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SCHEMES WITH WELL-CONTROLED DISSIPATION (WCD).
NONCLASSICAL SHOCK WAVES

JAN ERNEST1, PHILIPPE G. LEFLOCH2, AND SIDDHARTHA MISHRA1

Abstract. We consider the approximation of entropy solutions to nonlinear hyperbolic con-
servation laws, in the regime that small–scale effects drive the dynamics of shock waves in these
solutions. We introduce and analyze a new class of numerical methods, referred to as the schemes
with well-controled dissipation (WCD), which approximate entropy solutions with high–accuracy
and can capture small scale dependent shock waves of arbitrary strength. Following earlier work
by LeFloch and collaborators, we rely on the equivalent equation associated with a finite difference
scheme which provides us with the proper tool in order to ensure that small-scale dependent shock
waves are computed accurately. Examples involving nonclassical shocks for cubic conservation laws,
the nonlinear elasticity system, and a reduced model of magnetohydrodynamics are investigated with
our approach.

1. Introduction.

1.1. Hyperbolic systems of conservation laws. Many interesting phenom-
ena in physics and engineering are modeled by systems of nonlinear hyperbolic partial
differential equations (PDE’s) which often take the form of systems of conservation
laws:

Ut + F(U)x = 0.(1.1)

Here, U = U(t, x) is a vector-valued unknown, while the map F = F(U) is a pre-
scribed flux vector. This system (1.1) must be supplemented with initial and bound-
ary conditions, and it is well-known that solutions can contain discontinuities such as
shock waves and contact discontinuities, even when the initial data is smooth [12, 22].
Hence, the solutions to systems of conservation laws are interpreted in the sense of
distributions. These weak solutions need not be unique, and admissibility criteria are
needed in order to single out physically relevant solutions. These admissibility criteria
are termed entropy conditions. More specifically, physically relevant solutions to (1.1)
should satisfy the entropy inequality

S(U)t +Q(U)x ≤ 0.(1.2)

Here, the entropy function S and the associated entropy flux Q are related by DQ =
DS ·DF.

1.2. Small-scale dependent shock waves. It is also well-known that several
small-scale effects such as diffusion, dispersion, capillarity, Hall effect, etc have been
neglected in the course of the derivation of the system of conservation laws (1.1) in
any given physical context. Keeping such small-scale terms often (but not always)
results in “regularized” diffusive-dispersive systems of conservation laws of the form
[27, Chap. 1]:

Ut + F(U)x = ǫ
(
B(U)Ux

)

x
+ αǫ2

(
C1(U)(C2(U)Ux)x

)

x
.(1.3)
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Here, the matrix-valued field B = B(U) models diffusive effects whereas the dispersive
effects (capillarity, Hall effect etc) are modeled by the maps C1 = C1(U) and C2 =
C2(U). In practice,the parameter ǫ > 0 is take to be arbitrarily small and, clearly,
setting ǫ to 0 reduces (1.3) to the hyperbolic system (1.1). Furthermore, the parameter
α plays a fundamental role in the theory of shock waves and measures the relative
effect of dispersion and diffusion in the material.

In many systems of conservation laws, the entropy inequality (1.2) is consistent
with (1.3) and encodes enough information about the small-scale effects so that the
system (1.1) and the inequality (1.2) are sufficient to characterize a unique solution
for every choice of initial data at t = 0. In particular, the entropy solution of (1.1)
is independent of the underlying small-scale effects modeled by B,C1, C2 in (1.3).
Different choices of regularizations yield the same limit solution as ǫ → 0.

On the other hand, there exist many interesting classes of models where the shock
waves are small-scale dependent i.e, the solutions to the conservation law (1.1), real-
ized as limits of the regularized diffusive-dispersive equation (1.3), depend explicitly
on the regularizing terms B,C1, C2. Different regularizations can lead to different
solutions for the conservation law. For this theory of nonclassical shocks to nonlinear
hyperbolic systems, we refer to the review texts [26, 27, 28] and the references therein.

Such small-scale dependent shock waves can arise in a wide variety of systems of
PDE’s:

• Nonconvex hyperbolic systems. The examples of particular interest include the
scalar conservation law with cubic flux with viscosity and capillarity terms
(see (2.1, below), a reduced model from magnetohydrodynamics with Hall
effect (see (4.2), below), and the van der Waals fluids with viscosity and
capillarity (see (3.2), below).

• Nonconservative hyperbolic systems: These systems are of the form:

Ut +A(U)Ux = 0

, where the matrix-valued A = A(U) need not be a Jacobian matrix. Ex-
amples are coupled Burgers-like equations, Lagrangian gas dynamics with
internal energy taken as an independent variable, and the multi-layer shallow
water system. (See [5, 6] and the references therein.)

• Boundary value problems. Examples include both linearized and nonlinear
Euler equations with artificial viscosity and with physical viscosity (of Navier-
Stokes type). (See [21, 36] and the references therein.)

All the models of interest do possess an entropy inequality like (1.2), but such
an entropy inequality fails to single out a physically relevant solution and further
admissibility criteria are needed beyond the classical shock wave theory, specifically:

• For nonconvex hyperbolic systems that include capillarity, Hall effect, etc.,one
needs a kinetic function in the sense of Hayes-LeFloch [19], which provides
the rate of entropy dissipation across shocks. This notion was introduced
first for a system arising in in material science by Abeyaratne and Knowles
[1] and Truskinovsky [41], motivated by pioneering work by Slemrod [37] on
viscosity-capillarity flows.

• For nonconservative hyperbolic systems, one needs a family of paths in the
sense of Dal Maso-LeFloch-Murat [13], which represents a selection of an inte-
gration path in order to determine a generalized jump relation at shocks [24].
This notion can be seen as a vast generalization of the so-called Volpert’s
product [42, 23].
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• For boundary value problems, a set of admissible boundary states in the sense
of Dubois-LeFloch [14], which describes the jump between the prescribed
boundary data and the actual boundary trace of solutions.

1.3. Numerical approximation of classical shocks. Numerical schemes ap-
proximating systems of conservation laws have undergone extensive development over
the past three decades. Among the most popular discretization frameworks are the
so-called finite difference methods and finite volume methods. (Cf. the textbook by
LeVeque [34].) In these approaches, the point values or cell averages (of the un-
known in (1.1)) are evolved at each time step in terms of differences of fluxes across
cell interfaces. These fluxes are computed by using exact or approximate Riemann
solvers of the Godunov, Lax-Friedrichs, or Harten-Lax-van Leer type. High-order spa-
tial accuracy is obtained by using non-oscillatory, piecewise polynomial reconstruc-
tions of the TVD (total variation diminishing), ENO (ennsentially non-oscillatory)
and WENO (weighted) type. An alternative approach relies on the so-called discon-
tinuous Galerkin finite element method. Time integration can be performed with
strong stability-preserving Runge-Kutta methods. These now classical frameworks
have proven to be very successful in resolving most complex fluid flows modeled by
hyperbolic systems of conservation laws (1.1).

1.4. Numerical approximation of small-scale dependent shocks. How-
ever, the standard finite difference (volume) schemes have not been successful in com-
puting small-scale dependent shock waves. As an illustrative example, we consider
here a cubic conservation law (see (2.1), below, for details) ) with vanishing diffusion
and capillarity and let us approximate its solutions with the help of the standard
(first-order) Lax-Friedrichs and Rusanov schemes. The numerical results are shown
in Figure 1.1.

The figure clearly shows that both the Lax-Friedrichs and Rusanov schemes com-
pletely fail to approximate the nonclassical shock for this scalar conservation law. In
fact, any other monotone scheme, such as the Godunov and Engquist-Osher schemes
also fail to resolve the nonclassical shock in this case. The failure of standard schemes
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Fig. 1.1. Approximation of small-scale dependent shock waves for the cubic conservation law
with vanishing diffusion and capillarity using the standard Lax-Friedrichs and Rusanov schemes

to approximate small-scale dependent shock waves accurately has been well docu-
mented for nonclassical shocks (cf. [18] and subsequent papers [8, 10, 32]) and subsonic
phase boundaries as well as in other contexts such as in nonconservative hyperbolic
systems (cf. [20] and subsequent papers[2, 4, 5, 6, 7, 16]) and in boundary value
problems (cf. [36]).
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We do not try to review here the extensive literature on the numerical approxima-
tion of small-scale dependent shocks, but refer the reader to the forthcoming review
[31].

This failure of standard schemes in approximating small-scale dependent shock
waves in various contexts can be explained in terms of the equivalent equation of the
scheme (as first observed in [20, 18, 36] for nonconservative, nonconvex, and boundary
problems, respectively). As is well-known, the equivalent equation represents the role
of (mesh-dependent) higher-order terms (derivatives) and it typically of the following
form for a first-order scheme,

Ut + F(U)x = ∆x(B(U)Ux)x + α∆x2(C1(U)(C2(U)Ux)x)x +O(∆x3).(1.4)

Standard schemes are often such that B 6= B, C1 6= C1, and C2 6= C2, with B,C1,2

prescribed by the physical model (1.3). As the small-scale dependent shock waves,
realized as the ǫ → 0 limit of (1.3), depend explicitly on the expressions of the diffusion
and dispersion terms, this difference in the diffusion and dispersion terms between
(1.4) and (1.3) is the crucial reason as to why standard schemes fail to correctly
approximate small-scale dependent shock waves.

The equivalent equation provides a suitable tool for constructing schemes that
are better at approximating small-scale dependent shock waves. The key idea is to
design finite difference schemes whose equivalent equation can match (1.3) for both
the diffusive and dispersive terms. These schemes are designed such that B = B,
C1,2 = C1,2 in their equivalent equation (1.4). Such schemes have been proposed in
the above cited references.

As an example, consider the scheme proposed in [32] for approximating the scalar
cubic conservation law (2.1). As shown in Figure 1.2 (left), this scheme is quite
effective in computing the nonclassical shock wave. However, the effectiveness of
this scheme deteriorates when the shock strength is increased. This phenomenon is
also illustrated in 1.2 (center and right). As shown in the figure, for larger shock
strengths, particularly for the one with a jump of around 20 at the nonclassical shock,
these schemes fail to approximate nonclassical shocks with large amplitude. Similar
failure to approximate strong shocks has also been documented for nonconservative
hyperbolic systems [20, 7] and boundary value problems [36]. This failure of finite
difference schemes to approximate small-scale dependent shock waves of arbitrary
strength has been an outstanding open problem in this context.
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Fig. 1.2. Approximation of nonclassical shocks for the cubic conservation law with leFloch-
Mohamadian’s scheme. Left: Initial Jump 4. Center: Initial jump 10. Right: Initial jump 16.
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1.5. Aims of this paper. Our main objective here is to propose a new class
of finite difference schemes, which can approximate nonclassical shock waves for non-
convex hyperbolic systems of conservation laws correctly for any underlying shock
strength. In particular, nonclassical shocks of arbitrary strength can be efficiently
and correctly approximated with our approach. The follow-up work [3] will develop
this strategy for nonconservative and boundary problems as well.

The key design principle still relies on the equivalent equation (1.4). We identify
here the main reason as to why a scheme which has an equivalent equation of the form
(1.4), even with matching diffusion and dispersion operators, may fail to approximate
strong nonclassical shocks correctly. It lies in the higher-order terms (i.e O(∆x3) and
higher) of the equivalent equation. For small enough shock strengths, these terms are
insignificant in comparison to the flux term and the leading-order terms (the diffusion
and dispersion terms) of the equivalent equation. However, as the shock strength is
increased, the higher-order terms become as significant and even more significant in
amplitude than the leading order terms and can drive the dynamics of the scheme.
This issue is clearly highlighted quantitively in illustrative test cases presented below.

Our analysis also suggests that the appropriate design principle for constructing
finite difference schemes to approximate nonclassical shocks correctly is to ensure the
following conditions:

• The leading order terms of the equivalent equation of the finite difference
scheme match the appropriate diffusion and dispersion operators in (1.3).

• The higher-order terms (O(∆x3) and higher) of the equivalent equation re-
main small in comparison to the leading order terms, particularly for strong
shocks.

We propose to term such a class of finite difference schemes as schemes with well-
controled diffusion (WCD). The rest of the paper is devoted to presenting and testing
such schemes. The WCD condition is imposed by choosing time-dependent numerical
diffusion and dispersion coefficients. Sufficient conditions are identified for sufficiently
high-order schemes for any given user specified tolerance by which the higher-order
terms in the equivalent equation are controlled in terms of low-order terms. Numeri-
cal experiments show that the WCD schemes indeed approximate nonclassical shock
waves of arbitrarily large amplitude very accurately.

The paper is organized as follows: in Section 2, we consider scalar conservation
laws with linear diffusion and dispersion and we present a class of WCD schemes
to approximate its nonclassical solutions. In Section 3, a class of WCD scheme is
presented for systems of conservation laws and is then specialized to the dynamics
of van der Waals fluids and a simplified model of magnetohydrodynamics. Extensive
numerical experiments illustrating the power and performance of WCD schemes are
presented in both sections.

2. WCD schemes for scalar conservation laws.

2.1. Kinetic function for the cubic flux. To start with, we consider fscalar
conservation laws with vanishing diffusion and capillarity, that is,

ut + f(u)x = ǫuxx + δ ǫ2uxxx.(2.1)

For non-convex flux-functions f and, for instance, f(u) = u3, and when δ 6= 0, the
limiting solutions (as ǫ → 0) of the resulting conservation law

ut + f(u)x = 0(2.2)



6

may contain nonclassical shocks, as described in [27, Chap. 2]. The nonclassical
Riemann solution is determined from a kinetic function ϕ♭ : R → R, which in the case
of the cubic flux (and the entropy U = u2/2) satisfies the fundamental inequalities,

−u2 < uϕ♭(u) ≤ −u2/2, u ∈ R.

A kinetic function, by definition, is a monotone non-increasing function satisfying
these inequalities and, in the case of the regularization (2.1). It is explicitly given by

ϕ♭(u) = −u±
√
2δ/3, ±u ≥

√
2δ/3,

ϕ♭(u) = −u/2, |u| ≤
√
2δ/3.

The kinetic relation serves to uniquely characterize the nonclassical solutions to the
cubic conservation law. Our aim is to numerically approximate the nonclassical shocks
in an accurate and efficient manner.

2.2. WCD schemes for scalar conservation laws. Consider a discretization
[xi, xi+1) of the domain of interest [a, b] into points {xi} with uniform (for simplicity)
mesh width xi+1 − xi = ∆x > 0. For any integer p ≥ 1, we approximate (2.2) with
the following 2p-th order consistent finite difference scheme:

dui

dt
+

1

∆x

j=p
∑

j=−p

αjfi+j =
c

∆x

j=p
∑

j=−p

βjui+j +
δc2

∆x

j=p
∑

j=−p

γjui+j .(2.3)

Here, ui(t) ≈ u(xi, t) is the cell nodal value, fi = f(ui) is the flux, the constant δ is
the coefficient of capillarity (given by the physics of the problem) and c = c(t) ≥ 0 will
be determined later on. The coefficients αj , βj and γj need to satisfy the following
2p-order conditions :

p
∑

j=−p

jαj = 1,

p
∑

j=−p

jlαj = 0, l 6= 1, 0 ≤ l ≤ 2p.(2.4)

Observe that (2.4) defines a set of (2p+1) linear equations for (2p+1) unknowns and
can be solved explicitly. Similarly, the coefficients β must satisfy

p
∑

j=−p

j2βj = 2,

p
∑

j=−p

jlβj = 0, l 6= 2, 0 ≤ l ≤ 2p(2.5)

while, for the coefficients γ,

p
∑

j=−p

j3γj = 6,

p
∑

j=−p

jlγj = 0, l 6= 3, 0 ≤ l ≤ 2p.(2.6)

Some remarks about the finite difference scheme (2.3) are in order:
• The scheme (2.3) is a conservative and consistent discretization of the con-
servation law (2.2). It is formally only first-order accurate since the diffusive
terms are proportional to ∆x. The scheme need not preserve the monotonic-
ity of the solutions.

• The scheme (2.3) is not entropy stable with respect to the quadratic entropy

S(u) = u2

2 as the numerical flux discretization is not entropy conservative
(in the sense of Tadmor [38, 39]). However, it is straightforward to design a
2p-th order accurate version that is entropy conservative as in [29, 30].
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2.3. Equivalent equation near a shock. The equivalent equation associated
with the finite difference scheme (2.3) reads

du

dt
+ f(u)x = c∆xuxx + δc2(∆x)2 uxxx −

∞∑

k=2p+1

(∆x)k−1

k!
Ap

k(f(u))
[k](2.7)

+c

∞∑

k=2p+1

(∆x)k−1

k!
Bp

ku
[k] + δc2

∞∑

k=2p+1

(∆x)k−1

k!
Cp

ku
[k].

Here, g[k] = dkg
dxk denotes the k-th spatial derivative of a smooth function g and the

coefficients above are given by

Ap
k =

p
∑

j=−p

αjj
k, Bp

k =

p
∑

j=−p

βjj
k, Cp

k =

p
∑

j=−p

γjj
k,(2.8)

with α, β and γ being specified by the relations (2.4), (2.5), and (2.6), respectively.
Assume that we have a single shock connecting some states uL and uR such that

[[u]] = uL − uR > 0 and [[f(u)]] > 0 (the other cases being handled similarly). At this
shock, we formally find

u[k] ≃ [[u]]

∆xk
, (f(u))[k] ≃ [[f(u)]]

∆xk
.

Substituting these formal relations into the equivalent equation (2.7) at a single shock,
we obtain

du

dt
+

[[f(u)]]

∆x
− c[[u]]

∆x
− δc2[[u]]

∆x
︸ ︷︷ ︸

l.o.t

≃
SD
p c[[u]]

∆x
+

SC
p δc2[[u]]

∆x
−

Sf
p [[u

3]]

∆x
︸ ︷︷ ︸

h.o.t

(2.9)

Here, the coefficients are given by

Sf
p =

∞∑

k=2p+1

Ap
k

k!
, SD

p =

∞∑

k=2p+1

Bp
k

k!
, SC

p =

∞∑

k=2p+1

Cp
k

k!
,(2.10)

with Ap
k, B

p
k , C

p
k being defined in (2.8).

The relation (2.9) represents the balance of terms in the equivalent equation in
the neighborhood of a single shock. Ideally, the higher-order error terms (h.o.t in
(2.9)) should be dominated in amplitude by the leading-order terms (l.o.t in (2.9)).

2.4. The WCD condition. We seek to balance both sets of terms through a
user-defined tolerance parameter τ << 1. In order words, we impose the condition
|h.o.t|
|l.o.t| < τ, which we ensure by a comparing, one one hand, the upper bound

|h.o.t| ≤
(

ŜD
p c+ ŜC

p |δ|c2 + Ŝf
pσ
) |[[u]]|

∆x
,

where σ =
|[[f(u)]]|
|[[u]]|

denotes the amplitude of the shock speed and

Ŝf
p =

∞∑

k=2p+1

∣
∣
∣
∣
∣
∣

p
∑

j=−p

αjj
k

k!

∣
∣
∣
∣
∣
∣

, ŜD
p =

∞∑

k=2p+1

∣
∣
∣
∣
∣
∣

p
∑

j=−p

βjj
k

k!

∣
∣
∣
∣
∣
∣

, ŜC
p =

∞∑

k=2p+1

∣
∣
∣
∣
∣
∣

p
∑

j=−p

γjj
k

k!

∣
∣
∣
∣
∣
∣

,(2.11)
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with, on the other hand, the lower bound

|l.o.t| ≥
(
|δ|c2 + c− σ

) |[[u]]|
∆x

.

Thus, we achieve the condition |h.o.t|
|l.o.t| < τ provided

(WCD) :

(

|δ| −
ŜC
p |δ|
τ

)

c2 +

(

1−
ŜD
p

τ

)

c−
(

1 +
Ŝf
p

τ

)

σ > 0,(2.12)

which we refer to as the WCD condition for the proposed class of schemes. Recall that
τ is a user-defined tolerance, δ is the coefficient of dispersion, Ŝf,D,C

P are specified in
(2.11) and can be precomputed before the actual numerical simulation, while σ is the
shock speed (of the shock connecting uL and uR) and depends on the solution under
consideration. The only genuine parameter to be chosen is the numerical dissipation
coefficient c. This coefficient must be evaluated at each time step and chosen to satisfy
the WCD condition (2.12)

The crucial question is whether there exists a suitable c such that the WCD
condition (2.12) is satisfied for a given p. Given the above framework, elementary
properties of Vandermonde determinants (as observed by Dutta [15]) imply that the
coefficients Ŝf,D,C

p satisfy

lim
p→+∞

max{Ŝf
p , Ŝ

D
p , ŜC

p } = 0.(2.13)

Our numerical experiments overwhelmingly demonstrate this property and, moreover,
the quantities decay algebraically, as illustrated in Figure 2.1.

2 4 6 8 10 12 14 16
−6

−5

−4

−3

−2

−1

2 4 6 8 10 12 14

−6

−5

−4

−3

−2

2 4 6 8 10 12 14 16
−6

−5

−4

−3

−2

Fig. 2.1. Decay of the coefficients Ŝ
f,D,C
p with increasing p. Left: p (X-axis) vs. log10(Ŝ

f
p )

(Y-axis). Middle: p (X-axis) vs. log10(Ŝ
D
p ) (Y-axis) Right: p (X-axis) vs. log10(Ŝ

C
p ) (Y-axis).

As c is a coefficient of diffusion in (2.3), we need that c > 0. A simple calculation
with the quadratic relation (2.12) shows that c > 0 if and only if

ŜC
p

τ
< 1,(2.14)

as σ (being the absolute value of the shock speed) is always positive.
Given (2.13), we can always find a large enough p such that the sufficient condition

(2.14) is satisfied for any given tolerance τ . Hence, the ”order” of the finite difference
scheme (2.3) needs to be increased in order to control the high-order terms in the
equivalent equation, in terms of the leading order terms.
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Furthermore, in the limit of infinite p and for any τ > 0, the above lemma will
imply the following limiting WCD condition:

|δ|c2 + c− σ > 0.(2.15)

Solving the quadratic equation explicitly yields two real roots, one being negative
and the other one positive. The convexity of the function implying that choosing
c > c2, with c2 being the positive root of the above quadratic equation. Thus for
large enough p (higher-order schemes), we can always choose a suitable numerical
dissipation coefficient (depending on both δ and the wave speed σ) that yields the
correct small-scale dependent shock waves.

Finally, we easily extend the above analysis at a single shock and determine the
diffusion coefficient c in the finite difference scheme (2.3) in the following manner.
First, at each interface xi+1/2 = 1

2 (xi + xi+1), we use uL = ui and uR = ui+1 in
the WCD condition (2.12) and choose a coefficient ci+1/2 such that this condition is
satisfied. Then, the coefficient for the entire scheme is given by

c := c(t) = max
i

ci+1/2.(2.16)

2.5. Shocks of small, moderate, or large strength. In the rest of this sec-
tion, we test the WCD schemes (2.3) on a series of relevant examples. We consider
the cubic conservation law i.e, (2.2) with f(u) = u3 and, for definiteness, we set
δ = 1 in (2.1). As the finite difference schemes (defined above) are semi-discrete, we
integrate in time using a third-order strong stability preserving Runge-Kutta time
stepping method. The time step is determined using a standard CFL condition with
CFL number being 0.45 for all numerical experiments, which we have checked to be
sufficient for our purpose in the present paper.

For determining the coefficient c, we need to choose τ as well as the order 2p
of the scheme and then compute the dissipation coefficient suggested by the WCD
condition. We use here the following Riemann initial data

u(0, x) = uL if x < 0.4; −2, if x > 0.4.

We vary uL and consider three different regimes, namely:
• Small shocks: The maximum shock strength is less that 10.
• Moderate shocks : The maximum shock amplitude is between 10 and 100.
• Large shocks : The maximum strength is greater than 100.

2.5.1. Small shocks. We consider two different sets of uL = 2 and uL = 4
to represent small shocks. The numerical results are presented in Figure 2.2. In
this figure, we present approximate solutions for both sets of initial data, computed
with a eighth-order WCD scheme and with τ = 0.01 on a sequence of meshes. For
uL = 2, we see that the WCD scheme is able to approximate the nonclassical shock
wave, preceded by a rarefaction wave. Similarly for uL = 4, we see that the WCD
scheme approximates both the leading classical shock wave and the trailing nonclas-
sical shock wave quite well. In both cases, the quality of approximation improves on
mesh refinement. As expected, there are some oscillations at the leading shock. This
is on account of the dispersive terms in the equivalent equation. As mentioned before,
schemes presented in [32] were also able to compute small shocks (here the maximum
shock strengh is around 7) quite well. So, it is not surprising that the WCD scheme
is able to perform quite well. Since the other WCD schemes (of order 4 and higher)
performed equally well (for different choices of τ), we omit the results with those
schemes.
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Fig. 2.2. Convergence (mesh refinement) for the WCD scheme on small shocks. All approxi-
mations are based on an order 8 scheme and τ = 0.01. Left: Solution of the Riemann problem for
uL = 2. Right: Solution of the Riemann problem for uL = 4.

2.5.2. Moderate shocks. In order to simulate nonclassical shocks of moderate
strength, we consider uL = 30 and present numerical results in Figures 2.3 and 2.4.
The exact solution in this case consists of a leading shock and a trailing nonclassical
shock of strength or around 60 (far stronger than the previous experiment and the
results presented in [32]). In Figure 2.3, we illustrate how WCD schemes of different
order approximate the solution for 4000 mesh points. A related issue is the variation of
the parameter τ . Observe that τ represent how strong the high-order terms are allowed
to be vis a vis the leading order diffusion and dispersion terms. Also, the order of the
scheme depends on the choice of τ . For instance, choosing τ = 0.1 implies that fourth-
order schemes (p = 2) are no longer consistent with the WCD condition (2.12) for this
choice of τ and one has to use a sixth- or even higher order scheme. In this particular
experiment, we choose τ = 0.3 (fourth-order scheme), τ = 0.1 (eighth-order) scheme
and τ = 0.01 (twelfth-order) scheme. As shown in Figure 2.3, all the three schemes
approximate the nonclassical shock quite well. There are some dispersive oscillations
at the leading shock and in the intermediate state. It is observed that increasing the
order of the schemes only leads to a minor improvement in the quality of the results.
Also, increasing τ did not severely affect the shock-capturing abilities of the scheme.
Clearly, the eighth and twelfth-order schemes were slightly better in this problem. The
results should be contrasted to Figure 1.2 where schemes proposed in [32] (atleast for
a certain choice of parameters) were unable to approximate even jumps of around 20.
In this example, the WCD schemes were able to approximate jumps of a much larger
magnitude quite efficiently.

In Figure 2.4, a different moderate shock, initialized with uL = 25 and computed
with an eighth-order scheme is shown. The results clearly show that the scheme
converges to the correct nonclassical solution with increasing mesh refinement. As
expected, there are oscillations (with increasing frequency for finer mesh resolutions)
at the leading shock. However, properties such as the intermediate state and the shock
speeds (for both the classical and nonclassical shocks) are correctly approximated,
even at coarse mesh resolutions. Similar results were also obtained with the fourth
and twelfth-order schemes.

2.5.3. Large shocks. Finally, we simulate a very strong shock using uL = 55 in
the initial data. The numerical results are presented in Figure 2.5. The exact solution
consists of a strong nonclassical shock of magnitude around 110 and a weaker (but still
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Fig. 2.3. Convergence p → +∞ (increasing order of the scheme) for the WCD scheme for a
moderate shock. Left: Solution of the Riemann problem for uL = 30. Right: Closer view of the
middle state uM .
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Fig. 2.4. Mesh refinement for a moderate shock with an eighth-order WCD scheme. Left:
Solution of the Riemann problem for uL = 25. Right: Closer view of the middle state uM .

of amplitude 60) leading shock wave. The results in the figure were generated with
the fourth, eighth and twelfth order schemes. The mesh resolution is quite fine (20000
mesh points) as the difference in speeds for both shocks is quite small, the intermediate
state is very narrow and needs to be resolved. It is important to emphasize that one
can easily use a grid, adapted to the shock locations. The results clearly show that all
the three schemes converge to the correct nonclassical shock, even for such a strong
shock.

2.6. Computing the kinetic relation. According to the general theory of
nonclassical entropy solutions [27], nonclassical shocks can be uniquely characterized
in terms of a kinetic relation, which relates the entropy dissipation across the nonclas-
sical shock. This characterization is provided by the specification of the right-hand
states connected to each left-hand state via a nonclassical shock. Since, the exact
intermediate state of a Riemann problem is known for the cubic conservation law (for
any given value of the dispersion parameter δ), we can ascertain the quality and accu-
racy of numerical approximation for a very large class of initial data by computing the
numerical kinetic relation. We do so using the eighth-order WCD scheme for three
different values of the dispersion parameter δ. The results are presented in Figure 2.6
and clearly demonstrate that this WCD scheme is able to compute the correct inter-
mediate state (kinetic relation) and hence, the nonclassical shock wave, accurately for
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Fig. 2.5. Convergence p → +∞ for a large nonclassical shock for the cubic conservation law.
Left: Solution of the Riemann problem for uL = 55. Right: Closer view of the middle state uM .

any given shock strength. In particular, very strong nonclassical shocks are captured
accurately. Similar results were also obtained with WCD schemes of different orders.
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Fig. 2.6. Intermediate state (kinetic function) (Y-axis) for the cubic conservation law for
varying left state u− L (X-axis), computed using an eighth-order WCD scheme with τ = 0.1. Left:
Kinetic function for δ = 0.3. Middle: Kinetic function for δ = 1. Right: Kinetic function for δ = 5.

2.7. Sharpness of the WCD condition. We have seen in the above numer-
ical experiments that finite difference schemes that obey the WCD condition (2.12)
are able to accurately approximate nonclassical shocks, independent of the under-
lying shock strength. The WCD condition itself has been obtained using orders-of-
magnitude analysis and it is difficult to determine whether the WCD constant, as
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specified from the quadratic equation (2.12), is sharp or not. At the very least, one
would expect that violating the WCD condition by a considerable extent will impede
the ability of a finite difference scheme to accurately approximate a nonclassical shock
wave. This hypothesis is tested in a numerical experiment with the initial left state
being set to uL = 15. The exact solution consists of a nonclassical shock wave of am-
plitude of approximately 30 and a leading shock wave. As expected, the eighth-order
finite difference scheme with τ = 0.1 is clearly able to approximate this solution when
the diffusion coefficient c is set to be exactly the larger (positive) root of the quadratic
equation in the WCD condition (2.12). On the other hand, changing the value of c
such that c = 0.25cwcd and thus violating the WCD condition to a significant extent,
the same scheme is no longer able to approximate the correct shock waves. This ex-
periment clearly illustrates that although the WCD condition may not be completely
sharp, it may be necessary to scale the diffusion and dispersion terms of the scheme
using it in order to approximate nonclassical shock waves.
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exact

Fig. 2.7. Approximation of a nonclassical shock for the cubic conservation law with left state
uL = 15, with the eighth-order WCD scheme for c = 0.25cWCD (blue) not satisfying the WCD
condition (2.12) and for c = cWCD (red) satisfying (2.12)

3. WCD schemes for systems: van der Waals fluids. In this and the
following section, we will consider systems of conservation laws that can have small-
scale dependent shock waves as solutions. For the sake of simplicity, we focus on two
very general and frequently occurring subcases namely,

3.1. Van der Waals fluids with viscosity and capillarity. The system of
conservation laws with viscosity and capillarity is given by

Ut + Fx = ǫD(1)Uxx + αǫ2D(2)Uxxx,(3.1)

where U is the vector of unknowns, F the flux vector and D1, D2 are viscosity and
capillarity matrices, respectively.

As a concrete example of systems of conservation laws with viscosity and capil-
larity, we consider the following two conservation laws:

τt − ux = 0,(3.2)

ut + p(τ)x = ǫuxx − α ǫ2τxxx.

Here, u and τ represent the velocity and the specific volume of the fluid, respectively,
while α is a non-negative parameter representing the strength of the capillarity. We
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consider an equation of state for van der Waals-type fluids, described by the (normal-
ized) equation

p(τ) :=
1

(3τ − 1)1+1/ζ
− 3

τ2
, u > 1/3,(3.3)

for some positive constant ζ = 1/(γ − 1) where γ ∈ (1, 2). The pressure law p =
p(τ) > 0 is defined for all τ ∈ (0,+∞) and there exist 0 < a < c such that

p′′(τ) > 0, τ ∈ (0, a) ∪ (c,+∞),

p′′(τ) < 0, τ ∈ (a, c), p′(a) > 0,

and, clearly, limτ→0 p(τ) = +∞ while limτ→+∞ p(τ) = 0.
Under these conditions, the above system forms a first-order system of partial

differential equations, which is of elliptic type when τ belongs in the interval (d, e)
characterized by the conditions 0 < d < a < e < c and p′(d) = p′(e) = 0. It is of
hyperbolic type when τ ∈ (0, d) ∪ (e,+∞) and admits the two (distinct, real) wave
speeds ±

√

−p′(τ).
Observe that the above system can be recast in the general form (3.1) with

U =

(
τ
u

)

, D(1) =

(
0 0
0 1

)

, D(2) =

(
0 0
−1 0

)

and the flux vector F : R2 → R2 is given by F(τ, u) =

(
−u
p(τ)

)

. It is well-known

that solutions to this model may contain nonclassical shocks. However, the existence
of kinetic relations for characterizing these shocks has not been rigorously established
yet.

3.1.1. WCD schemes for systems of conservation laws. We consider a grid
as in the previous section on scalar equations. A 2p-th order accurate finite difference
scheme for approximating (3.1) is given by

dUi

dt
+

1

∆x

j=p
∑

j=−p

αjFi+j(3.4)

=
c

∆x

j=p
∑

j=−p

βjD
(1)Ui+j +

δc2

∆x

j=p
∑

j=−p

γjD
(2)Ui+j ,

where Ui = U(xi, t), Fi = F(Ui) and the coefficients αj , βj and γj need to satisfy
the order conditions (2.4)-(2.6).

As in the section on scalar equations, the key tool in designing a scheme that can
accurately approximate the nonclassical shocks of (3.1) is the equivalent equation of
the scheme (3.4) given by

dU

dt
= −Fx + c∆xD(1)Uxx + δc2∆x2D(2)Uxxx
︸ ︷︷ ︸

l.o.t

(3.5)

−
∞∑

k=2p+1

∆xk−1

k!
Ap

kF
[k] + c

∞∑

k=2p+1

∆xk−1

k!
Bp

kD
(1)U[k] + δc2

∞∑

k=2p+1

∆xk−1

k!
Cp

kD
(2)U[k]

︸ ︷︷ ︸

h.o.t

.
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The coefficients Ap
k, B

p
k and Cp

k are defined as in (2.8).
As in the previous section, our design of a WCD scheme is based on analysis at

a single shock. Adapted from the scalar case we impose a componentwise condition
to balance high-order and low-order terms for the equivalent equation for a single
shock. Assume that there exists a tolerance τ such that |h.o.t.| ≤ τ |l.o.t.| holds
componentwise. Performing a similar analysis as in subSection 2.3 we may impose an
upper bound for the high-order terms given by the element-wise condition

|h.o.t| ≤
(

ŜD
p ci|

〈

D
(1)
i , [[U]]

〉

|+ ŜC
p |δ|c2i |

〈

D
(2)
i , [[U]]

〉

|+ Ŝf
pσ|[[Ui]]|

)

, (i = 1, 2)

where ŜD
p , ŜC

p , Ŝf
p and σ are defined as in (2.11) and 〈., .〉 is used to denote the dot

product of two vectors and

σ =
|[[F(U)]]|
|[[U]]| ,(3.6)

being an estimate on the maximum shock speed of the system,
Furthermore, a lower bound for the low-order terms is given by

|l.o.t| ≥
(

|δ|c2i |
〈

D
(2)
i , [[U]]

〉

|+ ci|
〈

D
(1)
i , [[U]]

〉

| − σ|[[Ui]]|
)

(i = 1, 2).

Combining the two bounds we may obtain the condition |h.o.t.| ≤ τ |l.o.t.| by ensuring
the two conditions

(WCD)i :

(

|δ| −
ŜC
p |δ|
τ

)

|
〈

D
(2)
i , [[U]]

〉

|c2i +
(

1−
ŜD
p

τ

)

|
〈

D
(1)
i , [[U]]

〉

|ci(3.7)

−
(

1 +
Ŝf
p

τ

)

σ|[[Ui]]| > 0

simultaneously. Observe that if
〈

D
(1)
i , [[U]]

〉

= 0, we set the corresponding ci = 0 for

i = 1, 2. The scheme parameter c in (3.4) is defined as c = max
i=1,2

ci.

We can easily extend this analysis at a single shock to determine the diffusion
coefficient c in the finite difference scheme (3.4) in the following manner. First, at
each interface xi+1/2 = 1

2 (xi + xi+1), we use UL = Ui and UR = Ui+1 in the WCD
condition (3.7) and choose a coefficient ci+1/2 such that this condition is satisfied.
Then, the coefficient for the entire scheme is given by c := c(t) = maxi ci+1/2.

3.2. Small, moderate, and large shocks in van der Waals fluids. In our
numerical tests, we use the flux function in [32], given by

p(τ) :=
RT

(
τ − 1

3

) − 3

τ2

with R = 8
3 and T = 1.005 which has two inflection points at 1.01 and 1.85. Let

α = 1 and consider the initial Riemann data

u(x, 0) =

{
0.35 x < 0.5
1.0 x > 0.5

τ(x, 0) =

{
0.8 x < 0.5
2.0 x > 0.5

(3.8)

The scheme parameter is set to c = cWCD. Figures 3.1 and 3.2 show a nonclassical
state in both variables u and τ and displays mesh convergence of the scheme as
the mesh is refined. Furthermore, the eighth-order WCD scheme approximates the
nonclassical state quite well for both variables, even at a very coarse mesh resolution.
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Fig. 3.1. Mesh-convergence for the WCD scheme for the dispersive limit of van der Waals
fluid with initial data (3.8) with a eighth-order WCD scheme. Left: Velocity u. Right: Volume τ .
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Fig. 3.2. Zoom at the nonclassical states for the dispersive limit of van der Waals fluid with
initial data (3.8) with a eighth-order WCD scheme. Left: Velocity u. Right: Volume τ .

3.2.1. Large shocks. Next, we approximate large nonclassical shocks for a Van
der Waals fluid by using the Riemann initial data

u(x, 0) =

{
0.35, x < 0.5,
1.5, x > 0.5,

τ(x, 0) =

{
0.8, x < 0.5,
25.0, x > 0.5.

(3.9)

The results with a eighth-order scheme are shown in figures 3.3 and 3.4 and clearly
show that the WCD scheme is able to approximate the nonclassical shock of large
amplitude (in the volume) quite well.

3.3. Violation of the WCD condition. As in the case of scalar conservation
laws, the violation the WCD condition leads to situations where the nonclassical
shocks are not approximated correctly. Furthermore, another interesting phenomena
arises when the WCD condition is violated in the case of Van der waals fluids. To
illustrate this, we choose α = 0 in (3.1). Hence, there is no dispersion and the
limit as ǫ → 0 are expected to be classical shocks. We consider this zero dispersion
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Fig. 3.3. Approximation of the Riemann problem with initial data (3.9) resulting in large jump
in volume τ . Left: Velocity u. Right: Volume τ , Results obtained with an eighth order WCD scheme
with 25000 points.
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Fig. 3.4. Zoom at nonclassical states in the approximation of the Riemann problem with initial
data (3.9) resulting in large jump in volume τ . Left: Velocity u. Right: Volume τ , Results obtained
with an eighth order WCD scheme with 25000 points.

case and approximate the Riemann data (3.8) with a eighth-order WCD scheme with
the coefficient c = cWCD. The results of a mesh convergence study are shown in
Figure 3.5. The results clearly show that the WCD scheme converges to the (correct)
solution that contains a classical shock and a classical compound shock (shock followed
by a rarefaction).

Next, we choose the coefficient c = 0.1cWCD in the eighth-order finite difference
scheme (3.4). The solution is presented in Figure 3.6. The results clearly show that the
approximate solution in fact converges to an incorrect solution that includes a spurious
nonclassical shock instead of a rarefaction. This is indeed a surprising discovery that
the failure to satisfy the WCD condition can result in the generation of spurious
nonclassical shocks. This should be contrasted with those situations that where the
correct nonclassical shocks may not be resolved by the finite difference scheme if the
WCD condition is violated. As seen from Figure 3.6, once the coefficient c is increased
to a sufficiently large value, the spurious nonclassical state is indeed removed and
replaced by the correct rarefaction. In fact, a coefficient c = 0.3cWCD is enough
to approximate the correct state and remove the nonclassical shock. This indicates
that the WCD condition may not be sharp is all cases and is merely sufficient at
approximating the correct solution. Furthermore, this example clearly suggests (from
the equivalent equation) that the spurious nonclassical shock was generated due to the
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contribution of higher-order dispersive terms in the equivalent equation, even when
the underlying physical dispersion is switched off.
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Fig. 3.5. Convergence for the WCD scheme for the zero-dispersion limit of van der Waals
fluid. Left: Velocity u. Right: Volume τ .
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Fig. 3.6. Spruious nonclassical states are observed for small values of the parameter c not
satisfying the WCD condition (3.7) for the Van der waals fluid with zero dispersion. Left: Velocity
u. Right: Volume τ

4. WCD schemes for systems: a model of magnetohydrodynamics.

4.1. Fluids with viscosity and Hall effect. Many interesting systems of con-
servation laws in physics take the form

Ut + Fx = ǫD(1)Uxx + αǫD(2)Uxx.(4.1)

Here, U,F are the vector of unknowns and the flux vector, respectively and D1, D2

are matrices which model the viscosity and the Hall effect (dispersion). Observe that
in contrast with scalar conservation laws, dispersion in systems of conservation laws
can be modeled just in terms of second-order derivatives.
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A prototypical (as well as motivating example) for such system of conservation
laws (4.1) is provided by the model MHD equations with magnetic resistivity and Hall
effect (see [30] and references therein),

vt + ((v2 + w2)v)x = ǫvxx + αǫwxx,(4.2)

wt + ((v2 + w2)w)x = ǫwxx − αǫvxx.

Clearly, the Hall MHD equations (4.2) can be recast in the general form (4.1) with
U = {v, w} and

D(1) =

(
1 0
0 1

)

, D(2) =

(
0 1
−1 0

)

and F : R2 → R2 denotes the flux F(v, w) =

(
(v2 + w2)v
(v2 + w2)w

)

.

4.2. A class of WCD schemes. For any integer p ≥ 1 we approximate (4.1)
with the 2p-th order consistent finite difference scheme

dUi

dt
+

1

∆x

j=p
∑

j=−p

αjFi+j =
c

∆x

j=p
∑

j=−p

βjD
(1)Ui+j +

αc

∆x

j=p
∑

j=−p

βjD
(2)Ui+j .(4.3)

where Ui = U(xi, t), Fi = F(Ui) and the coefficients αj and βj need to satisfy the
order conditions (2.4)-(2.5).

The equivalent equation of the finite difference scheme (4.3) is given by

dU

dt
= −Fx + c∆xD(1)Uxx + αc∆x2D(2)Uxx
︸ ︷︷ ︸

l.o.t

(4.4)

−
∞∑

k=2p+1

∆xk−1

k!
Ap

kF
[k] + c

∞∑

k=2p+1

∆xk−1

k!
Bp

kD
(1)U[k] + αc

∞∑

k=2p+1

∆xk−1

k!
Bp

kD
(2)U[k]

︸ ︷︷ ︸

h.o.t

The coefficients Ap
k and Bp

k are defined as in (2.8).

As for the scalar case and for the case of systems with viscosity and capillarity, we
will analyze what happens at a single shock to derive the appropriate WCD condition
in this particular case. The analysis is analogous to the previous example of a system
with linear viscosity and capillarity. Assume that there exists a tolerance parameter
τ such that |h.o.t.| ≤ τ |l.o.t.| holds componentwise. Performing a similar analysis as
for the previous example, we can impose an upper bound for the high-order terms
given by the componentwise condition

|h.o.t| ≤
(

ŜD
p ci|

〈

D
(1)
i , [[U]]

〉

|+ ŜD
p |α|ci|

〈

D
(2)
i , [[U]]

〉

|+ Ŝf
pσ|[[Ui]]|

)

(i = 1, 2)

where ŜD
p , ŜC

p , Ŝf
p are defined as in (2.11) and σ is defined in (3.6). Furthermore, a

lower bound for the low-order terms is given by

|l.o.t| ≥
(

|α|ci|
〈

D
(2)
i , [[U]]

〉

|+ ci|
〈

D
(1)
i , [[U]]

〉

| − σ|[[Ui]]|
)

(i = 1, 2).
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Combining the two bounds we may obtain the condition |h.o.t.| ≤ τ |l.o.t.| by ensuring
the two simple linear conditions:

(WCD)i :

((

|α| −
ŜD
p |α|
τ

)

|
〈

D
(2)
i , [[U]]

〉

|+
(

1−
ŜD
p

τ

)

|
〈

D
(1)
i , [[U]]

〉

|
)

ci(4.5)

−
(

1 +
Ŝf
p

τ

)

σ|[[Ui]]| > 0

simultaneously. Observe that if
〈

D
(1)
i , [[U]]

〉

= 0, we set the corresponding ci = 0 for

i = 1, 2. The scheme parameter c in (4.3) is defined as c = max
i=1,2

ci.

4.3. Numerical experiments. We set v = r cos(θ) and w = r sin(θ) and con-
sider initial Riemann problems of the form,

r(x, 0) =

{
rL, x < 0.25,

0.6rL, x > 0.25,
θ(x, 0) =

{
3
10π, x < 0.25,
13
10π, x > 0.25.

(4.6)

The values of rL and α will be varied in the subsequent experiments.
We consider the approximation of strong shocks by setting rL = 100 and rL = 500.

The approximations, performed with an fourth-order WCD scheme on a mesh of
4000 uniformly spaced points is shown in Figure 4.1. The results clearly show that
the solution consists of very large amplitude O(103) nonclassical shocks in both the
unknowns. The fourth-order WCD scheme is able to approximate these very large
nonclassical shocks quite well.
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Fig. 4.1. Large shocks in v and w-variable for the Hall MHD system (4.2 using a fourth order
WCD scheme with 4000 mesh points.

In order to characterize the nonclassical shocks for a large class of initial data,
we compute the intermediate (nonclassical) state vM with varying left state vL. The
results (for different values of the Hall coefficient α) are shown in Figure 4.2. Similar
results for the intermediate state wM with respect to varying left state wL is shown in
Figure 4.3. They clearly show that the WCD scheme is able to approximate nonclas-
sical shocks of varying strengths (ranging from small to very large) efficiently. This
should be contrasted with the results in [30] where only shocks of moderate strength
could be computed.
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Fig. 4.2. Intermediate state vM (Y-axis) vs. left state vL (X-axis) plot for the Hall MHD
model (4.2, computed with a fourth-order WCD scheme.
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Fig. 4.3. Intermediate state wM (Y-axis) vs. left state wL (X-axis) plot for the Hall MHD
model (4.2, computed with a fourth-order WCD scheme.

4.4. Computing the kinetic relation. We now examine the kinetic relations
given in [30]

φ(s) = −s
1

2
[[v2 + w2]] +

3

4
[[(v2 + w2)2]]

numerically for α = 1, 2, 10 using the 4-th order WCD scheme with τ = 0.1 on a
grid with N = 4000 mesh points. The numerical kinetic relations (scaled entropy
dissipation vs. shock speed) are shown in Figure 4.4 and clearly indicate that the
kinetic relation for the reduced MHD with Hall effect is given by

φ(s) = kαs
2,

with a constant kα that depends on the Hall coefficient α. Furthermore, the kinetic
relation also demonstrate the ability of the WCD schemes to compute nonclassical
shocks of arbitrary strength.

5. Concluding remarks. Systems of conservation laws are often derived by
ignoring small-scale effects such as diffusion, resistivity, capillarity, and Hall effect.
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Fig. 4.4. Scaled entropy dissipation
φ(s)

s2
vs. shock speed s for the Hall MHD model (4.2,

computed with a fourth-order WCD scheme.

However, for many physically interesting systems of conservation laws, the limiting
solutions depend explicitly on underlying small-scale effects. Examples include non-
classical shock waves that arise in nonconvex hyperbolic systems, nonconservative
hyperbolic systems, and the initial boundary value problems. In such problems, a
single entropy inequality alone does not suffice in ensuring uniqueness of weak solu-
tions, and additional admissibility criteria such as kinetic relations, families of paths,
or admissible boundary sets are necessary in order to single out the physically relevant
solutions.

Standard numerical schemes such as finite difference schemes and finite volume
schemes fail to approximate small-scale dependent shock waves correctly. This failure
can be explained in terms of the equivalent equation of the scheme, which suggests
that the leading-order numerical diffusion and dispersion terms for standard schemes
are very different from the underlying physical diffusion and dispersion. Consequently,
the schemes fail to approximate the physically relevant shock waves.

In the sucessive works [20, 18, 33, 32, 30, 36, 16, 7], various classes of schemes
with “controlled dissipation” were developed. These schemes were designed such as
the leading diffusion and dispersion terms of the equivalent equation matched the
underlying physical diffusion and dispersion. These schemes were quite successful in
resolving correct small scale dependent shock waves. However, the quality of approx-
imation deteriorated as the shock strength was increased. In particular, the schemes
with controlled diffusion failed to approximate large amplitude small scale dependent
shock waves.

In the paper, we have proposed a new family of finite difference schemes – termed
as schemes with well-controlled dissipation (WCD) which are designed to be able to
approximate small scale dependent shock waves of arbitrary strength. The key idea
behind these schemes relied on a refined analysis of the equivalent equation. In par-
ticular, the role of higher-order terms in the equivalent equation (often neglected in
standard schemes) was elucidated. WCD schemes are designed such that the numeri-
cal amplitude of higher-order terms of the equivalent equation are controlled in terms
of the leading diffusion and dispersion terms (to a user specified tolerance). This
balance is ensured by choosing a (time and space dependent) coefficient of numeri-
cal diffusion and dispersion that satisfies the so-called WCD condition. The analysis
suggests that for arbitrarily small tolerance parameters, one can always choose a suf-
ficiently high-order finite difference discretization such that the WCD condition is



23

satisfied.

WCD schemes were tested on a large number of numerical experiments involving
three different equations:

• The cubic conservation law with vanishing viscosity and dispersion.
• The Euler model of compressible fluids for a Van der Waals equation of state
and vanishing diffusion and capillarity.

• A simplified model of magnetohydrodynamics with magnetic resistivity and
Hall effect included.

For all three models, the WCD schemes were shown to perform remarkably well and,
in particular, were able to correctly approximate small-scale dependent shock waves
of arbitrarily large amplitude, as was demonstrated by computing the kinetic relation.
These examples suggest that WCD schemes are able to handle configurations that are
orders of magnitude more challenging than existing schemes at the current state of
the art.

WCD schemes will be extended in future work (see [3]) in the following directions:

• Approximating small-scale dependent shock waves in nonconservative hyper-
bolic systems and for the boundary value problem.

• Systems of conservation laws in several space dimensions that contain small
scale dependent shock waves as solutions, such in the full multi-dimensional
MHD equations with resistivity and Hall effect.
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Zürich.

[37] M. Slemrod, Admissibility criteria for propagating phase boundaries in a van der Waals fluid,
Arch. Rational Mech. Anal. 81 (1983), 301–315.

[38] E. Tadmor, The numerical viscosity of entropy stable schemes for systems of conservation laws.
I, Math. Comp. 49 (1987), 91–103.

[39] E. Tadmor, Entropy stability theory for difference approximations of nonlinear conservation
laws and related time-dependent problems, Acta Numer. 12 (2003), 451–512.

[40] E. Tadmor and W. Zhong, Entropy stable approximations of Navier-Stokes equations with no
artificial numerical viscosity, J. Hyperbolic Differ. Equ. 3 (2006), 529–559.

[41] L. Truskinovsky, Dynamics of non-equilibrium phase boundaries in a heat conducting non-
linear elastic medium, J. Appl. Math. Mech. (PMM), 51 (1987), 777–784.

[42] A.I. Volpert, The space BV and quasi-linear equations, Mat. USSR Sb. 2 (1967), 225–267.



Recent Research Reports

Nr. Authors/Title

2013-31 R. Hiptmair and A. Moiola and I. Perugia
Plane Wave Discontinuous Galerkin Methods: Exponential Convergence of the
hp-version

2013-32 U. Koley and N. Risebro and Ch. Schwab and F. Weber
Multilevel Monte Carlo for random degenerate scalar convection diffusion equation

2013-33 A. Barth and Ch. Schwab and J. Sukys
Multilevel Monte Carlo approximations of statistical solutions to the Navier-Stokes
equation

2013-34 M. Hutzenthaler and A. Jentzen and X. Wang
Exponential integrability properties of numerical approximation processes for
nonlinear stochastic differential equations

2013-35 S. Cox and M. Hutzenthaler and A. Jentzen
Local Lipschitz continuity in the initial value and strong completeness for nonlinear
stochastic differential equations

2013-36 S. Becker and A. Jentzen and P. Kloeden
An exponential Wagner-Platen type scheme for SPDEs

2013-37 D. Bloemker and A. Jentzen
Galerkin approximations for the stochastic Burgers equation

2013-38 W. E and A. Jentzen and H. Shen
Renormalized powers of Ornstein-Uhlenbeck processes and well-posedness of
stochastic Ginzburg-Landau equations

2013-39 D. Schoetzau and Ch. Schwab and T.P. Wihler
hp-dGFEM for Second-Order Mixed Elliptic Problems in Polyhedra

2013-40 S. Mishra and F. Fuchs and A. McMurry and N.H. Risebro
EXPLICIT AND IMPLICIT FINITE VOLUME SCHEMES FOR


