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ANALYSIS AND NUMERICAL APPROXIMATION OF

BRINKMAN REGULARIZATION OF TWO PHASE FLOWS

IN POROUS MEDIA

G. M. COCLITE, S. MISHRA, N. H. RISEBRO, AND F. R. WEBER

Abstract. We consider a hyperbolic-elliptic system of PDEs that arises in the modeling of

two-phase flows in a porous medium. The phase velocities are modeled using a Brinkman
regularization of the classical Darcy’s law. We propose a notion of weak solutions for these

equations and prove existence of these solutions. An efficient finite difference scheme is proposed
and is shown to converge to the weak solutions of this system. The Darcy limit of the Brinkman
regularization is studied numerically using the convergent finite difference scheme in two space
dimensions as well as using both analytical and numerical tools in one space dimension.

1. The two Phase Flow Problem

Two phase flows in a porous medium model many interesting phenomena in geophysics.
As examples, we mention water flooding of oil reservoirs and carbon dioxide sequestration
in subsurface formations.

A prototypical situation of interest is the flow of two phases, say oil and water in a
porous medium. The variables of interest are the phase saturations sw and so representing
the saturation (volume fraction) of the water and oil phase respectively. We have the
identity:

(1.1) sw + so ≡ 1.

Hence, we can describe the dynamics in terms of the saturation of either of the two phases.
We denote the water saturation as sw = s in the discussion below. Assuming a constant
porosity (φ ≡ 1), the two phases are transported by [3]

(1.2) (sr)t + divx(vr) = 0, r ∈ {w, o}.
Here, the phase velocities are denoted by vw and vo respectively. In view of the identity
(1.1), the two phase velocities can be summed up to yield the incompressibility condition,

(1.3) divx(v) = 0, v = vw + vo.

The total velocity is denoted by v.
The phase velocities in a homogeneous isotropic medium are described by the Darcy’s

law [3]:

(1.4) vr = −λr∇xpr, r ∈ {w, o}.
The quantity λr = λr(sr) is the phase mobility and pr is the phase pressure. Note that
we have neglected gravity in the above version of the Darcy’s law (gravity can be readily
considered, leading to an additional term, see [3]). Assume that the capillary pressure i.e,
pc = pw − po is zero, we can sum (1.4) for both phases and obtain

(1.5) v = −λT (s)∇xp,

with p = pw = po being the pressure and λT = λw + λo being the total mobility.
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Using (1.5), the gradient of pressure in (1.4) can be eliminated leading to

(1.6) vw =
λw(s)

λT (s)
v.

Denoting the fractional flow function f as

(1.7) f(s) =
λw(s)

λT (s)
=

λw(s)

λw(s) + λo(s)
,

the saturation equation (1.2) for water can be written down as

(1.8) st + divx(f(s)v) = 0.

Combining the saturation equation with the incompressibility condition (1.3) and the
pressure equation, we obtain the evolution equations for two phase flow in a porous
medium:

(1.9)

st + divx(f(s)v) = 0,

divx(v) = 0,

v = −λT (s)∇xp.

The above equations have to be augmented by suitable initial and boundary conditions.
The phase mobility λw : [0, 1] 7→ R is a monotone increasing function with λw(0) = 0

and the phase mobility λo : [0, 1] 7→ R is a monotone decreasing function with λo(1) = 0.
Furthermore, the total mobility is strictly positive i.e, λT ≥ λ∗ > 0 for some λ∗.

The above equations are a hyperbolic-elliptic system as the saturation equation in (1.9)
is a scalar hyperbolic conservation law in several space dimensions with a coefficient given
by the velocity v. The velocity can be obtained by solving an elliptic equation for the
pressure p.

It is well known that solutions of hyperbolic conservation laws can develop discontinu-
ities, even for smooth initial data, [8]. The presence of these discontinuities or shock waves
implies that solutions of conservation laws are sought in a weak sense and are augmented
with additional admissibility criteria or entropy conditions in order to ensure uniqueness.

As the two phase flow equations involve a conservation law, we need to define a suitable
concept of entropy solutions for these equations and show that these solutions are well-
posed. The problem of proving well-posedness of global weak solutions of the two phase
flow equations (1.9) has remained open for many decades. The main challenge in showing
existence is the fact that the velocity field v acts as a coefficient in the saturation equations.
Although conservation laws with coefficients have been studied extensively in recent years,
see [1, 13, 6, 2] and references therein, the state of the art results require that the coefficient
is a function of bounded variation. Many attempts at showing that the velocity field
v in (1.8) is sufficiently regular, for example is a BV function or has enough Sobolev
regularity, have failed. Partial results (with strong assumptions on the velocity field or
on the solution) have been obtained in [17, 20] and references therein.

Another approach is to consider a modified version of the two phase flow equations.
Recalling that the two phase flow equations (1.9) were derived under the assumption that
the capillary pressure was zero. Adding small but non-zero capillary pressure leads to a
viscous perturbation of the saturation equation, see [14]. The viscous problem has been
shown to be well-posed in [14]. However, the fact that the coefficient of viscosity can
be very small leads to difficulties in numerical approximation of these equations as the
viscous scales have to resolved. Furthermore, sharp saturation fronts might be smeared
due to the added viscosity.
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A different approach to the above two considers the more fundamental question- is
the Darcy’s law (1.4) correct ? Many studies have focused on this question and have
found that the Darcy’s law maybe inadequate to explain the dynamics of fluid flow in
porous media, even for a single phase [4]. It is plausible that the problems of showing well
posedness for the full two-phase flow model can be attributed to the modeling deficiencies
of the Darcy’s law.

Several modifications of the Darcy’s law have been proposed, see [5]. Of particular
interest in this paper is the Brinkman modification [4]. It is well known that this modi-
fication explains the dynamics of flow in porous media, better than the Darcy model in
many situations of interest, see [18, 15] and references therein. The Brinkman model for
the phase velocity of each phase is given by,

(1.10) − µ∆xvr + vr = −λr∇xpr, r ∈ {w, o}.
Here, µ denotes a small scale parameter. Note that the Brinkman approximation adds a
smoothing term to Darcy’s law.

Adding the phase velocity relations (1.10) for both phases w, o and neglecting capillary
pressure i.e, pw = po = p, we obtain that the total velocity v = vw + vo satisfies,

−µ∆xv + v = −λT (s)∇xp,

Applying the divergence operator to both sides of the above equation and using incom-
pressibility (1.3), we obtain the following elliptic equation for the pressure.

(1.11) − divx (λT (s)∇xp) = 0

Here, we have labeled the water saturation s = sw. Combining this equation with the
conservation of mass for the water phase and with the Brinkman approximation (1.10)
describing the velocity of the water phase and the fractional flow function defined in (1.7),
we obtain the following complete system,

(1.12)

∂ts+ divx (vw) = 0,

−µ∆xvw + vw = −f(s)λT (s)∇xp

−divx (λT (s)∇xp) = 0,

that describes the flow of two phases in a porous medium, obeying the Brinkman’s law.
The system (1.12) is henceforth termed as the Brinkman regularization of two phase flows
in a porous medium. We remark that the Darcy system (1.9) can be obtained from the
Brinkman regularization (1.12) by setting µ = 0 and rewriting the water phase velocity
in terms of the fractional flow function.

The rest of this paper is concerned with the analysis and numerical approximation of
the Brinkman regularization (1.12). Our aims are three fold:

• To define a suitable notion of solutions to the Brinkman regularization (1.12) and
to show that these solutions exist.

• To design an efficient numerical scheme to approximate the Brinkman regulariza-
tion for two phase flows and to prove that this scheme converges when the mesh
is refined.

• To compare the solutions of the Brinkman regularization with those of the standard
Darcy model for two phase flow (1.9) in order to ascertain whether the Brinkman
regularization is a suitable approximation of the Darcy’s law in the regime of two
phase flows.

The rest of this paper provides answers to the above questions and is organized as follows:
in Section 2, equivalent forms of the Brinkman regularization are stated, a suitable notion
of solutions is defined and the main existence theorem is described. Section 3 deals with
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the proof of existence of the Brinkman regularization. A convergent numerical scheme for
approximating (1.12) is presented in Section 4. Finally, we provide further comparisons
between the Darcy and Brinkman models (particularly in one space dimension) in Section
5.

2. Statement of Problem

In this section, we will consider the following Darcy-Brinkman system (1.12) augmented
with initial and boundary conditions,

(2.1)







∂ts+ divx (vw) = 0, t > 0, x ∈ Ω,

−µ∆xvw + vw = −f(s)λT (s)∇xp, t > 0, x ∈ Ω,

−divx (λT (s)∇xp) = 0, t > 0, x ∈ Ω,

∂νp(t,x) = π(t,x), t > 0, x ∈ ∂Ω,

vw(t,x) · ν(x) = h(t,x), t > 0, x ∈ ∂Ω,
∫

Ω p(t,x)dx = 0, t > 0,

s(0,x) = s0(x), x ∈ Ω,

where

(H.1) Ω is an open connected subset of RN , N ≥ 1, with smooth boundary and ν is the
unit outer normal;

(H.2) f is a smooth Lipschitz bounded function, 0 < µ ≤ 1 is a constants, and h, π :
(0,∞)× ∂Ω → R are smooth bounded maps;

(H.3) λT is smooth Lipschitz bounded such that λT (·) ≥ λ∗ for some constant λ∗ > 0,
and λT f

′ and λ′
T /λT are bounded;

(H.4) the initial datum s0 ∈ H1(Ω).

Note that all the above assumptions are consistent with the definitions of the phase
mobilities in the Darcy’s law.

Formally applying the Helmholtz operator −µ∆x + 1 to the first equation in (2.1) we
obtain the third order problem

(2.2)







∂ts− µ∆x∂ts− divx (f(s)λT (s)∇xp) = 0, t > 0, x ∈ Ω,

−divx (λT (s)∇xp) = 0, t > 0, x ∈ Ω,

∂νp(t,x) = π(t,x), t > 0, x ∈ ∂Ω,
∫

Ω p(t,x)dx = 0, t > 0,

µ∂ν∂ts+ f(s)λT (s)π = h, t > 0, x ∈ ∂Ω,

s(0,x) = s0(x), x ∈ Ω.

Since we can rewrite the first equation in the form

(2.3) ∂ts− divx (µ∇x∂ts+ f(s)λT (s)∇xp) = 0,

the boundary condition on ∂ν∂ts reads as the flux boundary condition on (2.3). Indeed
the flux in (2.3) is µ∇x∂ts+ f(s)λT (s)∇xp, multiplying by the unit outer normal ν and
using the fact that ∂νp = π we have

(
µ∇x∂ts+ f(s)λT (s)∇xp) · ν

∣
∣
∂Ω

=
(
µ∂ν∂ts+ f(s)λT (s) ∂νp

︸︷︷︸

=π

)∣
∣
∂Ω

=µ∂ν∂ts+ f(s)λT (s)π.

(2.4)

On the other hand, comparing the first equations in (2.1) and (2.2) we get

(2.5) vw = µ∇x∂ts+ f(s)λT (s)∇xp
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therefore, (2.4) and the boundary condition on vw give

(2.6) µ∂ν∂ts+ f(s)λT (s)π = h, (0,∞)× ∂Ω.

Next, we introduce the notion of weak solutions to the Brinkman system (2.1) below.

Definition 2.1. Let s, p : [0,∞) × Ω → R, vw : [0,∞) × Ω → R
N be functions. We say

that (s, vw, p) is a solution of (2.1) if

(D.1) for every T > 0

s ∈ W 1,∞(0, T ;H1(Ω)), p ∈ L∞(0, T ;H1(Ω) ∩W 2,1(Ω)), vw ∈ L∞(0, T ;H2(Ω));

(D.2) for every test function ϕ ∈ C∞(RN+1) with compact support, the following identity
is satisfied,
∫ ∞

0

∫

Ω
(s∂tϕ+ vw∇ϕ) dtdx−

∫ ∞

0

∫

∂Ω
hϕdtdx+

∫

Ω
s0(x)ϕ(0, x)dx = 0,

∫ ∞

0

∫

Ω
λT (s)∇p · ∇ϕ−

∫ ∞

0

∫

∂Ω
πϕdtdx = 0;

(D.3) for every test function Φ ∈ C∞(RN+1;RN ) with compact support contained in R,
the following identity is satisfied,

µ

∫ ∞

0

∫

Ω
∇vw · ∇Φdtdx+

∫ ∞

0

∫

Ω
vw · Φdtdx+

∫ ∞

0

∫

Ω
f(s)λT (s)∇p · Φdtdx = 0;

(D.4) for almost every t > 0
∫

Ω
p(t,x)dx = 0.

Due to regularity assumption (D.2) and the linearity of the Helmholtz operator 1−µ∆
the solutions of (2.1) solve (2.2) and vice versa.

Our main result is the following existence theorem.

Theorem 2.1. Assume (H.1), (H.2), (H.3), and (H.4). Then, the initial boundary
value problem (2.1) has a solution (s, p, vw) in the sense of Definition 2.1.

We use the following recursive approximation of (2.1).
We start defining

(2.7) s0(t,x) = s0(x), t > 0, x ∈ Ω.

The function p0 = p0(t, x) solves the elliptic problem with time depending Neumann
boundary conditions

(2.8)







−divx (λT (s0)∇xp0) = 0, t > 0, x ∈ Ω,

∂νp0(t,x) = π(t,x), t > 0, x ∈ ∂Ω,
∫

Ω p0(t,x)dx = 0, t > 0,

then we define vw,0 = vw,0(t,x) as the solution of the following elliptic problem with time
depending boundary conditions

(2.9)

{

−µ∆xvw,0 + vw,0 = −f(s0)λT (s0)∇xp, t > 0, x ∈ Ω,

vw,0(t,x) · ν(x) = h(t,x), t > 0, x ∈ ∂Ω.

The next step in the algorithm is to define s1 = s1(t,x) as follows

(2.10) s1(t,x) = s0(x)−
∫ t

0
divx (vw,0) (τ,x)dτ, t > 0, x ∈ Ω,
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namely s1 solves the problem

(2.11)

{

∂ts1 + divx (vw,0) = 0, t > 0, x ∈ Ω,

s1(0,x) = s0(x), x ∈ Ω.

In general for every n ∈ N we have

(2.12)







∂tsn+1 + divx (vw,n) = 0, t > 0, x ∈ Ω,

−µ∆xvw,n + vw,n = −f(sn)λT (sn)∇xpn, t > 0, x ∈ Ω,

−divx (λT (sn)∇xpn) = 0, t > 0, x ∈ Ω,

∂νpn(t,x) = π(t,x), t > 0, x ∈ ∂Ω,

vw,n(t,x) · ν(x) = h(t,x), t > 0, x ∈ ∂Ω,
∫

Ω pn(t,x)dx = 0, t > 0,

sn+1(0,x) = s0(x), x ∈ Ω.

The above iteration scheme would be shown to converge in order to prove the existence
theorem 2.1 in the next section.n

3. A Priori Estimates and Proof of Theorem 2.1

This section is devoted to the proof of Theorem 2.1. We begin with some a priori
estimates on the solution (sn+1, vw,n, pn) of (2.12).

Lemma 3.1 (H1 estimate on pn). Let n ∈ N. We have that

pn ∈ L∞(0, T ;H1(Ω)), T > 0.

In particular

(3.1) ‖pn(t, ·)‖H1(Ω) ≤ C1 ‖π(t, ·)‖L2(∂Ω) , t > 0,

for some positive constant C1 independent on µ and n.

Proof. From the third equation in (2.12), (H.3), and the boundary conditions on pn,

λ∗

∫

Ω
|∇xpn|2dx ≤

∫

Ω
λT (sn)|∇xpn|2dx

=−
∫

Ω
divx (λT (sn)∇xpn)
︸ ︷︷ ︸

=0

pdx+

∫

∂Ω
λT (sn)pn ∂νpn

︸︷︷︸

=π

dσ

=

∫

∂Ω
λT (sn)πpndσ ≤

‖λT ‖2L∞(R)

2α

∫

∂Ω
π2dσ +

α

2

∫

∂Ω
p2ndσ,

where α > 0 is a constant that will be chosen later. The zero mean condition on pn and
the Sobolev embeddings give

λ∗

∫

Ω
|∇xpn|2dx ≤

‖λT ‖2L∞(R)

2α

∫

∂Ω
π2dσ +

α

2

∫

∂Ω
p2ndσ

≤
‖λT ‖2L∞(R)

2α

∫

∂Ω
π2dσ +

αc

2

∫

Ω
|∇xpn|2dx,

where c is the Sobolev embedding constant. Choosing α = λ∗/c we get
∫

Ω
|∇xpn|2dx ≤

c ‖λT ‖2L∞(R)

λ2
∗

∫

∂Ω
π2dσ.

The claim follows from the zero mean condition on pn. �
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Lemma 3.2. Let n ∈ N. We have that

vw,n ∈ L∞(0, T ;H2(Ω)),

for every T > 0. In particular

(3.2) ‖vw,n(t, ·)‖H2(Ω) ≤
C3

µ

(

‖fλT ‖L∞(R) ‖π(t, ·)‖L2(∂Ω) + ‖h(t, ·)‖L2(∂Ω)

)

,

for each t > 0 and some positive constant C3 independent on µ and n.

Proof. The claim follows directly from classical regularity results on elliptic equations and
Lemma 3.1. �

Lemma 3.3. Let n ∈ N. We have that

sn ∈ W 1,∞(0, T ;H1(Ω)),

for every T > 0. In particular

‖sn(t, ·)‖H1(Ω) ≤ ‖s0‖H1(Ω) +
C4

µ

(

‖fλT ‖L∞(R) ‖π(t, ·)‖L2(∂Ω) + ‖h(t, ·)‖L2(∂Ω)

)

,

‖∂tsn(t, ·)‖H1(Ω) ≤
C4

µ

(

‖fλT ‖L∞(R) ‖π(t, ·)‖L2(∂Ω) + ‖h(t, ·)‖L2(∂Ω)

)

,

(3.3)

for each t > 0 and some positive constant C4 independent on µ and n.

Proof. The claim follows directly from the first equation in (2.12) and Lemma 3.2. Indeed,
we have

s0(t,x) = s0(x),

sn+1(t,x) = s0(x)−
∫ t

0
divx (vw,n) (τ,x)dτ,

∂tsn+1 = −divx (vw,n) .

�

Lemma 3.4. Let n ∈ N. We have that

∆xpn ∈ L∞(0, T ;L1(Ω)), T > 0.

In particular

(3.4) ‖∆xpn(t, ·)‖L1(Ω) ≤ C5

(

‖π(t, ·)‖2L2(∂Ω) + ‖h(t, ·)‖2L2(∂Ω)

)

,

for each t > 0, where C5 is a positive constant independent on µ and n.

Proof. From (2.12)

∆xpn = −λ′
T (sn)

λT (sn)
∇xpn · ∇xsn,

therefore, thanks to (H.2) and (H.3),

‖∆xpn(t, ·)‖L1(Ω) ≤
1

2

∥
∥
∥
∥

λ′
T

λT

∥
∥
∥
∥
L∞(R)

(

‖∇xpn(t, ·)‖2L2(Ω) + ‖∇xsn(t, ·)‖2L2(Ω)

)

.

The claim follows from Lemmas 3.1 and 3.3. �
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Proof of Theorem 2.1. Thanks to Lemmas 3.1, 3.2, 3.3, there exist three functions

(3.5) s, p : (0,∞)× Ω −→ R, vw : (0,∞)× Ω −→ R
N ,

such that, for every T > 0,

s ∈ W 1,∞(0, T ;H1(Ω)), p ∈ L∞(0, T ;H1(Ω)), vw ∈ L∞(0, T ;H2(Ω)),

and, passing to a subsequence,

sn ⇀ s, weakly in W 1,ℓ(0, T ;H1(Ω)), 1 ≤ ℓ < ∞, T > 0,

pn ⇀ p, weakly in Lℓ(0, T ;H1(Ω)), 1 ≤ ℓ < ∞, T > 0,

vw,n ⇀ vw, weakly in Lℓ(0, T ;H2(Ω)), 1 ≤ ℓ < ∞, T > 0.

(3.6)

In particular, we have that

sn → s, strongly in L2((0, T )× Ω), T > 0,

sn → s, a.e. in (0,∞)× Ω,

∇pn ⇀ ∇p, weakly in L2((0, T )× Ω), T > 0.

(3.7)

Therefore, the distributional formulation of (2.12), the Dominated Convergence Theorem
and the boundedness of f and λT implies (D.2), (D.3), and (D.4).

We conclude by proving that (D.1) holds. Thanks to (3.5) we have only to prove that

(3.8) p ∈ L∞(0, T ;W 2,1(Ω)).

Clearly, (3.6), Lemmas 3.1, 3.2, 3.3 and the weak lower semicontinuity if the norms give
the following estimates

‖p(t, ·)‖H1(Ω) ≤ C1 ‖π(t, ·)‖L2(∂Ω) ,

‖vw(t, ·)‖H2(Ω) ≤
C3

µ

(

‖fλT ‖L∞(R) ‖π(t, ·)‖L2(∂Ω) + ‖h(t, ·)‖L2(∂Ω)

)

,

‖s(t, ·)‖H1(Ω) ≤ ‖s0‖H1(Ω) +
C4

µ

(

‖fλT ‖L∞(R) ‖π(t, ·)‖L2(∂Ω) + ‖h(t, ·)‖L2(∂Ω)

)

,

‖∂ts(t, ·)‖H1(Ω) ≤
C4

µ

(

‖fλT ‖L∞(R) ‖π(t, ·)‖L2(∂Ω) + ‖h(t, ·)‖L2(∂Ω)

)

,

for almost every t > 0.
Since, from (2.1)

∆xp = −λ′
T (s)

λT (s)
∇xp · ∇xs,

therefore, thanks to (H.2) and (H.3),

‖∆xp(t, ·)‖L1(Ω) ≤
1

2

∥
∥
∥
∥

λ′
T

λT

∥
∥
∥
∥
L∞(R)

(

‖∇xp(t, ·)‖2L2(Ω) + ‖∇xs(t, ·)‖2L2(Ω)

)

,

that proves (3.8). �

Thus, we have shown that weak solutions of the Brinkman regularization of two-phase
flows in a porous medium (1.12) exist. The question of uniqueness is still open.

Remark 3.1. It must be emphasized that many of the estimates derived in the proof of
the existence theorem 2.1 are µ dependent and blow up as the regularization parameter
µ → 0. In particular, the estimate (3.2) on the phase velocity is µ-dependent as are the
estimates on the saturation (3.3). Thus, in the limit µ → 0, which corresponds to the
classical Darcy’s law, we do not expect that the velocity field and the saturation are as
regular as in the case of the Brinkman approximation. As an example, it is well known
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that the saturation contains discontinuities in the form of shocks for the classical two-phase
flow problem which is inconsistent with the H1 estimate in (3.3). Hence, we have been
unable to obtain any convergence results for the Brinkman system (1.12) to the classical
two-phase Darcy system (1.9) as µ → 0.

Remark 3.2. Here, we have focused on the case of two-phase flows. A Brinkman regular-
ization of multi phase flows can be obtained analogously to the derivation of the Brinkman
two phase flow model in the introduction. This system for m (m ≥ 3) phases reads as

(3.9)







∂ts1 + divx (vw,1) = 0, t > 0, x ∈ Ω,

......

∂tsm + divx (vw,m) = 0, t > 0, x ∈ Ω,

−µ∆xvw,1 + vw,1 = −λ1(s1)∇xp, t > 0, x ∈ Ω,

......

−µ∆xvw,m + vw,m = −λm(sm)∇xp, t > 0, x ∈ Ω,

−divx (λT (s1, .., sm)∇xp) = 0, t > 0, x ∈ Ω,

augmented with suitable initial and boundary conditions. As in definition 2.1, we can
analogously define a suitable notion of weak solutions and prove existence of solutions
by following the approximation procedure presented in section 2 and proving analogous
estimates like those in the proof of theorem 2.1.

4. A convergent numerical scheme for the Brinkman regularization

In this section, we will present an efficient numerical scheme to approximate the
Brinkman regularization for two-phase flow (1.12). For simplicity, we consider the unit
square in two space dimensions i.e, Ω = [0, 1]2 ⊂ R

2. As many interesting benchmark
tests include a source in the pressure equation (to model injection of water), we consider
the following modification of the Brinkman regularization (1.12),

(4.1)







∂ts+ divx (vw) = 0, t > 0, x ∈ Ω,

−µ∆xvw + vw = −f(s)λT (s)∇xp, t > 0, x ∈ Ω,

−divx (λT (s)∇xp) = q, t > 0, x ∈ Ω,

∂νp(t,x) = π(t,x), t > 0, x ∈ ∂Ω,

vw(t,x) · ν(x) = h(t,x), t > 0, x ∈ ∂Ω,
∫

Ω p(t,x)dx = 0, t > 0,

s(0,x) = s0(x), x ∈ Ω,

Here, q ∈ L∞(0, T ;L2(Ω)) denotes a source function. Note that the existence result
Theorem 2.1 can be readily extended to this case of including a source term.

For the sake of definiteness, let vw = (u, v). The boundary values are π(t,x) = 0, and

(4.2)
u(0, y) = u(1, y) = 0, ∂yu(x, 0) = ∂yu(x, 1) = 0

v(x, 0) = v(x, 1) = 0, ∂xv(0, y) = ∂xv(1, y) = 0.

We discretize the computational domain [0, 1]2 with on a Cartesian mesh with grid-
points xi = (i − 1/2)∆x, yj = (j − 1/2)∆x, j = 1, . . . , N , ∆x = 1/N . Let pnij , v

n
ij , and

snij denote the approximation to p, vw and s respectively, evaluated at (xi, yj , tn), where
tn = n∆t. The scheme for pnij reads

(4.3) −Dx
+

(

tni−1/2,jD
x
−p

n
ij

)

−Dy
+

(

tni,j−1/2D
y
−p

n
ij

)

= qnij , i, j = 1, . . . , N,
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where

tni+1/2,j =
λT (s

n
ij) + λT (s

n
i+1,j)

2
and tni,j+1/2 =

λT (s
n
ij) + λT (s

n
i,j+1)

2
,

with the boundary values

tn1/2,j = tnN+1/2,j = tni,1/2 = tni,N+1/2 = 0, for i, j = 1, . . . , N , n ≥ 0,

and

qnij = q(xi, yj), i, j = 1, . . . , N, n ≥ 0.

To define the scheme for vn
ij , we first define

fn
i+1/2,j =

f(snij) + f(sni+1,j)

2
and fn

i,j+1/2 =
f(snij) + f(sni,j+1)

2
.

Then the scheme for uni+1/2,j reads

(4.4) − µ
(
Dx

+D
x
− +Dy

+D
y
−

)
uni+1/2,j + uni+1/2,j = fn

i+1/2,jt
n
i+1/2,jD

x
+p

n
ij ,

for i = 1, . . . , N − 1, j = 1, . . . , N with boundary values

un1/2,j = unN+1/2,j = 0, j = 1, . . . , N.

Similarly, the scheme for vni,j+1/2 reads

(4.5) − µ
(
Dx

+D
x
− +Dy

+D
y
−

)
vni,j+1/2 + vni,j+1/2 = fn

i,j+1/2t
n
i,j+1/2D

y
+p

n
ij ,

for i = 1, . . . , N , j = 1, . . . , N − 1 with boundary values

vni,1/2 = vni,N+1/2 = 0, i = 1, . . . , N.

Finally we update snij by

(4.6) sn+1
ij =

1

4

(
sni+1,j + sni−1,j + sni,j+1 + sni,j−1

)
−∆t

(

Dx
−u

n
i+1/2,j +Dy

−v
n
i,j+1/2

)

,

for n ≥ 0 and i, j = 1, . . . , N , with the initial values s0ij = s0(xi, yj).

4.1. Convergence of the scheme in 2D. We will show that the approximate solutions
generated by the finite difference scheme (4.3) – (4.6) converge to a weak solution of (4.1)
for a fixed µ. To do so, we mimic the estimates of Lemmas 3.1 – 3.3 in the discrete setting.

From the discrete values snij , i, j = 0, . . . , N , n ≥ 0, we define the piecewise linear
interpolant

sn(x, y) = snij + (x− xi)D
x
+s

n
ij + (y − yj)D

y
+s

n
ij + (x− xi) (y − yj)D

y
+D

x
+s

n
ij

s∆(t;x, y) = sn(x, y) + (t− tn)D
t
+s

n(x, y)

(t;x, y) ∈ [tn, tn+1)× [xi, xi+1)× [yj , yj+1), n ≥ 0, i, j = 0, . . . , N,

where we have denoted

Dt
+s

n(x, y) =
1

∆t
(sn+1(x, y)− sn(x, y)),

the forward divided difference in the temporal direction. In a similar way, we define
pn(x, y) to be the bilinear interpolation with pn(xi, yj) = pnij ; u

n(x, y) and vn(x, y) to be

the piecewise quadratic splines with un(xi+1/2, yj) = uni+1/2,j and vn(xi, yj+1/2) = vni,j+1/2,

and p∆(t;x, y), u∆(t;x, y) and v∆(t;x, y) to be the linear interpolations of p
n(x, y), un(x, y)

and vn(x, y) in t between tn and tn+1, n ≥ 0.
Now, we will show the following estimates on the approximate solutions:
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Lemma 4.1. Let ∆ = (∆x,∆y,∆t), ∆x,∆y,∆t > 0 and q ∈ L∞(0, T ;L2(Ω)). We have
p∆ ∈ L∞(0, T ;H1(Ω)) for any T > 0 with

(4.7) ‖p∆(t; ·)‖H1(Ω) ≤
√
2

λ∗
‖q(t; ·)‖L2(Ω), 0 ≤ t ≤ T.

Proof. Using the identities
∑

i,j

tni−1/2,j |Dx
−p

n
ij |2 = −

∑

i,j

Dx
+(t

n
i−1/2,jD

x
−p

n
ij) p

n
ij ,

∑

i,j

tni,j−1/2|D
y
−p

n
ij |2 = −

∑

i,j

Dy
+(t

n
i,j−1/2D

y
−p

n
ij) p

n
ij ,

multiplying (4.3) by pij and summing over the indices i, j, we obtain
∑

i,j

(
tni−1/2,j |Dx

−p
n
ij |2 + tni,j−1/2|D

y
−p

n
ij |2

)
=

∑

i,j

qnijp
n
ij .

Since tni−1/2,j , t
n
i,j−1/2 ≥ λ∗ by assumption (H.3), and (αa2 + b2/α)/2 ≥ ab for a, b ∈ R,

α > 0, this yields
∑

i,j

(
|Dx

−p
n
ij |2 + |Dy

−p
n
ij |2

)
≤ 1

2λ∗

(

α
∑

i,j

(pnij)
2 +

1

α

∑

i,j

(qnij)
2

)

,

and hence

‖∂xp∆(t; ·)‖2L2(Ω) + ‖∂yp∆(t; ·)‖2L2(Ω) ≤
1

2λ∗

(

α‖p∆(t; ·)‖2L2(Ω) +
1

α
‖q(t; ·)‖2L2(Ω)

)

Using Poincaré’s inequality,

‖∇xf‖L2(Ω) ≤ C(Ω)‖f‖L2(Ω),

where for Ω = [0, 1]2, C(Ω) = 1, we obtain by choosing α = λ∗,

‖p∆(t; ·)‖L2(Ω), ‖∇xp∆(t; ·)‖L2(Ω) ≤
1

λ∗
‖q(t; ·)‖L2(Ω),

which implies (4.8). �

Lemma 4.2. Let ∆ = (∆x,∆y,∆t), ∆x,∆y,∆t > 0, µ > 0 and q ∈ L∞(0, T ;L2(Ω)).
Assume furthermore that fλT is bounded. Then u∆, v∆ ∈ L∞(0, T ;H2(Ω)) for T > 0
with

µ2‖∇2
x
u∆(t; ·)‖2L2(Ω) + µ‖∇xu∆(t; ·)‖2L2(Ω) + ‖u∆(t; ·)‖2L2(Ω) ≤ C ‖fλT ‖2L∞‖∂xp∆(t; ·)‖2L2(Ω)

(4.8a)

µ2‖∇2
x
v∆(t; ·)‖2L2(Ω) + µ‖∇xv∆(t; ·)‖2L2(Ω) + ‖v∆(t; ·)‖2L2(Ω) ≤ C ‖fλT ‖2L∞‖∂yp∆(t; ·)‖2L2(Ω),

(4.8b)

where C > 0 is a scaling factor, not depending on the other quantities.

Proof. We take the square of equation (4.4), sum it over the indices i and j and use the
summation by parts identity

∑

i,j

uni+1/2,j(D
x
+D

x
− +Dy

+D
y
−)u

n
i+1/2,j = −

∑

i,j

(
|Dx

−u
n
i+1/2,j |2 + |Dy

−u
n
i+1/2,j |2

)

to obtain

(4.9)
∑

i,j

(
|(Dx

+D
x
− +Dy

+D
y
−)u

n
i+1/2,j |2 + 2µ(|Dx

−u
n
i+1/2,j |2 + |Dy

−u
n
i+1/2,j |2) + |uni+1/2,j |2

)
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=
∑

i,j

(fn
i+1/2,j)

2(tni+1/2,j)
2|Dx

+p
n
ij |2.

Using summation by parts twice for the first term on the right hand side of (4.9) gives
∑

i,j

|(Dx
+D

x
− +Dy

+D
y
−)u

n
i+1/2,j |2

=
∑

i,j

(
|Dx

+D
x
−u

n
i+1/2,j |2 + |Dy

+D
y
−u

n
i+1/2,j |2 + 2|Dx

−D
y
−u

n
i+1/2,j |2

)
,

which implies (4.8a). In the same way, we can show (4.8b). Since p∆ ∈ L∞(0, T ;H1(Ω))
by Lemma 4.1, we get u∆, v∆ ∈ L∞(0, T ;H2(Ω)). �

Now it is easy to show that s∆ ∈ W 1,∞(0, T ;L2(Ω)) ∩ L∞(0, T ;H1(Ω)):

Lemma 4.3. Let ∆ = (∆x,∆y,∆t), ∆x,∆y,∆t > 0 with ∆x/∆t,∆y/∆t ≤ K, where
0 < K < ∞, and let µ > 0. Moreover assume q ∈ L∞(0, T ;L2(Ω)), s0 ∈ H1(Ω) and that
fλT is bounded. Then s∆ ∈ W 1,∞(0, T ;L2(Ω)) ∩ L∞(0, T ;H1(Ω)) for T > 0 with

‖s∆(t; ·)‖L2(Ω) ≤ ‖s0‖L2(Ω) +
C t

λ∗
√
µ
‖fλT ‖L∞‖q‖L∞(0,T ;L2(Ω)),(4.10a)

‖∇xs∆(t; ·)‖L2(Ω) ≤ ‖∇xs0‖L2(Ω) +
C t

λ∗µ
‖fλT ‖L∞‖q‖L∞(0,T ;L2(Ω)),

(4.10b)

‖∂ts∆(t; ·)‖L2(Ω) ≤ C(
√
K + 1)

(

‖∇xs0‖L2(Ω) +
t

λ∗µ
‖fλT ‖L∞‖q‖L∞(0,T ;L2(Ω))

)

,(4.10c)

for 0 ≤ t ≤ T and where C > 0 is a constant.

Proof. We take the square of equation (4.6), sum over the indices i, j and use triangle
inequality to obtain

(
∑

i,j

|sn+1
ij |2

)1/2

≤
(
∑

i,j

|snij |2
)1/2

+∆t

(
∑

i,j

|Dx
−u

n
i+1/2,j +Dy

−u
n
i,j+1/2|2

)1/2

,

which implies

‖sn+1‖L2(Ω) ≤ ‖sn‖L2(Ω) +∆t
(
‖∂xu∆(tn; ·)‖L2(Ω) + ‖∂yv∆(tn; ·)‖L2(Ω)

)
.

Iterating over n, this yields

‖sn‖L2(Ω) ≤ ‖s0‖L2(Ω) + tn
(
‖∇xu∆‖L∞(0,T ;L2(Ω)) + ‖∇xv∆‖L∞(0,T ;L2(Ω))

)
.

Using Lemma 4.1, we obtain

‖s∆(t; ·)‖L2(Ω) ≤ ‖s0‖L2(Ω) +
C t√
µ
‖fλT ‖L∞‖∇xp‖L∞(0,T ;L2(Ω))

≤ ‖s0‖L2(Ω) +
C t

λ∗
√
µ
‖fλT ‖L∞‖q‖L∞(0,T ;L2(Ω)),

where we have used (4.8) for the second inequality. In order to show that the gradient of
s∆(t; ·) is in L2(Ω), we apply the linear operators Dx

+, D
y
+ to the evolution equation for

snij , (4.6),

Dx
+s

n+1
ij =

1

4

(
Dx

+s
n
i+1,j +Dx

+s
n
i−1,j +Dx

+s
n
i,j+1 +Dx

+s
n
i,j−1

)

−∆t
(

Dx
+D

x
−u

n
i+1/2,j +Dx

+D
y
−v

n
i,j+1/2

)

,
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(and similarly for Dy
+), then take the square of the above equation, sum over the indices

i, j and use again triangle inequality, to obtain
(
∑

i,j

|Dx
+s

n+1
ij |2

)1/2

≤
(
∑

i,j

|Dx
+s

n
ij |2

)1/2

+∆t

(
∑

i,j

|Dx
+D

x
−u

n
i+1/2,j+Dx

+D
y
−u

n
i,j+1/2|2

)1/2

,

which implies after iteration over n,

‖∂xsn‖L2(Ω) ≤ ‖∂xs0‖L2(Ω) + tn
(
‖∂2

xu∆‖L∞(0,T ;L2(Ω)) + ‖∂x∂yv∆‖L∞(0,T ;L2(Ω))

)
.

Hence, using Lemmas 4.1 and 4.2, we obtain

‖∂xs∆(t; ·)‖L2(Ω) ≤ ‖∂xs0‖L2(Ω) +
C t

λ∗µ
‖fλT ‖L∞‖q‖L∞(0,T ;L2(Ω)).

In a similar way, we obtain an estimate for ‖∂ys∆(t; ·)‖L2(Ω) and thus

‖∇xs∆(t; ·)‖L2(Ω) ≤ ‖∇xs0‖L2(Ω) +
C t

λ∗µ
‖fλT ‖L∞‖q‖L∞(0,T ;L2(Ω)).

To obtain an estimate on ∂ts∆, we rewrite the evolution equation for snij as

(4.11)
sn+1
ij − snij

∆t
=

1

4∆t

(
∆x2Dx

+D
x
−s

n
ij +∆y2Dy

+D
y
−s

n
ij

)
−
(

Dx
−u

n
i+1/2,j +Dy

−v
n
i,j+1/2

)

,

We notice that

∆x|Dx
+D

x
−s

n
ij | ≤ |Dx

+s
n
ij |+ |Dx

−s
n
ij |,

∆y|Dy
+D

y
−s

n
ij | ≤ |Dy

+s
n
ij |+ |Dy

−s
n
ij |,

which implies after taking the square of equation (4.11) and summing over i, j
∑

i,j

|Dt
+s

n
ij |2 ≤ K

∑

i,j

(
|Dx

+s
n
ij |2 + |Dy

+s
n
ij |2

)
+ 2

∑

i,j

(
|Dx

−u
n
i+1/2,j +Dy

−u
n
i,j+1/2|2

)
.

Thus

‖∂ts∆(t; ·)‖L2(Ω) ≤ C
(√

K‖∇xs∆‖L∞(0,T ;L2(Ω)) + ‖∂xu∆‖L∞(0,T ;L2(Ω)) + ‖∂yv∆‖L∞(0,T ;L2(Ω))

)

≤ C
(√

K‖∇xs0‖L2(Ω) +
(
√
K + 1)t

λ∗µ
‖fλT ‖L∞‖q‖L∞(0,T ;L2(Ω))

)

,

where we have used (4.10b) and Lemmas 4.1 and 4.2 for the second inequality. �

Now we are ready to prove the main convergence theorem for the finite difference
scheme,

Theorem 4.1. Fix µ > 0 and assume q ∈ L∞(0, T ;L2(Ω)), s0 ∈ H1(Ω) and f, λT ∈
L∞(R). Furthermore, let ∆ = (∆x,∆y,∆t) > 0 such that ∆x/∆t,∆y/∆t ≤ K < ∞.
Then a subsequence of {p∆}∆>0, {u∆}∆>0, {v∆}∆>0, {s∆}∆>0, converges to a weak so-
lution (p,vw, s) of (4.1) as ∆ → 0, and

s ∈ W 1,∞(0, T ;L2(Ω))∩L∞(0, T ;H1(Ω)), p ∈ L∞(0, T ;H1(Ω)), vw ∈ L∞(0, T ;H2(Ω)).

Proof. Due to the Lemmas 4.1, 4.2 and 4.3, we have for a subsequence

s∆ ⇀ s, weakly in Lℓ(0, T ;H1(Ω)), 1 ≤ ℓ < ∞, T > 0,

p∆ ⇀ p, weakly in Lℓ(0, T ;H1(Ω)), 1 ≤ ℓ < ∞, T > 0,

(u∆, v∆) ⇀ vw, weakly in Lℓ(0, T ;H2(Ω)), 1 ≤ ℓ < ∞, T > 0.

(4.12)
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The Aubin-Lions Lemma gives us the compact embeddingW 1,∞(0, T ;L2(Ω))∩L∞(0, T ;H1(Ω)) ⊂
⊂ Lℓ(0, T ;L2(Ω)) for 1 ≤ ℓ < ∞, and hence

s∆ → s, strongly in L2((0, T )× Ω), T > 0, and

s∆ → s, a.e. in (0, T )× Ω,
(4.13)

for a subsequence. We denote

Λn(s∆) =

(
λn
x 0
0 λn

y

)

, Fn(s∆) =

(
fn
x 0
0 fn

y

)

,

where λn
x(s∆), λ

n
y (s∆) are piecewise linear interpolations of tni+1/2,j and tni,j+1/2 satis-

fying λn
x((s

n
ij + sni+1,j)/2) = tni+1/2,j and λn

x((s
n
ij + sni,j+1)/2) = tni,j+1/2 and similarly

fn
x (s∆), f

n
y (s∆) are piecewise linear interpolations of f

n
i+1/2,j and fn

i,j+1/2 satisfying f
n
x ((s

n
ij+

sni+1,j)/2) = fn
i+1/2,j and fn

x ((s
n
ij + sni,j+1)/2) = fn

i,j+1/2. Then we let

Λ∆(s∆, t) = Λn(s∆), F∆(s∆, t) = Fn(s∆), t ∈ [tn, tn + 1), n ≥ 0.

Than, thanks to (4.13),

Λ∆(s∆, t) → λT (s), a.e. in (0, T )× Ω, and

F∆(s∆, t) → f(s), a.e. in (0, T )× Ω.
(4.14)

Thus, using in addition, that

∇xp∆ ⇀ ∇xp, weakly in L2((0, T )× Ω), T > 0,

the boundedness of f and λT , and the Dominated Convergence Theorem, we can pass to
the limit ∆ → 0 in the weak formulations

∫ T

0

∫

Ω

(

s∆∂tϕ+ (u∆, v∆)
T∇xϕ− s∆

(
∆x2

∆t
∂2
xϕ+

∆y2

∆t
∂2
yϕ

))

dx dt

+

∫

Ω
s0(x)ϕ(0, x) dx = 0,

∫ T

0

∫

Ω
((Λ∆∇xp∆) · ∇xϕ− q∆ϕ) dx dt = 0;

where ϕ ∈ C∞([0, T )×Ω) with compact support and we have denoted by q∆ a piecewise
linear interpolation of qnij , i, j = 0, . . . , N , n ≥ 0; and

µ

∫ T

0

∫

Ω
∇x(u∆, v∆)

T · ∇xΦ dx dt+

∫ T

0

∫

Ω
(u∆, v∆)

T · Φ dx dt

= −
∫ T

0

∫

Ω
(F∆Λ∆∇xp∆) · Φ dx dt;

where Φ ∈ C∞([0, T )× Ω;R2) with compact support, to obtain the result. �

4.2. Numerical experiments. We will now show through numerical experiments that
the finite difference scheme (4.3) – (4.6) is effective in computing approximate solutions
of the Brinkman regularization of the two-phase flow problem (4.1). We consider the
well-known quarter five spot problem that models water flooding in an oil reservoir. To
this end, we consider

q(x) =







4/(πr2) |x| ≤ r,

−4/(πr2) |x− (1, 1)| ≤ r,

0 otherwise,
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where r = 0.02. This models the injection of water at (0, 0) and the production of oil at
(1, 1). The initial water saturation was given by

s0(x) =

{

1 |x| ≤ r,

exp
(
−150(|x| − r)2

)
|x| > r.

Furthermore, the boundary values of the saturation are given by,

sn0,j = sn1,j , snN+1,j = snN,j , sni,0 = sn1,0, and sni,N+1 = sni,N ,

as well as

(4.15) sn+1
ij = 1 if |(xi, yj)| ≤ r.

4.2.1. Convergence tests for a fixed µ. We consider the Brinkman regularization with a
fixed µ = 0.005 and compute the approximate saturation with the numerical scheme (4.3)
– (4.6), on a sequence of meshes ranging from 100 × 100 to 800 × 800 mesh points. The
results of water saturation at t = 1 are shown in Figure 1. The results show that the
saturation is computed in a robust manner and converges. The limit seems to consist of
a series of waves emanating from the injection in the lower left corner.
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Figure 1. Water saturation at time t = 1, computed with the finite difference
scheme (4.3) – (4.6) on a sequence of nested meshes with fixed regularization
parameter µ = 0.005.
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4.2.2. Effect of the vanishing regularization parameter µ. The regularization parameter µ
serves to indicate the deviation of the regularized problem from the classical Darcy two-
phase flow problem (1.9). Formally, we can recover the classical two-phase flow problem
from the regularized Brinkman approximation by letting µ → 0. On the other hand,
we were unable to rigorously establish whether such a limit exists and whether it is also
a weak solution of the classical two-phase flow problem (1.9), see remark 3.1. Hence,
we will investigate this issue numerically by considering the quarter-five spot problem
as in the previous experiment for different values of the regularization parameter µ. We
present the water saturation at time t = 0.65 on a 2000 × 2000 grid, computed for four
different values, µ = {10−2, 10−3, 10−4, 10−5}. The results are shown in figure 2. Two
features in the results stand out. First, the solutions become very oscillatory (atleast
near the injection corner) as µ is reduced and the saturation is no longer in the physically
relevant s ∈ [0, 1] range. Second, the solutions consist of moving front between s = 0 and
s = 1, followed by a train of oscillatory waves. The above results are clearly consistent

Figure 2. Numerical solutions of (2.1) using (4.3) – (4.15) on a 2000×2000 grid
at t = 0.65.

with the theory. The stability estimates on the regularized saturation and velocity are µ
dependent (see remark 3.1) and blow up as µ → 0. Furthermore, the convergence results
for the scheme hold for any fixed no-zero µ and the stability estimates for the scheme
break down as µ → 0. This break down of the estimates is perhaps reflected in the high-
frequency oscillations that arise in the numerical solution as µ → 0. This clearly indicates
that zero regularization limit may not be well-posed and the solutions of the Brinkman
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regularization may not be converge to the weak solutions of the Darcy based two-phase
problem (1.9) as µ → 0.

5. Analysis in one space dimension

In order to further investigate whether the zero µ limit of the regularized Brinkman
equation (1.12) converges to the Darcy two-phase flow equations (1.9), we consider the
highly simplified case of one space dimension, i.e, Ω ⊂ R. In this case, the pressure
equation can be solved, and the solution normalized so that λT (s)px = 1. This gives the
system

(5.1)

{

sµt + vµx = 0,

−µvµxx + vµ = f(sµ)
for t > 0 and x ∈ R.

We look for traveling wave solution to this system on the form

sµ(x, t) = s

(
x− σt√

µ

)

, vµ(x, t) = v

(
x− σt√

µ

)

,

for some functions s and v. Inserting this into (5.1),

−σs′ + v′ = 0, −v′′ + v = f(s).

We want to have

lim
ξ→−∞

s(ξ) = sl, lim
ξ→∞

s(ξ) = sr and lim
|ξ|→∞

v′′(ξ) = 0.

Thus the first equation can be integrated to get

−σs+ v = C, C = f(sl)− σsl = f(sr)− σsr.

This means that any traveling wave will travel with a speed such that the limit limµ→0 s
µ(x, t)

is a weak solution to the conservation law (first equation in (5.1)). We are now left with
the second order equation

−σs′′ + σ(s− sl) = f(s)− f(sl),

or equivalently, the system of first order equations

(5.2)
s′ = w,

w′ = (s− sl)−
1

σ
(f(s)− f(sl)) .

This system is integrable, and the solutions are the contour lines of

H(s, w) =
σ

2
w2 − σ

s
(s− sl)

2 +

∫ s

sl

f(z)− f(sl) dz.

Thus all fixed points are either stable centers or saddle points, located along the s-axis.
Since Hww > 0, the saddle points will be fixed points where Hss < 0, i.e.,

(5.3) σ ≥ f ′(s).

The fixed points where σ < f ′(s) will be stable centers, and cannot be left or right states
of traveling waves. Since f(s) is “s-shaped”, for any sl in [0, 1], except for the two values
where f ′′ has extrema, there will be two other points s1 and s2 such that the Rankine-
Hugoniot condition holds. Either one of the largest and the smallest of the three points
sl, s1 and s2 will be saddle points, and the middle point will be a center.

Also, independently of the shape of f , the condition (5.3) is necessary for a traveling
wave. This means that the limits of such a traveling wave cannot satisfy the Lax entropy
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condition, f ′(sl) ≥ σ ≥ f ′(sr), unless both inequalities are equalities which means that f
is linear in between sl and sr.

If the two saddle points are on the same contour line, there is a traveling wave connecting
sl with sr, as well as its mirror image in the (s, w) plane, connecting sr with sl. None of
these traveling waves converge to entropic shocks as µ → 0. If there is a connecting orbit,
then H(sl, 0) = H(sr, 0), or

(5.4)
1

2
(f(sr)− f(sl)) (sr − sl) =

∫ sr

sl

f(z)− f(sl) dz.

Now let us assume that 1/2 − f(1/2 − κ) = f(1/2 + κ) − 1/2, which is the case for the
model flux function

f(s) =
s2

s2 + (1− s)2
.

Then (5.4) implies that there is a traveling wave if and only if |sl − 1/2| = |sr − 1/2|. In
particular there is a traveling wave from s = 0 to s = 1 as well as one from s = 1 to s = 0.

There is substantial evidence that the numerical schemes also converge to this non-
entropic traveling wave for small µ. In Figure 3 we show a computation using the simple
finite difference scheme,

(5.5)







sn+1
j = 1

2

(

snj+1 + snj−1

)

− ∆t
2∆x

(

vnj+1 − vnj−1

)

− µ
∆x2

(

vnj+1 − 2vnj + vnj−1

)

+ vnj = f
(

snj

) for j ∈ 1, . . . , N , n ≥ 0,

where ∆x = 1/N , and ∆t = 0.4∆x. We used initial values

s0j =

{

1 j∆x < 0.02,

0 otherwise,

and boundary values vn0 = 1, vnN+1 = 0 and sn0 = 1, snN+1 = 0. The figure clearly shows

that even for very small µ = 10−6, the solution is traveling discontinuity that connects
1 and 0. On the other hand, the standard entropy solution for the limit conservation
(µ = 0) is given by a wave connecting 1 to some intermediate state and a shock front
between this intermediate state and 0.
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Figure 3. The numerical solution with µ = 10−6 and µ = 0, and N = 25 000.
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Furthermore, we have also done some studied the possible convergence as µ → 0. In
order to do this, we chose initial data which were not endpoints for the traveling wave
solution. In Figure 4 we show the computed solutions at t = 0.65 using 104 mesh points
in the interval [0, 1] for three different values of µ. In this case the initial values were

(5.6) s0(x) =

{

0.8 x ≤ 0.02,

0.8 exp(−150(x− 0.02)2) otherwise.

From this figure, it seems that the limit (if any such limit exists) as µ → 0 of sµ is not
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Figure 4. The computed solution to (5.6) at t = 0.65 for µ = 10−4 (left),
µ = 10−5 (middle) and µ = 10−6 (right). In these computations, N = 25 000.

the entropy solution to the conservation law. This entropy solution is also indicated in
Figure 4, and differs from sµ. As µ → 0, the computed solution seems to converge to two
traveling discontinuities, one from s = 0.8 to 1 followed by one from 1 to 0. Only the first
of these is a classical shock wave.

We have also included a test where the initial data is periodic, viz.,

(5.7) s(x, 0) =
1

2
(1 + cos(2πx)) .

In order to check the possible convergence as µ → 0, we computed approximations with
N = 25 000, and t ∈ [0, 1]. In Figure 5 we show the result in the (x, t) plane for µ =
10−6 and µ = 0. The two solutions are identical until shocks develop at t ≈ 0.05.
At this point the approximation with µ = 10−6 develop two shocks, the slower (and
weaker) is an entropy satisfying shock wave, while the faster (and stronger) violates the
entropy condition. From the figure it is visible how the characteristics “pass through”
the shock. Of course, if µ = 0 the scheme reduces to the Lax-Friedrichs scheme, and
the approximation to the right is close to the entropy solution. The small entropic shock
wave cannot be a traveling wave solution, whereas the large non-entropic shock wave is,
since it is symmetric about s = 1/2. This follows from the previous analysis, and can be
seen by the trailing oscillations in the small shock, these are absent in the large shock,
see Figure 6.

Remark 5.1. The above simulations clearly indicate that the µ → 0 limit for the Brinkman
regularization results in a non-classical shock (see [16] for definition) of the limit conser-
vation law (st+f(s)x = 0). Such non-classical shocks in the context of two-phase flows in
one-dimensional porous media also arise in the models with dynamic capillary pressure,
see [12, 11, 7]. It is interesting to observe that non-classical shock waves for two-phase
flows can arise with two very different regularization mechanisms, one involving dynamic
capillary pressure and one with a Brinkman regularization of the Darcy’s law.
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Figure 5. Approximations to the solution to (5.7) in the (x, t) plane, left: µ =
10−6, right: µ = 0, N = 25 000.
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Figure 6. Trailing oscillations behind the entropic shock wave.

5.0.3. Convergence of the scheme in 1D. In order to substantiate the above one-dimensional
numerical calculations, we devote a short section to prove that the scheme (5.5) pro-
duces a convergent subsequence. We note that the scheme (5.5) as is different from the
two-dimensional finite difference scheme (4.3) – (4.6) for the two-dimensional case as no
pressure equations are solved in the one dimensional case.

For ease of notation, we write s and v rather than sµ and vµ. A solution to (5.1) is
defined as a pair of functions (s, v) such that

(5.8) s ∈ W 1,∞(0, T ;L2(R)), v ∈ L∞(0, T ;H2(R)),

and such that for all test functions ϕ ∈ C∞
0 (R× [0,∞)),

∫ ∞

0

∫

R

sϕt + vϕx dxdt+

∫

R

s0(x)ϕ(x, 0) dx = 0,(5.9)

∫ T

0

∫

R

µvxϕx + vϕ+ f(s)ϕdxdt = 0.(5.10)
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Using the obvious notation, (5.5) reads

(5.11)

{

D+
t s

n
j +Dcv

n
j = 0,

µD+D−v
n
j + vnj = f(snj ).

s0j = s0(j∆x), for j ∈ Z.

From the discrete values we define the bilinear interpolant

sn(x) = snj + (x− xj)D+s
n
j for x ∈ [xj , xj+1),

s∆x(x, t) = sn(x) + (t− tn)D
+
t s

n(x) for t ∈ [tn, tn+1).

Regarding vnj , we define v
n(x) to be the piecewise quadratic spline interpolation such that

vn(xj) = vnj , and define v∆x(x, t) by a linear interpolation in t between tn and tn+1.
Since this scheme is conservative, it follows that if s∆x → s, v∆x → v and ∂xv∆x → ∂xv

a.e. as ∆x → 0, then the limits s and v satisfy (5.9) and (5.10) respectively.
In order to show the strong convergence of a subsequence we square the equation for

vnj and sum over j to find

µ2
∑

j

∣
∣D−D+v

n
j

∣
∣2 + 2µ

∑

j

∣
∣D−v

n
j

∣
∣2 +

∑

j

∣
∣vnj

∣
∣2 =

∑

j

∣
∣fn

j

∣
∣2 .

This means that
(5.12)

∥
∥∂2

xv∆x(·, t)
∥
∥
2

L2(R)
+ ‖∂xv∆x(·, t)‖2L2(R) + ‖v∆x(·, t)‖2L2(R) ≤ C ‖f‖2Lip ‖s∆x(·, t)‖2L2(R) ,

for some constant C which does not depend on ∆x. Next, we note that

‖s∆x(·, tn+1)‖L2(R) ≤ ‖s∆x(·, tn)‖L2(R) + C∆t ‖∂xv∆x(·, tn)‖L2(R)

≤ ‖s∆x(·, tn)‖L2(R)

(

1 + C∆t ‖f‖Lip
)

.

Thus

(5.13) ‖s∆x(·, t)‖L2(R) ≤ ‖s0‖L2(R) e
Ct,

for some constant C which does not depend on ∆x (but scales like 1/µ). Combining this
with (5.12) we find that

(5.14) ‖v∆x(·, t)‖H2(R) ≤ CT

for all t ≤ T . This means that we get a supremum bound on s∆x, since

‖∂xv∆x‖L∞(R) ≤ ‖v∆x‖H2(R) .

Therefore

(5.15) ‖s∆x(·, t)‖L∞(R) ≤ ‖s0‖L∞(R) + tCT .

In particular, this implies that we only have to demand that f is locally Lipschitz contin-
uous.

Now set rnj = D+
t s

n
j and znj = D+

t v
n
j . Then

{

D+
t r

n
j +Dcz

n
j = 0,

−µD+D−z
n
j + znj = f ′

(

s
n+1/2
j

)

rnj ,
n ≥ 0,

where s
n+1/2
j is some value between snj and sn+1

j . The above holds for n ≥ 0, and we have
that

r0j = −Dcv
0
j , or − µD+D−r

0
j + r0j = −f ′

(
s̄0j
)
Dcs

0
j ,
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where s̄0j is a value between s0j−1 and s0j+1. Now we can repeat the above arguments to
show that

‖∂tv∆x(·, t)‖H2(R) ≤ C ‖f‖Lip ‖∂ts∆x(·, t)‖L2(R) ,(5.16)

‖∂ts∆x(·, t)‖L2(R) ≤ ‖f‖Lip ‖∂xs0‖L2(R) e
Ct.(5.17)

Thus, if s0 ∈ H1(R), then s∆x ∈ Lip(0, T ;L2(R)) and v∆x ∈ Lip(0, T ;H2(R)), with
Lipschitz constants independent of ∆x.

Now we need to show the compactness of the two sequences {s∆x}∆x>0 and {v∆x}∆x>0.
Set σn

j = D−s
n
j and wn

j = D−v
n
j , then

{

D+
t σ

n
j +Dcw

n
j = 0,

−µD+D−w
n
j + wn

j = f ′
(

snj−1/2

)

σn
j ,

n ≥ 0,

where snj−1/2 is an intermediate value. The initial values for the above scheme are σ0
j =

D−v
0
j . From this we obtain

‖∂xv∆x(·, t)‖H2(R) ≤ C ‖f‖Lip ‖∂xs∆x(·, t)‖L2(R) ,(5.18)

‖∂xs∆x(·, t)‖L2(R) ≤ ‖f‖Lip ‖∂xs0‖L2(R) e
Ct.(5.19)

Therefore {s∆x(·, t)}∆x>0 ⊂ H1(R) ⊂⊂ L2(R) and {v∆x(·, t)}∆x>0 ⊂ H3(R) ⊂⊂ H2(R)
uniformly in t and ∆x.

To sum up, we have proved

Lemma 5.1. Assume that s0 ∈ H1(R) and that s∆x and v∆x are defined by (5.11). Then
there are functions s and v that are weak solutions to (5.1), defined by (5.8), (5.9) and
(5.10). We have that

s∆x(·, t) → s(·, t) in L2(R),

v∆x(·, t) → v(·, t) in H2(R),
along a subsequence

for all t ∈ [0, T ].

6. Conclusion

Two-phase flows in a porous medium is modeled by a hyperbolic equation for the
saturation, coupled with an elliptic equation for the pressure, resulting in the classical
Darcy’s law based equations (1.9). No existence results for the equations have been
obtained till date in spite of the extensive research on these equations over the past several
decades. One of the pressing issues in this context has been whether the Darcy’s law is an
adequate and appropriate model for flows in porous media. The Brinkman regularization
of the Darcy’s law [4] has been a popular alternative ([15] and references therein) for the
Darcy’s law in the geophysics community, atleast in the context of a single phase flow. It
is natural to examine whether the Brinkman regularization is an appropriate model, also
in the context of two- (and multi-) phase flows in porous media.

In this paper, we consider the Brinkman regularization of the two-phase flow equations
(1.12). A suitable notion of weak solutions for these equations is proposed. We prove that
these weak solutions exist. Furthermore, a simple finite difference scheme to approximate
this system (1.12) is proposed and is shown to converge to the weak solutions. Numerical
experiments indicate robust performance of this numerical scheme, for fixed regularization
parameter µ.

Formally, we can recover the classical two-phase flow equations (1.9) by setting the
regularization parameter µ → 0 in the Brinkman regularization (1.12). However, our
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stability estimates on the saturation and the velocity blow up as µ → 0 preventing us
from rigorously showing that the limit solution of the Brinkman regularization is a weak
solution of the classical Darcy problem. We investigate this question numerically using
our convergent numerical scheme. Results on a benchmark quarter five-spot problem in
two space dimensions show that the approximate solutions to the Brinkman regulariza-
tion can become quite oscillatory as µ → 0. Furthermore, the regularized system can
contain discontinuous fronts connecting full water saturation to zero water saturation.
Such solutions are not included as classical entropy solutions of the Darcy problem (1.12).
Hence, the numerical results indicate that the Brinkman regularization may not converge
to (entropy solutions of) the Darcy limit as µ → 0.

This proposition is further investigated in the special case of one space dimension. In
this case, the pressure equation is trivially solved and the saturation is modeled by a scalar
conservation law. Entropy solutions (obeying Lax type entropy conditions) are widely
recognized as the physically relevant solutions in this context. However, we establish
using traveling wave analysis that the Brinkman limit will lead to a non-classical shock
wave for the scalar conservation law. Such non-entropic solutions have been postulated for
other physical models such as dynamic capillary pressure models [12, 11]. The presence
of non-classical shocks for the Brinkman limit raise interesting questions, see also [9].

Summarizing, the Brinkman regularization does provide a model where existence of
weak solutions can be shown rigorously and convergent numerical schemes can also be
designed. Such existence and convergence results have not been possible for the Darcy
problem despite several attempts. On the other hand, the Brinkman regularization may
lead to limit solutions of the Darcy’s equation that are not entropic and may contain non-
classical shock waves. Furthermore, the question of rigorous passage to the Darcy limit
for the Brinkman regularization is still wide open. Hence, this paper advocates caution in
the use of Brinkman type models, atleast for two and multi-phase flows in porous media.
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