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A MULTILEVEL MONTE CARLO FINITE DIFFERENCE METHOD FOR

RANDOM SCALAR DEGENERATE CONVECTION DIFFUSION EQUATIONS

UJJWAL KOLEY, NILS HENRIK RISEBRO, CHRISTOPH SCHWAB, AND FRANZISKA WEBER

Abstract. This paper proposes a Finite Difference Multilevel Monte Carlo algorithm for de-

generate parabolic convection diffusion equations where the convective and diffusive fluxes are
allowed to be random. We establish a notion of stochastic entropy solutions to these. Our chief
goal is to efficiently compute approximations to statistical moments of these stochastic entropy
solutions. To this end we design a multilevel Monte Carlo method based on a finite volume
scheme for each sample. We present a novel convergence rate analysis of the combined multi-
level Monte Carlo Finite Volume method, allowing in particular for low p-integrability of the
random solution with 1 < p ≤ 2, and low deterministic convergence rates (here, the theoretical
rate is 1/3). We analyze the design and error versus work of the multilevel estimators. We
obtain that the maximal rate (based on optimizing possibly the pessimistic upper bounds on

the discretization error), is obtained for p = 2, for finite volume convergence rate of 1/3. We
conclude with numerical experiments.

1. Introduction

Many problems in physics and engineering are modeled by nonlinear, possibly strongly degen-
erate, convection diffusion equation. The Cauchy problem for such equations takes the form

(1.1)

{
ut + div f(u) = ∆A(u), (x, t) ∈ ΠT ,

u(0, x) = u0(x), x ∈ R
d,

where ΠT = R
d × (0, T ) with T > 0 fixed, u : ΠT → R is the unknown function, f = (f1, . . . , fd)

is the flux function, and A is the nonlinear diffusion. Regarding this, the basic assumption is that
a(u) := A′(u) ≥ 0, for all u. When (1.1) is nondegenerate, i.e., a(u) > 0, it is well known that
(1.1) admits a unique classical solution [33]. This contrasts with the degenerate case where a(u)
may vanish for some values of u. A simple example of a degenerate equation is the porous medium
equation

ut = ∆(um), m > 1,

which degenerates at u = 0. This equation has served as a simple model to describe processes
involving fluid flow, heat transfer or diffusion. Examples of applications are in the description of
the flow of an isentropic gas through a porous medium, modelled by Leibenzon [27] and Muskat
[31] around 1930, in the study of groundwater flow by Boussisnesq in 1903 [3] or in heat radiation
in plasmas, Zel’dovich and collaborators around 1950, [39]. In general, a manifestation of the
degeneracy in (1.1) is the finite speed of propagation of disturbances. If a(0) = 0, and if at some
fixed time the solution u has compact support, then it will continue to have compact support for
all later times.

By the term “strongly degenerate” we mean that there is an open interval such that a(u) = 0
if u is in this interval. Hence, the class of equations under consideration is very large and contains
the heat equation, the porous medium equation and scalar conservation laws. Independently of
the smoothness of the initial data, due to the degeneracy of the diffusion, singularities may form
in the solution u. Therefore we consider weak solutions which are defined as follows.
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Definition 1.1. Set ΠT = R
d × (0, T ). A function

u(t, x) ∈ C
(
[0, T ];L1(Rd)

)
∩ L∞(ΠT )

is a weak solution of the initial value problem (1.1) if it satisfies:

D.1 gradA(u) ∈ L∞(ΠT ).
D.2 For all test functions ϕ ∈ D(Rd × [0, T ))

(1.2)
x

ΠT

(uϕt + f(u) · gradϕ+A(u)∆ϕ) dx dt+

∫

Rd

u0(x)ϕ(x, 0) dx = 0.

In view of the existence theory, the condition D.1 is natural, and thanks to this we can replace
(1.2) by x

ΠT

uϕt + (f(u)− gradA(u)) · gradϕdxdt+

∫

Rd

u0(x)ϕ(x, 0) dx = 0.

If A is constant on a whole interval, then weak solutions are not uniquely determined by their
initial data, and one must impose an additional entropy condition to single out the physically
relevant solution. A weak solution satisfies the entropy condition if

(1.3) ̺(u)t + div q(u)−∆r(u) ≤ 0 in D′(ΠT ),

for all convex, twice differentiable functions ̺ : R → R, where q and r are defined by

q′(u) = ̺′(u)f ′(u), and r′(u) = ̺′(u)A′(u).

Via a standard limiting argument this implies that (1.3) holds for the Kružkov entropies ̺(u) =
|u− c| for all constants c. We call a weak solution satisfying the entropy condition an entropy
solution.

For scalar conservation laws, the entropy framework (usually called entropy conditions) was
introduced by Kružkov [24] and Vol’pert [37], while for degenerate parabolic equations entropy
solution were first considered by Vol’pert and Hudajev [38]. Uniqueness of entropy solutions to
(1.1) was first proved by Carrillo [4].

Over the years, there has been a growing interest in numerical approximation of entropy solu-
tions to degenerate parabolic equations. Finite difference and finite volume schemes for degenerate
equations were analysed by Evje and Karlsen [11, 10, 9, 12] (using upwind difference schemes),
Holden et al. [18, 19] (using operator splitting methods), Kurganov and Tadmor [25] (central dif-
ference schemes), Bouchut et al. [2] (kinetic BGK schemes), Afif and Amaziane [1] and Ohlberger,
Gallouët et al. [32, 14, 15] (finite volume methods), Cockburn and Shu [7] (discontinuous Galerkin
methods) and Karlsen and Risebro [23, 22] (monotone difference schemes). Many of the above
papers show that the approximate solutions converge to the unique entropy solution as the dis-
cretization parameter vanishes. Rigorous estimates of the convergence rate of finite volume schemes
for degenerate parabolic equations were proved in [20] (1-d) and [21] (multi-d).

This classical paradigm for designing efficient numerical schemes assumes that data for (1.1),
i.e., initial data u0, convective flux and diffusive flux are known exactly.

In many situations of practical interest, however, these data are not known exactly due to
inherent uncertainty in modelling and measurements of physical parameters such as, for example,
the specific heats in the equation of state for compressible gases, or the relative permeabilities in
models of multi-phase flow in porous media. Often, the initial data are known only up to certain
statistical quantities of interest like the mean, variance, higher moments, and in some cases, the
law of the stochastic initial data. In such cases, a mathematical formulation of (1.1) is required
which allows for random data. The problem of random initial data was considered in [29], and
the existence and uniqueness of a random entropy solution was shown, and a convergence analysis
for Multilevel Monte Carlo Finite volume discretizations (MLMCFV) was given. The MLMC
discretization of balance laws with random source terms was investigated in [30].

The first aim of this paper is to extend this mathematical framework to include degenerate
convection diffusion equations with random convective and diffusive flux functions with possibly
correlated random perturbations. We define random entropy solutions and provide an existence
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and uniqueness result, generalizing the classical well-posedness results to the case of uncertain
initial data, and flux functions.

The second aim of this paper is to design fast and robust numerical algorithms for computing
random entropy solutions. In particular, we focus on statistical sampling techniques of the Monte
Carlo (MC) type. However, since the rate of convergence of MC method is 1/2, we propose a
MLMCFD method based on implicit/explicit finite difference schemes for deterministic convection
diffusion equations. In particular, we show that MLMCFD schemes converge. Moreover, we use
a Lagrange multiplier type argument to determine the optimal number of MC samples needed to
minimize the computational work.

The rest of the paper is organized as follows: In Section 2, we present the probabilistic framework
used in this paper. In particular, we review notions of random variables taking values in separable
Banach spaces. Section 3 is devoted to a review of convergence rates from [20, 21] on convergence
rates for scalar degenerate deterministic convection diffusion problems. Particular attention is paid
to the definition of entropy solutions and to existence-, uniqueness- and continuous dependence
results, and to the definition of the random entropy solutions, and to sufficient conditions ensuring
their measurability and integrability. In Section 4, we address the discretization of such underlying
problems. First, again reviewing convergence rates of FD schemes for the deterministic case from
[20, 21], which we then extend to MC as well as MLMC versions for the degenerate convection
diffusion problem with random coefficients and flux functions. The final Section 5 is then devoted
to numerical experiments which confirm the theoretical convergence estimates and, in fact, indicate
that they probably are pessimistic, at least in the particular test problems considered.

2. Preliminaries from Probability Theory

To set the notation, we recapitulate prerequistes from measure and probability theory which
are needed in the subsequent sections. For proofs and further details, we refer for example to [36,
Chapter 1] and to the references there.

2.1. Random variables on Banach spaces. Let (Ω,F ,P) be a probability space, and let
(E,B(E)) be a Banach space E with its Borel σ-algebra B(E). A map G : Ω → E is called
a P-simple function if it is of the form

G(ω) =

J∑

j=1

gj✶Aj
(ω), where ✶A(ω) =

{
1 ω ∈ A,

0 otherwise,

and gj ∈ E for j = 1, . . . , J , for some finite J and for Aj ∈ F . A map f : Ω → E is strongly
F-measurable if there exists a sequence of simple functions fn converging to f (in the norm of E)
P-almost everywhere on Ω.

We call two strongly P-measurable functions f, g : Ω → E which agree P-almost everywhere on
Ω, P-versions of each other. We shall need the following lemma.

Lemma 2.1. [36, Corollary 1.13] Let E1 and E2 be Banach spaces, and (Ω,F ,P) a probability
space. If f : Ω → E1 is strongly measurable, and φ : E1 → E2 is continuous, then the composition
φ ◦ f : Ω → E2 is strongly measurable.

Next, we define the integral of a simple function G =
∑

gj✶Aj
by

∫

Ω

GdP =

N∑

j=1

gjP(Aj) .

If f : Ω → E is strongly measurable, we say that f is Bochner integrable if there exists a sequence
of simple functions {fn}n≥0 converging to f P-almost everywhere, and

lim
n→∞

∫

Ω

‖f − fn‖E dP = 0,
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([36, Def. 1.15]). We then define the Bochner integral of f by

(2.1)

∫

Ω

f dP := lim
n→∞

∫

Ω

fn dP.

A strongly measurable function f : Ω → E is Bochner integrable if and only if
∫

Ω

‖f‖E dP < ∞

(see for example [36, Prop. 1.16]) in which case

(2.2)
∥∥∥
∫

Ω

f dP
∥∥∥
E
≤
∫

Ω

‖f‖E dP .

For each 1 ≤ p < ∞ we can define the Banach spaces Lp(Ω;E) to consist of those strongly
measurable functions f for which the integrals

∫

Ω

‖f‖pE dP < ∞ .

These spaces have the natural norm

‖f‖Lp(Ω;E) =
(∫

Ω

‖f‖pE dP
)1/p

.

If p = ∞, we define L∞(Ω;E) to be the space of strongly measurable functions f : Ω → E for
which there exists a number r ≥ 0 such that P(‖f‖E > r) = 0. Together with the norm

‖f‖L∞(Ω;E) := inf{r ≥ 0 : P(‖f‖E > r) = 0},
this space is a Banach space as well.

If f : Ω → E is strongly measurable and (Ω,F ,P) is a probability space, we call f an E-valued
random variable.

In the following, we will be interested in random variables X : Ω → Ej , j = 1, 2, mapping from
some probability space (Ω,F , P ) into subsets of the Banach spaces Ej , j = 1, 2, equipped with
the Borel σ-algebra B(Ej), where E1 = L1(Rd)×W 1,∞(I)×W 1,∞(I), for a closed and bounded
interval I = [M−,M+] ⊂ (−∞,∞), −∞ < M− < M+ < ∞, and E2 = C([0, T ];L1(Rd)), T > 0.
On W 1,∞(I), we choose the norm

‖f‖W 1,∞(I) = ess sup
x∈I

|f(x)|+ ess sup
x∈I

|f ′(x)|, f ∈ W 1,∞(I).

On E1, we will use the sum norm

‖g‖E1
= ‖g1‖L1(Rd) + ‖g2‖W 1,∞(I) + ‖g3‖W 1,∞(I), g = (g1, g2, g3) ∈ E1,

and on E2, the norm

‖h‖E2 = sup
0≤t≤T

∫

R

|h(t, x)| dx, h ∈ E2.

2.2. Approximation of moments of random variables on Banach spaces. Often, one is
not interested in the law of a random variable X : Ω → E1 on a Banach space E1, but only in
statistics, such as the mean field (ensemble average) E[Y ] of quantities of interest Y = g(X) of it
(for some continuous mapping g : E1 → E2, E2 another Banach space). As explicit expressions
for those are not always available, one has to approximate them. This can be done using Monte

Carlo sampling. To this end, let Ŷi := g(X̂i) : Ω → E2, i = 1, . . . ,M , be independent identically
distributed random variables. We define the the sample average

(2.3) EM [Y ] :=
1

M

M∑

i=1

Ŷi,

as so-called Monte Carlo estimator for E[Y ]. We would like to know how good of an estimate the
sample average EM [Y ] is for the expectation E[Y ] of Y . Specifically, we are interested in at what
rate

E
[
‖E[Y ]− EM [Y ]‖pE2

]1/p
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converges as M → ∞ for some 1 ≤ p < ∞. If p = 2 and if E is a Hilbert space then it is classical
that the so called mean square error (MSE) satisfies

(2.4) E

[
‖E[Y ]− EM [Y ]‖2E

]
=

1

M
E
[
‖Y − E[Y ]‖2E

]
=

1

M
Var[Y ] .

Equation (2.4) is only meaningful for Hilbert space valued random variables. For general Banach
spaces, the convergence rate depends on the type of the Banach space, [26, Page 246].

Definition 2.2. Let 1 ≤ q ≤ ∞ and Zj, j ∈ N a sequence of independent Rademacher random
variables. A Banach space E is said to be of type q ≥ 1 if there is a type constant Ct > 0 such
that for all finite sequences (xj)

N
j=1 ⊂ E, N ∈ N,

∥∥∥∥∥∥

N∑

j=1

Zjxj

∥∥∥∥∥∥
E

≤ Ct




N∑

j=1

‖xj‖qE




1/q

.

Remark 2.3. (i) By the triangle inequality, every Banach space has type 1. (ii) Hilbert spaces
(and in particular finite-dimensional spaces) have type 2 (with the type constant Ct depending on
the dimension, in general) (iii) Lp-spaces have type q = min{2, p} for 1 ≤ p < ∞, [26, Page 247].

One has the following result [26, Proposition 9.11] for Banach spaces of type q:

Proposition 2.4. Let E be a Banach space of type q with type constant Ct. Then, for every finite
sequence (Yj)

M
j=1 of independent random variables in Lq(Ω;E) with zero mean, one has,

E



∥∥∥∥∥∥

N∑

j=1

Yj

∥∥∥∥∥∥

q

E


 ≤ (2Ct)

q
N∑

j=1

E
[
‖Yj‖qE

]
.

This implies a convergence rate in Lq(Ω) for the Monte Carlo estimator (2.3).

Corollary 2.5. Let E be a Banach space of type q with a type constant Ct. Then for every finite
sequence (Yj)

N
j=1 of iid random variables with zero mean and with Yj(ω) ∼ Y (ω) in Lq(Ω) and

Y ∈ Lq(Ω;E), there holds

E [‖EM [Y ]‖qE ] = E



∥∥∥∥∥∥
1

M

M∑

j=1

Yj

∥∥∥∥∥∥

q

E


 ≤ (2Ct)

qM1−q
E [‖Y ‖qE ] .

For q = 2, we recover (2.4) (up to the value of the constant).

3. Degenerate Convection Diffusion Equation with Random Diffusive Flux

We develop a theory of random entropy solutions for degenerate convection diffusion equation
with a class of random flux flunctions, proving in particular the existence and uniqueness of a
random entropy solution. To this end, we first review classical results on degenerate convection
diffusion equation with deterministic data.

3.1. Deterministic Scalar Degenerate Convection Diffusion Equation. We consider the
Cauchy problem for degenerate convection diffusion equation of the form

(3.1)

{
ut + div f(u) = div (a(u) gradu) , (x, t) ∈ ΠT ,

u(0, x) = u0(x), x ∈ R
d,

3.2. Entropy Solutions. It is well-known that if f is Lipschitz continuous and a(u) ≥ 0, then
the deterministic Cauchy problem (3.1) admits, for each u0 ∈ L1(Rd)∩L∞(Rd), a unique entropy
solution (see, e.g., [16, 35, 8]). Moreover, for every t > 0, u(·, t) ∈ L1(Rd) ∩ L∞(Rd) and several
properties of the (nonlinear) data-to-solution operator

S : (u0, f, A) 7−→ u(·, t) = S(t) (u0, f, A), t > 0,
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will be crucial for our subsequent development. To state these properties of {S(t)}t≥0, following
[11], we introduce the set of admissible initial data

(3.2) A(f,A) :=
{
z ∈ L1(Rd) ∩BV (Rd)

∣∣ |f(z)− gradA(z)|BV < ∞
}
.

Next, we collect fundamental results regarding the entropy solution u of (3.1) in the following
theorem, for a proof see [38, 5],

Theorem 3.1. Let f and A be locally Lipschitz continuous functions. Then

1) For every u0 ∈ A(f,A), the initial value problem (3.1) admits a unique BV entropy weak
solution u ∈ C

(
[0, T ];L1

loc(R
d)
)
.

2) For every t > 0, the (nonlinear) data-to-solution map S(t) given by

u(·, t) = S(t) (u0, f, A)

satisfies
i) For fixed f,A ∈ Lip(R), S(t)(·, f, A) : L1

loc(R
d) → L1(Rd) is a (nonexpansive) Lips-

chitz map, i.e.,

(3.3) ‖S(t)(u0, f, A)− S(t)(v0, f, A)‖L1(Rd) ≤ ‖u0 − v0‖L1(Rd) .

ii) For every u0 ∈ A(f,A), f,A ∈ Liploc(R)

‖S(t)(u0, f, A)‖L∞(Rd) ≤ ‖u0‖L∞(Rd),(3.4)

‖S(t)(u0, f, A)‖L1(Rd) ≤ ‖u0‖L1(Rd) ,(3.5)

‖S(t)(u0, f, A)‖BV (Rd) ≤ ‖u0‖BV (Rd) ,(3.6)

|f(u(·, t))− gradA(u(·, t))|BV (Rd) ≤ |f(u0)− gradA(u0)|BV (Rd) .(3.7)

iii) Lipschitz continuity in time: For any t1, t2 > 0, u0 ∈ A(f,A),

(3.8) ‖S(t1)(u0, f, A)− S(t2)(u0, f, A)‖L1(Rd) ≤ |f(u0)− gradA(u0)|BV (Rd) |t1 − t2| .

Proof. Point 1) of Theorem 3.1 is proved in [38] or [5, Thm 1.1], (3.3), (3.5) also follow from [5,
Thm 1.1], (3.4) was proved in [5, Thm 1.2], and (3.6), (3.7), (3.8) were proved in [38]. �

Remark 3.2. We can use the entropy condition (1.3) to obtain Lp(Rd)-estimates on the solution
at time t. Let ρε be a smooth, sign-preserving approximation of the function ρ(u) = |u|p for
1 ≤ p < ∞, then (1.3) implies after integrating in space and time

∫

Rd

ρε(u(t, x)) dx ≤
∫

Rd

ρε(u0(x)) dx.

Letting ε → 0, we obtain

(3.9) ‖u(t, ·)‖p
Lp(Rd)

≤ ‖u0‖pLp(Rd)
.

In our convergence analysis of MC-FD discretizations of degenerate convection diffusion equa-
tion with random fluxes, we will need the following result regarding continuous dependence of S
with respect to f and A ([6, Thm. 3]):

Theorem 3.3. Assume u0, v0 ∈ BV (Rd)∩L1(Rd)∩L∞(Rd), and f(·), g(·), A(·), B(·) ∈ Liploc(R)
with A′, B′ ≥ 0.

Then the unique entropy solutions u(t, ·) = S(t)(u0, f, A) and v(t, ·) = S(t)(v0, g, B) of (3.1)
with initial data u0, v0, convective flux functions f and g and with diffusive flux functions A and
B satisfy the Kružkov entropy conditions, and the à priori continuity estimate

‖u(·, t)− v(·, t)‖L1(Rd) ≤ ‖u0 − v0‖L1(Rd)(3.10)

+ C

(
t ‖f ′ − g′‖L∞(M−,M+) + 4

√
t
∥∥∥
√
A′ −

√
B′

∥∥∥
L∞(M−,M+)

)
,

where M− ≤ u0 ≤ M+ and C = |u0|BV (Rd) < ∞. The above estimate holds for every 0 ≤ t ≤ T .
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Remark 3.4. Using that for nonnegative numbers a, b ≥ 0, a 6= 0,

|√a−
√
b| =

√
|a− b|

√
|a− b|

√
a+

√
b
≤
√
|a− b|,

it follows from (3.10) that under the assumptions of Theorem 3.3,

‖u(·, t)− v(·, t)‖L1(Rd) ≤ ‖u0 − v0‖L1(Rd)(3.11)

+ C
(
t ‖f ′ − g′‖L∞(M−,M+) + 4

√
t
√
‖A′ −B′‖L∞(M−,M+)

)
,

hence the mapping S(t) : L1(Rd)×W 1,∞([M−,M+])×W 1,∞([M−,M+]) → L1(Rd), (u0, f, A) 7→
u(t, ·) is continuous as a mapping between Banach spaces if restricted to initial data u0 in U1 :={
u0 ∈ L1(Rd) : M− ≤ u0(x) ≤ M+, a.e. x ∈ R

}
⊂ L1(Rd) and A satisfying A′ ≥ 0.

3.3. Random Entropy Solutions. Existence and uniqueness for random initial data u0 and
random flux f for A ≡ 0 for the Cauchy problem was proved in [28, 34]; we now review these
results. We remark that these results remain valid in bounded, axiparallel rectangles D with
periodicity conditions with respect to each variable.

Here we are interested in the case where the initial data u0, the convective flux function f and
the diffusive flux function A in (1.1) are uncertain, that is, random functions taking values in the
Banach spaces BV (Rd) ∩ L∞(Rd) and W 1,∞(R;R) respectively.

To define these, we denote by (Ω,F ,P) a probability space. We consider spatially homogeneous
random flux functions and diffusion operators f , A, i.e., strongly measurable maps f : Ω →
Lip(R;Rd), A : Ω → Lip(R;Rd), and random initial data u0 being strongly measurable maps from
Ω to the intersection of the Banach spaces BV (Rd) and L∞(Rd).

Definition 3.5. Random data for the scalar degenerate convection diffusion equation (1.1) is a
random variable taking values in

E1 =
(
BV (Rd) ∩ L∞(Rd)

)
×W 1,∞(R;Rd)×W 1,∞(R;Rd).

The set E1 is a Banach space which we equip with the norm

(3.12) ‖(u, f,A)‖E1
= ‖u‖L1(Rd) +TV(u) + ‖u‖L∞(Rd) + ‖f‖W 1,∞(R;Rd) + ‖A‖W 1,∞(R;Rd) .

In particular, random data (u0, f, A) for the degenerate convection diffusion equation (1.1) is a
strongly measurable map

(3.13) (u0, f, A) : (Ω,F) 7−→ (E1,B(E1)) .

For the ensuing convergence analysis, we shall also require that for P-a.e. ω it holds

−∞ < M− ≤ u0(ω;x) ≤ M+ < ∞, a.e. x ∈ R
d,(3.14)

|u0(ω; ·)|BV (Rd) ≤ CTV < ∞,(3.15)

‖f(ω; ·)‖W 1,∞([M−,M+]) ≤ Cf < ∞,(3.16)

A′(ω; ·) ≥ 0,(3.17)

‖A(ω; ·)‖W 1,∞([M−,M+]) ≤ CA < ∞,(3.18)

|f(ω;u0(ω; ·))− gradA(ω;u0(ω; ·))|BV (Rd) ≤ CA,f < ∞..(3.19)

We shall refer to a random flux f which satisfies (3.16) as bounded random flux and similarly to
A satisfying (3.17)–(3.19) as bounded random diffusion operator. In addition, we shall assume

(3.20) ‖u0‖Lr(Ω;Lp(Rd)∩L1(Rd)) < ∞,

for some p, r ≥ 1. By (2.2), for random data with (3.14)–(3.20) the map
(3.21)

Ω ∋ ω 7→
(
‖u0(ω; ·)‖L1(Rd) ,TV(u0(ω; ·)), ‖u0(ω; ·)‖L∞(Rd) , ‖f‖W 1,∞(R;Rd) , ‖A‖W 1,∞(R;Rd)

)

is in Lr(Ω;R5).
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Then we are interested in random solutions of the random degenerate convection diffusion
equation

(3.22)

{
ut(ω;x, t) + div(f(ω;u(ω;x, t))) = ∆A(ω;u(ω;x, t)), t > 0, x ∈ R

d,

u(ω;x, 0) = u0(ω;x), x ∈ R
d.

Definition 3.6. A random field u : Ω ∋ ω → u(ω;x, t), i.e., a measurable mapping from (Ω,F) to
C([0, T ];L1(Rd)), is called a random entropy solution of (3.1) with random initial data u0, flux
function f and diffusive flux A satisfying (3.13) and (3.14) – (3.21) for some r ≥ 1, if it satisfies:

(i) Weak solution: for P-a.e. ω ∈ Ω, u(ω; ·, ·) satisfies
∞∫

0

∫

Rd

(
u(ω;x, t)ϕt + (f(ω;u(ω;x, t))− gradA(ω;u(ω;x, t))) · gradϕ

)
dxdt

+

∫

Rd

u0(x, ω)ϕ(x, 0) dx = 0,

for all test functions ϕ ∈ C1
0 (R

d × [0,∞)).
(ii) Entropy condition: For any pair consisting of a (deterministic) entropy η and (stochastic)

entropy flux q(ω; ·) and r(ω; ·) i.e., η, q and r are functions such that η is convex and such
that q′(ω; ·) = η′f ′(ω; ·), r′(ω; ·) = η′A′(ω; ·)and for P-a.s. ω ∈ Ω, u satisfies the following
integral identity:

(3.23)

∞∫

0

∫

Rd

(
η(u(ω;x, t))ϕt + grad q(ω;u(ω;x, t)) · gradϕ+ r(ω;u(ω;x, t))∆ϕ

)
dxdt

+

∫

Rd

η(u0(ω;x))ϕ(x, 0) dx ≥ 0,

for all test functions 0 ≤ ϕ ∈ C1
0 (R

d × [0,∞)).

We state the following theorem regarding the random entropy solution of (3.22):

Theorem 3.7. Consider the degenerate convection diffusion equation (3.1) with random initial
data u0, flux function f and random diffusion operator A, as in (3.13), and satisfying (3.14) –
(3.20) for some r ∈ [1,∞].Then there exists a unique random entropy solution u : Ω ∋ ω →
C([0, T ];L1(R)) which is “pathwise”, i.e., for P − a.s. ω ∈ Ω, described in terms of a nonlinear
mapping S(t) which depends only on the random flux and diffusion,

u(ω; ·, t) = S(t)(u0(ω; ·), f(ω; ·), A(ω; ·)), t > 0, P− a.e. ω ∈ Ω

such that for every 0 ≤ t ≤ T < ∞ and for s = 1, p;

‖u‖Lr(Ω;C([0,T ];Ls(Rd))) ≤ ‖u0‖Lr(Ω;Ls(Rd)) ,(3.24)

‖S(t)(u0, f, A)(ω)‖(L1∩L∞)(Rd) ≤ ‖u0(ω; ·)‖(L1∩L∞)(Rd) .(3.25)

Moreover, we have P-a.s.

|S(t)(u0, f, A)(ω)|BV (Rd) ≤ |u0(ω; ·)|BV (Rd) ,(3.26)

|f(ω;u(ω; ·, t))− gradA(ω;u(ω; ·, t))|BV (Rd) ≤ |f(ω;u0(ω; ·))− gradA(ω;u0(ω; ·))|BV (Rd) ,

(3.27)

‖u(ω; ·, t1)− u(ω; ·, t2)‖L1(Rd) ≤ |f(ω;u0(ω; ·))− gradA(ω;u0(ω; ·))|BV (Rd) |t1 − t2| .(3.28)

and, with M := max{|M−|, |M+|} for M−,M+ as in (3.14),

(3.29) sup
0≤t≤T

‖u(ω; ·, t)‖L∞(Rd) ≤ M P-a.s. ω ∈ Ω .
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Proof. For ω ∈ Ω, we define, motivated by Theorem 3.1, for P-a.e. ω ∈ Ω a random function
u(ω; t, x) by

(3.30) u(ω; ·) = S(t)(u0, f, A)(ω).

By the properties of the solution mapping (S(t))t≥0, see Theorem 3.1, the random field defined in
(3.30) is well defined; for P-a.e. ω ∈ Ω, u(ω; ·) is a weak entropy solution of the degenerate diffusion
equation (3.1). Moreover, we obtain from Theorem 3.1 that P-a.s. all bounds (3.25)–(3.28) hold,
with assumption (3.14) also (3.29). The measurability of the mapping Ω ∋ ω 7→ u(ω; ·, t) ∈ L1(R),
0 ≤ t ≤ T follows from Lemma 2.1, (3.11) and the assumption that the mapping Ω ∋ ω 7→
(u0, f, A)(ω) ∈ E1 is a random variable. Finally, (3.24) follows from (3.20) together with (3.5) in
Theorem 3.1. �

Theorem 3.7 generalizes the existence of random entropy solutions for random initial data
from [29] and random convective flux function [28].

Remark 3.8. All existence and continuous dependence results stated so far are formulated for
the deterministic Cauchy problem (3.1). By the ‘usual arguments’, verbatim the same results will
also hold for solutions defined in a bounded, axiparallel domain D ⊂ R

d, provided that periodic
boundary conditions in each space coordinate are enforced on the weak solutions.

4. Numerical approximation of random degenerate convection diffusion equation

We wish to compute various quantities of interest, such as the expectation of the solution u to
the random degenerate diffusion equation (3.22). We choose to split the approximation into two
steps: On one hand, we need to approximate in the stochastic domain ω ∈ Ω and on the other
hand, since in general exact solutions to (1.1) are not available, we need an approximation in
the physical domain (x, t) ∈ ΠT . In this paper, we will consider a Multilevel Monte Carlo Finite
Difference Method (MLMC-FDM), that is, a combination of the multilevel Monte Carlo method
with a deterministic finite difference discretization. We will briefly review the two methods and
mention some relevant results in the following sections.

4.1. Monte Carlo method. To “discretize” the stochastic domain, we will use the Monte Carlo
method as described in Section 2.2. We again assume that (u0(ω; ·), f(ω; ·), A(ω; ·)) ∈ E1 and that
satisfy in addition (3.14)–(3.19) and (3.20) for some r, p ∈ [1,∞) to be specified later. We shall
be interested in the statistical estimation of the first moment of u, i.e. E[u]. The Monte Carlo
(MC) approximation of E[u] is defined as follows: given M independent, identically distributed

samples (ûi
0, f̂

i, Âi), i = 1, . . . ,M , of initial data, flux function and diffusion, the MC estimate of
E[u(·, t; ·)] at time t is given by

(4.1) EM [u(·, t)] := 1

M

M∑

i=1

ûi(·, t)

where ûi(·, t) denote the M unique entropy solutions of the M Cauchy problems (1.1) with initial

data ûi
0, flux function f̂ i and diffusion operator Âi. Since

ûi(·, t) = S(t) (ûi
0, f̂

i, Âi),

we have for every M and for every 0 < t < ∞, by (3.5) (for p = 1) or the entropy (p > 1) condition
(3.23) (cf. Remark 3.2),

‖EM [u(·, t;ω)]‖Lp(Rd) =
∥∥∥ 1

M

M∑

i=1

, S(t)(ûi
0, f̂

i, Âi)(ω)
∥∥∥
Lp(Rd)

≤ 1

M

M∑

i=1

∥∥∥S(t)(ûi
0, f̂

i, Âi)(ω)
∥∥∥
Lp(Rd)

≤ 1

M

M∑

i=1

‖ûi
0(·;ω)‖Lp(Rd).
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Using this inequality, the i.i.d. property of the samples
{
(ûi

0, f̂
i, Âi)

}M

i=1
, we obtain the bound

E

[
‖EM [u(·, t)]‖Lp(Rd)

]
≤ E

[ 1

M

M∑

i=1

‖ûi
0(·;ω)‖Lp(Rd)

]

= E

[
‖u0‖Lp(Rd)

]
= ‖u0‖L1(Ω;Lp(Rd)) < ∞.

Theorem 4.1. Assume that in (3.22) the random variable (u0, f, A)(ω) as in (3.13) satisfies
(3.14) – (3.19) and that A′(ω; ·) ≥ 0, for P-a.s. ω ∈ Ω and, for some r ∈]1,∞[, p ≥ 1,

u0 ∈ Lr(Ω;Lp(Rd)) .

Then the Monte Carlo estimates EM [u(·, t)] in (4.1) converge in Lq(Ω;Lp(Rd)) for q := min{2, p, r} >
1 as M → ∞, to M1(u(·, t)) = E[u(·, t)]. In addition, for any M ∈ N, 0 < t < ∞, we have the
error bound

(4.2) ‖E[u(·, t)]− EM [u(·, t)]‖qLq(Ω;Lp(Rd)) ≤ CM1−q ‖u0‖qLq(Ω;Lp(Rd)) .

Proof. By the linearity of expectation, we have

‖E[u(·, t)]− EM [u(·, t)]‖qLq(Ω;Lp(Rd)) = E

[
‖E[u(·, t)]− EM [u(·, t)]‖qLp(Rd)

]

= E



∥∥∥∥∥
1

M

M∑

i=1

(
E[u(·, t)]− ûi(·, t)

)
∥∥∥∥∥

q

Lp(Rd)


 .

It follows from Remark 2.3 (iii), that the Banach space E = Lp(Rd) is of type q = min{2, p, r} > 1.
Hence we can apply Corollary 2.5 to the iid random variables Yi := E[u(·, t)]− ûi(·, t) which have
zero mean in the last term to estimate

E



∥∥∥∥∥
1

M

M∑

i=1

(
E[u(·, t)]− ûi(·, t)

)
∥∥∥∥∥

q

Lp(Rd)


 := E



∥∥∥∥∥
1

M

M∑

i=1

Yi

∥∥∥∥∥

q

Lp(Rd)




≤ (2Ct)
q

Mq−1
E

[
‖Y1‖qLp(Rd)

]

=
C

Mq−1
E

[
‖E[u(·, t)]− u(·, t)‖qLp(Rd)

]

≤ C

Mq−1
E

[
‖u(·, t)‖qLp(Rd)

]
.

Using the entropy condition (3.23) (cf. Remark 3.2), the last expression can be bounded by

C

Mq−1
E

[
‖u(·, t)‖qLp(Rd)

]
≤ C

Mq−1
E

[
‖u0‖qLp(Rd)

]
,

and the claim follows. �

4.2. Finite Difference Methods for degenerate convection diffusion equations. So far, we

considered the MCM under the assumption that the entropy solutions ûi(x, t;ω) = S(t) (ûi
0, f̂

i, Âi)(ω)

for the Cauchy problem (1.1) with the data samples (ûi
0, f̂

i, Âi) are available exactly. In practice,

however, we must use numerical approximations of S(t)(ûi
0, f̂

i, Âi). We next present a family of
convergent discretization schemes, with corresponding stability and consistency bounds.

4.2.1. Definition, Stability and Consistency of the Scheme. The presentation will, from now on,
be restricted to the one-dimensional case, that is, we consider

(4.3)

{
ut + f(u)x = A(u)xx, t > 0, x ∈ D ⊂ R,

u(x, 0) = u0(x).

We thus assume that D ⊂ R is a bounded interval in R and we shall consider D-periodic solutions
u. We shall examine the class of fully discrete monotone difference schemes for which Karlsen,

Risebro and Storrøsten obtained a convergence in L1 rate of ∆x1/3, where ∆x is the discretization
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parameter, in [20]. These schemes are easily generalized to several space dimensions, but rigorous
results regarding convergence rates are much worse. To date, the best convergence rate in L1(Rd)

for a fully discrete, implicit in time scheme is ∆x2/(19+d), see [21].
For ∆x,∆t > 0, we discretize the space-time cylinder ΠT = D × [0, T ] by a grid with cells

Inj = [xj−1/2, xj+1/2)× (tn−1, tn], n ≥ 0, j ∈ Nx,

where xj±1/2 = (j ± 1/2)∆x, j ∈ Nx, and tn = n∆t, n ∈ N. Nx := {N1, N1 + 1, . . . , N2 − 1, N2},
where N1, N2 ∈ Z are such that |D|/|N2−N1| = ∆x and xN1−1/2 = infx D and xN2+1/2 = supx D.
We define cell averages of the initial data via

(4.4) u0
j =

1

∆x

∫

I0
j

u0(x) dx, j ∈ Nx.

Then we consider the following implicit scheme

(4.5) Dt
−u

n
j +D−F

(
un
j , u

n
j+1

)
= D−D+A(un

j ), n ≥ 1, j ∈ Nx,

and the explicit scheme,

(4.6) Dt
+u

n
j +D−F

(
un
j , u

n
j+1

)
= D−D+A(u

n
j ), n ≥ 0, j ∈ Nx,

where we have denoted for a quantity {σn
j }j∈Nx,n∈N,

Dt
±σ

n
j = ± 1

∆t
(σn±1

j − σn
j ), D±σ

n
j = ± 1

∆x
(σn

j±1 − σn
j ).

We then define the piecewise constant approximation to (4.3) by

(4.7) u∆(x, t) = un
j , (x, t) ∈ Inj ,

where un
j is defined by either (4.5) or (4.6). The numerical flux F ∈ C1(R2) is chosen such that it

is consistent with f , that is, F (u, u) = f(u) for all u ∈ R, and monotone, which means

∂

∂u
F (u, v) ≥ 0 and

∂

∂v
F (u, v) ≤ 0.

In order to obtain convergence rates, it is furthermore necessary to choose F Lipschitz continuous
and such that it can be written

(4.8) F (u, v) = F1(u) + F2(v), F ′
1(u) + F ′

2(u) = f ′(u),

see [20]. Examples of monotone numerical fluxes satisfying (4.8) are the Engquist-Osher flux as
well as the Lax-Friedrichs and the upwind flux. In order to show convergence of the explicit
scheme, the following CFL-condition is needed [11],

(4.9) ∆t ≤ C∆x2,

and in order to show a convergence rate, one even needs

(4.10) ∆t ≤ C∆x8/3,

see [20]. Whether this restrictive CFL-condition is sharp in order to prove a convergence rate is
not known. Naturally, no CFL-condition is needed to ensure stability of the implicit scheme, [13].
In order to obtain à priori estimates for the explicit scheme, the numerical flux function F and
the diffusion operator A have to satisfy the following condition

(4.11)
∆t

∆x
(F ′

1(z)− F ′
2(z)) + 2

∆t

∆x2A
′(w) ≤ 1, for all z and w,

see [11]. Then we have the following stability and convergence results for the schemes (4.5) and
(4.6), [11, 9, 20] (which also hold for the bounded domain D replaced by R.)

Theorem 4.2. Let u0 ∈ BV (D) ∩ L1(D), M− ≤ u0 ≤ M+, f,A ∈ Lip([M−,M+]), A
′ ≥ 0 and

u0 ∈ A(f,A), where A(f,A) is defined in (3.2). Let F be a monotone numerical flux function
consistent with f , satisfying (4.8). Denote by u∆(x, t) the piecewise constant function defined in
(4.7), where un

j are computed by either the explicit scheme (4.6) or the implicit scheme (4.5).
Assume for the explicit scheme in addition that ∆t satisfies (4.9) and that (4.11) holds. Then we
have
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i) The approximations u∆ converge, as the discretization parameters (∆x,∆t) → 0 subject
to the CFL condition (4.9) and (4.11), to the unique entropy solution of (4.3). Moreover
they satisfy

‖u∆(·, t)‖L1(D) ≤ ‖u0‖L1(D) ,

‖u∆(·, t)‖L∞(D) ≤ ‖u0‖L∞(D) ,(4.12)

|u∆(·, t)|BV (D) ≤ |u0|BV (D) ,

sup
j

∣∣F (un
j , u

n
j+1)−D+A(u

n
j )
∣∣ ≤ sup

j

∣∣F (u0
j , u

0
j+1)−D+A(u

0
j )
∣∣ ,

∑

j

∣∣D−F (un
j , u

n
j+1)−D−D+A(u

n
j )
∣∣ ≤

∑

j

∣∣D−F (u0
j , u

0
j+1)−D−D+A(u

0
j )
∣∣ .

Furthermore, u∆ is L1(D)-Lipschitz continuous in time, viz., for any tn, tm > 0,

‖u∆(·, tn)− u∆(·, tm)‖L1(D) ≤ |f(u0)−A(u0)|BV (D) |tn − tm| .
ii) If for the explicit scheme in addition (4.10) holds, the approximations u∆ converge at the

rate 1/3 to the entropy solution u of (4.3):

(4.13) ‖u∆(·, tn)− u(·, tn)‖L1(D) ≤ ‖u∆(·, 0)− u0‖L1(D) + CT∆x1/3,

where the constant CT takes the form

C(1 + T )
(
(1 + ‖f‖Lip) |u0|BV (D) + ‖A(u0)x‖L1(D) + |f(u0)−A(u0)x|BV (D)

)
,

with C independent of u0, f and A.

Point i) was proved in [11, Thm. 3.9, Cor. 3.10] for the explicit scheme and [9, Thm. 3.9, Lem.
3.3, 3.4, 3.5] for the implicit scheme , ii) in [20].

Remark 4.3. Combining (4.12), (3.4) respectively, with (4.13), we can obtain a (possibly not
optimal) estimate for the rate of convergence of the scheme in Lp(D) for 1 ≤ p < ∞ using
Hölder’s inequality:

‖u∆(·, tn)− u(·, tn)‖Lp(D) ≤ ‖u∆(·, tn)− u(·, tn)‖1/pL1(D) ‖u∆(·, tn)− u(·, tn)‖1−1/p
L∞(D)

≤ C
(
‖u∆(·, 0)− u0‖1/pL1(D) + C

1/p
T ∆x1/(3p)

)
,

(4.14)

where the constant C is dependent on the L∞-norm of u0.

4.2.2. Work Bounds. For the purpose of analyzing the efficiency of the MC- and MLMC-method, it
is important to have an estimate on the computational work used to compute one approximation of
the solution by the deterministic FD-schemes and how it increases with respect to mesh refinement.
By (computational) work or cost of an algorithm, we mean the number of floating point operations
performed during the execution of the algorithm. We assume that this is proportional to the run
time of the algorithm. Because we deal with bounded domains in the actual computations, the
number of grid cells in one dimension scales as 1/∆x.

Work estimate for the explicit scheme (4.6). For the explicit scheme, the number of operations
per time step scales linearly with the number of cells in the spatial domain D, which in turn scales
as ∆x−1 (we assume the computational domain is bounded). Hence the work can be bounded
as W exp

∆ ≤ C∆t−1∆x−1. Taking the CFL-condition (4.10) into account, we obtain the (likely
pessimistic) work bound

W ex
∆ = O(∆x−11/3) .

Work estimate for the implicit scheme (4.5). In the implicit scheme we have to solve the
nonlinear equation (4.5) for un+1 := (. . . , un+1

j−1 , u
n+1
j , un+1

j+1 , . . . ) in each timestep. Since solving
this equation exactly is either impossible or computationally very expensive, we prefer to solve it
only approximately by an iterative method. We consider here the case that this method is the
Newton iteration, which we iterate until the residual is of order ∆x∆t (this is possible since the
mapping un → un+1 =: Ψ(un) defined by (4.5) is a contraction for sufficiently small ∆t and CFL
constant.
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In general the Lipschitz constant should scale as 1/∆x, so a small value of ∆t alone is not
sufficient for the contraction property to hold. For details, we refer to [9]. The additional error
introduced by finite termination of the iterative nonlinear system solver will not increase the overall
error: denoting by un,(0) the approximation at time t = tn obtained by solving (4.5) exactly in each
time step, un,(j) the approximation obtained by solving (4.5) approximately via Newton iteration
in the first j timesteps and afterwards exactly (so that un,(n) := u∆(·, tn) is the approximation
obtained by using Newton’s method in each timestep), we have

‖u∆(·, tn)− u(·, tn)‖L1(D) =
∥∥∥un,(n) − u(·, tn)

∥∥∥
L1(D)

=

∥∥∥∥
n−1∑

m=0

(un,(m+1) − un,(m)) + un,(0) − u(·, tn)
∥∥∥∥
L1(D)

≤
n−1∑

m=0

∥∥∥un,(m+1) − un,(m)
∥∥∥
L1(D)

+
∥∥∥un,(0) − u(·, tn)

∥∥∥
L1(D)

≤
n−1∑

m=0

∥∥∥um+1,(m+1) − um+1,(m)
∥∥∥
L1(D)

+ CT∆x1/3

≤ n∆x∆t+ CT∆x1/3

= tn∆x+ CT∆x1/3 ≤ C̃T∆x1/3,

where we have used the L1-contraction property of the scheme for the third last inequality. If the
starting value for the Newton iteration is chosen such that it is in a sufficiently small neighbor-
hood of the fixpoint, the convergence order of the Newton method is locally quadratic. In order to
achieve an error of less than C∆x∆t in one timestep by solving the nonlinear system only approx-
imately, it suffices to perform O(log(∆x−1∆t−1)) many Newton iterations. If we take ∆t = θ∆x
for some constant θ > 0, these are altogether O(log(∆x−2)) = O(log(∆x−1)) Newton steps. In
each step of the Newton iteration, we invert and multiply a tridiagonal matrix of size O(∆x−2)
with a vector of length O(∆x−1) and subtract it from another vector of length O(∆x−1). The
tridiagonal matrix can be inverted in O(∆x−1) operations using the Thomas algorithm (in case
of periodic boundary conditions we use the Sherman-Morrison formula). Hence the total number
of floating point operations which are necessary for one Newton step is O(∆x−1). It follows that
the work done in one timestep is of order O(log(∆x−1)∆x−1). As there are altogether n = T/∆t
timesteps, and since we can choose the timestep of order ∆t = θ∆x, we obtain the following bound
on the total work for one execution of the implicit scheme,

W im
∆ = O(∆x−2 log(∆x−1)) .

4.2.3. Application to random data. In the Monte Carlo Finite Difference Methods (MC-FDMs),
we combine MC sampling of the random initial data with the FDMs (4.5) and (4.6). In the
convergence analysis of these schemes, we shall require the application of the FDMs (4.5) and
(4.6) to random initial data, flux function and diffusion operator (u0, f, A) ∈ Lp(Ω;E1) for some
1 ≤ p ≤ ∞. Given a draw (u0(ω; ·), f(ω; ·), A(ω; ·)) of (u0, f, A), the FDMs (4.4) with (4.6) or
(4.5) define families u∆(ω;x, t) of grid functions. We have the following stability and consistency
estimates, which hold uniformly, i.e. P-a.s. with respect to ω.

Proposition 4.4. Consider the FDMs (4.4)–(4.6), (4.5) for the approximation of the entropy
solution corresponding to the draw (u0, f, A)(ω) of the random data.

Then, the random grid functions Ω ∋ ω 7−→ u∆(ω;x, t) defined by (4.7) satisfy, for every
0 < t < ∞, 0 < ∆x < 1, and every r ≥ 1 the stability bounds:

∥∥u∆(·; ·, t)
∥∥
Lr(Ω;L∞(D))

≤ ‖u0‖Lr(Ω;L∞(D)) ,

∥∥u∆(·; ·, t)
∥∥
Lr(Ω;L1(D))

≤ ‖u0‖Lr(Ω;L1(D)) .
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We also have the consistency bound: there exists a constant C > 0 independent of t and of ∆,
such that

(4.15)
∥∥u(·; ·, t)− u∆(·; ·, t)

∥∥
Lr(Ω;L1(D))

≤ ‖u0 − u∆(·; ·, 0)‖Lr(Ω;L1(D))

+ C(1 + t)∆x1/3
{∥∥∥
(
1 + ‖f(ω; ·)‖Lip

)
|(u0)(ω)|BV (D)

∥∥∥
Lr(Ω)

+ ‖A(u0)x‖Lr(Ω;L1(D)) +
∥∥∥|(f(u0)−A(u0)x)(ω)|BV (D)

∥∥∥
Lr(Ω)

}
.

Remark 4.5. Reasoning as in Remark 4.3, under the assumptions (3.14) – (3.19), (4.15) becomes

∥∥u(·; ·, t)− u∆(·; ·, t)
∥∥
Lr(Ω;Lp(D))

≤ CM
1−1/p ‖u0 − u∆(·; ·, 0)‖1/pLr(Ω;L1(D))

+ CM
1−1/p

(
(1 + t)∆x1/3 {(1 + Cf + CA)CTV + CA,f}

)1/p
,

where M = max{|M−|, |M+|} (c.f. (3.14)).

4.3. MC-FDM Scheme. We next define and analyze the MC-FDM scheme. It is based on the
straightforward idea of generating, possibly in parallel, independent samples of the random initial
data and then, for each sample of the random initial data, flux function and diffusion operator,
to perform one FD simulation. The error of this procedure is bounded by two contributions: a
(statistical) sampling error and a (deterministic) discretization error. We express the asymptotic
efficiency of this approach (in terms of overall error versus work). It will be seen that the efficiency
of the MC-FDM is, in general, inferior to that of the deterministic schemes (4.6) and (4.5). The
present analysis will constitute a key technical tool in our subsequent development and analysis
of the multilevel MC-FDM (“MLMC-FDM” for short) which does not suffer from this drawback.

4.3.1. Definition of the MC-FDM Scheme. We consider once more the initial value problem (3.22)
with random data (u0, f, A) satisfying (3.14) – (3.19) and (3.20) for sufficiently large r ∈ R (to be
specified in the convergence analysis). The MC-FDM scheme for the MC estimation of the mean
of the random entropy solutions then consists in the following:

Definition 4.6. (MC-FDM Scheme) Given M ∈ N, generate M i.i.d. samples {(ûi
0, f̂

i, Âi)}Mi=1.
Let {ûi(·, t)}Mi=1 denote the unique entropy solutions of the degenerate convection diffusion equa-
tions (1.1) for these data samples, i.e.

ûi(·, t) = S(t)
(
ûi
0, f̂

i, Âi
)
, i = 1, . . . ,M.

Then the MC-FDM approximations of Mk(u(·, t)) are defined as statistical estimates from the
ensemble

{ûi
∆(·, t)}Mi=1

obtained from the FD approximations by (4.6) or (4.5) of (1.1) with data samples {(ûi
0, f̂

i, Âi)}Mi=1:
Specifically, the first moment of the random solution u(ω; ·, t) at time t > 0, is estimated as

(4.16) M1(u(·, t)) ≈ EM [u∆(·, t)] :=
1

M

M∑

i=1

ûi
∆(·, t).

4.3.2. Convergence Analysis of MC-FDM. We next address the convergence of EM [u∆] to the
mean E[u]. We combine Theorem 4.1 for the convergence of the Monte Carlo method with the
error estimate Proposition 4.4 for the finite difference method to obtain,

Theorem 4.7 (MC-FD Error bound). Assume that

u0 ∈ Lr(Ω;L1(D) ∩BV (D))

for some r ∈]1,∞] and that (3.14) – (3.19) hold. In addition, assume that D is a bounded,
axiparallel rectangle and periodic boundary conditions for u. Then the MC estimate EM [u∆(·, t)]
defined in (4.16) as in Definition 4.6 satisfies, for every M , and for q = min{2, r} ∈]1, 2] the error
bound
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(4.17) ‖E[u(·, t)]− EM [u∆(ω; ·, t)]‖Lq(Ω;Lp(D)) ≤ C

{
M1/q−1 ‖u0‖Lq(Ω;Lmax{p,q}(D))

+M
1−1/p ‖u0 − u∆(·; ·, 0)‖1/pLq(Ω;Lp(D)) +∆x1/(3p)M

1−1/p
(1 + t)1/p

{
‖A(u0)x‖1/pLq(Ω;L1(D))

+
∥∥∥
(
1 + ‖f(ω; ·)‖Lip

)
|u0|BV (D) (ω)

∥∥∥
1/p

Lq(Ω)
+
∥∥∥|f(u0)−A(u0)x|BV (D) (ω)

∥∥∥
1/p

Lq(Ω)

}}
.

where C > 0 is independent of M and of ∆x as M → ∞ and as ∆x,∆t ↓ 0 and M :=
max{M−,M+} as in (3.14).

Proof. The triangle inequality implies, for any 1 ≤ p, q ≤ ∞

‖E[u(·, t)]− EM [u∆(ω; ·, t)]‖Lq(Ω;Lp(D))

≤ ‖E[u(ω; ·, t)]− EM [u(ω; ·, t)]‖Lq(Ω;Lp(D)) + ‖EM [u(ω; ·, t)]− EM [u∆(ω; ·, t)]‖Lq(Ω;Lp(D)) .

(4.18)

For p < q, we estimate the first term in the upper bound of (4.18) with Hölder’s inequality

‖E[u(ω; ·, t)]− EM [u(ω; ·, t)]‖Lq(Ω;Lp(D)) ≤ CD ‖E[u(ω; ·, t)]− EM [u(ω; ·, t)]‖Lq(Ω;Lq(D)) .

By Theorem 4.1, we have

‖E[u(ω; ·, t)]− EM [u(ω; ·, t)]‖Lq(Ω;Lp̃(D)) ≤ CM1/q−1 ‖u0‖Lq(Ω;Lp̃(D)) ,

where p̃ = max{q, p}. Hence, we arrive at

‖E[u(ω; ·, t)]− EM [u(ω; ·, t)]‖Lq(Ω;Lp(D)) ≤ CDM1/q−1 ‖u0‖Lq(Ω;Lpt(D)) .

For the second term in the upper bound (4.18), we use the linearity of the estimator EM [] and
the triangle inequality, and Remarks 4.3, 4.5 to obtain

‖EM [u(ω; ·, t)]− EM [u∆(ω; ·, t)]‖Lq(Ω;Lp(D))

≤ ‖u(·, t)− u∆(·, t)‖Lq(Ω;Lp(D))

≤ ‖u∆(·, tn)− u(·, tn)‖1/pLq(Ω;L1(D)) ‖u∆(·, tn)− u(·, tn)‖1−1/p
Lq(Ω;L∞(D))

≤ CM
1−1/p

(
‖u0 − u∆(·; ·, 0)‖1/pLq(Ω;Lp(D)) +∆x1/(3p)(1 + t)1/p

{
‖A(u0)x‖1/pLq(Ω;L1(D))

+
∥∥∥
(
1 + ‖f(ω; ·)‖Lip

)
|u0|BV (D) (ω)

∥∥∥
1/p

Lq(Ω)
+
∥∥∥|f(u0)−A(u0)x|BV (D) (ω)

∥∥∥
1/p

Lq(Ω)

})
,

where the last inequality follows from the error estimate for the finite difference scheme, Proposi-
tion 4.4. Combining the two, we obtain the estimate (4.17). �

4.3.3. Work estimates. We have seen that the computational work to obtain {u∆(·, t)}0≤t≤T , com-
puted by the explicit or implicit scheme respectively, is asymptotically, as ∆x,∆t → 0, bounded
as

W ex
∆ ≤ C∆x−11/3, W im

∆ ≤ C∆x−2 log(∆x−1),

which implies that the work for the computation of the MC estimate EM [u∆(·, t)] is of order
(4.19) W ex

∆,M ≤ CM∆x−11/3, W im
∆,M ≤ CM∆x−2 log(∆x−1),

so that we obtain from (4.17) the convergence order in terms of work: To this end we equilibrate

in (4.17) the two bounds by choosing M (1−q)/q ∼ ∆x1/(3p), i.e. M = C∆x
q

3p(1−q) . Inserting in
(4.19) yields

W ex
∆,M ≤ C∆x−

q+11p(q−1)
3p(q−1) , W im

∆,M ≤ C∆x−
q+6p(q−1)
3p(q−1) log(∆x−1),

so that we obtain from (4.17)

‖E[u(·, t)]− EM [u∆(·, t)]‖Lq(Ω;Lp(D)) ≤ (Cq
u0,t,A,f )

1/p∆x
1
3p(4.20a)

≤ (Cq
u0,t,A,f )

1/p (W ex
∆,M )−

q−1
q+11p(q−1) ,
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‖E[u(·, t)]− EM [u∆(·, t)]‖Lq(Ω;Lp(D)) ≤ (Cq
u0,t,A,f )

1/p (W im
∆,M (log(W im

∆,M ))−1)−
q−1

q+6p(q−1) ,(4.20b)

where Cq
u0,t,A,f is given by

(4.21) Cq
u0,t,A,f = C(1 + t)

{
‖ (1 + ‖f(ω; ·)‖Lip) |u0|BV (D) (ω)‖Lq(Ω)

+ ‖A(u0)x‖Lq (Ω;L1(D)) + ‖ |f(u0)−A(u0)x|BV (D) (ω)‖Lq (Ω)
}
.

Estimates (4.20) hold for q = min{2, r} as we used Remark 2.3 in its derivation. Assuming r ≥ 2
in (3.20), we may optimize the bound (4.20a) with respect to q for any p ∈ [1,∞[. For 1 < q ≤ 2,
the function q 7→ q/(q − 1) is monotonically decreasing. Therefore,

max
1<q≤2

q − 1

q + 11p(q − 1)
= max

1<q≤2

1

q/(q − 1) + 11p

is attained for q̃ = min{2, r} resulting at best (for r ≥ 2) in the error vs. work rate 1/(2 + 11p) in
(4.20a), and 1/(2+6p) for the implicit scheme in (4.20b). On the other hand, in the deterministic
case the convergence rates with respect to work read

‖u(·, t)− u∆(·, t)‖Lp(D) ≤ C
1/p
T ∆x1/(3p) ≤ C

1/p
T (W ex

∆ )−1/(11p),(4.22a)

‖u(·, t)− u∆(·, t)‖Lp(D) ≤ C
1/p
T (W im

∆ (log(W im
∆ ))−1)−1/(6p) .(4.22b)

4.4. Multilevel MC-FDM. We next present and analyze a scheme that allows us to achieve
almost the accuracy versus work bound (4.22) of the deterministic FDM also for the stochastic
data (u0, f, A) satisfying (3.14) - (3.20), rather than the single level MC-FDM error bound (4.20).
The key ingredient in the Multilevel Monte Carlo Finite Difference (MLMC-FDM) scheme is
simultaneous MC sampling on different levels of resolution of the FDM, with level dependent
numbers Mℓ of MC samples. To define these, we introduce some notation.

4.4.1. Notation. The MLMC-FDM is defined as a multilevel discretization in x and t with level
dependent numbers Mℓ of samples. To this end, we assume we are given a family of nested grids
with cell sizes

(4.23) ∆xℓ = 2−ℓ∆x0, ℓ ∈ N0,

for some ∆x0 > 0. Similarly, we denote,

∆tℓ = C∆x
8/3
ℓ ,

the size of the time step for the explicit scheme corresponding to grid size ∆xℓ and

∆tℓ = θ∆xℓ,

the size of the time step for the implicit scheme at level ℓ. We denote by uℓ the approximation to
(4.3) computed by (4.6) or (4.5) on the grid with cell and time step size ∆ℓ := (∆xℓ,∆tℓ).

4.4.2. Derivation of MLMC-FDM. As in plain MC-FDM, our aim is to estimate, for 0 < t < ∞,
the expectation (or “ensemble average”) E[u(·, t)] of the random entropy solution of (3.22) with
random data (u0, f, A)(ω), ω ∈ Ω, satisfying (3.13) – (3.20) for sufficiently large values of k (to be
specified in the sequel). As in the previous section, E[u(·, t)] will be estimated by replacing u(·, t)
by a FDM approximation.

We generate a sequence of approximations, {uℓ(·, t)}∞ℓ=0 on the nested meshes with cell sizes
∆xℓ, time steps of sizes ∆tℓ. In the following we set u−1(·, t) := 0. Then, given a target level
L ∈ N of spatial resolution, we have

(4.24) E[uL(·, t)] = E

[ L∑

ℓ=0

(uℓ(·, t)− uℓ−1(·, t))
]
.
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We next estimate each term in (4.24) statistically by a MCM with a level-dependent number of
samples, Mℓ; this gives the MLMC-FDM estimator

(4.25) EL[u(·, t)] =
L∑

ℓ=0

EMℓ
[uℓ(·, t)− uℓ−1(·, t)]

where EM [u∆(·, t)] is as in (4.16), and where uℓ(·, t) is computed on the mesh with grid size ∆xℓ

and time step ∆tℓ.

4.4.3. Convergence Analysis. We analyze the MLMC-FDM mean field error

(4.26)
∥∥E[u(·, t)]− EL[u(·, t)]

∥∥
Lq(Ω;Lp(D))

for 0 < t < ∞, q ∈]1, 2], p ∈ [1,∞] and L ∈ N. In particular, we are interested in the choice of
the sample sizes {Mℓ}∞ℓ=0 such that, for every L ∈ N, the MLMC error (4.26) is minimized. The
principal issue in the design of MLMC-FDM is the optimal choice of {Mℓ}∞ℓ=0 such that, for each
L, an error (4.26) is achieved with minimal total work given by (based on (4.19)),

W ex
L,MLMC = C

L∑

ℓ=0

MℓW
ex
∆ℓ

= O
( L∑

ℓ=0

Mℓ∆x
−11/3
ℓ

)
,(4.27a)

W im
L,MLMC = C

L∑

ℓ=0

MℓW
im
∆ℓ

= O
( L∑

ℓ=0

Mℓ∆x−2
ℓ | log(∆xℓ)|

)
.(4.27b)

To estimate (4.26), we write (recall that u−1 := 0) using the triangle inequality, the linearity of
the mathematical expectation E[·] and the definition (4.25) of the MLMC estimator

‖E[u(·, t)]−EL[u(·, t)]‖qLq(Ω;Lp(D))

≤ Cq ‖E[u(·, t)]− E[uL(·, t)]‖qLq(Ω;Lp(D)) + Cq

∥∥E[uL(·, t)]− EL[u(·, t)]
∥∥q
Lq(Ω;Lp(D))

= Cq ‖E[u(·, t)]− E[uL(·, t)]‖qLq(Ω;Lp(D))

+ Cq

∥∥∥
L∑

ℓ=0

E[uℓ − uℓ−1]− EMℓ
[uℓ − uℓ−1]

∥∥∥
q

Lq(Ω;Lp(D))

=: I + II

We estimate terms I and II separately. By linearity of the expectation, term I equals

(4.28) I = Cq ‖E[u(·, t)− uL(·, t)]‖qLq(Ω;Lp(D)) ≤ Cq ‖u(·, t)− uL(·, t)‖qL1(Ω;Lp(D))

As the function E[u(·, t) − uL(·, t)] is deterministic, the Lq(Ω;Lp(D))-norm is bounded by the
L1(Ω;Lp(D))-norm due to P (Ω) = 1. Term I is therefore of the order of the deterministic FV
discretization error that can be bounded by (4.15) with r = 1 (cf. Remarks 4.3, 4.5 for p > 1).
We hence focus on term II. For p < q, we have that

∥∥∥
L∑

ℓ=0

E[uℓ−uℓ−1]−EMℓ
[uℓ−uℓ−1]

∥∥∥
q

Lq(Ω;Lp(D))
≤ |D|(q−p)/p

∥∥∥
L∑

ℓ=0

E[uℓ−uℓ−1]−EMℓ
[uℓ−uℓ−1]

∥∥∥
q

Lq(Ω;Lq(D))
,

hence

II ≤ CD

∥∥∥
L∑

ℓ=0

E[uℓ − uℓ−1]− EMℓ
[uℓ − uℓ−1]

∥∥∥
q

Lq(Ω;Lp̃(D))
,

where p̃ = max{p, q}. The bound for term II can be written as

II ≤ CD

∥∥∥
L∑

ℓ=0

Mℓ∑

i=1

1

Mℓ

(
E[uℓ − uℓ−1]−

(
ûi
ℓ − ûi

ℓ−1

))∥∥∥
q

Lq(Ω;Lp̃(D))
=: CD

∥∥∥
L∑

ℓ=0

Mℓ∑

i=1

Yi,ℓ

∥∥∥
q

Lq(Ω;Lp̃(D))

where Yi,ℓ :=
1

Mℓ

(
E[uℓ − uℓ−1]−

(
ûi
ℓ − ûi

ℓ−1

))
, i = 1, . . . ,Mℓ, ℓ = 0, . . . , L. The Yi,ℓ are indepen-

dent, mean zero random variables. Since p̃ = max{p, q}, Lp̃(D) is of type q ∈]1, 2] (cf. Remark 2.3
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(iii)). Therefore we can apply Proposition 2.4 to the finite sum
∑L

ℓ=0

∑Mℓ

i=1 Yi,ℓ (first inequality in
the following calculation):

(4.29)

∥∥∥
L∑

ℓ=0

Mℓ∑

i=1

Yi,ℓ

∥∥∥
q

Lq(Ω;Lp̃(D))
≤ (2Ct)

q
L∑

ℓ=0

Mℓ∑

i=1

‖Yi,ℓ‖qLq(Ω;Lp̃(D))

= (2Ct)
q

L∑

ℓ=0

Mℓ ‖Y1,ℓ‖qLq(Ω;Lp̃(D))

= (2Ct)
q

L∑

ℓ=0

Mℓ

∥∥∥ 1

Mℓ

(
E[uℓ − uℓ−1]−

(
û1
ℓ − û1

ℓ−1

))∥∥∥
q

Lq(Ω;Lp̃(D))

= (2Ct)
q

L∑

ℓ=0

M1−q
ℓ ‖E[uℓ − uℓ−1]− (uℓ − uℓ−1)‖qLq(Ω;Lp̃(D))

≤ (2Ct)
q

L∑

ℓ=0

M1−q
ℓ ‖uℓ − uℓ−1‖qLq(Ω;Lp̃(D))

.

We estimate for every ℓ ≥ 0 the size of the detail uℓ − uℓ−1 with the triangle inequality

‖uℓ(·, t)− uℓ−1(·, t)‖Lq(Ω;Lp̃(D)) ≤ ‖u(·, t)− uℓ(·, t)‖Lq(Ω;Lp̃(D)) + ‖u(·, t)− uℓ−1(·, t)‖Lq(Ω;Lp̃(D)) .

Combining this with (4.14), (4.15) with t = t, r = q, (4.21) and (4.23), we obtain for every ℓ ∈ N

the estimate (using Hölder’s inequality to get from Lp̃(D) to L1(D), cf. Remark 4.3, 4.5)

‖(uℓ − uℓ−1)(·, t)‖Lq(Ω;Lp̃(D)) ≤ CM
1−1/p̃

(
‖u0 − uℓ(·; ·, 0)‖1/p̃Lq(Ω;L1(D)) + ‖u0 − uℓ−1(·; ·, 0)‖1/p̃Lq(Ω;L1(D))

)(4.30)

+ (Cq
u0,t,A,f )

1/p̃M
1−1/p̃

∆x
1/(3p̃)
ℓ ,

where M = max{|M−|, |M+|}, cf. (3.14).
We use that the initial approximations uℓ(·; ·, 0) of u(·; ·, 0) satisfy for any 1 ≤ r ≤ ∞ to get

‖u(·; ·, 0)− uℓ(·; ·, 0)‖Lr(Ω;L1(D)) ≤ ∆xℓ

∥∥|u0|BV (D)

∥∥
Lr(Ω)

.

Thus we can estimate the contribution of the errors of the approximation of the initial data by

‖u(·; ·, 0)− uℓ(·; ·, 0)‖1/p̃Lq(Ω;L1(D)) ≤ C
(
∆xℓ

∥∥|u0|BV (D)

∥∥
Lq(Ω)

)1/p̃

≤ C∆x
1/p̃
ℓ

∥∥|u0|BV (D)

∥∥1/p̃
Lq(Ω)

.

We insert this in (4.30) to obtain
(4.31)

‖uℓ(·, t)− uℓ−1(·, t)‖Lq(Ω;Lp̃(D)) ≤ M
1−1/p̃

(
(Cq

u0,t,A,f )
1/p̃ + C∆x

2/(3p̃)
ℓ

∥∥∥|u0|BV (D)

∥∥∥
1/p̃

Lq(Ω)

)
∆x

1/(3p̃)
ℓ

≤ M
1−1/p̃

(
Cq

u0,t,A,f +
∥∥∥|u0|BV (D)

∥∥∥
Lq(Ω)

)1/p̃

∆x
1/(3p̃)
ℓ ,

where we used that ∆xℓ ≤ O(1).

Theorem 4.8. Assume (3.14) – (3.20) for some r > 1 and (4.23). Then, for any sequence
{Mℓ}∞ℓ=0 of sample sizes at mesh level ℓ, we have for the MLMC-FDM estimate EL[u(·, t)] in
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(4.25) the error bound, for q = min{r, 2},

(4.32)

∥∥∥E[u(·, t)]−EL[u(·, t)]
∥∥∥
q

Lq(Ω;Lp(D))

≤ CM
q−q/p

{
(C1

u0,t,A,f )
q∆x

q/(3p)
L +∆x

q/p
L

∥∥∥|u0|BV (D)

∥∥∥
q

L1(Ω)

}

+ CM1−q
0 ‖u0‖qLq(Ω;Lp̃(D))

+ CM
q−q/p̃

{
L∑

ℓ=0

M1−q
ℓ ∆x

q/(3p̃)
ℓ

}(
Cq

u0,t,A,f +
∥∥∥|u0|BV (D)

∥∥∥
Lq(Ω)

)q/p̃

where we have denoted p̃ = max{p, q}, M = max{|M−|, |M+|}, (cf. (3.14)) and

Cj
u0,t,A,f = C(1 + t)

{∥∥∥
(
1 + ‖f(·; ·)‖Lip

)
|u0|BV (D)

∥∥∥
Lj(Ω)

+ ‖A(u0)x‖Lj(Ω;L1(D)) +
∥∥∥|f(u0)−A(u0)x|BV (D)

∥∥∥
Lj(Ω)

}
,

for j = 1, q. In (4.32), C > 0 is a constant that depends on the size of the domain D, but is
independent of L, of {Mℓ}Lℓ=0, and of the parameters u0, f , t and A.

Proof. We raise (4.31) to the q-th power, and insert the resulting estimate into the bound (4.29).
The assertion (4.32) follows upon summing from ℓ = 0, ..., L, and using ∆xℓ ≤ ∆x0 ≤ O(1) and
adding the contribution from term I in (4.28). �

4.4.4. Determining the number of samples needed on each level. The upper bound obtained in
Theorem 4.8 is the basis for an optimization of the numbers Mℓ of MC samples across the mesh
levels. Our selection of the Monte Carlo sample sizes Mℓ will be based on the last term in the error
bound (4.32); we will use a Lagrange multiplier argument to determine the number of samples
needed at each level in order to minimize the computational work given an error tolerance ε.

Lemma 4.9. Assume that ∆xℓ = 2−ℓ∆x0 for some ∆x0 > 0 and that the work scales aymptoti-
cally as in (4.27), i.e.,

(4.33) W ex

L,MLMC = C
L∑

ℓ=0

Mℓ∆x−w
ℓ , W im

L,MLMC = C
L∑

ℓ=0

Mℓ∆x−w
ℓ log(∆x−1

ℓ ),

for w > 0, where w = 11/3 for the explicit scheme and w = 2 for the implicit finite difference
scheme. Assume furthermore that L and ∆x0 are large enough such that ∆xs−w

L > ∆x−w
0 . Given

an error tolerance ε > 0 and that the error at level L scales as (cf. (4.32))

(4.34) ErrL = C

(
L∑

ℓ=0

M1−q
ℓ ∆x

qs/p̃
ℓ +∆x

qs/p
L +M1−q

0

)
.

Then, the optimal sample numbers Mℓ, with respect to the work measure (4.33) and with respect
to the error bound (4.34), are given by

Mex

ℓ ≃ Mex

0 ∆x
s
p̃

0 2
−ℓ( s

p̃
+w

q ),(4.35a)

M im

ℓ ≃ M im

0

∆x
s
p̃

0 2
−ℓ( s

p̃
+w

q )

(ℓ+ log(∆x−1
0 ))

1
q

, ℓ = 1, . . . , L,(4.35b)

where

Mex

0 ≃


 1

ε−∆x
qs
p

0 2−
qsL
p


1 + ∆x

s
p̃

0

L∑

j=1

2j(
(q−1)w

q
− s

p̃ )






1
q−1

,

(4.36a)
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M im

0 ≃


 1

ε−∆x
qs
p

0 2−
qsL
p


log(∆x−1

0 )
q−1
q +∆x

s
p̃

0

L∑

j=1

(
j + log(∆x−1

0 )
) q−1

q 2j(
(q−1)w

q
− s

p̃ )






1
q−1

(4.36b)

where the ≃ indicates that this is the number of samples up to a constant which may depend on
the data (u0, f, A) and the domain but not on ℓ and L. In particular, as L → ∞, the error of the
MLMC-FDM algorithm, (4.32) scales for p = 1, r = q = 2 with respect to work as

∥∥E[u(·, t)]− EL[u(·, t)]
∥∥2
L2(Ω;L1(D))

≤ Ĉu0,t,A,f (W
ex
L,MLMC)

−1/6,(4.37a)

∥∥E[u(·, t)]− EL[u(·, t)]
∥∥2
L2(Ω;L1(D))

≤ Ĉu0,t,A,f

(
W im

L,MLMC(log(W
im
L,MLMC))

−1
)−2/7

.(4.37b)

Proof. From (4.27), under the assumption ∆xℓ = 2−ℓ∆x0 for some ∆x0 > 0, in space dimension
d = 1 the work scales as in (4.33), that is,

W ex
L,MLMC = C

L∑

ℓ=0

Mℓ∆x−w
ℓ = C∆x−w

0

L∑

ℓ=0

Mℓ2
wℓ,

W im
L,MLMC = C

L∑

ℓ=0

Mℓ∆x−w
ℓ log(∆x−1

ℓ ) = C∆x−w
0

L∑

ℓ=0

Mℓ (ℓ+ log(∆x−1
0 )) 2wℓ,

for w = 11/3 in the case of the explicit scheme and w = 2 for the implicit scheme.
The bound for the multi-level error (4.32) with L discretization levels reads, asymptotically as

L → ∞,

ErrL = C
( L∑

ℓ=0

M1−q
ℓ ∆x

qs/p̃
ℓ +∆x

qs/p
L +M1−q

0

)

= C
(
M1−q

0 +∆x
qs/p̃
0

L∑

ℓ=0

M1−q
ℓ 2−qsℓ/p̃ +∆x

qs/p
0 2−qsL/p

)

= C
(
M1−q

0 +∆x
qs/p̃
0

L∑

ℓ=1

M1−q
ℓ 2−qsℓ/p̃ +∆x

qs/p
0 2−qsL/p

)
.

We optimize error versus work assuming a generic convergence order s > 0 of the FV scheme,
bearing in mind that we will choose finally s = 1/3, based on the convergence estimate (4.13).

Using a Lagrange multiplier λ, we get for L := W − λ(ε− ErrL) the first order conditions

0 =
∂L
∂Mℓ

, ℓ = 0, . . . , L.

This means that (omitting the constants C) there exist constants λex and λim which are indepen-
dent of ℓ (but may depend on L) such that, for 1 < q ≤ 2,

∆x−w
0 2ℓw = λex(q − 1)∆x

qs/p̃
0 M−q

ℓ 2−qℓs/p̃, ℓ = 1, . . . , L,

∆x−w
0 = λex(q − 1)M−q

0 , ℓ = 0,

for the explicit scheme and

∆x−w
0 (ℓ+ log(∆x−1

0 ))2ℓw = λim(q − 1)∆x
qs/p̃
0 M−q

ℓ 2−qℓs/p̃, ℓ = 1, . . . , L,

∆x−w
0 log(∆x−1

0 ) = λim(q − 1)M−q
0 , ℓ = 0,

for the implicit scheme. Since q > 1, we may solve for the sample numbers:

M ex
ℓ = (λex(q− 1))

1
q

(
∆x02

−ℓ
) s

p̃
+w

q , M im
ℓ =

(
λim(q − 1)

ℓ+ log(∆x−1
0 )

) 1
q (

∆x02
−ℓ
) s

p̃
+w

q , ℓ = 1, . . . , L.
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and

M ex
0 = (λex(q − 1))

1
q ∆x

w/q
0 , M im

0 =

(
λim(q − 1)

log(∆x−1
0 )

) 1
q

∆x
w/q
0 .

Using the constraint ErrL = ε, we get for the prescribed accuracy ε > 0,

ε = ∆x
qs
p

0 2−
qsL
p +

∆x
w(1−q)

q

0

(λex(q − 1))
q−1
q

(
1 + ∆x

s
p̃

0

L∑

ℓ=1

2ℓ(
(q−1)w

q
− s

p̃ )

)
,

ε = ∆x
qs
p

0 2−
qsL
p +

∆x
w(1−q)

q

0

(λim(q − 1))
q−1
q

(
log(∆x−1

0 )
q−1
q +∆x

s
p̃

0

L∑

ℓ=1

(
ℓ+ log(∆x−1

0 )
) q−1

q 2ℓ(
(q−1)w

q
− s

p̃ )

)
.

We solve this for λex, λim respectively,

λex =
1

∆xw
0 (q − 1)


 1

ε−∆x
qs
p

0 2−
qsL
p


1 + ∆x

s
p̃

0

L∑

j=1

2j(
(q−1)w

q
− s

p̃ )






q
q−1

,

λim =
1

∆xw
0 (q − 1)


 1

ε−∆x
qs
p

0 2−
qsL
p


log(∆x−1

0 )
q−1
q +∆x

s
p̃

0

L∑

j=1

(
j + log(∆x−1

0 )
) q−1

q 2j(
(q−1)w

q
− s

p̃ )






q
q−1

,

and insert it in the expressions for Mℓ, resulting in (4.35):

M ex
ℓ ≃


 1

ε−∆x
qs
p

0 2−
qsL
p


1 + ∆x

s
p̃

0

L∑

j=1

2j(
(q−1)w

q
− s

p̃ )






1
q−1

∆x
s
p̃

0 2
−ℓ( s

p̃
+w

q ),

M im
ℓ ≃


 1

ε−∆x
qs
p

0 2−
qsL
p


log(∆x−1

0 )
q−1
q +∆x

s
p̃

0

L∑

j=1

(
j + log(∆x−1

0 )
) q−1

q 2j(
(q−1)w

q
− s

p̃ )






1
q−1

× ∆x
s
p̃

0 2
−ℓ( s

p̃
+w

q )

(ℓ+ log(∆x−1
0 ))

1
q

, ℓ = 1, . . . , L,

where the ≃ indicates that this is the number of samples up to a constant which may depend on
the data (u0, f, A) and the domain but not on ℓ and L. For M0, we obtain

M ex
0 ≃


 1

ε−∆x
qs
p

0 2−
qsL
p


1 + ∆x

s
p̃

0

L∑

j=1

2j(
(q−1)w

q
− s

p̃ )






1
q−1

,

M im
0 ≃


 1

ε−∆x
qs
p

0 2−
qsL
p


log(∆x−1

0 )
q−1
q +∆x

s
p̃

0

L∑

j=1

(
j + log(∆x−1

0 )
) q−1

q 2j(
(q−1)w

q
− s

p̃ )






1
q−1

Inserting into the work estimate (4.33), we obtain ther asymptotic work vs. accuracy relations

W ex
L,MLMC ≃


 1

ε−∆x
qs
p

0 2−
qsL
p


1 + ∆x

s
p̃

0

L∑

j=1

2j(
(q−1)w

q
− s

p̃ )






1
q−1

∆x−w
0

(
1 + ∆x

s
p̃

0

L∑

ℓ=1

2ℓ(
w(q−1)

q
− s

p̃ )

)
,

W im
L,MLMC ≃


 1

ε−∆x
qs
p

0 2−
qsL
p


log(∆x−1

0 )
q−1
q +∆x

s
p̃

0

L∑

j=1

(
j + log(∆x−1

0 )
) q−1

q 2j(
(q−1)w

q
− s

p̃ )






1
q−1

×∆x−w
0

(
log(∆x−1

0 ) + ∆x
s
p̃

0

L∑

ℓ=1

(
ℓ+ log(∆x−1

0 )
) q−1

q 2ℓ(
w(q−1)

q
− s

p̃ )

)
.
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Assuming that r ≥ 2, we may choose q = 2 and p = 1 which implies p̃ = max{p, q} = 2. With
s = 1/3 we obtain for the explicit scheme with w = 11/3, that

(q − 1)w

q
− s

p̃
=

w − s

2
=

11

6
− 1

6
=

5

3
> 0

and hence the terms 2L
w−s

2 dominate the sums in the expression for W ex
L,MLMC . Choosing ε =

2∆x2s
0 · 2−2sL ≃ 2∆x2s

L , the work for the explicit MLMC scheme is thus of the order

(4.38)

W ex
L,MLMC ≃ ∆x−2s

0 22sL
(
∆x

−w
2

0 +∆x
s−w

2
0 2L

w−s
2

)2

≃ ∆x−2s
0 22sL

(
∆x−w

0 +∆xs−w
0 2L(w−s)

)

≃ ∆x−2s
L

(
∆x−w

0 +∆xs−w
L

)

If ∆xs−w
L > ∆x−w

0 , then this term is dominated by ∆x
−(s+w)
L and

ε ≃ ∆x2s
L ≃

(
∆x

−(s+w)
L

)− 2s
s+w ≃

(
W ex

L,MLMC

)− 2s
s+w .

For the explicit scheme 2s
s+w = 1/6.

For the implicit scheme, we have

(4.39)

W im
L,MLMC ≃ ∆x−2s

0 22sL
(
log (∆x−1

0 )
3/4

∆x
−w

2
0 +∆x

s−w
2

0 (L+ log(∆x−1
0 ))1/22L

w−s
2

)2

≃ ∆x−2s
0 22sL

(
log (∆x−1

0 )
3/2

∆x−w
0 +∆xs−w

0 (L+ log(∆x−1
0 ))2L(w−s)

)

≃ ∆x−2s
L

(
log (∆x−1

0 )
3/2

∆x−w
0 + log(∆x−1

L )∆xs−w
L

)
.

So if log (∆x−1
0 )

3/2
∆x−w

0 < log(∆x−1
L )∆xs−w

L , the work is asymptotically dominated by

W im
L,MLMC ≃ ∆x

−(s+w)
L log(∆x−1

L ),

and we get,

ε ≃ ∆x2s
L ≃

(
∆x

−(s+w)
L

)− 2s
s+w ≃

(
W im

L,MLMC log(W im
L,MLMC)

−1
)− 2s

s+w .

Since s = 1/3 and w = 2 for the implicit scheme, the rate is 2s
s+w = 2/7 up to the logarithmic

factor.
Summing up, under Assumption 3.20 with r ≥ 2 and for p = 1, we have, as L → ∞, the

following error estimate of the MLMC method in terms of work
∥∥E[u(·, t)]− EL[u(·, t)]

∥∥2
L2(Ω;L1(D))

≤ Ĉu0,t,A,f (W
ex
L,MLMC)

−1/6,

∥∥E[u(·, t)]− EL[u(·, t)]
∥∥2
L2(Ω;L1(D))

≤ Ĉu0,t,A,f

(
W im

L,MLMC(log(W
im
L,MLMC))

−1
)−2/7

.

�

Remark 4.10. This is worse than the error vs. work bounds (4.22) for the deterministic schemes
for p = 1 but an improved rate as compared to the single level Monte Carlo, c.f. (4.20). We
conclude the analysis with the observation that in (4.37), we assumed the integrability condition
(3.20) holds with some r ≥ 2. If (3.20) holds with 1 < r < 2, analogous error bounds will result
from the foregoing analysis, albeit with more pessimistic error vs. work bounds.

5. Numerical Experiments

In this section, we will test the method on two examples motivated by two-phase flow in porous
media1. In one space dimension, the time evolution of the water saturation u ∈ [0, 1] can be
modeled by the conservation law

(5.1) ut + f(u)x = (a(u)ux)x, (t, x) ∈ [0, T ]× R, u(0, x) = u0(x), x ∈ R.

1The codes used to produce these experiments can be found at http://folk.uio.no/nilshr/DMLMC.

http://folk.uio.no/nilshr/DMLMC
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The functions f and a are of the form

(5.2) f(u) =
λw(u)

λw(u) + λo(u)
, a(u) =

λw(u)λo(u)

λw(u) + λo(u)
p′c(u),

here p′c denotes the derivative of the capillary pressure. In some models this derivative has the
expression

(5.3) p′c(u) = −
(
u−κ/3 − 1

)1/κ
,

for a constant κ ∈ (0, 1), see [17]. The functions λw, λo are the phase mobilities/relative perme-
abilities of the water and the oil phase respectively. The relative permeability of the water phase
λw is a monotone function with λw(0) = 0, λw(1) = 1, and the relative permeability of the oil
phase λo is a monotone decreasing function such that λo(0) = 1 and λo(1) = 0. Often one uses
the simple expressions

(5.4) λw(u) = u2, λo(u) = (1− u)2.

Such a form of the relative permeability is of course a simplification, more accurate models are
based on experiments. These functions therefore have some uncertainty associated with them.
Hence it is natural to model the relative permeabilities as random variables.

Using (5.3) and (5.4) will yield an expression for A(u) =
∫
a(u) du that is costly to evaluate

numerically since there is no closed form expression available. Therefore we use the expression

(5.5) A(u) =
1

282

( λ(u)

λw(u) + λo(u)

)2
.

This function is quite close to the diffusion function given by (5.2), (5.3) and (5.4) for κ = 4. In
our numerical experiments, we use the domains D = (0, 2) with periodic boundary conditions.
Furthermore, we test only the implicit scheme.

In the experiments we also indicate an estimator of the variance of the computed estimation of
the mean. The estimate of the variance is calculated using the following formula

VL =

L∑

ℓ=1

∆Vℓ + V0,

∆Vℓ = EMℓ

[
(uℓ − uℓ−1 − EMℓ

[uℓ − uℓ−1])
2
]
,

V0 = EM0

[
(u0 − EM0

[u0])
2
]
.

When choosing the number of samples we use formulas (4.35) – (4.36) with “=” replacing “≃”,
and p = 1, r = q = 2 and s = 1/3. If the resulting number is not an integer, we choose the number
of samples to be the smallest integer greater than this number.

In order to compute an estimate of

E

[∥∥EL[u(·, T )]− E[u(·, T )]
∥∥2
L1(D)

]
,

we use the root mean square estimate

(5.6) RMS =

√√√√
N∑

k=1

(RMSk)2/N ,

where

RMSk = 100× ‖Uref(·, T )− Uk(·, T )‖L1

‖Uref(·, T )‖L1

.

In [29], the sensitivity of the error with respect to the parameter N is investigated. In the present
numerical experiments, we use N = 10 which was shown to be sufficient for most problems [29, 30].
The reference approximation of E[u(T )], Uref , was computed by first computing an approximation

u∆(ωi; ·, T ) to u(ωj ; ·, T ) for a large number of uniformly spaced points {ωi}Ki=1 in Ω (which in
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our examples are a closed interval and a rectangle), and then finding Uref(·, T ) by applying the

trapezoidal rule to approximate the integral
∫
Ω
u(ω; ·, T ) dω using {u∆(ωi; ·, T )}Ki=1.

The CFL constraint which ensures convergence of the nonlinear solver at each (implicit) timestep
was (empirically) chosen as

max{10∆x, 0.0824 log(∆x) + 0.7286}.
This is the maximum of a linear interpolation in log(∆x) between (log(2−4), 1/2) and (log(2−11), 1/10),
and 10∆x, and was found to be sufficient to ensure stability for these two numerial experiments.

5.1. Random exponent. For this example we will model the relative permeabilities by

(5.7) λw(u) = up(ω), λo(u) = (1− u)p(ω),

where the random exponent p is uniformly distributed in the interval [1.5, 2.5]. As initial data, we
use

(5.8) u0(x) =

{
0, x ∈ [0, 0.1) ∪ [1, 2),

1, x ∈ [0.1, 1),

and periodically extended outside [0, 2]. Figure 1 shows a sample of the approximate random
entropy solution with p = 2.13 calculated using 29 grid points, at time T = 0.5, and an estimate
of the mean E[s(·, 0.5)] computed by the implicit multilevel Monte Carlo finite difference method
with ∆x0 = 2−4 and L = 5, which gives M0 = 4150. To compute the reference solution we

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x

0

0.2

0.4

0.6

0.8

1 u0
u∆t(x, 0.5)

Figure 1. Left: One sample of the random entropy solution of (5.1) with (5.8),
(5.5) and (5.7) at time T = 0.5 computed on a mesh with 512 points using the
implicit scheme. Right: A sample of the estimator EL[u(·, T )] for (5.1) with (5.8),
(5.2) and (5.7) at time T = 0.5 (solid line), the dashed lines denote EL[u(·, T )] ±
standard deviation.

approximated the expectation with respect to the uniform probability measure in the interval
(1.5, 2.5) by a trapezoidal rule with 200 equispaced grid points in [1.5, 2.5].

Table 1 shows the estimated RMS errors as a function of the number of levels L for L = 1, . . . , 6
and ∆x0 = 2−4. In addition we show the rates r1 and r2 based on a best linear fit under the
assumptions that error ∼ (∆xL)

r1 and error ∼ (time used)−r2 . We see that the rates, both with

L 1 2 3 4 5 6 rate

∆xL 2−5 2−6 2−7 2−8 2−9 2−10

RMS 10.5 5.0 3.0 1.5 0.6 0.3 1.04
run time (s) 1 4 16 73 321 1405 0.49

Table 1. RMS vs. L for experiment 1.
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respect to error vs. mesh resolution at level L and with respect to error vs. work (in this case
crudely measured via the run time), are better than what theory predicts.

5.2. Random residual saturation. In the following numerical example, we will model the rel-
ative permeabilities by two random variables

λw(u) = 1u>u∗
w(ω1)(u)

(u− u∗
w(ω1))

2

(1− u∗
w(ω1))

2 , λo(u) = 1u≤u∗
o(ω2)(u)

(
1− u

u∗
o(ω2)

)2

,(5.9)

with u∗
w(ω1) ∼ U(0.0, 0.3), u∗

o(ω2) ∼ U(0.7, 1.0), u∗
w(ω1) ⊥ u∗

o(ω2),

that is, we assume that the residual saturations u∗
w, u

∗
o are independent, uniformly distributed

random variables. As initial data, we use again (5.8) with periodic boundary conditions.
The resulting (f,A)(ω1, ω2; ·) again satisfies assumptions (3.13) – (3.19), so that the random

entropy solution from Definition 3.6 exists and Theorems 3.7, 4.8 apply. In Figure 2 on the left
hand side, we have plotted a sample u(ω;T, ·) of the random entropy solution at time T = 0.5 and
on the right hand side we have plotted a sample of the MLMC-FDM estimator EL(u(T )) for L = 5,
∆x0 = 2−4. To compute the reference solution in this case we approximated the expectation with

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x

0

0.2

0.4

0.6

0.8

1 u0
u∆t(x, 0.5)

Figure 2. Left: One sample of the random entropy solution of (5.1) with (5.8),
(5.2) and (5.9) at time T = 0.5 computed on a mesh with 512 points. Right: A
sample of the estimator E5[u(·, T )] for (5.1) with (5.8), (5.2) and (5.9) at time
T = 0.5 (solid line), the dashed lines show E5[u(·, T )] ± standard deviation.

respect to the uniform probability measure over the rectangle [0, 0.3] × [0.7, 1.0] by a tensorized
trapezoidal rule with 60× 60 uniformly spaced points in the rectangle [0, 0.3]× [0.7, 1.0]. Table 2
shows the estimated errors RMS calculated using (5.6) as a function of L. Again, we observe

L 1 2 3 4 5 6 rate

∆xL 2−5 2−6 2−7 2−8 2−9 2−10

RMS 6.9 3.6 2.2 1.2 0.7 0.5 0.75
run time (s) 2 11 60 227 628 2457 0.37

Table 2. RMS vs. L for experiment 2.

that the numerical convergence rates are larger than the theoretical bounds.
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[3] J. Boussinesq. Recherches théoriques sur l′écoulement des nappes d′eau infiltrées dans le sol et sur le débit des
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[24] S. N. Kružkov. First order quasilinear equations with several independent variables. Mat. Sb. (N.S.), 81
(123):228–255, 1970.

[25] A. Kurganov and E. Tadmor. New high-resolution central schemes for nonlinear conservation laws and
convection-diffusion equations. J. Comput. Phys., 160(1):241–282, 2000.

[26] M. Ledoux and M. Talagrand. Probability in Banach spaces. Classics in Mathematics. Springer-Verlag, Berlin,
2011. Isoperimetry and processes, Reprint of the 1991 edition.

[27] L. Leibenzon. Complete Works, volume 2, chapter The Motion of a Gas in a Porous Medium. Acad. Sciences
URSS, Moscow, 1930.

[28] S. Mishra, N. H. Risebro, C. Schwab, and S. Tokareva. Numerical solution of scalar conservation laws with
random flux functions. SIAM/ASA Journal on Uncertainty Quantification, 4(1):552–591, 2016.

[29] S. Mishra and C. Schwab. Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conser-
vation laws with random initial data. Math. Comp., 81(280):1979–2018, 2012.



MLMC DIFFUSION 27
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