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CONVERGENCE RATES OF FINITE DIFFERENCE SCHEMES

FOR THE WAVE EQUATION WITH ROUGH COEFFICIENTS

S. MISHRA, N. H. RISEBRO, AND F. WEBER

Abstract. The propagation of acoustic waves in a rough heterogeneous medium is modeled

using the linear wave equation with a variable but merely Hölder continuous coefficient. We
design robust finite difference discretizations that are shown to converge to the weak solution.
We rigorously determine the rate of convergence of these discretizations by an L

2 variant of
the Kruzkhov doubling of variables technique. Numerical experiments illustrating these rates
of convergence are also presented.

1. Introduction

Propagation of acoustic waves in a heterogeneous medium plays a significant role in many
applications, for instance in seismic imaging in geophysics and in the exploration of hydrocarbons
[1, 7]. This wave propagation is modeled by the linear wave equation:

ptt(t,x)− div(c(x)∇p(t,x)) = 0, (t,x) ∈ DT ,(1.1a)

p(0,x) = p0(x), x ∈ D,(1.1b)

pt(0,x) = p1(x), x ∈ D,(1.1c)

where DT := [0, T ] × D, D ⊂ R
d, augmented with periodic or homogeneous Dirichlet boundary

conditions (and the functions extended by zero outside of the domain). Here, p is the acoustic
pressure and the wave speed is determined by the coefficient c = c(x) > 0. The coefficient c
encodes information about the material properties of the medium. As an example, the coefficient
c could represent rock permeability when seismic waves propagate in a rock formation.

It is well known that the linear wave equation (1.1) can be rewritten as a first-order system of
partial differential equations by u(t, x) := pt(t, x) and r(t,x) := ∇p(t,x), resulting in

ut(t,x)− div(c(x)r(t,x)) = 0,(1.2a)

rt(t,x)−∇u(t,x) = 0, (t,x) ∈ DT ,

u(0,x) = p1(x), x ∈ D,(1.2b)

r(0,x) = ∇p0(x), x ∈ D.(1.2c)

The above system (1.2) is strictly hyperbolic [5] with wave speeds given by ±√
c. Under the

assumption that the coefficient c ∈ C0,α ∩L∞(D) for some α > 0 and that it is uniformly positive
on D i,e there exists constants c, c > 0 such that

(1.3) 0 < c ≤ c(x) ≤ c, ∀x ∈ D.

and that the initial data p0 ∈ H1(D) and p1 ∈ L2(D), one can prove existence of a unique weak
solution p ∈ C0([0, T ];H1(D)) with pt ∈ C0([0, T ];L2(D)) following classical energy arguments
for linear partial differential equations. See for instance [11, Chapter III, Theorems 8.1 and 8.2].
A smoother coefficient c and more regular initial data p0, p1 result in a more regular solution [11].
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1.1. Numerical schemes for the wave equation. Although the wave equation (1.1) is linear,
the presence of a material coefficient c and (possibly) complex geometry of the domain D imply
that that analytical solution formulas for (1.1) are not available. Consequently, numerical approx-
imation plays a very significant role in the modeling of acoustic wave propagation in heterogeneous
media with complex domain geometry.

A popular class of methods for discretizing the wave equation are the finite difference methods
[5, 8]. Within this framework, the equivalent first-order hyperbolic system (1.2) is discretized on
a grid with the spatial differential operators being replaced by central finite differences (of the
appropriate order). Temporal discretization is typically performed using high-order Runge-Kutta
methods. Finite difference approximations are simple and efficient, particularly on Cartesian or
(block) structured grids. Convergence analysis for these methods for the initial-boundary value
problem for the wave equation is fairly classical, see [5].

Another popular class of methods for discretizing the wave equation are of the finite element
type [10]. In this framework, a variational formulation of the second-order version (1.1) of the
wave equation is discretized using suitable (polynomial) finite element subspaces. Convergence
analysis for the finite element method is presented in [10] and references therein. Other methods
such as boundary element methods and spectral methods are not commonly used for discretizing
(1.1) on account of the heterogeneity in the coefficient.

A key question in numerical analysis for partial differential equations is the rate at which the
approximate solutions (generated by the discretizations) converge to the exact solution of the equa-
tion. There is considerable literature on the convergence rates for both the finite difference and
finite element discretizations, see [5] and [10]. For both methods, the essential result for conver-
gence rates can be expressed heuristically as

If the exact solution is smooth enough, then the finite difference discretization converges at the
rate of the truncation error (determined by the order of the spatial and temporal discretization)
and the finite element scheme converges at the rate of the underlying polynomial approximation

Hence, the key issue in obtaining the correct convergence rate for a given numerical method is
the regularity of the solution of the underlying PDE. If the coefficient c and the initial data p0, p1
are smooth, say Ck(D) or Hs(D) for some large enough Sobolev exponent s, then by regularity
results for the linear wave equation [11], the solution also is smooth i.e, it belongs to Hs(DT ) and
the finite difference (resp. finite element) discretizations converge at the order of the underlying
difference operators (resp. polynomial approximation spaces).

1.2. Rough coefficients. As noted above, the regularity of the solution to the wave equation (1.1)
and the resulting (high) rate of convergence of numerical approximations relies on the smoothness
of the coefficient c. Consequently, most of the numerical analysis literature on the wave equation
assumes a smooth coefficient c. However, this assumption is not realized in practice. As noted
before, the wave equation is heavily used to model seismic imaging in rock formations and other
porous media (for instance oil and gas reservoirs). Such media are very heterogenous with sharp
interfaces, strong contrasts and aspect ratios [7]. Furthermore, the material properties of such
media can only be determined by measurements. Such measurements are inherently uncertain.
This uncertainty is modeled in a statistical manner by representing the material properties (such
as rock permeability) as random fields. In particular, log-normal random fields are heavily used in
modeling material properties in porous and other geophysically relevant media [7, 4]. Consequently,
the coefficient c is not smooth, not even continuously differentiable, see figure 1 for an illustration
of coefficient c whereas the rock permeability is modeled by a log-normal random field (the figure
represents a single realization of the field). Closer inspection of the coefficients obtained in practice
reveals that at most, the material coefficient c is a Hölder continuous function i.e, c ∈ C0,α for
some 0 < α < 1. No further regularity can be assumed on the coefficient c represent material
properties of most geophysical formations.

Given the above discussion, it is natural to search for numerical methods that can effectively
and efficiently approximate the acoustic wave equation with rough (merely Hölder continuous)
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Figure 1. The coefficient c in the wave equation (1.1) in two dimensions as a
single realization of a log-normal random field

coefficients. In particular, one is interested in designing numerical methods that can be rigorously
shown to converge to the underlying weak solution (note that the weak solution exists and is
unique even when the coefficient is merely Hölder continuous). Furthermore, one is also interested
in obtaining (rigorously) a convergence rate for the discretization as the mesh parameters are
refined. We remark that the issue of a convergence rate is not just of theoretical significance, it
has profound implications on calculating complexity estimates for Monte-Carlo and Multi-level
Monte Carlo methods (see [12, 13, 17]) to solve the random (uncertain) PDE that results from
considering the material coefficient as a random field (as is done in engineering practice).

An extensive search through the literature revealed that no rigorous numerical analysis results
are available for the case of convergence rates for numerical approximations to the wave equation
with rough material coefficients. All available convergence rate results (for both finite difference as
well as finite element approximations) strictly require a smooth (at least C1 material coefficient).
Given this paucity of available results, we consider this issue in the current paper.

1.3. Aims and scope of the current paper. The central aims of the current paper are as
follows,

• To design a numerical scheme for approximating the acoustic wave equation with a rough,
merely Hölder continuous, material coefficient and to show that this scheme converges to
the weak solution of the underlying PDE.

• To obtain (rigorously) a rate of convergence for this scheme to the exact solution as the
mesh parameters are refined.

To this end, we construct suitable fully discrete upwind finite difference discretizations of the
wave equation with a rough coefficient, represented by the first-order hyperbolic system (1.2).
Given the low regularity of the coefficient, also inherited by the solution, the solution is expected
to have possibly sharp interfaces and contrasts making upwinding necessary for numerical stability.
Next, we obtain energy estimates for the approximate solution and use them to prove convergence
to a weak solution as the mesh is refined.
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The key part of our paper is the determination of a convergence rate for the numerical approx-
imation. Convergence rates for standard finite difference approximations use the truncation error
technique [5] and require that the underlying solution be smooth enough. Similarly, convergence
rates for the finite element approximation use best approximation rates for the underlying poly-
nomial spaces and again need regularity. Given the lack of regularity for our solution (note that
p ∈ H1), this technique is not adequate for our purposes. Hence, we needed to find an innovative
approach for determining the rate of convergence.

Motivated by the convergence theory for numerical approximations of scalar conservation laws
due to Kuznetsov (see [6] and references therein), wherein the Kruzkhov doubling of variables
technique [9] is adapted to compare a numerical solution with an exact solution with respect to
the L1 norm in space and a suitable rate of convergence is obtained, we modify this approach in
our L2 (energy space) setting. We define a novel doubling of variables technique in L2 and use it to
obtain a rate of convergence for the finite difference approximation. The resulting rate is dependent
on the Hölder coefficient α of the coefficient c as well as on the modulus of continuity in L2 that
measures the regularity of the initial data. In particular, we obtain that a rougher coefficient
yields a slower convergence rate, consistent with empirical observations [17]. Numerical examples
illustrating this phenomena as well as investigating the optimality of the obtained rates are also
presented. To the best of our knowledge, our results are the first rigorous rate of convergence
results for numerical approximation to the wave equation with rough coefficients.

The rest of the paper in organized as follows: in section 2, we consider the one-dimensional
version of the wave equation (1.1) and prove convergence rates for a finite difference scheme. The
two-dimensional version is considered in section 3 and the contents of the paper are summarized
in section 4.

2. The one-dimensional case

For simplicity of exposition as well as to illustrate the techniques, we start with the acoustic
wave equation (1.2) in one space dimension:

ut(t, x)− (c(x)r(t, x))x = 0,

rt(t, x)− ux(t, x) = 0, (t, x) ∈ DT ,
(2.1)

D = [dL, dR], dL < dR ∈ [−∞,∞].
We will work with an equivalent system that results from (2.1) by defining the variable, v(t, x) :=

c(x)r(t, x):

ut(t, x)− v(t, x)x = 0,

vt(t, x)− c(x)ux(t, x) = 0, (t, x) ∈ DT ,
(2.2)

2.1. Numerical approximation of (2.2) by a finite difference scheme. In order to compute
numerical approximations to (2.2), we choose ∆x > 0 and discretize the spatial domain by a grid
with gridpoints xj+1/2 := j∆x, j ∈ Z. Similarly let ∆t denote the time step and tn = n∆t with
n = 0, 1, · · · , N denote the n-th time level with N∆t = T .

We define the averaged quantities

(2.3) cj =
1

∆x

∫ xj+1/2

xj−1/2

c(x) dx, j ∈ Z,

and

(2.4)
(
u0j , v

0
j

)
=

1

∆x

(
∫ xj+1/2

xj−1/2

u0(x) dx,

∫ xj+1/2

xj−1/2

v0(x)dx

)

j ∈ Z,

and finally set r0j := c−1
j v0j . Moreover, we denote, for a quantity σn

j , j ∈ Z, n = 0, . . . , NT defined
on the grid,

(2.5) D+
t σ

n
j :=

1

∆t
(σn+1

j − σn
j ), D±

x σ
n
j = ± 1

∆x
(σn

j±1 − σn
j ), Dc

xσ
n
j =

1

2∆x
(σn

j+1 − σn
j−1).
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Then we define approximations to (2.2) by the finite difference scheme:

D+
t u

n
j = Dc

xv
n
j +

∆x

2
D+

xD
−
x u

n
j ,(2.6a)

D+
t v

n
j

cj
= Dc

xu
n
j +

∆x

2
D+

xD
−
x v

n
j , j ∈ Z, n = 1, . . . , N,(2.6b)

with the time step ∆t being chosen such that the CFL-condition,

(2.7) 2∆tmax
j

{max {2cj + 1, cj/4 + 5/4}} ≤ ∆x

is satisfied.
Moreover for any k, l ∈ R, we define the discrete entropy (energy) function and flux

(2.8) ηnj :=
|unj − k|2

2
+

|vnj − ℓ|2
2cj

, qnj := −(unj − k)(vnj − ℓ).

The scheme (2.6) satisfies the following properties:

Lemma 2.1. Assume c ∈ C0,α(D) and u0, v0 ∈ L2(D). Then the numerical approximations unj
and vnj defined by (2.6), (2.3) and (2.4) have the following properties:

(i) Discrete entropy inequality:

(2.9) D+
t η

n
j +Dc

xq
n
j ≤ ∆x (∆t−∆x)

2
D−

x

(
D+

x

(
unj − k

)
D+

x

(
vnj − l

))

+
∆x

4
D+

xD
−
x

((
unj − k

)2
+
(
vnj − l

)2
)

.

(ii) Bounds on the discrete L2-norms:

(2.10) ∆x
∑

j

(unj )
2 +

1

cj
(vnj )

2 ≤ ∆x
∑

j

(u0j )
2 +

1

cj
(v0j )

2 ≤ ‖u0‖2L2 +
∥
∥
∥c−1/2v0

∥
∥
∥

2

L2

(iii) For any function w = w(x), define the L2 modulus of continuity in space as γ if,

(2.11) ν2x(w, σ) := sup
δ≤σ

∫

R

|w(x+ δ)− w(x)|2 dx ≤ C σ2γ .

If we also assume that the initial data u0 and v0 have moduli of continuity in L2(D),

ν2x(u0, σ) ≤ Cσ2γ , ν2x(v0, σ) ≤ C σ2γ ,

for some γ > 0, the approximations satisfy,

∆x
∑

j

∣
∣D+

γ,tu
n
j

∣
∣
2
+

1

cj

∣
∣D+

γ,tv
n
j

∣
∣
2 ≤ C,

∆x
∑

j

∣
∣Dc

γ,xu
n
j

∣
∣
2
+
∣
∣Dc

γ,xv
n
j

∣
∣
2
+

∆x2

4
(
∣
∣D+

γ,xD
−
x u

n
j

∣
∣
2
+
∣
∣D+

γ,xD
−
x v

n
j

∣
∣
2
) ≤ C,

(2.12)

for all n = 0, . . . , NT , where C is a constant depending on c and the initial data u0 and
v0.

Proof. By linearity, it is sufficient to prove (2.9) for k = l = 0. We shall use the following identities

unjD
+
t u

n
j =

1

2
D+

t

(
unj
)2 − ∆t

2

(
D+

t u
n
j

)2
,(2.13)

unjD
+
xD

−
x u

n
j =

1

2
D+

xD
−
x

(
unj
)2 − 1

2

((
D−

x u
n
j

)2
+
(
D+

x u
n
j

)2
)

,(2.14)

D−
x

(
D+

x u
n
jD

+
x v

n
j

)
=
(
D+

xD
−
x u

n
j

)
Dc

xv
n
j +

(
D+

xD
−
x v

n
j

)
Dc

xu
n
j ,(2.15)

unjD
c
xv

n
j + vnj D

c
xu

n
j = Dc

x

(
unj v

n
j

)
− ∆x2

2
D−

x

(
D+

x u
n
jD

+
x v

n
j

)
.(2.16)
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Multiplying (2.6a) by unj and (2.6b) by vnj we get

1

2
D+

t

(
unj
)2 − ∆t

2

(
D+

t u
n
j

)2
= unjD

c
xv

n
j +

∆x

4
D+

xD
−
x

(
unj
)2

− ∆x

4

((
D−

x u
n
j

)2
+
(
D+

x u
n
j

)2
)

1

2cj
D+

t

(
vnj
)2 − ∆t

2cj

(
D+

t v
n
j

)2
= vnj D

c
xu

n
j +

∆x

4
D+

xD
−
x

(
vnj
)2

− ∆x

4

((
D−

x v
n
j

)2
+
(
D+

x v
n
j

)2
)

.

Adding these two equations

D+
t η

n
j = Dc

x

(
unj v

n
j

)
− ∆x2

2
D−

x

(
D+

x u
n
jD

+
x v

n
j

)

+
∆x

4
D+

xD
−
x

((
unj
)2

+
(
vnj
)2
)

− ∆x

4

((
D−

x u
n
j

)2
+
(
D+

x u
n
j

)2
+
(
D−

x v
n
j

)2
+
(
D+

x v
n
j

)2
)

+
∆t

2







(

Dc
xv

n
j +

∆x

2
D+

xD
−
x u

n
j

)2

+ cj

(

Dc
xu

n
j +

∆x

2
D−

x D
+
x v

n
j

)2

︸ ︷︷ ︸
a






.

We can estimate a as follows

a ≤ 1

2

((
D−

x u
n
j

)2
+
(
D+

x u
n
j

)2
+ cj

(
D−

x v
n
j

)2
+ cj

(
D+

x v
n
j

)2
)

+∆x
(
D+

xD
−
x u

n
jD

c
xv

n
j + cjD

+
xD

−
x v

n
j D

c
xu

n
j

)
+

∆x2

4

((
D+

xD
−
x u

n
j

)2
+ cj

(
D+

xD
−
x v

n
j

)2
)

≤
(
D−

x u
n
j

)2
+
(
D+

x u
n
j

)2
+ cj

(
D−

x v
n
j

)2
+ cj

(
D+

x v
n
j

)2

+∆x
(
D+

xD
−
x u

n
jD

c
xv

n
j + cjD

+
xD

−
x v

n
j D

c
xu

n
j

)

=
(
D−

x u
n
j

)2
+
(
D+

x u
n
j

)2
+ cj

(
D−

x v
n
j

)2
+ cj

(
D+

x v
n
j

)2

+∆xD+
x

(
D−

x u
n
jD

−
x v

n
j

)
+∆x (cj − 1)D+

xD
−
x v

n
j D

c
xu

n
j ,

≤
(
D−

x u
n
j

)2
+
(
D+

x u
n
j

)2
+ cj

(
D−

x v
n
j

)2
+ cj

(
D+

x v
n
j

)2

+∆xD+
x

(
D−

x u
n
jD

−
x v

n
j

)

+
1

2
|cj − 1|

(
(∣
∣D+

x v
n
j

∣
∣+
∣
∣D−

x v
n
j

∣
∣
)2

+
1

4

(
D−

x u
n
j +D+

x u
n
j

)2
)

≤ ∆xD+
x

(
D−

x u
n
jD

−
x v

n
j

)
+

(

1 +
1

4
|cj − 1|

)
(
D−

x u
n
j

)2
+

(

1 +
1

4
|cj − 1|

)
(
D+

x u
n
j

)2

+ (cj + |cj − 1|)
(
D−

x v
n
j

)2
+ (cj + |cj − 1|)

(
D+

x v
n
j

)2
.

This implies that

D+
t η

n
j +Dc

xq
n
j ≤ ∆x (∆t−∆x)

2
D−

x

(
D+

x u
n
jD

+
x v

n
j

)

+
∆x

4
D+

xD
−
x

((
unj
)2

+
(
vnj
)2
)

+
1

2

((

1 +
1

4
|cj − 1|

)

∆t− ∆x

2

)
(
D−

x u
n
j

)2

+
1

2

((

1 +
1

4
|cj − 1|

)

∆t− ∆x

2

)
(
D+

x u
n
j

)2
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+
1

2

(

(cj + |cj − 1|)∆t− ∆x

2

)
(
D−

x v
n
j

)2

+
1

2

(

(cj + |cj − 1|)∆t− ∆x

2

)
(
D+

x v
n
j

)2
.

If ∆t satisfies the CFL-condition (2.7), the four last terms above are non-positive and (2.9) follows.
The L2 bound (2.10) also follows upon summing over j and multiplying by ∆x.

By the linearity of the equation, (2.10) also holds for the difference of two approximations
computed by (2.6a) and (2.6b), thus in particular for D+

γ,tu
n
j and D+

γ,tv
n
j . Hence, using the handy

equality

(2.17)
∑

j

∣
∣D+

t u
n
j

∣
∣
2
+

1

c2j

∣
∣D+

t v
n
j

∣
∣
2

=
∑

j

∣
∣Dc

xu
n
j

∣
∣
2
+
∣
∣Dc

xv
n
j

∣
∣
2
+

∆x2

4

(∣
∣D+

xD
−
x u

n
j

∣
∣
2
+
∣
∣D+

xD
−
x v

n
j

∣
∣
2
)

,

the CFL-condition (2.7), (2.10) implies

∆x
∑

j

(
D+

γ,tu
n
j

)2
+

1

cj

(
D+

γ,tv
n
j

)2
(2.18)

≤ ∆x
∑

j

(
D+

γ,tu
0
j

)2
+

1

cj

(
D+

γ,tv
0
j

)2

≤ max{1, c}∆x
∑

j

(
D+

γ,tu
0
j

)2
+

1

c2j

(
D+

γ,tv
0
j

)2

= max{1, c}∆x∆t2−2γ
∑

j

(
Dc

xu
0
j

)2
+
(
Dc

xv
0
j

)2

+
∆x2

4

(
D+

xD
−
x u

0
j

)2
+
(
D+

xD
−
x v

0
j

)2
)

≤ max{1, c}∆x θ2−2γ
∑

j

(
Dc

γ,xu
0
j

)2
+
(
Dc

γ,xv
0
j

)2

+
∆x2

4

((
D+

γ,xD
−
x u

0
j

)2
+
(
D+

γ,xD
−
x v

0
j

)2
)

≤ 2θ2−2γ max{1, c}∆x
∑

j

(
D+

γ,xu
0
j

)2
+
(
D+

γ,xv
0
j

)2
=: C(α, u0, v0),

where we have set θ = ∆t/∆x. Applying (2.17) once more, we also obtain the second equation in
(2.12),

(2.19) ∆x
∑

j

(
Dc

γ,xu
n
j

)2
+
(
Dc

γ,xv
n
j

)2
+

∆x2

4

((
D+

γ,xD
−
x u

n
j

)2
+
(
D+

γ,xD
−
x v

n
j

)2
)

= θ2γ−2∆x
∑

j

(
D+

γ,tu
n
j

)2
+

1

c2j

(
D+

γ,tv
n
j

)2 ≤ C(α, u0, v0).

�

Defining

u∆x(t, x) = unj , (t, x) ∈ [tn, tn+1)× [xj−1/2, xj+1/2),(2.20a)

v∆x(t, x) = vnj , (t, x) ∈ [tn, tn+1)× [xj−1/2, xj+1/2),(2.20b)

r∆x(t, x) =
vnj
cj
, (t, x) ∈ [tn, tn+1)× [xj−1/2, xj+1/2),(2.20c)

c∆x(x) = cj , x ∈ [xj−1/2, xj+1/2),(2.20d)
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we have that by Kolmogorov’s compactness theorem, that a subsequence of (u∆x, r∆x)∆x>0 con-
verges in C([0, T ];L2(D)) to a limit (u, r) ∈ C([0, T ];L2(D)) which is a weak solution of (1.2)
as ∆x → 0. Moreover, the couple (u, r) have the same moduli of continuity as the discrete
approximations, in particular,

(2.21) u, r ∈ L∞([0, T ];Hs(D)) ∩ C0,min{α,γ}([0, T ];L2(D)) 0 < s ≤ min{γ, α}.
The limit is unique, thanks to the linearity of the equation and the entropy inequality. Therefore,

(2.22) η(u− k, v − ℓ, c)t + q(u− k, v − ℓ)x ≤ 0, in the sense of distributions,

where

(2.23) η(u, v, c) :=
u2

2
+
v2

2c
, q(u, v) := −uv,

which follows from (2.10) in the limit ∆x→ 0.

Remark 2.1. If we assume u0 ∈ H1(D) and r0(x) ≡ 0 in (2.1) (so that v0 ≡ 0), we obtain in
the same way that u(t, ·), v(t, ·) ∈ H1(D) and that u, v ∈ Lip([0, T ];L2(D)): We note that in this
case we can choose γ = 1 in (2.18) and (2.19) since the term containing v0 vanishes.

2.2. Convergence rate for the one dimensional wave equation. In the last section, we
showed that the numerical scheme (2.6) converges to the weak solution of the 1-D wave equation.
However, the key question is the rate at which the approximate solutions converge to the exact
solution as the mesh is refined i.e, ∆x→ 0. The answer to this question is provided in the following
theorem,

Theorem 2.1. Let c ∈ C0,α(D) satisfy ∞ > c ≥ c(x) ≥ c > 0 for all x ∈ D. Denote by (u, v) the
solution of (2.2) and (u∆x, v∆x) the numerical approximation computed by the scheme (2.6) and
defined in (2.20). Assume that the initial data u0, v0 ∈ L2(D) have moduli of continuity

ν2x(u0, σ) ≤ C σ2γ , ν2x(v0, σ) ≤ C σ2γ .

Then the approximation (u∆x(t, ·), v∆x(t, ·)) converges to the solution (u(t, ·), v(t, ·)), 0 < t < T ,
and we have the estimate on the rate

(2.24) ‖(u− u∆x)(t, ·)‖L2(D) + ‖(v − v∆x)(t, ·)/c‖L2(D)

≤ C
(

‖u0 − u∆x(0, ·)‖L2(D) + ‖(v0 − v∆x(0, ·))/c‖L2(D) +∆x(αγ)/(2(αγ+1−γ))
)

,

where C is a constant depending on c and T but not on ∆x.

Proof. We let φ ∈ C2
0 ((0, T )×D) and define

(2.25) ΛT (u, v, k, ℓ, φ) :=

∫

DT

(
(u− k)2

2
+

(v − ℓ)2

2c

)

φt − (u− k)(v − ℓ)φx dxdt

The above definition is an adaptation of the Kruzkhov doubling of variables technique [6] in our
current L2 setting.

For any even function ω(x) ∈ C∞
0 (R) with the properties

0 ≤ ω ≤ 1, ω(x) = 0 for |x| ≥ 1,

∫

R

ω(x) dx,

we set

ωǫ(x) =
1

ǫ
ω

(
x

ǫ

)

,

and define for some 0 < ν < τ < T ,

ψµ(t) := Hµ(t− ν)−Hµ(t− τ), Hµ(t) =

∫ t

−∞

ωµ(ξ) dξ.

Then we define the function Ω : Π2
T → R by

(2.26) Ω(t, s, x, y) = ψµ(t)ωǫ0(t− s)ωǫ(x− y).
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We assume without loss of generality ∆x ≤ min{ǫ, ǫ0, ν}. By the entropy inequality (2.22), we
have for the solution (u, v) of (2.1) that ΛT (u, v, u∆x(s, y), v∆x(s, y), φ) ≥ 0 for all (s, y) ∈ DT

and test functions φ ∈ C2
0 ((0, T )×D). By (2.9), we have on the other hand that

(2.27)
∫

DT

(
(u∆x − u(t, x))2

2
+

(v∆x − v(t, x))2

2c

)

D−
s φ − (u∆x − u(t, x))(v∆x − v(t, x))Dc

yφ dyds

≥
∫

DT

(v∆x − v(t, x))2
(

1

2c
− 1

2c∆x

)

D−
s φ dyds

− ∆x2

2
(θ − 1)

∫

DT

(
D+

y (u∆x − u)D+
y (v∆x − v)

)
D+

y φ dyds

+
∆x

4

∫

DT

(D+
y (v∆x − v(t, x))2 +D+

y (u∆x − u(t, x))2)D+
y φ dyds

where D−
s φ and D+

y φ have been defined in (??). Adding ΛT (u, v, u∆x(s, y), v∆x(s, y), φ) ≥ 0 and
(2.27), choosing Ω as a test function and integrating over DT , we obtain

(2.28)

∫

D2
T

(
(u∆x − u)2

2
+

(v∆x − v)2

2c

)
(
Ωt +D−

s Ω
)
dz

︸ ︷︷ ︸

A

−
∫

D2
T

(u∆x − u)(v∆x − v)
(
Ωx +Dc

yΩ
)
dz

︸ ︷︷ ︸

B

≥
∫

D2
T

(v∆x − v)2
(

1

2c(x)
− 1

2c∆x(y)

)

D−
s Ω dz

︸ ︷︷ ︸

D

+
∆x2

2
(θ − 1)

∫

D2
T

D−
y

[
D+

y (u∆x − u)D+
y (v∆x − v)

]
Ω dz

︸ ︷︷ ︸

E

− ∆x

4

∫

D2
T

((v∆x − v(t, x))2 + (u∆x − u(t, x))2)D−
y D

+
y Ω dz

︸ ︷︷ ︸

F

We rewrite the term A as

A =

∫

D2
T

η(u− u∆x, v − v∆x, c)(Ωt +D−
s Ω)dz

=

∫

D2
T

η(u− u∆x, v − v∆x, c)ψ
µ
t ωǫωǫ0 dz

︸ ︷︷ ︸

A1

+

∫

D2
T

η(u− u∆x, v − v∆x, c)ψ
µ ωǫ

(
∂tωǫ0 +D−

s ωǫ0

)
dz

︸ ︷︷ ︸

A2

The term A1 can be written as

A1 =

∫

D2
T

η(u− u∆x, v − v∆x, c)ωµ(t− ν)ωǫωǫ0 dz −
∫

D2
T

η(u− u∆x, v − v∆x, c)ωµ(t− τ)ωǫωǫ0 dz.
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Introducing λ as

(2.29)
λ(t) =

∫ T

0

∫

D2

η (u∆x(s, y)− u(t, x), v∆x(s, y)− v(x, t), c(x))

× ωǫ(x− y)ωǫ0(t− s) dydxds,

we have that

A1 =

∫ T

0

λ(t)ωµ(t− ν) dt−
∫ T

0

λ(t)ωµ(t− τ) dt,

so that (2.28) implies

(2.30)

∫ T

0

λ(t)ωµ(t− ν) dt+ |A2|+ |B|+ |D|+ |E|+ |F | ≥
∫ T

0

λ(t)ωµ(t− τ) dt.

Our task is now to overestimate |A2|, |B|, |D|, |E| and |F |.
To estimate the term A2, we note that

(2.31) D−
s ωǫ0 + ∂tωǫ0 = D−

s ωǫ0 − ∂sωǫ0 =
1

∆t

∫ ∆t

0

(ξ −∆t)∂ssωǫ0(t− s+ ξ) dξ.

and observe that,

1

∆t

∫ T

0

∫ ∆t

0

η(u(t, x)− u∆x(t, y), v(t, x)− v∆x(t, y), c)(ξ −∆t)∂ssωǫ0(t− s+ ξ) dξds = 0,

since all the terms in the integrand except ∂ssωǫ0(t − s + ξ) are independent of s. Therefore,
subtracting this term from A2, we obtain,

A2 =
1

2∆t

∫

D2
T

∫ ∆t

0

(u∆x(t, y)− u∆x)(2u− u∆x − u∆x(t, y))ψ
µ ωǫ (ξ −∆t)∂ssωǫ0(t− s+ ξ) dξdz

︸ ︷︷ ︸

A2,1

1

2∆t

∫

D2
T

∫ ∆t

0

1

c
(v∆x(t, y)− v∆x)(2v − v∆x − v∆x(t, y))ψ

µ ωǫ (ξ −∆t)∂ssωǫ0(t− s+ ξ) dξdz

︸ ︷︷ ︸

A2,2

We will outline estimating the term A2,1, the term A2,2 is estimated in a similar way. By the
triangle and Hölder’s inequality

|A2,1| ≤
1

2∆t

∫

D2
T

∫ ∆t

0

|u∆x(t, y)− u∆x(s, y)|
(
|u(t, x)− u∆x(s, y)|+ |u(t, x)− u∆x(t, y)|

)
(2.32)

× ψµ ωǫ |ξ −∆t| |∂ssωǫ0(t− s+ ξ)| dξdz

≤ 1

2∆t

∫ ∆t

0

∫ T

0

∫ T

0

(∫

D2

|u∆x(t, y)− u∆x(s, y)|2ωǫ dy dx

)1/2

×
{(∫

D2

|u(t, x)− u∆x(s, y)|2ωǫ dy dx

)1/2

+

(∫

D2

|u(t, x)− u∆x(t, y)|2ωǫ dy dx

)1/2}

× ψµ |ξ −∆t| |∂ssωǫ0(t− s+ ξ)| ds dtdξ

≤ 1

2∆t

∫ ∆t

0

∫ T

0

sup
0≤s≤T

|t−s|<2ǫ0

(∫

D2

|u∆x(t, y)− u∆x(s, y)|2ωǫ dy dx

)1/2

×
{

sup
0≤s≤T

|t−s|<2ǫ0

(∫

D2

|u(t, x)− u∆x(s, y)|2ωǫ dy dx

)1/2
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+

(∫

D2

|u(t, x)− u∆x(t, y)|2ωǫ dy dx

)1/2}

× ψµ |ξ −∆t|
∫ T

0

|∂ssωǫ0(t− s+ ξ)| ds dt dξ

≤ C

∆t ǫ2−γ
0

∫ ∆t

0

∫ T

0

{

sup
0≤s≤T

|t−s|<2ǫ0

(∫

D2

|u(t, x)− u∆x(s, y)|2ωǫ dy dx

)1/2

+

(∫

D2

|u(t, x)− u∆x(t, y)|2ωǫ dy dx

)1/2}

ψµ |ξ −∆t| dt dξ

≤ C∆t

ǫ2−γ
0

∫ ∆t

0

∫ T

0

{

sup
0≤s≤T

|t−s|<2ǫ0

(∫

D2

|u(t, x)− u∆x(s, y)|2ωǫ dy dx

)1/2

+

(∫

D2

|u(t, x)− u∆x(t, y)|2ωǫ dy dx

)1/2}

ψµ dt

where we used the moduli of continuity for u∆x, viz. (2.12), in the penultimate inequality and
that ∆t ≤ ǫ0.

∫ T

0

sup
0≤s≤T

|t−s|<ǫ0

(∫

D2

|u∆x(s, y)− u(t, x)|2 ωǫ dydx

)1/2

ψµ dt(2.33)

≤
∫ T

0

{

sup
0≤s≤T

|t−s|<ǫ0

(∫

D2

|u∆x(s, y)− u∆x(t, y)|2 ωǫ dydx

)1/2

+

(∫

D2

|u∆x(t, y)− u(t, x)|2 ωǫ dydx

)1/2}

ψµ dt

≤ CTǫγ0 +

∫ T

0

(∫

D2

|u∆x(t, y)− u(t, x)|2 ωǫ dydx

)1/2

ψµ dt

≤ CTǫγ0 +

∫ T

0

(
∫ T

0

∫

D2

|u∆x(s, y)− u(t, x)|2 ωǫωǫ0 dydxds

)1/2

+

∫ T

0

(
∫ T

0

∫

D2

|u∆x(t, x)− u∆x(s, x)|2 ωǫωǫ0 dydxds

)1/2

ψµ dt

≤ CTǫγ0 +

∫ T

0

(
∫ T

0

∫

D2

|u∆x(s, y)− u(t, x)|2 ωǫωǫ0 dydxds

)1/2

ψµ dt

by the triangle inequality and similarly

(2.34)

∫ T

0

sup
0≤s≤T

|t−s|<ǫ0

(∫

D2

1

c
|v∆x(s, y)− v(t, x)|2 ωǫ dydx

)1/2

ψµ dt

≤ CTǫγ0
c

+

∫ T

0

(
∫ T

0

∫

D2

1

c
|v∆x(s, y)− v(t, x)|2 ωǫωǫ0 dydxds

)1/2

ψµ dt.

Using λ, cf. (2.29), (2.32) can be bounded as

|A2,2| ≤ C∆t ǫ2γ−2
0 +

C∆t

ǫ2−γ
0

∫ T

0

√

λ(t)ψµ dt.
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and so, using a similar argument for the term A2,1

(2.35) |A2| ≤ C∆t ǫ2γ−2
0 +

C∆t

ǫ2−γ
0

∫ T

0

√

λ(t)ψµ dt.

In order to bound the term B, we use

Ωx +Dc
yΩ =

−1

4∆x

∫ ∆x

0

(ξ −∆x)2 [∂yyyΩ(t, s, x, y − ξ) + ∂yyyΩ(t, s, x, y + ξ)] dξ

=
1

4∆x

∫ ∆x

0

(ξ −∆x)2 [∂xxxΩ(t, s, x, y − ξ) + ∂xxxΩ(t, s, x, y + ξ)] dξ.

and that

1

4∆x

∫ ∆x

0

∫

D2
T

(ξ −∆x)2 (u∆x − u(t, y)) (v∆x − v(t, y))

× [∂xxxωǫ(x− y + ξ) + ∂xxxωǫ(x− y − ξ)]ωǫ0ψ
µ dξdz = 0,

since all the terms in the integrand, except [∂xxxωǫ(x− y + ξ) + ∂xxxωǫ(x− y − ξ)], are indepen-
dent of x. We subtract this term from B and add and subtract the term

1

4∆x

∫ ∆x

0

∫

D2
T

(ξ −∆x)2 (u∆x − u(t, y)) (v∆x − v(t, x))

× [∂xxxωǫ(x− y + ξ) + ∂xxxωǫ(x− y − ξ)]ωǫ0ψ
µ dξdz

so that

B =
1

4∆x

∫ ∆x

0

∫

D2
T

(ξ −∆x)2 (u(t, y)− u(t, x)) (v∆x − v(t, x))

× [∂xxxωǫ(x− y + ξ) + ∂xxxωǫ(x− y − ξ)]ωǫ0ψ
µ dξdz

+
1

4∆x

∫ ∆x

0

∫

D2
T

(ξ −∆x)2 (u∆x − u(t, y)) (v(t, y)− v(t, x))

× [∂xxxωǫ(x− y + ξ) + ∂xxxωǫ(x− y − ξ)]ωǫ0ψ
µ dξdz

:= B1 +B2.

We start by bounding B1,

|B1| ≤
1

4∆x

∫ ∆x

0

∫

D2
T

(ξ −∆x)2|u(t, y)− u(t, x)| |v∆x − v(t, x)|

× |∂xxxωǫ(x− y + ξ) + ∂xxxωǫ(x− y − ξ)|ωǫ0ψ
µ dξdz

≤ 1

4∆x

∫ ∆x

0

∫

DT

(∫

DT

|u(t, y)− u(t, x)|2ωǫ0 dy ds

)1/2

×
(∫

DT

|v∆x − v(t, x)|2ωǫ0 dy ds

)1/2

(ξ −∆x)2

× |∂xxxωǫ(x− y + ξ) + ∂xxxωǫ(x− y − ξ)|ψµ dx dt dξ

≤ 1

4∆x

∫ ∆x

0

∫ T

0

sup
x s.t.

|x−y|≤3ǫ

(∫

DT

|u(t, y)− u(t, x)|2ωǫ0 dy ds

)1/2

× sup
x s.t.

|x−y|≤3ǫ

(∫

DT

|v∆x − v(t, x)|2ωǫ0 dy ds

)1/2

(ξ −∆x)2

×
∫

D

|∂xxxωǫ(x− y + ξ) + ∂xxxωǫ(x− y − ξ)| dxψµ dt dξ



FINITE DIFFERENCE SCHEMES FOR THE WAVE EQUATION 13

≤ C

ǫ3−γ∆x

∫ ∆x

0

∫ T

0

sup
x s.t.

|x−y|≤3ǫ

(∫

DT

|v∆x − v(t, x)|2ωǫ0 dy ds

)1/2

(ξ −∆x)2ψµ dt dξ

≤ C∆x2

ǫ3−γ

∫ T

0

sup
x s.t.

|x−y|≤3ǫ

(∫

DT

|v∆x − v(t, x)|2ωǫ0 dy ds

)1/2

ψµ dt

where we have used that ωǫ is compactly supported in [−ǫ, ǫ], and where C is a constant depending
on the L2-norms and the moduli of continuity of the initial data and on T . Using that (c.f. (2.33))

∫ T

0

sup
x s.t.

|x−y|≤3ǫ

(∫

DT

|u∆x(s, y)− u(t, x)|2 ωǫ0 dyds

)1/2

ψµ dt(2.36)

≤
∫ T

0

{

sup
x s.t.

|x−y|≤3ǫ

(∫

DT

|u(t, y)− u(t, x)|2 ωǫ0 dyds

)1/2

+

(∫

DT

|u∆x(s, y)− u(t, y)|2 ωǫ0 dyds

)1/2}

ψµ dt

≤ CTǫγ +

∫ T

0

(∫

DT

|u∆x(s, y)− u(t, y)|2 ωǫ0 dyds

)1/2

ψµ dt

≤ CTǫγ +

∫ T

0

(∫ T

0

∫

D2

|u∆x(s, y)− u(t, x)|2 ωǫωǫ0 dydxds

)1/2

ψµ dt

+

∫ T

0

(∫ T

0

∫

D2

|u(t, y)− u(t, x)|2 ωǫ dydx

)1/2

ψµ dt

≤ CTǫγ +

∫ T

0

(∫ T

0

∫

D2

|u∆x(s, y)− u(t, x)|2 ωǫωǫ0 dydxds

)1/2

ψµ dt,

and analogously,

(2.37)

∫ T

0

sup
x s.t.

|x−y|≤3ǫ

(∫

DT

|v∆x(s, y)− v(t, x)|2 ωǫ0 dyds

)1/2

ψµ dt

≤ CTǫγ +

∫ T

0

(∫ T

0

∫

D2

|v∆x(s, y)− v(t, x)|2 ωǫωǫ0 dydxds

)1/2

ψµ dt,

for B1 we obtain the estimate

(2.38) |B1| ≤
C∆x2

ǫ3−2γ
+
C∆x2

ǫ3−γ

∫ T

0

√

λ(t)ψµ dt.

Similarly

|B2| ≤
1

4∆x

∫ ∆x

0

∫

D2
T

(ξ −∆x)2|u∆x − u(t, y)| |v(t, y)− v(t, x)|

× |∂xxxωǫ(x− y + ξ) + ∂xxxωǫ(x− y − ξ)|ωǫ0ψ
µ dξdz

≤ C∆x2

ǫ3−γ

∫ T

0

(∫

DT

|v∆x(s, y)− v(t, y)|2ωǫ0 dy ds

)1/2

ψµ dt

Using (2.37), we find, as for B1,

(2.39) |B2| ≤
C∆x2

ǫ3−2γ
+
C∆x2

ǫ3−γ

∫ T

0

√

λ(t)ψµ dt,

and therefore

(2.40) |B| ≤ C∆x2

ǫ3−2γ
+
C∆x2

ǫ3−γ

∫ T

0

√

λ(t)ψµ dt.
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We proceed to bounding the term D. Observing that
∫

D2
T

(v(t, x)− v∆x(t, y))
2

(
1

2c(x)
− 1

2c∆x(y)

)

D−
s Ω dz = 0,

we can rewrite D as

D =

∫

D2
T

(
(v(t, x)− v∆x(t, y))

2 − (v(t, x)− v∆x(s, y))
2)
(

1

2c(x)
− 1

2c∆x(y)

)

D−
s Ω dz.

Noting that we note that,

(2.41) D−
s Ω(t, s, x, y) =

1

∆t

∫ ∆t

0

Ωs(t, s− ξ, x, y) dξ,

this becomes

D =
1

∆t

∫

D2
T

∫ ∆t

0

(2v(t, x)− v∆x(t, y)− v∆x(s, y))

× (v∆x(t, y)− v∆x(s, y))
c∆x(y)− c(x)

2c(x)c∆x(y)
Ωs dξ dz.

which can be bounded by

|D| ≤ 1

2c∆t
sup

|x−y|<ǫ

|c(x)− c∆x(y)|(2.42)

×
∫

D2
T

∫ ∆t

0

1

c
|2v(t, x)− v∆x(t, y)− v∆x(s, y)| |v∆x(t, y)− v∆x(s, y)| |Ωs| dξ dz

≤ C(ǫ+∆x)α

2c ǫ0
sup

t∈(0,T )

ν2t (v∆x(t, ·), ǫ0)1/2

×
∫ T

0

sup
0≤s≤T

|t−s|<ǫ0

(∫

D2

1

c
|v∆x(t, y)− v(s, x)|2 ωǫ dydx

)1/2

ψµ dt

≤ C(ǫ+∆x)α

2cǫ1−2γ
0

+
C(ǫ+∆x)α

2cǫ1−γ
0

∫ T

0

√

λ(t)ψµ dt

where we have used (2.34) for the last inequality. For the term E, we note that it can be written

E =
∆x2

2
(θ − 1)

∫ T

0

∫

DT

D−
y

[
D+

y u∆xD
+
y v∆x

]
∫

D

ωǫ(x− y) dxωǫ0ψ
µ dy ds dt,

so that

E =
∆x2

2
(θ − 1)

∫ T

0

∫

DT

D−
y

[
D+

y u∆xD
+
y v∆x

]
ωǫ0ψ

µ dy ds dt,(2.43)

=
∆x3

2
(θ − 1)

∫ T

0

∫ T

0

∑

j

D−
y

[
D+

y u∆x(s, xj)D
+
y v∆x(s, xj)

]
ωǫ0ψ

µ ds dt.

= 0

In order to estimate the term F , we use that

(2.44) D+
xD

−
x φ(x) =

1

2∆x2

∫ 0

−∆x

∫ ∆x

0

φ′′(x+ η + ξ) dξ dη,

and that

1

8∆x

∫ 0

−∆x

∫ ∆x

0

∫

D2
T

((v∆x − v(t, y))2 + (u∆x − u(t, y))2)∂2xωǫ(x− y − η − ξ)ωǫ0ψ
µdz dξ dη = 0,
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since all the terms in the integrand, but ∂2xωǫ(x − y − η − ξ) are independent of x. We subtract
this term from F to find

F =
1

8∆x

∫ 0

−∆x

∫ ∆x

0

∫

D2
T

(v − v(t, y))(v + v(t, y)− 2v∆x)∂
2
xωǫ(x− y − η − ξ)ωǫ0ψ

µdz dξ dη

︸ ︷︷ ︸

F1

+
1

8∆x

∫ 0

−∆x

∫ ∆x

0

∫

D2
T

(u− u(t, y))(u+ u(t, y)− 2u∆x)∂
2
xωǫ(x− y − η − ξ)ωǫ0ψ

µdz dξ dη

︸ ︷︷ ︸

F2

.

The integrals F1 and F2 are estimated in the same way, therefore we outline only the estimate of
F1.

|F1| ≤
1

8∆x

∫ 0

−∆x

∫ ∆x

0

∫

D2
T

|v − v(t, y)|
(
|v − v∆x|+ |v(t, y)− v∆x|

)
|∂2xωǫ|ωǫ0ψ

µdz dξ dη

≤ 1

8∆x

∫ 0

−∆x

∫ ∆x

0

∫ T

0

sup
x s.t.

|x−y|≤3ǫ

(∫

DT

|v − v(t, y)|2ωǫ0 dy ds

)1/2

×
{

sup
x s.t.

|x−y|≤3ǫ

(∫

DT

|v − v∆x|2ωǫ0 dy ds

)1/2

+

(∫

DT

|v(t, y)− v∆x|2ωǫ0 dy ds

)1/2}

∫

D

|∂2xωǫ| dxψµ dtdξ dη

≤ C∆x

ǫ2−γ

∫ T

0

{

sup
x s.t.

|x−y|≤3ǫ

(∫

DT

|v − v∆x|2ωǫ0 dy ds

)1/2

+

(∫

DT

|v(t, y)− v∆x|2ωǫ0 dy ds

)1/2}

ψµ dt

Using (2.37), we find

|F1| ≤
C∆x

ǫ2−2γ
+
C∆x

ǫ2−γ

∫ T

0

√

λ(t)ψµ dt

and therefore

(2.45) |F | ≤ C∆x

ǫ2−2γ
+
C∆x

ǫ2−γ

∫ T

0

√

λ(t)ψµ dt.

Referring to (2.30), we have established the following bounds

|A2| ≤ C

(

∆x

ǫ2−2γ
0

+
∆x

ǫ2−γ
0

∫ T

0

√

λ(t)ψµ dt

)

,

|B| ≤ C

(

∆x2

ǫ3−2γ
+

∆x2

ǫ3−γ

∫ T

0

√

λ(t)ψµ dt

)

,

|D| ≤ C

(

ǫα

ǫ1−2γ
0

+
ǫα

ǫ1−γ
0

∫ T

0

√

λ(t)ψµ dt

)

,

|E| = 0,

|F | ≤ C

(

∆x

ǫ2−2γ
+

∆x

ǫ2−γ

∫ T

0

√

λ(t)ψµ dt

)

,

where we have used that ∆t = C∆x and ∆x ≤ ǫ. Hence,
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∫ T

0

λ(t)ωµ(t− τ) dt ≤
∫ T

0

λ(t)ωµ(t− ν) dt+ C

(

∆x

ǫ2−2γ
0

+
∆x2

ǫ3−2γ
+

ǫα

ǫ1−2γ
0

+
∆x

ǫ2−2γ

)

︸ ︷︷ ︸

M1

+ C

(

∆x

ǫ2−γ
0

+
∆x2

ǫ3−γ
+

ǫα

ǫ1−γ
0

+
∆x

ǫ2−γ

)

︸ ︷︷ ︸

M2

∫ T

0

√

λ(t)ψµ dt.

Sending µ to zero, we find

λ(τ) ≤ λ(ν) +M1 +M2

∫ τ

ν

√

λ(t) dt.

With an application of a Gronwall type inequality, [3, Chapter 1, Theorem 4], we obtain the
estimate

(2.46) λ(τ) ≤
(
√

λ(ν) +M1 + (τ − ν)M2

)2

≤ 2
(
λ(ν) +M1 + T 2M2

2

)
.

By the triangle inequality, we have

∣
∣
∣
∣

(∫

D

∫

DT

|u∆x(s, x)− u(t, y)|2 ωǫωǫ0 dxdsdy

)1/2

− ‖u(t, ·)− u∆x(t, ·)‖L2(D)

∣
∣
∣
∣

≤
(∫

D

∫

DT

|u∆x(s, x)− u∆x(t, y)|2 ωǫωǫ0 dxdsdy

)1/2

≤
(∫

D2

|u∆x(t, x)− u∆x(t, y)|2 ωǫ dxdy

)1/2

+

(∫

DT

|u∆x(t, x)− u∆x(s, x)|2 ωǫ0 dsdx

)1/2

≤ C (ǫγ0 + ǫγ),

(2.47)

and similarly

(2.48)

∣
∣
∣
∣

(∫

D

∫

DT

1

c(x)
|v∆x(t, x)− v(s, y)|2 ωǫωǫ0 dxdsdy

)1/2

− ‖(v − v∆x)(t, ·)/c‖L2(D)

∣
∣
∣
∣

≤ C (ǫγ0 + ǫγ).

Moreover,

(2.49)

‖(u− u∆x)(ν, ·)‖L2(D) + ‖(v − v∆x)(ν, ·)/c‖L2(D)

≤ ‖u∆x(ν, ·)− u∆x(0, ·)‖L2(D) + ‖(v∆x(ν, ·)− v∆x(0, ·))/c‖L2(D)

+ ‖u0 − u∆x(0, ·)‖L2(D) + ‖(v0 − v∆x(0, ·))/c‖L2(D)

+ ‖u(ν, ·)− u0‖L2(D) + ‖(v(ν, ·)− v0)/c‖L2(D)

≤ C(ν +∆t)γ + ‖u0 − u∆x(0, ·)‖L2(D) + ‖(v0 − v∆x(0, ·))/c‖L2(D) .

Write

e(τ) = ‖(u− u∆x)(τ, ·)‖L2(D) + ‖(v − v∆x)(τ, ·)/c‖L2(D) .

Thus, combining (2.46), (2.47), (2.48) and (2.49), the definition of M1 and M2 and some basic
calculus inequalities, we obtain

e2(τ) ≤ C

(

e2(0) + ǫ2γ + ǫ2γ0 +
∆x

ǫ2−2γ
0

+
ǫα

ǫ1−2γ
0

+
∆x2

ǫ4−2γ
0

(2.50)

+
∆x4

ǫ6−2γ
+

ǫ2α

ǫ
2(1−γ)
0

+
∆x2

ǫ3−2γ
+

∆x

ǫ2−2γ
+

∆x2

ǫ4−2γ

)

.
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Hence, choosing ǫ = ǫ
1/α
0 and ǫ = ∆x1/(2(γα+1−γ)),

e(τ) ≤ C
(

e(0) + ∆x(αγ)/(2(αγ+1−γ))
)

.

�

This enables us to get a rate for the approximation r∆x := v∆x/c∆x to q, the second variable
of the solution of (2.1):

Corollary 2.1. Under the assumptions of Lemma 2.1, the approximation (u∆x, r∆x) converges to
the solution of (2.1) at the rate

(2.51)

‖u(t, ·)− u∆x(t, ·)‖L2(D) + ‖r(t, ·)− r∆x(t, ·)‖L2(D)

≤ C1

(

∆x(αγ)/(2(αγ+1−γ)) + ‖u0 − u∆x(0, ·)‖L2(D) + ‖(v0 − v∆x(0, ·))/c‖L2(D)

)

+ C2∆x
α,

for 0 < t < T where C1 is a constant depending on c, c, ‖c‖C0,α and T but not on ∆x, and C2 a
constant depending on the L2-norm of v0 and on c, c and ‖c‖C0,α .

Proof. The result follows upon noting that

‖r(t, ·)− r∆x(t, ·)‖L2(D) ≤
1

c

(∫

|v(t, x)− v∆x(t, x)|2 dx
)1/2

+
1

c

(∫

|c(x)− c∆x(x)|2 |r(t, x)|2 dx
)1/2

≤ 1

c
‖v(t, ·)− v∆x(t, ·)‖L2(D)

+
‖c‖C0,α

c

(

‖r0‖L2(D) + ‖u0‖L2(D)

)

∆xα,

and using the result from Lemma 2.1. �

2.2.1. Approximation of the solution p of the wave equation (1.1) in one space dimension. Finally,
we would like to approximate the solution p of the original second order wave equation (1.1) by
using the approximated solutions of the first order wave equation (2.1). We thus define discrete
quantities via,

D+
t p

n
j = unj , j ∈ Z, n = 1, . . . , N,(2.52a)

p0j =
1

∆x

∫ xj+1/2

xj−1/2

p0(x) dx, j ∈ Z,(2.52b)

and then define p∆x via a piecewise constant or piecewise linear interpolation of pnj on the grid.
We can rewrite (2.6) as a scheme for pnj :

D+
t D

+
t p

n
j = Dc

xv
n
j +

∆x

2
D+

xD
−
x D

+
t p

n
j ,(2.53a)

D+
t v

n
j

cj
= Dc

xD
+
t p

n
j +

∆x

2
D+

xD
−
x v

n
j , j ∈ Z, n = 1, . . . , N,(2.53b)

From Lemma 2.1, we find that

∆x
∑

j

|D+
t p

n
j |2,∆x

∑

j

|D+
γ,tD

+
t p

n
j |2,∆x

∑

j

|D+
γ,xD

+
t p

n
j |2,

∆x
∑

j

|D+
γ,tD

+
x p

n
j |2 ≤ C(u0, v0, w0), n = 1, . . . , N.

We would like to find a bound on ∆x
∑

j |D+
x p

n
j |2 as well and ∆x

∑

j |D+
γ,xD

+
x p

n
j |2 and then show

that in the limit lim∆x→0D
+
x p∆x = px = v/c so that the limit lim∆x→0 p∆x = p is the unique
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solution of (1.1). We therefore sum the scheme (2.53) over m = 0, . . . , n − 1 and multiply by ∆t
to obtain,

Dx
t p

n
j −D+

t p
0
j = ∆t

n−1∑

m=0

Dc
xv

m
j +

∆x

2
D+

xD
−
x p

n
j − ∆x

2
D+

xD
−
x p

0
j ,

vnj
cj

−
v0j
cj

= Dc
xp

n
j −Dc

xp
0
j +

∆x∆t

2

n−1∑

m=0

D+
xD

−
x v

m
j ,

(2.54)

Applying the operator D ∈ {Id, D±
β,x, 0 ≤ β ≤ min{α, γ}} to both equations in (2.54), squaring

them, adding and summing over j, we obtain
∑

j

(
|DD+

t p
n
j |2 + |D(vnj /cj)|2

)
(2.55)

= ∆t2
∑

j

∣
∣
∣

n−1∑

m=0

DDc
xv

m
j

∣
∣
∣

2

+
∆x2

4

∑

j

|DD+
xD

−
x p

n
j |2 +

∑

j

|DDc
xp

n
j |2

+
∆x2∆t

4

∑

j

∣
∣
∣

n−1∑

m=0

DD+
xD

−
x v

m
j

∣
∣
∣

2

+
∑

j

(

D

(

D+
t p

0
j −

∆x

2
D+

xD
−
x p

0
j

))2

+
∑

j

(
D
(
v0j /cj −Dc

xp
0
j

))2
+∆x∆t

∑

j

n−1∑

m=0

(DDc
xv

m
j )(DD+

xD
−pnj )

︸ ︷︷ ︸

ä

+ 2
∑

j

(

D

(

D+
t p

0
j −

∆x

2
D+

xD
−
x p

0
j

))(

∆t

n−1∑

m=0

DDc
xv

m
j +

∆x

2
DD+

xD
−
x p

n
j

)

︸ ︷︷ ︸

å

+∆x∆t
∑

j

n−1∑

m=0

(DDc
xp

n
j )(DD

+
xD

−
x v

m
j )

︸ ︷︷ ︸

ü

+ 2
∑

j

(
D
(
v0j /cj −Dc

xp
0
j

))

(

DDc
xp

n
j +

∆x∆t

2

n−1∑

m=0

DD+
xD

−
x v

m
j

)

︸ ︷︷ ︸
ø

.

We note that

ä+ ü = 0,

obtained by summing by parts three times. Moreover, we have for the terms ø and å, for any
δ > 0,

|̊a| ≤ 2

δ

∑

j

(

D

(

D+
t p

0
j −

∆x

2
D+

xD
−
x p

0
j

))2

+ δ∆t2
∑

j

∣
∣
∣

n−1∑

m=0

DDc
xv

m
j

∣
∣
∣

2

+
∆x2δ

4

∑

j

|DD+
xD

−
x p

n
j |2

|ø| ≤ 2

δ

∑

j

(
D
(
v0j /cj −Dc

xp
0
j

))2
+
δ∆t2∆x2

4

∑

j

∣
∣
∣

n−1∑

m=0

DD+
xD

−
x v

m
j

∣
∣
∣

2

+ δ
∑

j

|DDc
xp

n
j |2.

Choosing δ = 1/2, and rearranging terms in (2.55), we find

2∆x
∑

j

(
|DD+

t p
n
j |2 + |D(vnj /cj)|2

)
+ 6∆x

∑

j

(
D
(
v0j /cj −Dc

xp
0
j

))2
(2.56)

+ 6∆x
∑

j

(

D

(

D+
t p

0
j −

∆x

2
D+

xD
−
x p

0
j

))2
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≥ ∆x∆t2
∑

j

∣
∣
∣

n−1∑

m=0

DDc
xv

m
j

∣
∣
∣

2

+
∆x3

4

∑

j

|DD+
xD

−
x p

n
j |2 +∆x

∑

j

|DDc
xp

n
j |2

+
∆x3∆t2

4

∑

j

∣
∣
∣

n−1∑

m=0

DD+
xD

−
x v

m
j

∣
∣
∣

2

.

By Lemma 2.1, we know that the right hand side of the above equation is bounded and therefore
the right hand side as well. Moreover, since

∆x3

4

∑

j

|DD+
xD

−
x p

n
j |2 +∆x

∑

j

|DDc
xp

n
j |2 =

∆x

2

∑

j

(
|DD−

x p
n
j |2 + |DD+

x p
n
j |2
)
,

we obtain the desired bounds on ∆x
∑

j |D+
x p

n
j |2 and ∆x

∑

j |D+
β,xD

+
x p

n
j |2. Hence p∆x converges

to a limit function p in H1+s([0, T ]×D) ∩ C([0, T ];H1+s(D)) for all 0 ≤ s < β. Using that also

(2.57)
∆x3∆t2

4

∑

j

∣
∣
∣

n−1∑

m=0

DD+
xD

−
x v

m
j

∣
∣
∣

2

+∆x∆t2
∑

j

∣
∣
∣

n−1∑

m=0

DDc
xv

m
j

∣
∣
∣

2

= ∆x∆t2
∑

j

∣
∣
∣

n−1∑

m=0

DD−
x v

m
j

∣
∣
∣

2

,

we obtain by the second equation in (2.54), that

∆x
∑

j

∣
∣
∣
∣

vnj
cj

−Dc
xp

n
j

∣
∣
∣
∣

2

≤ 2∆x
∑

j

∣
∣
∣
∣

v0j
cj

−Dc
xp

0
j

∣
∣
∣
∣

2

+
∆x3∆t2

2

∑

j

∣
∣
∣

n−1∑

m=0

D+
xD

−
x v

m
j

∣
∣
∣

2

≤ C∆x2β +
∆x2β+1∆t2

2

∑

j

∣
∣
∣

n−1∑

m=0

D+
β,xD

−
x v

m
j

∣
∣
∣

2

≤ C∆x2β ,

where β := min{α, γ} and we have assumed that the approximation of the initial data is of

order ∆xβ in L2 and used (2.56) and (2.57). Hence we have that px = lim∆x→0D
c
xp∆x =

lim∆x→0 v∆x/c∆x = v/c and the limit p is the unique weak solution of the wave equation (1.1).
Moreover, we have that p∆x → p in H1([0, T ] × D) ∩ C([0, T ];H1(D)) at a rate of at least

∆xmin{β,(αγ)/(2(αγ+1−γ)), by Theorem 2.1.

2.2.2. Numerical examples. Next, we shall compare the above derived convergence rates to the
ones in practice. To this end, we implement the finite difference scheme (2.6) and test it on a set
of numerical test cases. For all the test case, we use the interval D = [0, 2] as the computational
domain and use periodic boundary conditions.

For the material coefficient c, we choose a sample (single realization) of a log-normally dis-
tributed random field, which was generated using a spectral FFT method [2, 15, 16, 14] from a
given covariance operator ĉ which we assume to be log-normal, so that the covariance operator
completely determines the law of ĉ. It is easy to check that this coefficient c is uniformly positive,
bounded from above and Hölder continuous with exponent 1/2. See Figure 2 or an illustration
of the coefficient. We compute approximations at time T = 2 and test the scheme on this set up
with three different choices of initial data (with varying regularity),

p0,1(x) = 1, u0,1(x) = sin(πx),(2.58a)

p0,2(x) =

{

x, if x ≤ 1,

2− x, if x > 1,
u0,2(x) =

{

1, if x ≤ 1,

0, if x > 1,
(2.58b)

p0,3(x) = 1, u0,3(x) =

{

1 + c(x), if x ≤ 1,

c(x), if x > 1.
(2.58c)

We notice that according to Lemma 2.1, the moduli of continuity of the variables u and v is at
least γ = 1 for the initial data (2.58a) whereas it is at least γ = 1/2 for initial data (2.58b) and
(2.58c) In order to test the convergence, we have computed reference approximations on a grid
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Figure 2. The coefficient c used for the numerical experiments for the 1d wave
equation (2.2).

with Nx = 214 gridpoints. We have plotted the reference solutions to initial data (2.58a) and
(2.58b) in Figure 3. For the approximation of the rate of convergence, we have used,
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Figure 3. Left: Approximation of (2.2), (2.58a) at time T = 2 on a mesh with
214 grid cells. Right: Approximation of (2.2), (2.58b) at time T = 2 on a mesh
with 214 grid cells.

(2.59) r2 =
1

Nexp − 1

Nexp−1
∑

k=1

log E2
∆xk

− log E2
∆xk−1

log 2
,
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where ∆xk = 2k∆x0, Nexp is the number of experiments and E2
∆xk

, the relative distance of the

approximation with gridsize ∆xk to the reference solution in the discrete L2-norm, that is,

E1
∆xk

= 100×

√
∑Nx

j=1 |σ∆xk
(T, xj)− σ∆xref

(T, xj)|2
√
∑Nx

j=1 |σ∆xref
(T, xj)|2

,(2.60)

where σ ∈ {p, u, v, r}. We have used ∆x0 = 1/32 and Nexp = 6.
For the initial data (2.58a), we have observed a rate of ≈ 0.8 for the variables u and v, a rate

of ≈ 0.7 for r and a rate of ≈ 0.95 for the variable p.
For the initial data (2.58b), we have observed a rate of ≈ 0.3 for the variables u, v and r and

≈ 0.75 for the variable p.
For the third set of initial data, (2.58c), we have observed a rate of ≈ 0.25 for the variables u, v

and r and ≈ 0.65 for the variable p.
We note that these rates are better than the ones predicted by Theorem 2.1. However, instead

of minimizing the expression (2.50) for a general set of parameters α, γ and ∆x, one can minimize
this expression directly for the given parameters α and γ and ∆xk, k = 0, . . . , 5, and compute the
approximate rate numerically from this expression. This program yields a rate of 0.74 (for the
variables u, v) for the initial data (2.58a), and rates of approximately 0.37 for initial data (2.58b)
and (2.58c). Note that these rates are very close to the experimentally observed rates indicating
the sharpness of our method.

3. Two-dimensional version of (1.2)

Rates of convergence for finite difference approximations of the multi-dimensional wave equation
(1.1) with Hölder continuous coefficients can be obtained in a fairly analogous manner as in the
one-dimensional case discussed in the previous section. We illustrate this by considering the wave
equation (1.2) in two space dimensions:

∂tu(t, x, y)− ∂x(c(x, y)r1(t, x, y))− ∂y(c(x, y)r2(t, x, y)) = 0,

∂tr1(t, x, y)− ∂xu(t, x, y) = 0, (t, x, y) ∈ DT ,

∂tr2(t, x, y)− ∂yu(t, x, y) = 0,

(3.1)

D = [d1L, d
1
R] × [d2L, d

2
R], d

i
L < diR ∈ [−∞,∞], i = 1, 2 and with periodic or Dirichlet boundary

conditions extended by zero outside the domain. As before, we define the variables v(t, x, y) :=
c(x, y)r1(t, x, y) and w(t, x, y) := c(x, y)r2(t, x, y) to obtain the system,

ut − vx − wy = 0,

vt − c ux = 0, (t, x, y) ∈ DT ,

wt − c uy = 0,

(3.2)

As in the one-dimensional case, we find that system (3.2) is equipped with the L2-entropy/entropy-
flux pair,

(3.3) η(u, v, w, c) :=
u2

2
+
v2

2c
+
w2

2c
, q(u, v) :=

(
−uv
−uw

)

so that formally,

(3.4) η(u− k, v − ℓ, w −m, c)t + divq(u− k, v − ℓ, w −m) = 0.

for a solution (u, v, w) of (3.2), which implies that if the L2-norms of u, v and w are bounded
initially, they will be bounded for any time.

3.0.3. Numerical approximation of (3.2) by a finite difference scheme. To approximate the so-
lution of (3.2), we let ∆x > 0 and discretize the spatial domain by a grid with gridpoints
(xi+1/2, yj+1/2) = (i∆x, j∆x), for i, j ∈ Z for which (xi+1/2, yj+1/2) ∈ D. We denote the grid
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cells Cij := [xi−1/2, xi+1/2)× [yj−1/2, yj+1/2). Furthermore, fix κ > 0 and let ∆t = θ∆x, where θ
satisfies the CFL-condition

(3.5) θ < min

{
1

κ2 + c̄
,

1

1 + 4κ2c̄

}
κ

2
.

Set tn := n∆t, n = 0, 1, 2, . . ., and define NT such that tNT = T . Moreover, define the averaged
quantities,

(3.6) cij =
1

∆x2

∫

Cij

c(x, y) dx dy, i, j ∈ Z,

and

u0ij =
1

∆x2

∫

Cij

u0(x, y) dx dy,

v0ij =
1

∆x2

∫

Cij

v0(x, y) dx dy, i, j ∈ Z,

w0
ij =

1

∆x2

∫

Cij

w0(x, y) dx dy.

(3.7)

Now we define approximations unij , v
n
ij and wn

ij via the following numerical scheme,

D+
t u

n
ij = D−

x v
n
ij +D+

y w
n
ij +∆xκD+

xD
−
x u

n
ij +∆xκD+

y D
−
y u

n
ij ,(3.8a)

D+
t

vnij
cij

= D+
x u

n
ij +∆xκD+

xD
−
x v

n
ij +∆xκD+

y D
+
x w

n
ij , i, j ∈ Z, n = 0, . . . , N,(3.8b)

D+
t

wn
ij

cij
= D−

y u
n
ij +∆xκD−

x D
−
y v

n
ij +∆xκD+

y D
−
y w

n
ij ,(3.8c)

for κ > 0, D+
t as defined in (2.5) and

(3.9) D±
x σ

n
ij := ± 1

∆x
(σn

i±1,j − σn
ij), D±

y σ
n
ij := ± 1

∆x
(σn

i,j±1 − σn
ij),

for a quantity σn
ij , i, j ∈ Z, n = 0, . . . , NT defined on the grid. In addition, we denote the discrete

entropy function and flux by

(3.10) ηnij :=

∣
∣unij − k

∣
∣
2

2
+

∣
∣vnij − ℓ

∣
∣
2

2cij
+

∣
∣wn

ij −m
∣
∣
2

2cij
, qnij :=

(
−(unij − k)(vnij − ℓ)
−(unij − k)(wn

ij −m)

)

.

The scheme (3.8) satisfies the following properties:

Lemma 3.1. Assume c ∈ C0,α(D) and u0, v0, w0 ∈ L2(D). Then the numerical approximations
unij, v

n
ij and wn

ij defined by (3.8), (3.6) and (3.7) have the following properties:

(i) Discrete entropy inequality:

(3.11)

D+
t η

n
ij −D−

x

(
(unij − k)(vnij − ℓ)

)
−D+

y

(
(unij − k)(wn

ij −m)
)

≤ ∆x
[

D−
x

(
(vnij − ℓ)D+

x (u
n
ij − k)

)
−D+

y

(
(wn

ij −m)D−
y (u

n
ij − k)

)

+
κ

2

{

D+
x

(
(vij + vi−1,j − 2ℓ)

(
D+

y (wij −m) +D−
x (vij − ℓ)

))

+D−
y

(
(wij + wi,j+1 − 2m)

(
D+

y (wij −m) +D−
x (vij − ℓ)

))}]

+
κ∆x

2
∆̂(unij − k)2 − κ∆x2

4

[

D−
x (|D+

x (vij − ℓ)|2) +D−
y (|D−

x (vij − ℓ)|2)

−D+
x (|D+

y (wij −m)|2)−D+
y (|D−

y (wij −m)|2)
]

,

for i, j ∈ Z, n = 0, 1, 2, . . .
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(ii) Bounds on the discrete L2-norms:

∆x2
∑

ij

(unij)
2 +

1

cij
(vnij)

2 +
1

cij
(wn

ij)
2 ≤ ∆x2

∑

ij

(u0ij)
2 +

1

cij
(v0ij)

2 +
1

cij
(w0

ij)
2

≤ ‖u0‖2L2 +
∥
∥
∥c−1/2v0

∥
∥
∥

2

L2
+
∥
∥
∥c−1/2w0

∥
∥
∥

2

L2
.

(3.12)

for n = 0, . . . , NT .
(iii) Vorticity preservation:

(3.13) D−
γ,y

(
vnij
cij

)

−D+
γ,x

(
wn

ij

cij

)

= D−
γ,y

(
v0ij
cij

)

−D+
γ,x

(
w0

ij

cij

)

,

for i, j ∈ Z,, n = 0, . . . , NT and γ ∈ (0, 1].
(iv) If we assume in addition that the initial data u0, v0 and w0 have moduli of continuity in

L2(D),

ν2x(u0, σ) ≤ C σ2γ , ν2x(v0, σ) ≤ C σ2γ , ν2x(w0, σ) ≤ C σ2γ

ν2y(u0, σ) ≤ C σ2γ , ν2y(v0, σ) ≤ C σ2γ , ν2y(w0, σ) ≤ C σ2γ ,

for some γ > 0, the approximations satisfy,

∆x2
∑

ij

|D+
γ,tu

n
ij |2 +

1

cij
|D+

γ,tv
n
ij |2 +

1

cij
|D+

γ,tw
n
ij |2 ≤ C1,(3.14a)

∆x2
∑

ij

|D+
γ,xu

n
ij |2 + |D−

γ,yu
n
ij |2 + |D−

γ,xv
n
ij +D+

γ,yw
n
ij |2 ≤ C1,(3.14b)

where C1 is a constant depending on c and the initial data u0, v0 and w0, and for β ≤
min{α, γ},

(3.15) ∆x2
∑

ij

|D−
β,xv

n
ij |2 + |D−

β,yv
n
ij |2 + |D+

β,xw
n
ij |2 + |D+

β,yw
n
ij |2 ≤ C2,

with C2 is a constant depending on the Hölder norm of c and the initial data u0, v0 and
w0, and where we have denoted

(3.16) D±
γ,xσ

n
ij = ∓

σn
ij − σn

i±1,j

∆xγ
, D±

γ,yσ
n
ij = ∓

σn
ij − σn

i,j±1

∆xγ
,

for a quantity σn
ij defined on our grid.

Proof. (i) By linearity, it is enough to show this for k = ℓ = m = 0. For ease of notation we drop
the superscript n when calculating the cell entropy equation. We multiply (3.8a) with uij , (3.8b)
with vij and (3.8c) with wij to get

1

2
D+

t u
2
ij −

∆t

2

(
D+

t uij
)2

= uijD
−
x vij + uijD

+
y wij +

κ∆x

2
∆̂u2ij

− κ∆x

2

((
D−

x uij
)2

+
(
D+

x uij
)2

+
(
D−

y uij
)2

+
(
D+

y uij
)2
)

,

1

2cij
D+

t v
2
ij −

∆t

2cij

(
D+

t vij
)2

= vijD
+
x uij +

κ∆x

2
D+

xD
−
x v

2
ij −

κ∆x

2

((
D−

x vij
)2

+
(
D+

x vij
)2
)

+ κ∆xvijD
+
y D

+
x wij ,

1

2cij
D+

t w
2
ij −

∆t

2cij

(
D+

t wij

)2
= wijD

−
y uij +

κ∆x

2
D+

y D
−
y w

2
ij −

κ∆x

2

((
D−

y wij

)2
+
(
D+

y wij

)2
)

+ κ∆xwijD
−
y D

−
x vij ,

where we have used the shorthand notation ∆̂ = D+
xD

−
x +D+

y D
−
y . Adding these three equations

we get

D+
t ηij = uijD

−
x vij + vijD

+
x uij + uijD

+
y wij + wijD

−
y uij

︸ ︷︷ ︸
a
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+
κ∆x

2

(

∆̂u2ij +D+
xD

−
x v

2
ij +D+

y D
−
y w

2
ij

)

︸ ︷︷ ︸

b

− κ∆x

2

[
1

2

(
D+

x vij +D+
y wi+1,j

)2
+
(
D−

x vij +D+
y wij

)2
+

1

2

(
D−

x vi,j−1 +D−
y wij

)2 ∣
∣D̄x,yuij

∣
∣
2
]

︸ ︷︷ ︸
c

+ κ∆x

(

vijD
+
xD

+
y wij + wijD

−
x D

−
y vij +D+

y wijD
−
x vij +

1

2
D−

x vi,j−1D
−
y wij +

1

2
D+

x vijD
+
y wi+1,j

)

︸ ︷︷ ︸

d

+
∆t

2

(
(
D+

t uij
)2

+
1

cij

((
D+

t vij
)2

+
(
D+

t wij

)2
))

︸ ︷︷ ︸
e

− κ∆x

4

(
|D+

x vij |2 − |D−
x vi,j−1|2 + |D−

y wij |2 − |D+
y wi+1,j |2

)

︸ ︷︷ ︸

f

,

where
∣
∣D̄x,yuij

∣
∣
2
=
(
D−

x uij
)2

+
(
D+

x uij
)2

+
(
D−

y uij
)2

+
(
D+

y uij
)2
.

To proceed further, we utilize the identities

αi

(
D−βi

)
+
(
D+αi

)
βi = D− (αi+1βi)

= D+ (αiβi)−∆xD+
(
αiD

−βi
)

= D−(αiβi) + ∆xD−(βiD
+αi).

Using this

a = D−
x (uijvij) +D+

y (uijwij) + ∆x
(
D−

x

(
vijD

+
x uij

)
−D+

y

(
wijD

−
y uij

))

︸ ︷︷ ︸
a1

,

and for d we find

d =
1

2

(
D+

x (vijD
+
y wij) +D−

x (vijD
+
y wi+1,j) +D+

y (wijD
−
x vi,j−1) +D−

y (wijD
−
x vij)

)
.

We estimate the term e as,

e ≤ 2
(
D−

x vij +D+
y wij

)2
+ 2κ2∆x2

(

∆̂uij

)2

+ 2c̄
((
D+

x uij
)2

+
(
D−

y uij
)2

+ κ2∆x2
(
D+

x

(
D−

x vij +D+
y wij

))2

+ κ2∆x2
(
D−

y

(
D−

x vij +D+
y wij

))2)

≤ 2
(
D−

x vij +D+
y wij

)2
+ 2κ2

∣
∣D̄x,yuij

∣
∣
2

+ 2c̄
(∣
∣D̄x,yuij

∣
∣
2
+ 2κ2

((
D−

x vij +D+
y wij

)2
+
(
D−

x vi+1,j +D+
y wi+1,j

)2
)

+ 2κ2
((
D−

x vij +D+
y wij

)2
+
(
D−

x vi,j−1 +D+
y wi,j−1

)2
))

= 2(κ2 + c)
∣
∣D̄x,yuij

∣
∣
2
+ 2

(
1 + 4c̄κ2

) (
D−

x vij +D+
y wij

)2

+ 4cκ2
((
D−

x vi+1,j +D+
y wi+1,j

)2
+
(
D−

x vi,j−1 +D+
y wi,j−1

)2
)

Using this inequality

∆t

2
e− κ∆x

2
c ≤

(
(
κ2 + c̄

)
∆t− κ∆x

2

)
∣
∣D̄x,yuij

∣
∣
2

+

(
(
1 + 4κ2c̄

)
∆t− κ∆x

2

)
(
D−

x vij +D+
y wij

)2

+

(

2κ2c̄∆t− κ∆x

4

)((
D−

x vi+1,j +D+
y wi+1,j

)2
+
(
D−

x vi,j−1 +D+
y wi,j−1

)2
)
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if the CFL-condition (3.5) holds. The term f can be rewritten as

f = ∆x
(
D−

x (|D+
x vij |2) +D−

y (|D−
x vij |2)−D+

x (|D+
y wij |2)−D+

y (|D−
y wij |2)

)

Thus

(3.17) D+
t ηij −D−

x (uijvij)−D+
y (uijwij) ≤ ∆xa1 +

κ∆x

2
b+ κ∆xd− κ∆x

4
f

which is (3.11).

(ii) This follows from (i) by setting k = ℓ = m = 0 in (3.11) and summing over all i, j ∈ Z.

(iii) We apply the operator D−
γ,y to both sides of the evolution equation for vnij , (3.8b), and D

+
γ,x

to the expressions in the evolution equation for wn
ij , (3.8c). Subtracting the resulting equations,

we obtain

D+
t

(

D−
γ,y

(
vnij
cij

)

−D+
γ,x

(
wn

ij

cij

))

= D−
γ,yD

+
x u

n
ij −D+

γ,xD
−
y u

n
ij

+∆xκ
[
D−

γ,yD
+
xD

−
x v

n
ij +D−

γ,yD
+
y D

+
x w

n
ij −D+

γ,xD
−
x D

−
y v

n
ij −D+

γ,xD
+
y D

−
y w

n
ij

]

= 0,

thus (iii) follows by induction over n.

(iv) As in the one-dimensional case, we observe that the differences D+
γ,tu

n
ij , D

+
γ,tv

n
ij and D+

γ,tw
n
ij

satisfy the same equations (3.8) as unij , v
n
ij and wn

ij , so that (3.12) holds,

(3.18) ∆x2
∑

ij

∣
∣D+

γ,tu
n
ij

∣
∣
2
+

1

cij

∣
∣D+

γ,tv
n
ij

∣
∣
2
+

1

cij

∣
∣D+

γ,tw
n
ij

∣
∣
2

≤ ∆x2
∑

ij

∣
∣D+

γ,tu
0
ij

∣
∣
2
+

1

cij

∣
∣D+

γ,tv
0
ij

∣
∣
2
+

1

cij

∣
∣D+

γ,tw
0
ij

∣
∣
2
,

We take the squares of equations (3.8) and sum over all i, j to obtain,
∑

ij

∣
∣D+

t u
n
ij

∣
∣
2
+

1

c2ij

∣
∣D+

t v
n
j

∣
∣
2
+

1

c2ij

∣
∣D+

t w
n
j

∣
∣
2

= 2
∑

ij

(∣
∣D−

x v
n
ij +D−

y w
n
ij

∣
∣
2
+
∣
∣D−

x u
n
ij

∣
∣
2
+
∣
∣D−

y u
n
ij

∣
∣
2

+∆x2κ2
(∣
∣∆̂unij

∣
∣
2
+
∣
∣D+

xD
−
x v

n
ij +D+

y D
+
x w

n
ij

∣
∣
2
+
∣
∣D−

y D
−
x v

n
ij +D−

y D
−
x w

n
ij

∣
∣
2
))

,

≤ 2
∑

ij

(

(1 + 8κ2)
∣
∣D−

x v
n
ij +D+

y w
n
ij

∣
∣
2
+ (1 + 4κ2)

(∣
∣D−

x u
n
ij

∣
∣
2
+
∣
∣D+

x u
n
ij

∣
∣
2
))

(3.19)

Combining (3.18), (3.19) for n = 0, the CFL-condition (3.5) and the assumption that the initial
data has a modulus of continuity, we obtain the inequality (3.14a):

∆x2
∑

ij

∣
∣D+

γ,tu
n
ij

∣
∣
2
+

1

cij

∣
∣D+

γ,tv
n
ij

∣
∣
2
+

1

cij

∣
∣D+

γ,tw
n
ij

∣
∣
2

≤ ∆x2
∑

ij

∣
∣D+

γ,tu
0
ij

∣
∣
2
+

1

cij

∣
∣D+

γ,tv
0
ij

∣
∣
2
+

1

cij

∣
∣D+

γ,tw
0
ij

∣
∣
2

≤ ∆x2 max {1, c}
∑

ij

∣
∣D+

γ,tu
0
ij

∣
∣
2
+

1

c2ij

∣
∣D+

γ,tv
0
j

∣
∣
2
+

1

c2ij

∣
∣D+

γ,tw
0
j

∣
∣
2

≤ ∆x2 max {1, c} θ2−2γ2
∑

ij

(

(1 + 8κ2)
∣
∣D−

γ,xv
0
ij +D+

γ,yw
0
ij

∣
∣
2

+ (1 + 4κ2)
(∣
∣D+

γ,xu
0
ij

∣
∣
2
+
∣
∣D−

γ,yu
0
ij

∣
∣
2
))

≤ C(u0, v0, w0).
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By (3.14a) and (3.19) we furthermore obtain (3.14b). We observe that in contrast to the one-
dimensional case, we do not obtain a modulus of continuity in space for the variables v and w in
this way but only the bound

∆x2
∑

ij

∣
∣D−

γ,xv
n
ij +D+

γ,yw
n
ij

∣
∣
2 ≤ C(u0, v0, w0).

However, by the “vorticity” conservation (3.13) and the bound on the discrete L2-norm, (3.12) we
have

∆x2
∑

ij

∣
∣
∣D−

β,yv
n
ij −D+

β,xw
n
ij

∣
∣
∣

2

≤ 2c̄∆x2
∑

ij

∣
∣D−

β,y

(vnij
cij

)
−D+

β,x

(wn
ij

cij

)∣
∣
2

+
4∆x2

c2
‖c‖2C0,β

∑

ij

(∣
∣vnij
∣
∣
2
+
∣
∣wn

ij

∣
∣
2
)

≤ 2c̄∆x2
∑

ij

∣
∣D−

β,y

(v0ij
cij

)
−D+

β,x

(w0
ij

cij

)∣
∣
2

+
4

c2
‖c‖2C0,β

(

‖v0‖2L2 + ‖w0‖2L2

)

≤ C(v0, w0, c),

for β ≤ min{γ, α}. Thus, using summation by parts, we obtain the bound (3.15):

∆x2
∑

ij

∣
∣
∣D−

β,xv
n
ij

∣
∣
∣

2

+
∣
∣
∣D−

β,yv
n
ij

∣
∣
∣

2

+
∣
∣
∣D+

β,xw
n
ij

∣
∣
∣

2

+
∣
∣
∣D+

β,yw
n
ij

∣
∣
∣

2

= ∆x2
∑

ij

∣
∣
∣D−

β,xv
n
ij +D+

β,yw
n
ij

∣
∣
∣

2

+
∣
∣
∣D−

β,yv
n
ij −D+

β,xw
n
ij

∣
∣
∣

2

≤ C(u0, v0, w0, c).

�

We define the piecewise constant functions,

u∆x(t, x, y) = unij , (t, x, y) ∈ [tn, tn+1)× Cij ,(3.20a)

v∆x(t, x, y) = vnij , (t, x, y) ∈ [tn, tn+1)× Cij ,(3.20b)

w∆x(t, x, y) = wn
ij , (t, x, y) ∈ [tn, tn+1)× Cij ,(3.20c)

c∆x(x, y) = cij , (x, y) ∈ Cij ,(3.20d)

so that Lemma 3.1 combined with Kolmogorov’s compactness theorem imply that a subsequence
of (u∆x, v∆x, w∆x)∆x>0 converges in C([0, T ];L2(D)), as ∆x → 0, to a unique limit (u, v, w) ∈
C([0, T ];L2(D)) which is a weak solution of (3.2) and satisfies an entropy inequality. Moreover,
(u, v, w) have the same moduli of continuity as the discrete approximations and in particular,

(3.21) u, v, w ∈ L∞([0, T ];Hs(D)) ∩ C0,min{α,γ}([0, T ];L2(D)) 0 < s ≤ min{γ, α}.

3.0.4. Convergence rate. For φ ∈ C2
0 ((0, T )×D) define

(3.22) ΛT (u, v, w, k, ℓ,m, φ) :=

∫

DT

{(
(u− k)2

2
+

(v − ℓ)2

2c
+

(w −m)2

2c

)

φt

− (u− k)(v − ℓ)φx − (u− k)(w −m)φy

}

dxdydt

Furthermore, we define the test function Ω ∈ C∞
0 ((0, T )×D) by

(3.23) Ω(t, s, x1, y1, x2, y2) = ψµ(t)ωǫ0(t− s)ωǫ(x1 − y1)ωǫ(x2 − y2),

where ω and ψµ are the functions introduced in the proof of theorem 2.1. Then we have
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Lemma 3.2. Let c ∈ C0,α(D) satisfy c > c(x, y) > c for all (x, y) ∈ D. Denote (u, v, w) the
solution of (3.2) and (u∆x, v∆x, w∆x) the numerical approximation computed by scheme (3.8)
and defined in (3.20). Assume that the initial data u0, v0 and w0 are in L2(D) have moduli of
continuity

ν2x(u0, σ) ≤ C σ2γ , ν2x(v0, σ) ≤ C σ2γ , ν2x(w0, σ) ≤ C σ2γ ,

ν2y(u0, σ) ≤ C σ2γ , ν2y(v0, σ) ≤ C σ2γ , ν2y(w0, σ) ≤ C σ2γ .

for some γ ∈ (0, 1]. Then ((u∆x, v∆x, w∆x)(t, ·)) converges to the solution ((u, v, w)(t, ·)), 0 < t <
T , at (at least) the rate

(3.24) ‖(u− u∆x)(t, ·)‖L2(D) + ‖(v − v∆x)(t, ·)/c‖L2(D) + ‖(w − w∆x)(t, ·)/c‖L2(D)

≤ C
(
‖u0 − u∆x(0, ·)‖L2(D) + ‖(v0 − v∆x(0, ·))/c‖L2(D)

+ ‖(w0 − w∆x(0, ·))/c‖L2(D) +∆xs
)
,

where C is a constant depending on c, c, ‖c‖C0,α and T but not on ∆x, and s is given by

s =

{

αγ2/(αγ + 1), α ≥ (2γ − 1)/(γ(2− γ))

αγ/(αγ + 2− α), α ≤ (2γ − 1)/(γ(2− γ)).
(3.25)

Proof. We assume without loss of generality that ∆x ≤ min{ǫ, ǫ0, ν}. In the following we shall
use that u = u(t, x1, y1) and that u∆x = u∆x(s, x2, y2).

We first note that, since (u, v, w) is a solution of (3.2),

(3.26)

∫

DT

(
(u− u∆x)

2

2
+

(v − v∆x)
2

2c
+

(w − w∆x)
2

2c

)

φt

− (u− u∆x)(v − v∆x)φx1
− (u− u∆x)(w − w∆x)φy1

dx1dy1dt ≥ 0.

for all (s, x2, y2) ∈ DT . On the other hand, (u∆x, v∆x, w∆x) satisfies the cell entropy inequality
(3.11),
(3.27)
∫

DT

(
(u∆x − u)2

2
+

(v∆x − v)2

2c∆x
+

(w∆x − w)2

2c∆x

)

D−
s φ

− (u∆x − u)(v∆x − v)D+
x2
φ− (u∆x − u)(w∆x − w)D−

y2
φ dx2dy2ds

≥ ∆x

∫

DT

[
(v∆x − v)D+

x2
(u∆x − u)D+

x2
φ+ (w∆x − w)D−

y2
(u∆x − u)D−

y2
φ
]
dx2dy2ds

+
κ∆x

2

∫

DT

{
(v∆x + v∆x(·, x2 −∆x, ·)− 2v)D−

x2
φ+ (w∆x + w∆x(·, y2 +∆x, ·)− 2w)D+

y2
φ
}

×
(
D+

y2
(w∆x − w) +D−

x2
(v∆x − v)

)
dx2dy2ds

+
κ∆x

2

∫

DT

D+
x2
(u∆x − u)2D+

x2
φ+D+

y2
(u∆x − u)2D+

y2
φ dx2dy2ds

+
κ∆x2

4

∫

DT

{

D−
x2

(
|D+

x2
(v∆x − v)|2

)
+D−

y2

(
|D−

x2
(v∆x − v)|2

)

−D+
x2

(
|D+

y2
(w∆x − w)|2

)
−D+

y2

(
|D−

y2
(w∆x − w)|2

)}

φ dx2dy2ds,

for all (t, x1, y1). Adding (3.26) and (3.27), using Ω as test function and integrating over DT , we
obtain,

∫

D2
T

(
(u∆x − u)2

2
+

(v∆x − v)2

2c
+

(w∆x − w)2

2c

)

(Ωt +D−
s Ω) dz

︸ ︷︷ ︸

A
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−
∫

D2
T

(u∆x − u)(v∆x − v)(Ωx1
+D+

x2
Ω) + (u∆x − u)(w∆x − w)(Ωy1

+D−
y2
Ω) dz

︸ ︷︷ ︸

B

≥
∫

D2
T

(
(v∆x − v)2 + (w∆x − w)2

)
(

1

2c(x)
− 1

2c∆x(y)

)

D−
s Ω dz

︸ ︷︷ ︸

D

+∆x

∫

D2
T

[
(v∆x − v)D+

x2
(u∆x − u)D+

x2
Ω+ (w∆x − w)D−

y2
(u∆x − u)D−

y2
Ω
]
dz

︸ ︷︷ ︸

E

+
κ∆x

2

∫

D2
T

(v∆x + v∆x(·, x2 −∆x, ·)− 2v)
(
D+

y2
(w∆x − w) +D−

x2
(v∆x − v)

)
D−

x2
Ω dz

︸ ︷︷ ︸

F

+
κ∆x

2

∫

D2
T

(w∆x + w∆x(·, y2 +∆x, ·)− 2w)
(
D+

y2
(w∆x − w) +D−

x2
(v∆x − v)

)
D+

y2
Ω dz

︸ ︷︷ ︸

G

+
κ∆x

2

∫

D2
T

D+
x2
(u∆x − u)2D+

x2
Ω+D+

y2
(u∆x − u)2D+

y2
Ω dz

︸ ︷︷ ︸

H

+
κ∆x2

4

∫

D2
T

{

D−
x2

(
|D+

x2
v∆x|2

)
+D−

y2

(
|D−

x2
v∆x|2

)
−D+

x2

(
|D+

y2
w∆x|2

)
−D+

y2

(
|D−

y2
w∆x|2

)}

Ω dz

︸ ︷︷ ︸

J

,

where we have denoted dz := dt ds dx1 dx2 dy1 dy2. Estimating the terms A andD is done similarly
to the one-dimensional wave equation, cf. Lemma 2.1. Thus,

(3.28)

A =

∫

D2
T

η(u− u∆x, v − v∆x, w − w∆x, c)ψ
µ
t ωǫωǫωǫ0 dz

︸ ︷︷ ︸

A1

+

∫

D2
T

η(u− u∆x, v − v∆x, w − w∆x, c)ψ
µ ωǫωǫ

(
∂tωǫ0 +D−

s ωǫ0

)
dz

︸ ︷︷ ︸

A2

Define

λ(t) :=
1

2

∫ T

0

∫

D2

[

|u∆x − u|2 + 1

c
|v∆x − v|2 + 1

c
|w∆x − w|2

]
ωǫωǫωǫ0 dx1dx2dy1dy2ds,

we have

(3.29) A1 =

∫ T

0

λ(t)ωµ(t− ν) dt−
∫ T

0

λ(t)ωµ(t− τ) dt,

and

(3.30) |A2| ≤ C∆xǫ2γ−2
0 +

C∆x

ǫ2−γ
0

∫ T

0

√

λ(t)ψµ dt,

using the estimates from Lemma 3.1 (c.f. the derivation of (2.35)). Similarly,

(3.31) |D| ≤ Cǫα

ǫ1−2γ
0

+
Cǫα

ǫ1−γ
0

∫ T

0

√

λ(t)ψµ dt,
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(c.f. the derivation of (2.42)). In order to estimate the term B, we recall (??), and a similar
identity for the forward difference,

D−
y2
Ω+ Ωy1

=
1

∆x

∫ ∆x

0

(ξ −∆x)Ωy2y2
(·, y2 − ξ) dξ,

D+
x2
Ω+ Ωx1

=
1

∆x

∫ ∆x

0

(∆x− ξ)Ωx2x2
(·, x2 + ξ, ·) dξ,

hence,

B =
1

∆x

∫ ∆x

0

∫

D2
T

{
(u∆x − u)(v∆x − v)(∆x− ξ)Ωx1x1

(·, x2 + ξ, ·)

+ (u∆x − u)(w∆x − w)(ξ −∆x)Ωy1y1
(·, y2 − ξ)

}
dz dξ := B1 +B2

Estimating the terms B1 and B2 follows now along similar lines as estimating the term B in the
one-dimensional case:

|B1| =
1

∆x

∣
∣
∣
∣

∫ ∆x

0

∫

D2
T

{
(u∆x − u)(v∆x − v)− (u∆x − u(t, x2, y1))(v∆x − v(t, x2, y1))

}

× (∆x− ξ)Ωx1x1
(·, x2 + ξ, ·) dz dξ

∣
∣
∣
∣

=
1

∆x

∣
∣
∣
∣

∫ ∆x

0

∫

D2
T

{
(u(t, x2, y1)− u)(v∆x − v) + (u∆x − u(t, x2, y1))(v − v(t, x2, y1))

}

× (∆x− ξ)Ωx1x1
(·, x2 + ξ, ·) dz dξ

∣
∣
∣
∣

≤ 1

∆x

∫ ∆x

0

∫

D2
T

|u(t, x2, y1)− u||v∆x − v| |∆x− ξ||Ωx1x1
| dz dξ

+
1

∆x

∫ ∆x

0

∫

D2
T

|u∆x − u(t, x2, y1)||v − v(t, x2, y1)| |∆x− ξ||Ωx1x1
| dz dξ

≤ ∆x

ǫ2−γ

∫ T

0

sup
x1

|x1−x2|≤3ǫ

(∫

DT

∫ d2
R

d2
L

(v∆x − v)2ωǫωǫ0 dsdy1dx2dy2

)1/2

ψµ dt

︸ ︷︷ ︸

b1

+
∆x

ǫ2−β

∫ T

0

(∫

DT

∫ d2
R

d2
L

(u∆x − u(t, x2, y1))
2ωǫωǫ0 dsdy1dx2dy2

)1/2

ψµ dt

Using then, c.f. (2.36), (2.37),

b1 ≤
∫ T

0

sup
x1

|x1−x2|≤ǫ

{(∫

DT

∫ d2
R

d2
L

(v(t, x1, y1)− v(t, x2, y1))
2ωǫωǫ0 dsdy1dx2dy2

)1/2

(3.32)

+

(∫

DT

∫ d2
R

d2
L

(v(t, x2, y1)− v∆x(s, x2, y2))
2ωǫωǫ0 dsdy1dx2dy2

)1/2}

ψµ dt

≤ CTǫβ +

∫ T

0

(∫

DT

∫ d2
R

d2
L

(v(t, x2, y1)− v∆x(s, x2, y2))
2ωǫωǫ0 dsdy1dx2dy2

)1/2

ψµ dt

≤ CTǫβ +

∫ T

0

(∫

DT

∫

D

(v(t, x2, y1)− v∆x(s, x2, y2))
2

× ωǫ(y1 − y2)ωǫ(x1 − x2)ωǫ0 dsdx1dy1dx2dy2

)1/2

ψµ dt
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≤ CTǫβ +

∫ T

0

{(∫

DT

∫

D

(v(t, x1, y1)− v(t, x2, y2))
2ωǫωǫωǫ0 dx1dy1dx2dy2ds

)1/2

+

(∫

DT

∫

D

(v(t, x1, y1)− v∆x(s, x2, y2))
2ωǫωǫωǫ0 dx1dy1dx2dy2ds

)1/2}

ψµ dt

≤ CTǫβ +

∫ T

0

√

λ(t)ψµ(t) dt,

and

∫ T

0

sup
x1

|x1−x2|≤3ǫ

(∫

DT

∫ d2
R

d2
L

(u∆x − u)2ωǫωǫ0 dsdy1dx2dy2

)1/2

ψµ dt ≤ CTǫγ +

∫ T

0

√

λ(t)ψµ(t) dt,

and estimating B2 in a similar way, we find

(3.33) |B| ≤ C∆x ǫγ+β−2 +
C∆x

ǫ2−β

∫ T

0

√

λ(t)ψµ dt,

where β = min{α, γ}. It remains to estimate the terms E, F , G, H, I and J .

Estimate for E. We split E into two term, each of which can be estimated in the same way,

E = ∆x

∫

D2
T

(v∆x − v)D+
x2
(u∆x − u)D+

x2
Ω dz

︸ ︷︷ ︸

E1

+∆x

∫

D2
T

(w∆x − w)D−
y2
(u∆x − u)D−

y2
Ω dz

︸ ︷︷ ︸

E2

.

Using the Hölder inequality,

|E1| ≤
∫

D2
T

∣
∣
∣
∣
(v∆x − v)D+

x2
(u∆x − u)

∫ ∆x

0

ω′
ǫ(x1 − x2 − ξ)ωǫ(y1 − y2)ωǫ0ψ

µ

∣
∣
∣
∣
dzdξ

≤
∫ ∆x

0

∫ T

0

∫ d1
R

d1
L

(∫

DT

∫ d2
R

d2
L

(v∆x − v)2ωǫωǫ0 dsdy1dx2dy2

)1/2

×
(∫

DT

∫ d2
R

d2
L

(
D+

x2
u∆x

)2
ωǫωǫ0 dsdy1dx2dy2

)1/2

|ω′
ǫ(x1 − x2 − ξ)| dx1ψµ dtdξ

≤
∫ ∆x

0

∫ T

0

sup
x1

|x1−x2|≤3ǫ

{(∫

DT

∫ d2
R

d2
L

(v∆x − v)2ωǫωǫ0 dsdy1dx2dy2

)1/2}

×
(∫

DT

(
D+

x2
u∆x

)2
dx2dy2

)1/2∫ d1
R

d1
L

|ω′
ǫ(x1 − x2 − ξ)| dx1ψµ dtdξ

≤ C∆xγ

ǫ

∫ T

0

sup
x1

|x1−x2|≤3ǫ

{(∫

DT

∫ d2
R

d2
L

(v∆x − v)2ωǫωǫ0 dsdy1dx2dy2

)1/2}

ψµ dt

︸ ︷︷ ︸
e1

.

The term e1 is the same as the term b1, hence it can be bounded by (3.32). The term E2 is
bounded by the same argument with the roles of v and w and x and y interchanged. Thus we
arrive at the bound

(3.34) |E| ≤ C∆xγ

ǫ1−β
+
C∆xγ

ǫ

∫ T

0

√

λ(t)ψµ(t) dt.
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Estimates for F , G and H. The terms F and G can be bounded using the same argument as for
E, with D+

y2
(w∆x − w) +D−

x2
(v∆x − v) taking the place of either D+

x2
(u∆x − u) or D+

y2
(u∆x − u)

and using the triangle inequality to split them into two terms each. Hence they also satisfy (3.34).
To estimate H, we observe that

D+
x2

(u∆x − u)
2
= (u∆x(s, x2, y2)− 2u(t, x1, y1) + u∆x(t, x2 +∆x, y2))D

+
x2
u∆x

= (u∆x(s, x2, y2)− u(t, x1, y1))D
+
x2
u∆x

+ (u∆x(s, x2 +∆x, y2)− u(t, x1, y1))D
+
x2
u∆x.

Splitting H according to this gives four terms, all of which can be estimated using the above
arguments, hence also H satisfies (3.34).

Estimate for J : To estimate the term J , we observe that
∫

D2
T

D−
x2

(
|D+

x2
v∆x|2

)
Ω dz

=

∫ T

0

∫

DT

D−
x2

(
|D+

x2
v∆x|2

)
∫

D

ωǫ(x1 − x2)ωǫ(y1 − y2) dx1 dy1 ψ
µ dx2 dy2 dt ds

=

∫ T

0

∫ T

0

∑

ij

D−
x2

(
|D+

x2
v∆x(s, xi, yj)|2

)
ψµ dt ds

= 0,

since
(
|D+

x2
v∆x|2

)
is independent of x1 and y1. Using a similar argument for the terms containing

D−
y2

(
|D−

x2
v∆x|2

)
, D+

x2

(
|D+

y2
w∆x|2

)
and D+

y2

(
|D−

y2
w∆x|2

)
, we find

J = 0.

Summing up

|E + F +G+H + J | ≤ C∆xγ

ǫ1−β
+
C∆xγ

ǫ

∫ T

0

√

λ(t)ψµ(t) dt

Collecting the above equation and (3.29), (3.30), (3.31) and (3.33),

(3.35)

∫ T

0

λ(t)ωµ(t− ν) dt ≤
∫ T

0

λ(t)ωµ(t− τ) dt

+ C

(
ǫα

ǫ1−2γ
0

+
∆x

ǫ2−2γ
0

+
∆xγ

ǫ1−β
+

∆x

ǫ2−γ−β

)

︸ ︷︷ ︸

M1

+ C

(
∆x

ǫ2−γ
0

+
ǫα

ǫ1−γ
0

+
∆xγ

ǫ
+

∆x

ǫ2−β

)

︸ ︷︷ ︸

M2

∫ T

0

√

λ(t)ψµ(t) dt,

where we have used that 0 < β < 1, so that ∆x < ∆xβ , and that β ≤ γ, so that ǫ1−γ ≥ ǫ1−β .
Here, C is a constant depending on the moduli of continuity of the initial data, the C0,α-norm of
c and on T . We can send µ to zero in (3.35)

λ(ν) ≤ λ(τ) +M1 +M2

∫ ν

τ

√

λ(t) dt.

Again, applying the Gronwall inequality, [3, Chapter 1,Theorem 4], and sending µ→ 0, we obtain
the estimate

(3.36) λ(ν) ≤
(
√

λ(τ) +M1 + (ν − τ)M2

)2

.

Repeating the arguments by which we obtained (2.47), (2.48) and (2.49), in two space dimensions,
we arrive at

(3.37) ‖(u− u∆x)(τ, ·)‖L2(D) + ‖(v − v∆x)(τ, ·)/c‖L2(D) + ‖(w − w∆x)(τ, ·)/c‖L2(D)
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≤ C

(

‖u0 − u∆x(0, ·)‖L2(D) + ‖(v0 − v∆x(0, ·))/c‖L2(D) + ‖(w0 − w∆x(0, ·))/c‖L2(D)

+ ǫγ0 + ǫβ + ǫα/2ǫ
γ−1/2
0 +

∆x1/2

ǫ1−γ
0

+
∆xγ/2

ǫ(1−β)/2
+

∆x1/2

ǫ1−(γ+β)/2
+

∆x

ǫ2−γ
0

+
ǫα

ǫ1−γ
0

+
∆xγ

ǫ
+

∆x

ǫ2−β

)

.

Minimizing this expression over ǫ, ǫ0, we find ǫ0 = ǫα and ǫ = ∆xγ/(αγ+1) if α ≤ (2γ−1)/(γ(2−γ))
and ǫ = ∆x1/(αγ+2−α) if α ≥ (2γ − 1)/(γ(2− γ)). �

Corollary 3.1. Under the assumptions of Lemma 3.2, the approximation (u∆x, r∆x) converges to
the solution (u, r) (r = (r1, r2)) of (3.1) at the rate

(3.38) ‖u(t, ·)− u∆x(t, ·)‖L2(D) + ‖r(t, ·)− r∆x(t, ·)‖L2(D)

≤ C
(

∆xs + ‖u0 − u∆x(0, ·)‖L2(D) + ‖(v0 − v∆x(0, ·))/c‖L2(D)

)

,

for 0 < t < T where C is a constant depending on c, c, ‖c‖C0,α , T and on the L2-norm of v0, but
not on ∆x and s is given in (3.25).

Remark 3.1. Defining an approximation for the primary variable p of the second order wave
equation (1.1) by

D+
t p

n
ij = unij , i, j ∈ Z, n = 1, . . . , NT ,(3.39a)

p0ij =
1

∆x2

∫

Cij

p0(x, y) dx dy, i, j ∈ Z,(3.39b)

one could show in the same way as it was done in Subsection 2.2.1 that the approximation p∆x

defined as an interpolation of pnij on the grid converges in H1([0, T ]×D)∩C([0, T ];H1(D)) to the
solution p of the wave equation (1.1) at the rate at least min{α, γ, s}, where s is given in (3.25).

3.1. Numerical experiments. Again, we compare the theoretically established rates to some
practical examples. As the computational domain, we use the unit square D = [0, 1]2 with periodic
boundary conditions. As a coefficient c, we again choose a sample of a log-normally distributed
random field. As mentioned before, this is uniformly positive, bounded from above and Hölder
continuous with exponent 1/2. For a plot of the coefficient, see Figure 1.

We compute approximations at time T = 0.5, for κ = 0.1 to two sets of initial data

(3.40) p0,1(x) = sin(2πx) cos(2πy), u0,1(x) = sin(2πx) cos(2πx),

and

p0,2(x) =







2(x+ y − 0.5), if x, y < 0.5, x+ y ≥ 0.5,

2(1.5− x− y), if x, y ≥ 0.5, x+ y ≤ 1.5,

2(y − x+ 0.5), if x ≥ 0.5, y < 0.5, y − x > 0.5,

2(x− y + 0.5), if x < 0.5, y ≥ 0.5, x− y > 0.5,

(3.41)

u0,2(x) =

{

1.5, if x− y > 0.5, x+ y > 0.5,

0.5, otherwise,

We notice that according to Lemma 3.1, the moduli of continuity of the variables u, v, w, r1 and r2
are for the initial data (3.40) and (3.41) at least γ = 0.5. In order to test the convergence, we have
computed reference approximations on a grid with Nx,y = 211 gridpoints in each spatial direction.
We have plotted the reference solutions to initial data (3.40) in Figure 4. We have approximated
the numerical rate by (2.59) with E2

∆xk
given as a two-dimensional version of (2.60).

We have used ∆x0 = 1/8 and Nexp = 6. For the initial data (3.40), the observed rate was ≈ 0.3
for the variables u, v, w, r1 and r2 and ≈ 0.45 for the variable p. For the initial data (3.41), we
have observed a rate of ≈ 0.2 for the variables u, v and w, a rate of ≈ 0.17 for the variables r1 and
r2 and a rate of ≈ 0.4 for p. Again, this is better than what (3.24), (3.25) predicts. Therefore we
attempt, as before, to minimize expression (3.37) only for the given parameters α = γ = 1/2 and
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Figure 4. Top left: Approximation of the variable p in (3.2) with initial data
(3.40) at time T = 0.5 on a mesh with 211 grid cells in each direction. Top right:
Approximation of the variable u. Bottom left: Approximation of the variable r1.
Bottom right: Approximation of the variable r2.

∆xk, k = 0, . . . , 5. We obtain an approximate rate of 0.19 which is quite close to what we observe
numerically.

Remark 3.2. By using similar techniques, we can obtain a slightly improved rate for a scheme
using only central differences;

D+
t u

n
ij = Dc

xv
n
ij +Dc

yw
n
ij +∆xκ

(

Dc
x
2 +Dc

y
2
)

unij(3.42a)

1

cij
D+

t v
n
ij = Dc

xu
n
ij +∆xκDc

x
2vnij +∆xκDc

xD
c
yw

n
ij(3.42b)

1

cij
D+

t w
n
ij = Dc

yu
n
ij +∆xκDc

xD
c
yv

n
ij +∆xκDc

y
2wn

ij .(3.42c)

Our calculations are already lengthy we only report the end result here. The scheme (3.42) con-
verges to the exact solution at the rate







∆xγ/2, α ≥ γ, α ≥ 2/(2 + γ),

∆xαγ(1+γ)/(2+αγ), α ≥ γ, α ≤ 2/(2 + γ),

∆xαγ(1+γ)/(2+αγ), α ≤ γ, α ≥ (3γ − 1)/(1 + 2γ − γ2),

∆x2αγ/(αγ+3−α), α ≤ γ, α ≤ (3γ − 1)/(1 + 2γ − γ2),

(3.43)

provided a suitable CFL-condition, ∆t ≤ O(∆x), holds.
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4. Conclusion

Acoustic waves that propagate in a heterogenous medium, for instance an oil and gas reservoir,
are modeled using the linear wave equation (1.1) with a variable material coefficient c. Standard
finite difference and finite element approximations are shown to converge to the solution as the
mesh is refined. A rate of convergence for these approximations in obtained based on the as-
sumption that the underlying solution is smooth enough. This requires enough smoothness on the
material coefficient (wave speed).

However in many practical situations of interest such as seismic wave imaging and hydrocarbon
exploration, the material coefficient is not smooth, not even continuously differentiable. On the
other hand, the material coefficient (rock permeability) is usually modeled by a log-normal ran-
dom field. Pathwise realizations of such fields are at most Hölder continuous. Thus, the design
of numerical schemes that can approximate wave propagation in Hölder continuous media is a
necessary first step in the efficient solution of the underlying uncertain PDE with a log-normal
material coefficient [17]. Unfortunately, rigorous numerical analysis results for discretizations of
the wave equation with such rough coefficients are not available currently.

The current paper is the first attempt to design robust numerical approximations for wave
equations with rough i.e, Hölder continuous coefficients. We propose an upwind finite difference
approximation for the wave equation with a Hölder continuous coefficient and show that these
approximations converge as the mesh is refined. Furthermore, the key point of our paper is the
rigorous determination of the convergence rates of these approximations. The obtained rates
explicitly depend on the Hölder exponent of the material coefficient as well as the modulus of
continuity in L2 of the initial data. The rates of convergence are obtained by novel adaptation
of the Kruzkhov doubling of variables technique from scalar conservation laws to our L2 linear
system setting. Numerical experiments demonstrating the near sharpness of the obtained rates
are also presented.

We conclude with a brief discussion on possible limitations and future extensions of our methods:

• We consider finite difference discretizations in the current paper. The ”formal” order of
accuracy of our three-point finite difference schemes is one. One can argue that analogous
to linear hyperbolic systems with smooth coefficients, one can obtain higher rates of con-
vergence by designing schemes with a larger stencil (a higher formal order of accuracy).
We find that prospect unlikely to hold in practice on account of the lack of smoothness of
the coefficient. Furthermore, the irregularities of the coefficient are not localized. Hence,
one cannot expect any localization of singularities of the solution and its derivatives.
This is in marked contrast to nonlinear systems of conservation laws where discontinuities
such as shocks and contact discontinuities separate smooth parts of the flow. Thus, high-
resolution finite difference schemes perform better than low order schemes for conservation
laws. Such a situation does not hold for wave propagation in a rough medium. We expect
that the low-order schemes presented here are not only simple but also optimal in this
case.

• We present the analysis in both one and two space dimensions. The extension to three
space dimensions is straightforward. However, our methods are restricted to Cartesian
grids. In principle, one can expect to adapt these methods to structured grids. However,
an extension to unstructured grids in several space dimensions presents a challenge. One
can expect to design a finite volume type method (our algorithms can also be thought of
finite volume methods as we approximate cell averages) on unstructured grids and prove
rates of convergence. It can be considered as a forthcoming project.

• We restrict ourselves to acoustic wave propagation in rough media in this paper. However,
elastic wave propagation also involve media with material properties that lead to rough,
Hölder continuous coefficients. The extension of these methods to such problems will
be considered in a forthcoming paper. Another possible direction of research would be
prove rate of convergence for numerical methods that approximate electromagnetic wave
propagation in heterogeneous media. Possible extensions to nonlinear wave propagation
can also be considered.
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