluation of the error. For experimental verification of the reliability of
the error estimator, a reference error is computed by Monte Carlo simulations. For
this, a set of M independent realizations {y(i)}M

i=1 of the stochastic parameters is

computed. The y
(i)
m are sampled according to the probability measure πm of the

random variable ym. The mean-square error e of the parametric SGFEM solution
uN ∈ VN is approximated by a Monte Carlo sample average

‖e‖2
V =

∫

Γ

‖u(y)− uN (y)‖2
V dπ(y)

≈ 1

M

M
∑

i=1

‖ũ(y(i))− uN (y(i))‖2
V . (8.1)

Here, the samples y(i) ∈ Γ of parameter sequences are assumed to be statistically
independent and identically distributed with law π. Note that the sampled solutions
ũ(y(i)) are approximations of the exact u(y(i)) = A−1(y(i))f since the operator is
discretized on a reference mesh which is the joint finest mesh of all polynomial
degrees in each experiment, respectively. Moreover, the expansion (1.1) of the
random field a(y, x) is truncated to the maximal length occuring in the approximate
parametric solutions. We choose M = 150 for the Monte Carlo approximation of
the reference error (8.1) which proved to be sufficient to assess the reliability of the
error estimator.

8.2. The stochastic diffusion problem. We examine numerical simulations for
the stationary diffusion problem (1.2) in a plane, polygonal domain D ⊂ R

2. Recall
from Section 1 that x = (x1, x2) ∈ D denotes points in D and y = (y1, y2, . . . ) ∈ Γ
denotes the parameter sequence in the coefficient (1.1).

As in [7], the expansion coefficients of the stochastic field (1.1) are chosen to be

am(x) := αm cos(2πβ1(m)x1) cos(2πβ2(m)x2) (8.2)

where αm is of the form ᾱm−σ̃ with σ̃ > 1 and some 0 < ᾱ < 1/ζ(σ̃) with the
Riemann zeta function ζ. Then, (1.3) holds with γ = ᾱζ(σ̃). Moreover,

β1(m) = m− k(m)(k(m) + 1)/2 and β2(m) = k(m)− β1(m) (8.3)

with k(m) = ⌊−1/2 +
√

1/4 + 2m⌋, i.e., the coefficient functions am enumerate
all planar Fourier sine modes in increasing total order. To illustrate the influence
which the stochastic coefficient plays in the adaptive algorithm, we examine the
expansion with slow and fast decay of αm, setting σ̃ in (8.2) to either 2 or 4. The
computations are carried out with conforming FEM spaces of polynomial degree 1,
2 and 3.

For the adaptive algorithm of Section 5.3 the parameters are chosen as

ϑx = 2/5, ϑy = 10 and ǫ = 10−8 .

The employed quadrature is exact for polynomials up to degree 20.

8.2.1. Square domain. The first example is the stationary diffusion equation (1.2)
on the unit square D = (0, 1)2 with homogeneous Dirichlet boundary conditions and
with right-hand side f = 1. The results of the adaptive algorithm of Section 5.3
for a slow decay of the coefficients with σ̃ = 2 and a fast decay with σ̃ = 4 are
shown in Figures 1 and 2. The amplitude ᾱ in (8.2) was chosen as γ/ζ(σ̃) with
γ = 0.9, resulting in ᾱ ≈ 0.547 for σ̃ = 2 and ᾱ ≈ 0.832 for σ̃ = 4. Depicted is
the residual estimator, the reference error obtained by Monte Carlo sampling, the
efficiency of the estimator and the number of active multi-indices. The observed
convergence rate of 1/2 for P1 FEM with respect to the total number of degrees
of freedom, which is the convergence rate for a single non-parametric problem,
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Figure 1. Convergence of the error estimator in the energy norm
with FEM of degree 1,2 and 3 for the stationary diffusion problem
on the square with homogeneous Dirichlet boundary conditions for
slow (σ̃ = 2, left) and fast (σ̃ = 4, right) decay. Total number of
degrees of freedom and efficiency of the error estimator with respect
to the MC reference error.

coincides with the approximation rates predicted by [5, 12]. Both σ̃ = 2 and
σ̃ = 4 afford sufficient summability of the coefficients of the solution to attain the
convergence rate of the spatial discretization for a single non-parametric problem,
as elaborated in [5, 12]. For quadratic and cubic FEM spaces, the convergence rate
increases, also see Figure 9. However, the rate achieved with P3 is not consistently
better than that of a P2 discretisation as the error estimator in Figure 1 might
suggest.

The efficiency indices for the different polynomial degrees are similar and lie be-
tween 1 and 10. Since the reliability bound of the error estimator contains unknown
constants, the purpose of the efficiency graphs in this and the next subsection is
mainly to illustrate the progression of the estimator/error ratio for polynomial FE
degrees 1-3 and not to show the accuracy of the error estimator. We further observe
that the number of activated gpc modes increases substantially with the polyno-
mial degree of the FE approximation. At the same time, the grids remain relatively
coarse in comparison to the P1 FEM. This feature is illustrated in Figure 3 which
depicts the number of mesh cells and active multi-indices in the course of the adap-
tive algorithm. One the one hand, higher order FEM activate significantly more
multi-indices (more than 100) while the mesh is kept relatively coarse at the same
time. On the other hand, P1 FEM leads to a strongly refined mesh and only few
activated multi-indices (less than 10). Of course, higher order finite elements meth-
ods compensate for the coarser mesh through the higher local polynomial degree.
The relation of active multi-indices to total energy error is depicted in Figure 4.
This illustrates the independence of the multi-index activation with regard to the
polynomial degree of the spatial approximation.

A comparison with regard to the two decay rates reveals that the adaptive al-
gorithm activates more multi-indices in the case of slower decay (left-hand side
in all figures with σ̃ = 2) since more terms in (1.1) are required for an accurate
representation than for faster decay (right-hand side in all figures with σ̃ = 4).

8.2.2. L-shaped domain. A standard benchmark problem for deterministic a pos-
teriori error estimators is the stationary diffusion problem (1.2) on the L-shaped
domain D = (−1, 1)2 \ (0, 1)× (−1, 0). It is well-known that the solution exhibits a
singularity at the reentrant corner at (0, 0) which is resolved by a pronounced mesh
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Figure 2. Convergence of the error in the energy norm with FEM
of degree 1,2 and 3 for the stationary diffusion problem on the
square with homogeneous Dirichlet boundary conditions for slow
(σ̃ = 2, left) and fast (σ̃ = 4, right) decay. Total number of degrees
of freedom and active multi-indices.
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Figure 3. Number of mesh cells and active multi-indices with
FEM of degree 1,2 and 3 for the stationary diffusion problem on
the square with homogeneous Dirichlet boundary conditions for
slow (σ̃ = 2, left) and fast (σ̃ = 4, right) decay with respect to
total number of degrees of freedom.
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Figure 4. Number of active multi-indices with FEM of degree 1,2
and 3 for the stationary diffusion problem on the square domain
with homogeneous Dirichlet boundary conditions for slow (σ̃ = 2,
left) and fast (σ̃ = 4, right) decay with respect to the energy error.
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Figure 5. Convergence of the error estimator in the energy norm
with FEM of degree 1,2 and 3 for the stationary diffusion problem
on the L-shaped domain with homogeneous Dirichlet boundary
conditions for slow (σ̃ = 2, left) and fast (σ̃ = 4, right) decay. Total
number of degrees of freedom and efficiency of the error estimator
with respect to the MC reference error.
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Figure 6. Convergence of the error in the energy norm with FEM
of degree 1,2 and 3 for the stationary diffusion problem on the L-
shaped domain with homogeneous Dirichlet boundary conditions
for slow (σ̃ = 2, left) and fast (σ̃ = 4, right) decay. Total number
of degrees of freedom and active multi-indices.

refinement in its vicinity. The convergence of the error estimator and its efficiency
with regard to the error determined by (8.1) are depicted in Figure 5. In Figure 6,
the error and the number of active multi-indices are shown. The relation of active
multi-indices to total energy error is depicted in Figure 8. As before, the multi-
index activation is (nearly) independent of the polynomial degree of the spatial
approximation.

In order to assess the relation between deterministic and stochastic refinement,
Figure 7 depicts the number of mesh cells and active multi-indices in the course
of the adaptive algorithm. Opposite to the experiment on the square in Subsec-
tion 8.2.1, the mesh is strongly refined for all polynomial degrees up to about 103

degrees of freedom to resolve the corner singularity. Subsequently, the higher order
spatial discretisations favour the refinement of the stochastic space by activation
of new multi-indices while the low-order P1 FEM results in a continued strong re-
finement of the mesh. Similar to the previous experiment, the efficiency indices
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Figure 7. Number of mesh cells and active multi-indices with
FEM of degree 1,2 and 3 for the stationary diffusion problem on the
L-shaped domain with homogeneous Dirichlet boundary conditions
for slow (σ̃ = 2, left) and fast (σ̃ = 4, right) decay with respect to
total number of degrees of freedom.
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Figure 8. Number of active multi-indices with FEM of degree 1,2
and 3 for the stationary diffusion problem on the L-shaped domain
with homogeneous Dirichlet boundary conditions for slow (σ̃ = 2,
left) and fast (σ̃ = 4, right) decay with respect to the energy error.

lie closely together between 1 and 10. Preasymptotically, the difference between
the two decay rates with regard to the activated multi-indices is less pronounced
than before. This is due to the delayed stochastic refinement which is an effect of
the initial singularity resolution of the adaptive algorithm. Moreover, the P3 FEM
only leads to marginal improvements of the error convergence over P2 FEM, also
see Figure 10.

8.3. Comparison of adaptive algorithms. This section is devoted to the com-
parison of the adaptive algorithms ASGFEM1 of [7] and ASGFEM2 of Section 5.

In Figure 9, the error graphs for the stationary diffusion problem of Section 8.2.1
for σ̃ = 2 and σ̃ = 4 are depicted for the sparse ASGEM1 and ASGFEM2 with
polynomial degrees 1, 2 and 3. The parameters for ASGFEM1 are set to

c̄Q = 1, c̄η = 1, ϑη = 2/5, ϑζ = 10−1, ϑδ = 10, χ = 1/10, ǫ = 10−8

with the same ASGFEM2 parameters as above.
It can be observed that the sparse ASGFEM1 with different adapted meshes

performs better than ASGEM2 with affine FEM. In particular, the error reduction
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neous Dirichlet boundary conditions for slow (σ̃ = 2, left) and
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ASGFEM2 for polynomial degrees 1,2 and 3.
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Figure 10. Convergence of the error in the energy norm for the
stationary diffusion problem on the L-shaped domain with homo-
geneous Dirichlet boundary conditions for slow (σ̃ = 2, left) and
fast (σ̃ = 4, right) decay. Comparison of ASGFEM1 (sparse) and
ASGFEM2 for polynomial degrees 1,2 and 3.

seems more uniform and the error is smaller than the one obtained with ASGFEM2
for affine FEM. However, for higher order approximations, the new adaptive algo-
rithm with a single joint mesh outperforms the adapted sparse ASGFEM1 approxi-
mations by nearly an order of magnitude for P3 FEM. Moreover, the error reduction
rate increases with higher employed polynomial degree.

In the next comparison in Figure 10, we examine the two adaptive algorithms for
the stationary diffusion problem on the L-shaped domain as given in Section 8.2.2.
The parameters for ASGFEM1 are set to

c̄Q = 1, c̄η = 1, ϑη = 3/5, ϑζ = 10−2, ϑδ = 1, χ = 1/10, ǫ = 10−8

with the parameters of ASGFEM2 as before.
We observe that ASGFEM1 and ASGFEM2 exhibit nearly identical convergence

of the error for affine finite element spaces. Opposite to the previous comparison,
the P1 error graphs lie closely together. Again, for higher order FEM, both the
convergence rate and the constants exhibited with ASGFEM2 are improved over
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ASGFEM1. However, as mentioned earlier, the error reduction rate of P3 does not
appear to improve significantly over P2 FEM.
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