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Abstract

Shape gradients of PDE constrained shape functionals can be stated
in two equivalent ways, both of which rely on the solution of two
boundary value problems (BVPs). Usually, these two BVPs can only
be solved approximatively, for instance, by finite element methods.
However, when used with finite element solutions, the equivalence of
the two formulations breaks down. By means of a comprehensive
convergence analysis, we establish that one expression for the shape
gradient offers better accuracy in a finite element setting. The results
are confirmed by several numerical experiments.

1 Introduction

Shape calculus studies the “differentiation of shape functionals with respect
to the variation of a domain they depend upon”. Over the last two decades
this notion has been made rigorous, notably by the introduction of the ve-
locity method by Zolesio [8, 22] and the domain perturbation method by
Simon [21] and Eppler [9, 10]. Shape calculus has also become important as
a key tool in the field of optimization, where it supplies the so-called shape
gradient, that is, the first order shape derivative, for use in the framework of
descent methods. Yet, methods for shape optimization are outside the scope
of this article and we refer the reader to the monographs [1,7,12,15,16,20,22].

Shape optimization entails the approximate numerical computation of
shape gradients. This step will be the focus of this article. Of course, a vast
diversity of shape functionals is conceivable, leading to vastly different types
of shape gradients. Thus, we have to adopt a “case study approach” and
restrict our study to a special, albeit important, class of shape functionals.

The shape functionals under scrutiny are least squares output functionals
for solutions of scalar second-order elliptic boundary value problems. They
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belong to the category of PDE constrained shape functionals and have widely
been considered in articles on shape optimization [2, 13].

In [1], for instance, formulas have been derived for the associated shape
gradients. They are based on solutions u and p of two boundary value prob-
lems , called state and adjoint problem. Starting point for our investigations
was the insight that the formulas can be stated in two equivalent ways, (i)
as expressions involving traces of u and p on the boundary of the domain,
and (ii) by means of volume integrals on the domain, see [4, Sect. 6].

The situation resembles that faced for quite a few common output func-
tionals depending on solutions of second-order elliptic PDEs. Examples are
total heat flux in heat conduction, lift functionals for potential flow [13], far
field functionals [18,19], and electromagnetic force functionals [17]. All these
functionals can be stated as integrals over boundaries or over parts of the
domain, and the same value is obtained when inserting exact solutions of
state and adjoint BVPs. Both kinds of formulas can also be used in the con-
text of finite element approximation, but when applied to discrete solutions,
they fail to give the same answer. More strikingly, the volume integrals often
display much faster convergence and provide superior accuracy compared to
their boundary based counterparts. An explanation is that the expressions
featuring volume integrals enjoy continuity in energy norm, whereas integrals
of traces are not well-defined on the natural variational spaces. This makes
a crucial difference, because we can benefit from superconvergence, when
evaluating continuous functionals for Galerkin solutions [3, Sect. 2].

This made us suspect that similar effects could be observed for the differ-
ent expressions for shape gradients and their use with finite element solutions.
The analysis and numerical experiments of this article largely confirm our
expectation that volume based expressions for the shape gradient often of-
fer better accuracy than the use of formulas involving traces on boundaries.
This is the message of both the a priori convergence estimates developed
in Section 3, see Theorems 1 and 2, and of the numerical tests reported in
Section 4.

What compounds the difficulties of gauging the quality of formulas for
shape gradients is the fact that they must be viewed as linear functionals on
spaces of infinitesimal deformations. Of course, one can switch back to func-
tions via the Riesz representation theorem, but the choice of the underlying
inner product is somewhat arbitrary and might bias the outcome. Thus, we
decide to study the errors of shape gradients directly in the relevant dual
norms.

2



2 Shape Gradients

Let Ω ⊂ Rd, d = 2, 3, be an open bounded domain with piecewise smooth
boundary ∂Ω, and let J (Ω) ∈ R be a real-valued quantity of interest asso-
ciated to it. One is often interested in its shape sensitivity, which quantifies
the impact of relatively small perturbations of ∂Ω on the value J (Ω).

For this purpose, we model perturbations of the domain Ω through maps
of the form

TV := I + V , (1)

where I is the identity operator and V is a vector field in C1(Rd;Rd). It
can easily be proven that the map (1) is a diffeomorphism for ∥V∥C1 < 1 [1,
Lemma 6.13]. Therefore, it is natural to consider J (Ω) as the realization of
a shape functional, a real map

J : A → R

defined on the family of admissible domains

A :=
{
TV(Ω) ;V ∈ C1(Rd;Rd) , ∥V∥C1 < 1

}
.

The sensitivity of J (Ω) with respect to the perturbation direction V can
be expressed through the Eulerian derivative of the shape functional J in
the direction V , that is,

dJ (Ω;V) := lim
s↘0

J (Ts·V(Ω)) − J (Ω)

s
. (2)

It goes without saying that it is desirable that (2) exists for all possible
perturbation directions V . It is therefore natural to define a shape functional
J to be shape differentiable at Ω if the mapping

dJ (Ω; ·) : C1(Rd;Rd) → R, V 7→ dJ (Ω;V) . (3)

defined by (2) is linear and continuous on C1(Rd;Rd). In literature, the
mapping dJ (Ω;V) is called shape gradient of J at Ω, as it is the Gâteaux
derivative in 0 ∈ C1(Rd;Rd) of the map

V 7→ J (TV(Ω)) ,

see [8, Chapter 9, Definition 2.2]. Note that Formula (2) is well-defined for
any vector field in the Banach space C1(Rd;Rd), and the shape gradient is
an element of its dual space.
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Remark 1. In literature, perturbations as in (1) are known as perturbations
of the identity. From a differential geometry point of view, this approach is
less general than the so called velocity method, which is, for instance, intro-
duced in [8, Chapter 4]. However, both methods lead to the same formula for
the shape gradient, which merely takes into account first order perturbations
of the shape functional J [8, Chapter 9, Thm 3.2].

An interesting property of shape gradients is expressed in the Hadamard
structure theorem [8, Chapter 9, Thm 3.6]. If ∂Ω is smooth, dJ (Ω, ·) admits
a representative g(Ω) in the space of distributions Dk(∂Ω)

dJ (Ω,V) = ⟨g(Ω), γ∂ΩV · n⟩Dk(∂Ω) , (4)

where γ∂ΩV · n is the normal component of V on the boundary ∂Ω. This
implies that only normal displacements of the boundary have an impact on
the value of J (Ω). However, we should take into account that this is no
longer true if the boundary ∂Ω is only piecewise smooth.

We are particularly interested in PDE constrained shape functionals of
the form

J (Ω) =

∫
Ω

j(u) dx , (5)

where j : R → R is a Lipschitz continuous-differentiable function and u is
the solution of the state problem, a scalar elliptic equation with Neumann or
Dirichlet boundary conditions{

L(u) = f in Ω ,
u = g or ∂u

∂n
= g on ∂Ω .

(6)

The functions f and g are assumed to belong to L2(Rd) (H1(Rd) for aNeu-
mann BVP) and H2(Rd), respectively, and they are identified with their
restriction on Ω and ∂Ω.

Explicit formulas for dJ (Ω) can easily be derived both for unconstrained
and PDE constrained shape functionals, cf. [8, Chapter 9, Section 4.3, and
Chapter 10, Section 2.5]. In the case of PDE constrained shape functionals,
the formula involves the integration of u, the solution of (6), and p, the
solution of an adjoint problem{

L(p) = j′(u) in Ω ,

p = 0 or ∂p
∂n

= 0 on ∂Ω .
(7)

As different L lead to different formulas for the Eulerian derivative, from now
on we only consider the model elliptic operator

L(u) = −∆u + u , (8)
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which should be regarded as a representative for the class of scalar elliptic
differential operators of order two.

As mentioned in the introduction, dJ (Ω;V) can be formulated as an
integral in volume, as well as an integral on the boundary. For example, the
formula for the PDE constrained shape functional (5) with elliptic operator
(8) and Dirichlet boundary conditions u = g on ∂Ω reads (see the Appendix
for the derivation)

dJ (Ω,V) =

∫
Ω

(
∇u · (DV + DVT )∇p− fV · ∇p

+ divV(j(u) −∇u · ∇p− up) (9)

+ (j′(u) − p)(∇g · V) −∇p · ∇(∇g · V)

)
dx,

and can be recast as

dJ (Ω,V) =

∫
∂Ω

(V · n)

(
j(u) +

∂p

∂n

∂(u− g)

∂n

)
dS . (10)

The volume integral (9) and the boundary integral (10) are equivalent
representations of the shape gradient dJ (Ω;V). However, the bulk of lit-
erature mainly considers (10) and does not pay attention to (9), probably
because the former better matches the theoretical result (4). Only recently it
has been realized that the volume representation (9) might be better suited
for computations, see [4] and [8, Chapter 10, Remark 2.3].

Remark 2. In the case of Neumann boundary conditions ∂p
∂n

= 0 on smooth
domains, the counterparts of Formulas (9) and (10) read

dJ (Ω,V) =

∫
Ω

(
(∇f · V)p + ∇u · (DV + DVT )∇p

+ divV(fp + j(u) −∇u · ∇p− up)

)
dx

+

∫
∂Ω

(∇g · V)p + gp divΓ V dS , (11)

where divΓ denotes the tangential divergence on ∂Ω, and

dJ (Ω,V) =

∫
∂Ω

V · n
(
j(u) −∇u · ∇p− up + fp +

∂gp

∂n
+ Kgp

)
dS , (12)

where K is the mean curvature of ∂Ω.
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3 Approximation of Shape Gradients

In this section we investigate the approximation of the shape gradient dJ .
For the sake of readability, we perform the analysis for the elliptic operator
(8) in 2D with Dirichlet boundary conditions only. The results can easily be
extended to general elliptic operators in divergence form, in general dimen-
sions (with a correction on the convergence rates), and both with Dirichlet
and Neumann boundary conditions.

To better stress the dependence of dJ on the solution of the state and
adjoint problem u and p, as well as to distinguish between Formula (9) and
(10), we introduce the notation

dJ (Ω, u, p;V)Vol :=

∫
Ω

(
∇u · (DV + DVT )∇p− fV · ∇p

+ divV(j(u) −∇u · ∇p− up)

+ (j′(u) − p)(∇g · V) −∇p · ∇(∇g · V)

)
dx ,

(13)

dJ (Ω, u, p;V)Bdry :=

∫
∂Ω

V · n
(
j(u) +

∂p

∂n

∂(u− g)

∂n

)
dS . (14)

Note that, provided u and p are exact solutions of (6) and (7),

dJ (Ω,V) = dJ (Ω, u, p;V)Vol = dJ (Ω, u, p;V)Bdry . (15)

The operator dJ (Ω, ·) can be approximated by replacing the functions
u and p with Ritz–Galerkin Lagrangian finite elements solutions of (6) and
(7) respectively. We consider approximations based on discretization with
finite elements, as this approach is very popular in shape optimization due
to its flexibility for engineering applications. Yet, approximations based on
boundary element methods are also possible and they are thoroughly inves-
tigated [11,14,23].

Equality (15) certainly breaks down when the functions u and p are ap-
proximated with finite elements. Thus, a natural question is which formula
of (13) and (14) is better suited for an approximation of dJ (Ω, ·) in the sense
of linear operator. The following theorem shows that Formula (13) achieves
the superconvergence offered by Galerkin approximation. Throughout we
tacitly assume that shape-regular and quasi-uniform families of meshes are
employed [6, Def. (4.4.13)].

Theorem 1. Let uh and ph be Ritz–Galerkin linear Lagrangian finite ele-
ments approximations of the solutions u and p of (6) and (7). Furthermore,
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assume that the boundary value problem (6) is at least H2-regular [5, Chap-
ter II, Definition 7.1], that the source function f is in H1(Ω) and that the
boundary data g is a restriction of a function in H2(RN). Then1

|dJ (Ω,V) − dJ (Ω, uh, ph;V)Vol| ≤ C∥V∥W 1,∞O(h2),

where h is the meshwidth.

Proof. From the equality dJ (Ω,V) = dJ (Ω, u, p;V)Vol and the linearity of
dJ (Ω,V) in V , we immediately get

|dJ (Ω,V) − dJ (Ω, uh, ph;V)Vol|

≤ ∥V∥W 1,∞

(
|
∫
Ω

(−∇g · 1)(p− ph) dx|

+ |
∫
Ω

j(u) − j(uh) + (j′(u) − j′(uh))∇g · 1 dx|

+ |
∫
Ω

∇u · ∇p + up−∇uh · ∇ph − uhph dx|

+ |
∫
Ω

∇(p− ph) · (∇(∇g · 1) + (∇g · 1− f)1) dx|

+ 2|
∫
Ω

∇u · 1∇p−∇uh · 1∇ph dx|
)
,

(16)

where 1 is a matrix and 1 is a vector with entries equal 1. The proof boils
down to bounding each integral in the previous inequality and applying stan-
dard FEM convergence and interpolation estimates.

With the Cauchy–Schwarz inequality we get

|
∫
Ω

(−∇g · 1)(p− ph) dx| ≤ ∥g∥H1(Ω)∥p− ph∥L2(Ω) .

Thanks to the Lipschitz continuity of the function j and, again, by the
Cauchy–Schwarz inequality, we obtain

|
∫
Ω

j(u) − j(uh) + (j′(u) − j′(uh))∇g · 1 dx|

≤ C∥j∥W 1,∞
R

∥g∥H1(Ω)∥u− uh∥L2(Ω) + O(∥u− uh∥2L2(Ω)) .

1We write C for generic constants, whose value may differ between different occurrences.
They may depend only on Ω, shape-regularity and quasi-uniformity.
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The third integral in (16) can conveniently be split into∫
Ω

∇u · ∇p + up−∇uh · ∇ph − uhph dx

=

∫
Ω

(
∇p · ∇(u− uh) + ∇uh · ∇(p− ph) + p(u− uh) + uh(p− ph)

)
dx ,

=

∫
Ω

∇p · ∇(u− uh) + p(u− uh) dx +

∫
Ω

∇u · ∇(p− ph) + u(p− ph) dx

+

∫
Ω

∇(p− ph) · ∇(uh − u) + (p− ph)(uh − u) dx . (17)

Exploiting Galerkin orthogonality of u−uh and p−ph to the finite dimensional
trial space Vh in the first two integrals in (17), and applying the Cauchy–
Scharz inequality on the third one, we obtain the following bound∫

Ω

∇u · ∇p + up−∇uh · ∇ph − uhph dx

≤ inf
wh∈Vh

∥p− wh∥H1(Ω)∥u− uh∥H1(Ω) + inf
wh∈Vh

∥u− wh∥H1(Ω)∥p− ph∥H1(Ω)

+ ∥u− uh∥H1(Ω)∥p− ph∥H1(Ω) .

The fourth and the fifth integral in (16) can be bounded with standard du-
ality techniques. We give the details for the fourth integral in (16) only, since
the procedure for the remaining one is similar. We introduce the function w
as solution to the adjoint PDE{

−∆w + w = − div (∇(∇g · 1) + (∇g · 1− f)1) in Ω ,
∂w
∂n

= (∇(∇g · 1) + (∇g · 1− f)1) · n on ∂Ω .
(18)

Then, by exploiting the Galerkin orthogonality of p− ph to the finite dimen-
sional trial space Vh

|
∫
Ω

∇(p− ph) · (∇(∇g · 1) + (∇g · 1− f)1) dx|

= |
∫
Ω

∇w · ∇(p− ph) + w(p− ph) dx| ,

= inf
wh∈Vh

|
∫
Ω

∇(w − wh) · ∇(p− ph) + (w − wh)(p− ph) dx| ,

≤ ∥p− ph∥H1(Ω) inf
wh∈Vh

∥w − wh∥H1(Ω) .

Owing to the H2-regularity of (6), we conclude the proof with standard FEM
convergence estimates.
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Remark 3. The quadratic rate of convergence in Theorem 1 depends on the
regularity of the functions u and p. If the assumption on the H2-regularity of
(6) is not fulfilled, the rate of convergence deteriorates to fractional values, but
the formula is still well-defined, as long as H1(Ω)-weak solutions exist. On
the other hand, if the functions u and p satisfy stronger regularity conditions,
the convergence may be improved by increasing the polynomial order of the
basis functions of FEM.

For Formula (14), the following holds:

Theorem 2. Let uh and ph be Ritz–Galerkin linear Lagrangian finite ele-
ments approximations of the solutions u and p of (6) and (7). In addition
to the hypothesis of Theorem 1 let us assume that

∥u∥W 2
p (Ω) ≤ C∥f∥Lp(Ω)

for some p > d, where d is the dimension of Ω. Then

|dJ (Ω,V) − dJ (Ω, uh, ph;V)Bdry| ≤ C∥V · n∥L∞(Ω)O(h),

where h is the meshwidth.

Proof. The result follows straightforwardly from the W 1,∞(Ω) approximation
properties of the finite element method

∥u− uh∥W 1,∞(Ω) ≤ Ch ,

∥p− ph∥W 1,∞(Ω) ≤ Ch ,

cf. [6, Corollary 8.1.12].

Remark 4. For dJ (Ω, u, p;V)Bdry to be well-defined, the functions u and p
must be smoother than merely belonging to H1(Ω).

4 Numerical Experiments

We numerically study the approximation of the shape gradient for the quadratic
shape functional

J (Ω) =

∫
Ω

u2 dx

under the PDE constraint{
−∆u + u = f in Ω ,

u = g on ∂Ω .
(19)
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It is challenging to numerically investigate convergence rates in the C1(Rd;Rd)
dual norm. Therefore, we only consider an operator norm over a finite dimen-
sional space of vector fields in P3,3(R2), whose components are multivariate
product polynomials of degree three. Additionally, the C1(Rd;Rd)–norm is
replaced with the H1(Ω)–norm, which is more tractable computationally.
The convergence studies are performed monitoring the approximate dual
norms

errVol :=

(
max
V∈P3,3

1

∥V∥2H1(Ω)

|dJ (Ω,V) − dJ (Ω, uh, ph;V)Vol|2
)1/2

and

errBdry :=

(
max
V∈P3,3

1

∥V∥2H1(Ω)

|dJ (Ω,V) − dJ (Ω, uh, ph;V)Bdry|2
)1/2

on different meshes generated through uniform refinement2.
Although analytical values are in some cases computable, the reference

values dJ (Ω,V) are approximated by evaluating dJ (Ω, uh, ph;V)Vol on a
mesh with an extra level of refinement. This gives us much flexibility in
the selection of test cases (the same code can be used for different geometries
Ω, source functions f and g, and vector fields V). Agreement with the theo-
retical predictions of Theorem 1 and a numerical study in the third numerical
experiment confirm the viability of this approach.

In the implementation, we opt for linear Lagrangian finite elements on
quasi–uniform triangular meshes with nodal basis functions 3. Integrals in the
domain are computed by 7 point quadrature rule in each triangle, while line
integrals with 6 point Gauss quadrature on each segment. The boundary of
the computational domains is approximated by a polygon, which is generally
believed not to affect the convergence of linear finite elements [6, Section
10.2].

The first numerical experiment is constructed starting from the solu-
tion

u(x, y) = cos(x) cos(y)

and setting f and g accordingly. The computational domain is a circle with
radius

√
π (see Figure 1 , left). The predicted quadratic and linear conver-

gence with respect to the meshwidth h for, respectively, Formulas (13) and
(14) are evident in Figure 2 (left).

2In experiments 1 and 4 we consider domains with curved boundaries. In this case the
new mesh is always adjusted to fit the boundary.

3The experiments are perfomed in MATLAB and are based on the library LehrFEM
developed at the ETHZ.
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The second experiment is performed on a triangle with corners located
at (−π,−π), (π,−π), and (0, π) (see Figure 1, right). The source functions
and the boundary data are chosen as follows:

f(x, y) = x2 − y2 , g(x, y) = x + y .

Again, the rates of convergence predicted in Theorems 1 and 2 are confirmed
by the experiment, see Figure 2 (right).

Figure 1: Plot of the state problem solution u in the computational domain
Ω for the first (left) and the second (right) numerical experiment.
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Figure 2: Convergence study for the first (left) and the second (right) numer-
ical experiment. Obviously, Formula (13) is better suited for a finite element
approximation of the Eulerian derivative dJ (Ω,V) than Formula (14).

The third numerical experiment is conducted on a domain which does
not guarantee H2-regularity of the state problem (6), see Figure 3 (left). The
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source and the boundary functions are, respectively, f(x) = 1 and g(x) = 0.
As expected, the convergence rates of the formulation in volume deteriorates
by a factor of 0.5, because the reentrant corner has an interior angle of ampli-
tude 2π ·60/61 which affect the regularity of the functions u and p. Note also
that, due to the poor regularity, the formulation of dJ (Ω;V) as a boundary
integral is barely defined. Moreover, to show that this observation is not due
to a poor reference solution, we compute the maximal absolute error errVol of
the reference solution used in the convergence study with respect to a more
accurate approximation of dJ (Ω,V) obtained performing an additional re-
finement of the mesh. Since this error is 4.8 · 10−5, the reference solution
used in the experiment is accurate enough.
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O(h1.5) Vol
Bdry

Figure 3: Plot of the state problem solution u in the computational domain
Ω (left) for the third numerical experiment, and corresponding convergence
study (right). Due to the poor regularity of the functions u and p, the
convergence rate of dJ (Ω, uh, ph;V)Vol deteriorates while dJ (Ω, uh, ph;V)Bdry

does not seem to converge.

In the fourth numerical experiment, we investigate the Neumann
problem and the accuracy of Formulas (11) and (12), for which we expect
results similar to the Dirichlet case. As in the first numerical experiment, we
consider the solution

u(x, y) = cos(x) cos(y)

and we choose f and g accordingly. The computational domain is again a
disc with radius

√
π. Surprisingly, we observe that Formula (12) performs

as well as Formula (11), showing quadratic convergence in the meshwidth h
too, see Figure 4.
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Figure 4: Convergence study for a non-homogeneous Neumann boundary
value problem. The quadratic convergence of dJ (Ω, uh, ph;V)Bdry is unex-
pected and still defies a theoretical explanation.

A closer look at Formula (12) reveals a cancellation of the normal deriva-
tives of u and p, so that the formula is equivalent to

dJ (Ω,V) =

∫
∂Ω

V · n (j(u) −∇Γu∇Γp− up + fp + Kgp) dS , (20)

where ∇Γ stands for the tangential derivative. To further investigate we split
Formula (20) as follows

dJ (Ω,V) =

∫
∂Ω

V · n (j(u) − up + fp + Kgp) dS

−
∫
∂Ω

V · n (∇Γu∇Γp) dS . (21)

An approximation of the first integral in (21) by FEM converges quadrat-
ically in h. This can be shown similarly as in the proof of Theorem 1, due to
the continuity of the Dirichlet trace operator with respect to H1(Ω). On the
other hand, the good approximation of the tangential derivative of u and p
still defies a theoretical explanation.

Finally, all experiments are repeated considering the operator norm on
the subspace of multivariate polynomials of degree two instead of three. The
results qualitatively agree with the observations made above, see Figure 5.
Thus, the arbitrary choice of restricting the operator norm on the finite
dimensional subspace of multivariate polynomial vector fields of degree three
is not so severe.
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Figure 5: Convergence study for the first (left,up), the second (right, up), the
third (left, down), and the fourth (right, down) numerical experiment, when
considering the operator norm on the subspace of multivariate polynomials
of degree two. The results agree with those obtained with cubic polynomials.

5 Conclusion

The shape gradient of shape differentiable PDE constrained shape function-
als is an element of the dual space of C1(Rd;Rd), and it can be expressed
either as an integration in volume or as an integration on the boundary. The-
orems in Section 3 and numerical experiments in Section 4 confirm that it
is advisable to evaluate the shape gradient with an integration in volume,
when the underlying approximation method is FEM.

This observation might be of relevance for shape optimization, because, in
the words of M. Berggren, “the sensitivity information - directional deriva-
tives of objective functions and constraints - needs to be very accurately
computed in order for the optimization algorithms to fully converge” [4].
However, shape optimization techniques usually rely on function representa-
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tive of the shape gradient on the boundary. If volume based formulas are
used, it takes an extension of boundary deformations into the interior of
the domain, in order to obtain those. It remains to be seen whether the
superiority of volume formulas persists under these conditions.

Appendix

We give a detailed derivation of Formula (9). Let u be the H1(Ω)–weak
solution of the following state problem{

−∆u + u = f in Ω ,
u = g on ∂Ω .

(22)

It is assumed that the Dirichlet problem (22) is H2-regular, so that its solu-
tion u is at least in H2(Ω). We consider the shape functional

J (Ω) =

∫
Ω

j(u) dx ,

and we introduce the Lagrangian

L (Ω, v, q, λ) :=

∫
Ω

j(v) + (∆v − v + f)q dx +

∫
∂Ω

λ(g − v) dS , (23)

where the functions v, q and λ are in H2(Rd). Performing integration by
parts, the Lagrangian can be rewritten as

L (Ω, v, q, λ) =

∫
Ω

j(v) −∇v · ∇q − v q + f q dx +

∫
∂Ω

∂v

∂n
q + λ(g − v) dS ,

=

∫
Ω

j(v) + (∆q − q)v + f q dx +

∫
∂Ω

∂v

∂n
q − ∂q

∂n
v + λ(g − v) dS ,

The saddle point of L (Ω, ·, ·, ·) is characterized by

⟨∂L (Ω, v, q, λ)

∂v
, ϕ⟩ = ⟨∂L (Ω, v, q, λ)

∂q
, ϕ⟩ = ⟨∂L (Ω, v, q, λ)

∂λ
, ϕ⟩ = 0

for all ϕ ∈ H2(Rd), which, by density, leads to{
−∆v + v = f in Ω ,

v = g on ∂Ω ,
(24a){

−∆q + q = j′(v) in Ω ,
q = 0 on ∂Ω ,

(24b)

λ = − ∂q

∂n
on ∂Ω , (24c)
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weakly in H1(Rd). Thus, for Ω fixed,

J (Ω) = min
v∈H2(Rd)

max
q,λ∈H2(Rd)

L (Ω, v, q, λ) , (25)

because
J (Ω) = L (Ω, u, q, λ) for all q, λ in H2(Rd) .

The material derivative of a generic function f with respect to the deforma-
tion TV is defined as

ḟ := lim
s↘0

f ◦ Ts·V − f

s
.

Note that, if f is independent of Ω, ḟ ∈ H1(Rd) for f ∈ H2(Rd).
To compute the Eulerian derivative of J (Ω), the Correa-Seeger theorem

can be applied on the righthand side of (25) [8, Chapter 10, Section 6.3],
so that a formula for dJ (Ω) can be obtained by evaluating the Eulerian
derivative of the Lagrangian (23) in its saddle point. For TV(x) := x+V(x),
the Eulerian derivative of (23) reads

lim
s↘0

L (Ts·V(Ω), v, q, λ) − L (Ω, v, q, λ)

s
=

=

∫
Ω

(
j′(v)v̇ −∇v̇ · ∇q −∇v · ∇q̇ + ∇v · (DV + DVT )∇q

− v̇ q − v q̇ + ḟ q + f q̇ + div(V) (j(v) −∇v · ∇q − v q + fq)
)
dx

+

∫
∂Ω

∂̇v

∂n
q +

∂v

∂n
q̇ + λ(ġ − v̇) + λ̇(g − v) + divΓ(V)

(
∂v

∂n
q + λ(g − v)

)
dS

=

∫
Ω

j′(v)v̇ + ∆q v̇ − q v̇ dx +

∫
Ω

∆v q̇ − v q̇ + f q̇ dx

+

∫
∂Ω

∂̇v

∂n
q + λ̇(g − v) + divΓ(V)

(
∂v

∂n
q + λ(g − v)

)
dS

+

∫
Ω

∇v · (DV + DVT )∇q + ḟ q + div(V) (j(v) −∇v · ∇q − v q + fq) dx

+

∫
∂Ω

λ(ġ − v̇) − ∂q

∂n
v̇ dS .
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So, in the saddle point defined by (24), we have

lim
s↘0

L (Ts·V(Ω), v, q, λ) − L (Ω, v, q, λ)

s
=

=

∫
Ω

∇v · (DV + DVT )∇q + ḟ q + div(V) (j(v) −∇v · ∇q − v q + fq) dx

+

∫
∂Ω

− ∂q

∂n
ġ dS

=

∫
Ω

(
∇v · (DV + DVT )∇q + ḟ q + (j′(v) − q)ġ −∇q · ∇ġ

+ div(V) (j(v) −∇v · ∇q − v q + fq)
)
dx ,

which corrisponds to Formula (9). Formula (10) can be retrieved from For-
mula (9) with integration by parts on ∂Ω [22, Section 3.8] and Gauss’s the-
orem.
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