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We consider the parametric deterministic formulation of Bayesian inverse prob-
lems with distributed parameter uncertainty from infinite dimensional, separable
Banach spaces X, with uniform prior probability measure on space X of all un-
certainties. Under the assumption of given observation data δ subject to additive
observation noise η ∼ N(0,Γ) with positive covariance Γ, an infinite-dimensional
version of Bayes’ formula has been shown in [14].

For problems with uncertain, distributed parameters u ∈ X (which could be a
diffusion coefficient, elastic moduli in solid mechanics, shape of the domain D of
definition of the physical problem [1], kinetic parameters in stoichiometric models
of reaction-systems in biological systems [4, 7], permeability in porous media or
optimal control of uncertain systems [9]), we develop a practical, adaptive com-
putational algorithm for the efficient approximation of the infinite-dimensional
integrals with respect to the Bayesian posterior (conditional on given data δ) µδ

which arise in Bayes’ formula in [14].
The Bayesian posterior µδ is shown to admit a representation in terms of a

(generalized) polynomial chaos expansion in the (countably many) coordinates
yj which parametrize the uncertainty. We prove that if the uncertain datum
u ∈ X admits the (norm-convergent in X) expansion

u = 〈u〉+
∑

j≥1

yjψj(x)

with |yj| ≤ 1 and with (‖ψj‖X)j≥1 ∈ ℓp(N) for some 0 < p < 1, then the solution
q(u) = (A(u))−1f of the parametric operator equation will depend holomorphi-
cally on the parameters yj, with precise control of the domain of holomorphy
[3, 8, 5, 1, 9]. In two-scale limits of homogenization theory, these domains are
independent of physical scale parameters [8].

We prove, generalizing [13], that the holomorphic dependence on the param-
eters yj of the forward solution of the above problems implies p-sparsity of the
polynomial chaos expansion for the parametric forward solution q(u) = (A(u))−1f
and also for the density function of derivative of the Bayesian posterior µδ with
respect to the prior µ0, conditional on given data δ.

The proof of the p-sparsity in [12, 10] is based on verification of holomorphic
dependence of the polynomial chaos representation for the density of the Bayesian
posterior with respect to the prior, following the proofs in the linear, elliptic
diffusion problems in [3, 13].

Based on this sparsity result, dimension independent convergence rates of best
N -term approximations of the parametric forward map as well as of the paramet-
ric density of the Bayesian posterior with respect to uniform prior follows from
Stechkin’s lemma.

We propose a deterministic, adaptive algorithm inspired by [6] and analogous to
the adaptive interpolation methods in [2] and the references there. The proposed
algorithm determines iteratively, and depending on the observation data δ and the
observation noise variance Γ a sequence of quadrature dimensions and quadrature
orders.
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Convergence rates for the adaptive Smolyak quadrature approximation are
shown, computationally, to coincide with the best N term approximation rates
of the Bayesian posterior density which, in turn [12, 10] depend only on the
sparsity class (characterized in turn by the summability exponent p ∈ (0, 1) of
the uncertain distributed parameter u ∈ X.
Convergence rates are obtained in [12, 10] via monotone L∞ N -term approxi-

mations of the posterior density from [2]. The resulting rates 1/p − 1 are larger
than the rate 1/2 afforded by Monte-Carlo methods and their variants (notably
MCMC) for p < 2/3 when stated in terms of the number N of (numerical) solu-
tions of the forward problems which are necessary in the quadrature algorithm.
Applications with verified holomorphic dependence include high-dimensional

parametric initial value problems [4], semilinear elliptic equations [5, 1] with
uncertain differential operators, parabolic evolution problems with uncertain op-
erators [1], elliptic multiscale problems with uncertain coefficients [8] and from
biological systems sciences [7], as well as optimal control of uncertain systems [9],
and problems with uncertain shape [1].

Numerical examples are presented for diffusion problems with uncertain diffu-
sion coefficient from [12], [10], and for large, parametric systems of initial value
problems from stoichiometric models for biological systems with mass-action ki-
netics from [4, 7]. Computational savings with respect to adaptivity in the for-
ward solver are indicated. Here, we present numerical experiments based on the
parametric, parabolic initial boundary-value problem

∂tq(t, x)− div(u(x)∇q(t, x)) = f(t, x) (t, x) ∈ T ×D ,

q(0, x) = 0 x ∈ D ,

q(t, 0) = q(t, 1) = 0 t ∈ T ,

with f(t, x) = 100 · tx, D = (0, 1) and T = (0, 1). The uncertain coefficient u
is parametrized as u(x, y) = ā +

∑
128

j=1
yjψj ,where ā = 1 and ψj = αjχDj

with

Dj = [(j − 1) 1

128
, j 1

128
], y = (yj)j=1,...,128 and αj =

0.6
jζ
, ζ = 3. Figure 1 shows the

convergence behavior of the adaptive Smolyak algorithm for the approximation of
the normalization constant considering a variation of the number of observation
points as well as of the observational noise.
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Figure 1. Comparison of the estimated error and actual error
of the normalization constant Z = E

µδ

[1] with respect to the car-
dinality #Λ of the index sets ΛN (Clenshaw-Curtis quadrature)
with K = 1, 3, 9 (number of observation points), η ∼ N (0, 1) (l.),
η ∼ N (0, 0.52) (m.), η ∼ N (0, 0.12) (r.).
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A detailed discussion of the numerical experiments for the parametric, para-
bolic evolution problem with random coefficients can be found in [10]. The nu-
merical experiments indicate that, as the observation noise with variance Γ → 0,
growth of the constants in the Smolyak quadrature error estimates. In [11],
we present an asymptotic analysis and prove C ∼ exp(b/Γ) for some constants
b, C > 0. We also show in [11] that the Bayesian estimate admits a finite limit
in the case Γ → 0, and propose regularization of the integrand functions arising
in the computation of the conditional expectation.
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