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Abstract

We consider the problem of approximating manifold-valued functions with approximation spaces

spanned by linear combinations of cardinal B-splines with control points constrained to lie on the

manifold, followed by a closest-point projection onto the manifold. Under certain conditions we

can prove that these spaces realize the optimal approximation rate. Applications for denoising of

manifold-valued data and the computation of geometric variational problems are discussed.
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1 Introduction

This papers considers quasiinterpolation operators for the approximation of functions which map into a
Riemannian manifold.

The approximation of such functions is of increasing importance in a variety of applications among
which we only mention exemplarily the processing of nonlinear data [15, 14], model reduction [2], or the
solution of geometric partial differential equations [17, 18].

In the last years several results have been achieved in this direction, see e.g., [20, 22, 8, 13, 11, 10].
One common feature of all these works is that they generalize known linear approximation methods to
a manifold-valued setting and that these linear methods are based on interpolation e.g., function values
are used as control points in the approximation procedure.

This poses severe restrictions on the type of linear methods that can be used as a basis for a general-
ization. For instance classical approximation methods such as spline quasiinterpolation [3], Clément-type
approximation [5], or isogeometric methods [6] cannot be generalized to a manifold-valued setting with
the methods developed in the articles mentioned above. Nevertheless, having optimal error estimates
for suitable generalizations of these methods would be highly desirable, for instance in solving elliptic
geometric partial differential equations in variational form in the spirit of [12].

In the present article we achieve a first step towards this goal. More precisely we show how to
appropriately extend the linear theory of periodic cardinal B-spline quasiinterpolation [3] to a manifold-
valued setting, if the manifold is embedded into Euclidean spaces as the zero set of a smooth submersion.
Various aspects of a similar problem from a subdivision-perspective are discussed in [22] where it is
observed that a naive approach fails.

Let us now become a bit more concrete. Suppose we want to numerically approximate a function
f : Ω → M , where Ω is a domain in Rd and M is a smooth manifold, embedded into Euclidean space
RK . The function f can be given explicitly or implicitly as a solution to an inverse problem [12]. If
M were a linear space, say, M = RK one would typically try to approximate f from a linear function
space, say, V :=

{
∑

i ciΦi(x) : ci ∈ RK
}

, where Φ : Ω → R and study the resulting approximation error.
For M 6= RK , the elements of V clearly do not map into M , so we modify the approximation space V
to VM := {PM (

∑

i ciΦi(x)) : ci ∈ M} (PM denoting the closest-point projection onto M) which now
consists of M -valued functions. These approximation spaces are particularly simple to handle numerically
whenever PM is simple to compute, and thus, in such situations they are, from a computational point
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of view, more attractive than geodesic finite elements [17, 18]. However, for the spaces VM to be of
any interest it is crucial to examine their approximation properties. Ideally they should match the well-
studied properties of the corresponding linear spaces V . Indeed, it is not very difficult to verify this latter
property, whenever the functions Φi are exact on polynomials1. This includes for example Lagrange
finite element functions [4] or integer translates of Deslauriers-Dubuc scaling functions [7]. However, it
excludes several important constructions such as those based on B-splines, NURBS or Bernstein-Bézier
finite elements where polynomial exactness does not hold.

The present paper presents a first step towards establishing optimal approximation properties of spaces
VM , also if polynomial exactness does not hold, and thereby for the first time achieves a generalization
of such methods to a manifold-valued setting. More precisely, we show (in a periodic setting) that for
approximation spaces V generated by cardinal B-spline functions, the corresponding spaces VM possess
the same approximation properties as V .

The proof of this result turns out to be surprisingly subtle. The main technical novelty which makes
our approach work is the introduction of the concept of normal perturbation family, see Section 3.2, which
will serve as a crucial tool in proving our main results. Roughly speaking, a normal perturbation family
is a perturbation f̃ of f , orthogonal to M , such that the control points ci(f̃) of an optimal approximation
∑

i ci(f̃)Φi of f̃ in V all lie in M , i.e. ci(f̃) ∈ M (usually one is interested in a family of approximation
spaces rather than a single one, hence the name normal perturbation family). This implies that the
function PM (

∑

i ci(f̃)Φi(x)) lies in VM and, assuming that f̃ is as smooth as f it is not difficult to show
(using Lipschitz-continuity of the composition operator with a smooth function) that the approximation
error

f −PM (
∑

i

ci(f̃)Φi) = PM (f̃)−PM (
∑

i

ci(f̃)Φi)

is of the same order as the linear error f̃ −
∑

i ci(f̃)Φi(x), which can be estimated by well-known linear

results, assuming that f̃ is as smooth as the original function f . The key to make this idea work is to prove
that such normal perturbation families exist. Our main result is that for spaces which are generated by
translates of B-splines this holds true.

We believe that the idea outlined above and the notion of normal perturbation family will be of use
in a much broader setting and eventually enable us to generalize a much larger class of linear approxi-
mation results to the manifold-valued case, and thus, using the results of [12], enable the use of (suitable
generalizations of) isogeometric methods or p-methods based on Bernstein-Bézier polynomials [1] also for
manifold-valued PDEs.

We have structured the article as follows. In Section 2 we introduce our notation and review some
well-known facts related to embedded manifolds and linear quasiinterpolation. In Section 3 we first show
that a naive generalization of linear quasiinterpolation operators cannot go beyond a certain (low) order
of convergence. After this we introduce the notion of normal perturbation family and show that the
existence of such families implies the existence of quasiinterpolation operators which have the desired
approximation order. Section 4 contains the main technical part of this article. In it we establish the
existence of normal perturbation families for spaces generated by B-splines in a periodic setting. Finally in
section 5 we discuss some computational aspects and present some numerical examples and applications.

2 Basic Notions

In the present section we introduce the basic setting of this work, starting with some elementary facts
on implicit manifolds in Section 2.1. After that, in Section 2.2 we review some aspects of the classical
theory of linear quasiinterpolation with cardinal B-splines.

Before we proceed we briefly comment on the notation of this paper. As a general rule we shall use
boldface x for elements in Euclidean space, capital boldface letters M for matrices in Euclidean space,
Fraktur letters f for sequences and capital Fraktur letters F for operators on sequence spaces. We use the
usual Notation A = O(B) or A . B to indicate that the quantity A is bounded by a constant times B.

1The system (Φi) has polynomial exactness of order d if there exist nodes ζi ∈ Ω such that for every polynomial p of
degree ≤ d we have the exactness property

∑
i
p(ζi)Φi(x) = p(x).
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2.1 Manifold Basics

We consider manifolds M which are defined implicitly, e.g.,

M =
{

x ∈ RK : g(x) = 0 ∈ RD
}

,

where
g(x) =

(

g1(x), . . . , gD(x)
)T

∈ RD

with gi ∈ C∞(RK ,R) for all i ∈ {1, 2, . . . , D} and

Dg(x) :=
(

∇g1(x), . . . ,∇gD(x)
)

∈ RK×D (1)

is of constant rank D for all x ∈ M . The normal space at a point x ∈ M is spanned by the vectors
(∇gr(x))

D
r=1. In the course of our paper it will turn out beneficial to use a different basis of this normal

space, as we now describe.
Due to (1) there exists a dual basis

N(x) := (n1(x), . . . ,nD(x)) ∈ RK×D

of the normal space such that we have

Dg(x)TN(x) = ID ∈ RD×D, (2)

where ID denotes the identity matrix in RD×D. To see this, simply consider the matrix

A(x) :=
(〈

∇gi(x),∇gj(x)
〉)D

i,j=1
.

By the assumption that Dg has full rank, the matrix A(x) is invertible and therefore we can consider its
inverse B(x) := (bi,j(x))

D
i,j=1 := A−1(x). Defining

ni(x) :=
D
∑

j=1

bi,j(x)∇gj(x) for i = 1, . . . , D

yields the dual basis.
Since g ∈ C∞(RK ,RD), the mapping x ∈ M 7→ N(x) ∈ RN×D is smooth (i.e. C∞).
We denote the closest-point projection

PM : RK → M.

As g ∈ C∞(RK ,R) the function PM is smooth in a neighborhood of M .

2.2 Quasiinterpolation

After defining the necessary function spaces in Section 2.2.1, In the following Section 2.2.2 we give a
condensed summary of the classical theory of quasiinterpolation of periodic functions on regular grids.
All the material up to this point is completely classical.

2.2.1 Function Spaces

We begin by introducing the necessary function spaces we shall be working with. For much more infor-
mation on function spaces we refer to the comprehensive books [16, 9].

Denote T := [0, 1) the one-dimensional torus. For K ∈ N and m ∈ N define the periodic Sobolev
spaces

Wm,p(T,RK) :=
{

u : T → RK : ‖u‖Wm,p(T,RK) < ∞
}

,

where

‖u‖Wm,p(T,RK) := ‖u‖Lp(T,RK) +

m
∑

l=1

∥

∥

∥

∥

dl

dxl
u

∥

∥

∥

∥

Lp(T,RK)

,
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and the differentiation operator is understood as acting on periodic functions. The space of continuous
functions from the unit interval to RK is denoted C(T,RK).

For m > 1
p we denote the spaces

Wm,p(T,M) := {u ∈ Wm,p(T,RK) : u(x) ∈ M for all x ∈ T}

(observe that under our assumptions all these functions are continuous by the Sobolev embedding theorem
[9], so this definition makes sense). We also write C(T,M) for all continuous M -valued functions.

We shall also require some discrete analogues of continuous function space norms which we are now
going to describe. For notational convenience we sometimes for n ∈ N write

[n] := {0, . . . , n− 1}.

For K ∈ N we denote the space ℓ
(

[n],RK
)

of all functions f : [n] → RK . For a sequence f = (fi)i∈[n] ∈

ℓ
(

[n],RK
)

we define the norms

‖f‖ℓp([n],RK) =





∑

i∈[n]

|fi|
p





1/p

, ‖f‖ℓ∞([n],RK) := max
i∈[n]

|fi|,

where we denote

|x| :=
√

x2
1 + · · ·+ x2

K , x = (x1, . . . , xK)T ∈ RK

and p ∈ [1,∞].
We shall also require the operator ∇ : ℓ

(

[n],RK
)

→ ℓ
(

[n],RK
)

, defined by

∇f(i) =

{

fi − fi−1 0 < i ≤ n− 1
f0 − fn−1 i = 0

and, for p ∈ [1,∞], m > 0, the (quasi) norms

‖f‖ℓm,p([n],RK) := ‖nm∇⌈m⌉f‖ℓp([n],RK). (3)

We will sometimes not include the domain or codomain in our notation for describing function spaces,
i.e., we may sometimes write Wm,p instead of Wm,p(T,RK) if the missing information can be easily
inferred from the context.

2.2.2 Linear Quasiinterpolation

We now review the nuts and bolts of linear quasiinterpolation for periodic functions over a regular grid.
More information on this topic can be found in [3]. It is well-known that approximation order is intimately
related to the property of polynomial generation which we introduce in the following assumption.

Assumption 2.1. For d ∈ N we assume the existence of a function Φ(x) : R → R with compact support
and a sequence Λ = (λk)

S
k=−S such that we have the polynomial generation property

∑

i∈Z

S
∑

k=−S

λku(i− k)Φ(x− i) = u(x) for all u ∈ Πd, (4)

where Πd denotes all polynomials of degree less than d.

Example 2.2. We define cardinal B-splines recursively by

B0(x) =

{

1 if − .5 ≤ x < .5

0 otherwise
and Bk(x) =

∫ x+1/2

x−1/2

Bk−1(y)dy.

For a positive integer k we choose φ = Bk. It can be shown that for odd k there is a unique sequence
Λ of length k such that the polynomial generation property (4) is satisfied with d = k + 1, e.g. Λ =
(−1/6, 4/3,−1/6) if k = 3 and Λ = (13/240,−7/15, 73/40,−7/15, 13/240) if k = 5.
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In this article we consider the approximation of periodic functions. Therefore, some trivial adaptions
to the non-periodic theory need to be made, in particular we need to periodize the basis function Φ. To
this end we write for n ∈ N

ΦPER
n (x) :=

∑

j∈N

Φ(n(x− j)), x ∈ T,

the periodization of Φ(n·).
The following definition introduces our notation for the sampling operator which extracts samples of

a function f .

Definition 2.3. For f ∈ C(T,RK) and n ∈ N define the sampling

Sn(f) := fn =

(

f(
i

n
)

)

i∈[n]

∈ ℓ([n],RK).

Finally we introduce the following notation for the well-known operation of circular convolution.

Definition 2.4. For Λ as in Assumption (2.1) and n, K ∈ N we define the circular convolution as the
linear operator

circΛ :

{

ℓ([n],RK) → ℓ([n],RK)

f 7→
(

∑S
k=−S λkfi−k mod n

)

i∈[n]

(5)

Now we have introduced all necessary technical tools to define the approximation spaces we are
interested in.

Definition 2.5. Define the approximation spaces

V n
RK :=







∑

i∈[n]

ciΦ
PER

n (x− i/n) : (ci)i∈[n] ⊂ RK







.

Define the linear Quasiinterpolation operator

Qn
RK :

{

C(T,RK) → V n
RK

f 7→
∑

i∈[n] circΛf
n
i Φ

PER
n (x− i/n).

The following classical result relates the smoothness of f and the degree of polynomial generation of
Φ to the asymptotic approximation rate of Qn

RK f in n.

Theorem 2.6. For f ∈ Wm,p(T,RK) and m > 1
p we have that

‖f −Qn
RK f‖W l,p(T,RK) . nl−m‖f‖Wm,p(T,RK),

whenever d ≥ m− l and Φ ∈ W l,∞(T,RK).

Proof. We only sketch the proof, which follows well-known arguments. We can assume that f ∈
C∞(T,RK). The theorem then follows by a standard density argument. It is enough to prove for
all r ≤ l that

∥

∥

∥

∥

dr

dxr
(f(x)−Qn

RK f(x))

∥

∥

∥

∥

Lp

. nl−m‖f‖Wm,p .

Since d
dxQ

n
RK = Qn

RK
d
dx this is equivalent to

∥

∥

∥

∥

dr

dxr
f(x)−Qn

RK

dr

dxr
f(x)

∥

∥

∥

∥

Lp

. nl−m‖f‖Wm,p .

With the substitution f̃r(x) :=
dr

dxr f(x) it is enough to prove the theorem with (m̃, l̃) = (m− l, 0). Hence
we can restrict ourselves to the case l = 0.
Assume that nx ∈ [j, j + 1). Since the function Φ is compactly supported, there exists R ∈ Z such that

Qn
RK f(x) =

j+R
∑

i=j−R

S
∑

k=−S

λkf

(

i− k

n

)

Φ(nx− i), (6)
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Now we can use a Taylor series expansion of f(x) around x:

f(x) =

m−1
∑

r=0

1

r!

dr

dxr
f(x)(y − x)r +Rm(x, y), (7)

where Rm(x, y) is the Taylor remainder term. We can insert (7) into the formula (6) for the quasiinter-
polation operator and obtain

Qn
RK f(x)− f(x) =

m−1
∑

r=1

1

r!

j+R
∑

i=j−R

S
∑

k=−S

λk
dr

dxr
f(x)

(

i− k

n
− x

)r

Φ(nx− i)

+

j+R
∑

i=j−R

S
∑

k=−S

λkRm(x,
i− k

n
)Φ(nx− i)

By the polynomial generation property (2.1) the first summand in the above formula cancels which yields

Qn
RK f(x)− f(x) =

j+R
∑

i=j−R

S
∑

k=−S

λkRm(x,
i− k

n
)Φ(nx− i). (8)

For |k| ≤ S and |i− j| ≤ R we can bound the remainder term as follows
∣

∣

∣

∣

Rm(x,
i− k

n
)

∣

∣

∣

∣

.

∣

∣

∣

∣

(

x−
i− k

n

)m
dm

dxm
f(x)

∣

∣

∣

∣

. n−m

∣

∣

∣

∣

dm

dxm
f(x)

∣

∣

∣

∣

,

which together with (8) yields the desired result

‖f −Qn
RK f‖Lp .

(

S
∑

k=−S

|λk|

)(

∑

i∈Z

|Φ(nx− i)|

)

n−m

∥

∥

∥

∥

dm

dxm
f(x)

∥

∥

∥

∥

Lp

. n−m‖f‖Wm,p .

3 Nonlinear Quasiinterpolation

We now aim to generalize the results on quasiinterpolation of Section 2.2.2 to functions f : T → M .
The first issue is to find suitable generalizations of the functions spaces V n

RK as defined in Definition
2.5. To this end we present the following definition

Definition 3.1. We define define the M -valued approximation spaces as

V n
M :=







PM





∑

i∈[n]

ciΦ
PER

n (x− i/n)



 : (ci)i∈[n] ⊂ M







. (9)

It is clear that this definition boils down to the usual one in the linear case. A much more subtle
problem is whether these spaces V n

M possess the same approximation properties as in the linear case and
to construct quasiinterpolation operators which realize this optimal approximation rate.

It is not at all obvious how to achieve this. Indeed, in Section 3.1 we present a straight forward
generalization for quasiinterpolation with manifold-valued data. However this approximation will not
have optimal convergence order. The problem to construct optimal quasiinterpolation operators turns
out to be surprisingly subtle and requires us to introduce several new tools. Most importantly in Section
3.2 we define the main contribution of the present paper, so-called normal perturbation families. As we
shall see later, their existence will allow us to build suitable generalizations of quasiinterpolants also for
manifold-valued data. The (rather involved) proof that normal perturbation families actually exist will
be the topic of Section 4.
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Figure 1: Approximation Order of ’Naive’ Generalization

3.1 ’Naive’ Generalization

A straight forward generalization of quasiinterpolation to manifold-valued functions is

QNn
M (f)(x) := PM





∑

i∈[n]

PM (circΛf
n
i )φ

PER
n (x− i/n)



 .

Figure 1 shows measured approximation orders for the function f : T → S3 defined by

f(t) =









sin(x(t)) sin(y(t)) sin(z(t))
sin(x(t)) sin(y(t)) cos(z(t))
sin(x(t)) cos(y(t))
cos(x(t))









where x(t) = sin(2tπ), y(t) = cos(2tπ) and z(t) = sin(2tπ). It suggest that the ’naive’ generalization of
quasiinterpolation gives a 4-th order approximation rate in contrast to m-th order in the linear case. The
next theorem shows that

QNn
M

is at least of order 4.

Theorem 3.2. Let f ∈ W 4,p(T,M), l ≤ 4, Φ ∈ W l,∞ and d ≥ 4− l. Then

‖f −QNn
M f‖W l,p . nl−4.

The following lemma will play an important role not only to prove the previous theorem but also in
Chapter 3.2.

Lemma 3.3. Let m be a positive integer, U ⊂ RK and f , (gn)n∈N ∈ Wm,p(T, U) and P ∈ Wm+1,p(U,U).
Furthermore

sup
n

‖gn‖Wm,p < ∞. (10)

Then
‖P(f)−P(gn)‖Wm,p . ‖f − gn‖Wm,p .

Proof. We prove the theorem by induction on m. For m = 1 the statements follows from the chain rule
and Lipschitz-continuity of P. From now on lets assume m > 1. By the induction hypothesis it is enough
to show that

‖
dm

dxm
(P(f)−P(gn))) ‖Lp . ‖f − gn‖Wm,p .
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The expression dm

dxm (P(f(x))−P(gn(x))) is a sum of terms of the form

(dkP)(f(x))(
da1

dxa1
f(x), . . . ,

dak

dxak
f(x))− (dkP)(gn(x))(

da1

dxa1
gn(x), . . . ,

dak

dxak
gn(x)). (11)

with k ≤ m, ai ∈ N\{0} and a1 + · · ·+ ak = m. The term (11) can be written as

(dkP)(f(x))(
da1

dxa1
f(x), . . . ,

dak

dxak
f(x))− (dkP)(gn(x))(

da1

dxa1
f(x), . . . ,

dak

dxak
f(x)) + (12)

k
∑

i=1

(dkP)(gn(x))(
da1

dxa1
gn(x), . . . ,

dai−1

dxai−1
gn(x),

dai

dxai
(f(x)− gn(x)),

dai+1

dxai+1
f(x), . . . ,

dak

dxak
f(x)). (13)

If k > 1 we have aj < m for all j ∈ {1, 2 . . . , k} and therefore

‖
d

dxaj
gn(x)‖L∞ . ‖gn(x)‖Wm,p . 1.

It follows that the Lp-norm of the term can be bounded by ‖f − gn‖Lp +
∑k

i=1 ‖f − gn‖Wai,p . ‖f −
gn‖Wm−1,p If k = 1 we can bound the term by ‖f − gn‖Lp + ‖f − gn‖Wm,p .

Proof of Theorem 3.2. We first show that

|PM (circΛf
n
i )− circΛf

n
i | . n−4. (14)

For any x, y ∈ T we can write
f(x+ y) = f(x) + u(x, y) + v(x, y)

with u(x, y) ∈ TMf(x), the tangent space of M at f(x), and uT (x, y)v(x, y) = 0 for all x, y ∈ T. If
|y| . n−1 we have the bounds

|u(x, y)| . n−1‖f‖W 1,∞ and |v(x, y)| . n−2‖f‖W 1,∞ .

Let

rn,i = f(
i

n
) +

S
∑

k=−S

λku(
i

n
,
i− k

n
).

Since Λ is exact for polynomials of degree 1 we have |rn,i − f( i
n )| . n−2. Note that u(x, ·), v(x, ·) ∈

W 4,p(T,M). Furthermore rn,i ∈ TMf(x) which yields

|PM (rn,i)− rn,i| . |rn,i|
2 . n−4.

Hence it follows by using Lemma 3.3 that

|PM (circΛf
n
i )− circΛf

n
i | ≤ |PM (circΛf

n
i )−PM (rn,i)|+ |PM (rn,i)− rn,i| (15)

+

∣

∣

∣

∣

∣

S
∑

k=−S

λkv(
i

n
,
i− k

n
)

∣

∣

∣

∣

∣

(16)

. n−4 (17)

(18)

Lemma 3.3 and Theorem 2.6 show that

‖f −QNn
M f‖W l,p ≤ ‖PM (f)−PM (Qn

RK f)‖W l,p (19)

+

∥

∥

∥

∥

∥

∥

PM (Qn
RK f)−PM





∑

i∈[n]

φPER
n (x− i/n)PM (circΛf

n
i )





∥

∥

∥

∥

∥

∥

W l,p

(20)

. ‖f −Qn
RK f‖W l,p +

∥

∥

∥

∥

∥

∥





∑

i∈[n]

φPER
n (x− i/n) (PM (circΛf

n
i )− circΛf

n
i )





∥

∥

∥

∥

∥

∥

W l,p

(21)

. nl−4. (22)
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 fni

◦ circΛf
n
i and PM (circΛf

n
i )

 fni and Sn(f
n
T)

◦ circΛSn(f
n
T)

Figure 2: We approximate the function f : T → S1 defined by f(t) = (cos(w(t)), sin(w(t)))T with w(t) =
2 sin(2tπ) + 0.8 cos(2tπ + 2). In the upper plot the naive quasiinterpolation from Section 3.1 is shown.
Since in general circΛf

n
i /∈ M we need to project onto the sphere. Due to the projection we get an error

of order 4. In the bottom plot we first perturb the sample data orthogonal to the manifold fnT such that
circΛSn(f

n
T) ∈ M . The projection becomes obsolete and does not contribute an additional error.

3.2 Nonlinear Quasiinterpolation With Normal Perturbations

Our goal is to get approximations with optimal convergence order. To overcome the error due to projection
in the last chapter we perturb the data orthogonal to the manifold (see Figure 2).

Definition 3.4. For f ∈ C(T,M) we call a family T := (tn)n∈N ⊂ C(T,RD) a normal perturbation
family for f and Λ if

circΛSn(f
n
T) ⊂ M,

where
fnT(x) := f(x) +N(f(x))tn(x)

Going back to Definition 2.5 we see that a normal perturbation seeks to perturb the function f in
a direction orthogonal to M such that the linear quasiinterpolation operator, applied to the perturbed
function, produces control points which lie in M . This is formalized in the following lemma.
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Lemma 3.5. Assume that (tn)n∈N is a perturbation family for f ∈ C(T,M) and Λ. Then for every
n ∈ N we have that

Qn
M f := PM (Qn

RK fnT) ∈ V n
M . (23)

Proof. This is an immediate consequence of the definition of a perturbation family.

The previous lemma states that, given a normal perturbation family, we may construct an M -valued
quasiinterpolation operator by applying a linear quasiinterpolation operator to the perturbed function
fnT , followed by a closest-point-projection onto M . In order to carry out an error analysis we will use the
fact that by Theorem 2.6 the function Qn

RK fnT is a good approximation of the function fnT . This result
requires that the function fnT is smooth which is formalized in the next definition.

Definition 3.6. A perturbation family is called smooth, if the functions tn are as smooth as f , indepen-
dent of n, more precisely

‖tn‖Wm,p . 1

with the implicit constant independent of n and only depending on ‖f‖Wm,p .

Now we are ready to state and prove our first main result, namely that if we assume the existence
of a smooth normal perturbation family, we get optimal approximation orders using the manifold-valued
quasiinterpolation operators Qn

M .

Proposition 3.7. Let m > 1
p , f ∈ Wm,p and assume that there exists a smooth perturbation family T

for f and Λ then
‖f −Qn

M f‖W l,p . nl−m,

whenever d ≥ m− l and Φ ∈ W∞,l.

Proof. We use Theorem 2.6 for the functions gn(x) = f(x) +N(f(x))tn(x) and Lemma 3.3 to obtain

‖f −Qn
M f‖W l,p = ‖PM (gn)−PM (Qn

RKgn)‖W l,p (24)

. ‖gn −Qn
RKgn‖W l,p (25)

. nl−m‖gn‖Wm,p . (26)

We have

‖gn‖Wm,p . ‖f‖Wm,p + ‖N(f)‖L∞‖tn‖Wm,p +

m
∑

i=1

‖N(f)‖W i,p‖tn‖Wm−i,∞ (27)

(28)

The expression di

dxiN(f(x)) is a sum of terms of the form

(dkN)(f(x))(
da1

dxa1
f(x), . . . ,

dak

dxak
f(x)) (29)

with k ≤ i, aj ∈ N\{0} and a1 + · · ·+ ak = i.
As

‖
daj

dxaj
f‖Lp . ‖f‖Wi,p

. 1 (30)

it follows that
‖N(f)‖W i,p . 1.

Since the perturbation family T is smooth we have

‖tn‖Wm,p . 1.

and because of (30) we have for i ≥ 1
‖tn‖Wm−i,∞ . 1.

Hence we get ‖gn‖Wm,p . 1 which finishes our proof.
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In the following section we will see that for each f there exists essentially a unique perturbation family.
From this result and Proposition 3.7 we will be able to construct optimal quasiinterpolation operators
for the spaces V n

M .

Remark 3.8. It should be clear that the general results of this section hold for any family of approximation
spaces which are defined by constraining the control points to M and applying a closest-point projection.
In this way potentially any linear approximation result can be generalized to the manifold-valued setting,
provided that one can establish the existence of smooth normal perturbation families. Establishing this
latter fact in a more general setting will be the subject of future work.

4 Construction of Normal Perturbation Families

From Section 3.2 it follows that in order to construct optimal quasiinterpolation operators onto the spaces
V n
M , it is sufficient to establish the existence of smooth normal perturbation families. This is the task

of the present section where we establish this under the following natural positivity assumption on the
symbol of Λ.

Assumption 4.1. We consider a convolution mask Λ = (λj)
S
j=−S ⊂ R, such that

S
∑

j=−S

λj = 1 and (31a)

Λ̂(ω) :=
S
∑

j=−S

λj exp(2πijω) > 0 for all ω ∈ T. (31b)

It is well-known that under Assumption 4.1, the corresponding circular convolution operator and its
inverse are bounded operators.

Proposition 4.2. For all p ∈ [1,∞] and n, K ∈ N, whenever Assumption 4.1 holds, the circular convo-
lution satisfies

‖circΛ‖ℓp([n],RK)→ℓp([n],RK) < ∞ and ‖circ−1
Λ ‖ℓp([n],RK)→ℓp([n],RK) < ∞. (32)

The implicit constant is independent of n ∈ N.

Proof. We restrict ourselves to the case K = 1. The generalization to K > 1 is straight forward. Define
the cyclic matrix An,λ ∈ Rn,n by

(An,λ)ij = an,λij =

{

λi−j mod n |i− j mod n| ≤ S

0 otherwise.
.

We denote the matrix we get by replacing each entry of a Matrix M by its absolute value by |M|. As
‖circΛ‖ℓp([n],RK)→ℓp([n],RK) = ‖|An,λ|‖p and ‖circ−1

Λ ‖ℓp([n],RK)→ℓp([n],RK) = ‖|A−1
n,λ|‖p it is enough to show

that ‖|An,λ|‖p and ‖|A−1
n,λ|‖p are bounded independent of n. Note that

‖|An,λ|‖1 = ‖|An,λ|‖∞ =

S
∑

i=−S

|λj |.

By the Riesz-Thorin theorem [19] it follows that ‖|An,λ|‖p ≤
∑S

i=−S |λj | and by the lemma of Wiener
[21] there exists a sequence (bj)j∈Z such that

∑

j∈Z

bj exp(2πijω) =
1

Λ̂(ω)

and
∑

j∈Z
|bj | < ∞. The inverse A−1

n,λ of An,λ can be written as

(A−1
n,λ)ij =

∑

k∈Z

bi−j+nk.

11



It follows that
‖|A−1

n,λ|‖∞ = ‖|A−1
n,λ|‖1 ≤

∑

k∈Z

|bk|.

Again by the Riesz-Thorin theorem it follows that ‖|A−1
n,λ|‖p ≤

∑

k∈Z
|bk|.

4.1 Main Result

The purpose of this subsection is to establish the existence of smooth normal perturbation families for
any function f ∈ Wm,p(T,M) with m > 1/p. We will make use of the following definition.

Definition 4.3. For ε > 0 and for Λ = (λi)
S
i=−S define the function FΛ,n,ε : ℓ

(

[n],RD
)

× ℓ
(

[n],RK
)

→

ℓ
(

[n],RD
)

by

FΛ,n,ε(z, f)i := F
n,ε
i (z, f) := g (εcircΛ (f)i + (1− ε)fi + circΛ (N(f)z)i) , (33)

where we write
(N(f)z)i = N(fi)zi ∈ RK .

Definition 3.4 essentially states that the defining condition for a normal perturbation family is that

FΛ,n,1(Snt
n,Snf) = 0, (34)

where 0 is the zero sequence with 0i = 0 for all i ∈ [n]. Therefore in the following we will examine
the existence and uniqueness of solutions to (34), given the function f . The parameter ε will be needed
in Theorem 4.8 to show the existence of solutions to (34) which will be achieved using a topological
argument where we deform the mapping FΛ,n,0 to the mapping FΛ,n,1.

Denote
DzF

Λ,n,ε(z, f) : ℓ
(

[n],RD
)

→ ℓ
(

[n],RD
)

the Jacobian of FΛ,n,ε in the variable z, i.e.,

DzF
Λ,n,ε(z, f)i,j =

∂

∂zj
F
n,ε
i (z, f) ∈ RD×D. (35)

Our first result is that the derivative of FΛ,n,ε is given, up to a controlled error, by a circular convolution
with Λ.

Proposition 4.4. We have

DzF
Λ,n,ε(z, f)i,j =

{

λi−jID +O
(

‖∇f‖ℓp([n],RK) + ‖z‖ℓp([n],RD)

)

j ∈ i+ [−S, S]
0 ∈ RD×D else

(36)

with the implicit constant independent of n.

Proof. We have for j ∈ i+ [−S, S] that

DzF
Λ,n,ε(z, f)i,j = Dg (εcircΛ (f)i + (1− ε)fi + circΛ (N(f)z)i)

T
λi−jN(fj). (37)

Further, by (31a), we can estimate

|εcircΛ (f)i + (1− ε)fi − fj | ≤

∣

∣

∣

∣

∣

ε

S
∑

k=−S

λk (fi−k − fj) + (1− ε) (fi − fj)

∣

∣

∣

∣

∣

≤ 2S

S
∑

l=−S

|λl| max
k∈i+[−S,S]

|∇fk|

. ‖∇f‖ℓp([n],RK),
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as well as

|circΛ (N(f)z)i | =

∣

∣

∣

∣

∣

S
∑

k=−S

λkN(fi−k)zi−k

∣

∣

∣

∣

∣

. max
k∈i+[−S,S]

|zk|

. ‖z‖ℓp([n],RD).

Therefore we have the estimate

|circΛ (f)i + (1− ε)fi + circΛ (N(f)z)i − fj | . ‖∇f‖ℓp([n],RK + ‖z‖ℓp([n],RD). (38)

Combining (37) and (38) we get that

DzF
Λ,n,ε(z, f)i,j = λi−jDg(fj)N(fj) +O

(

‖∇f‖ℓp([n],RK + ‖z‖ℓp([n],RD)

)

,

which together with (2) yields the desired result.

The previous proposition states that the Jacobian of the function F is, up to a small perturbation by
a banded matrix, given by circΛ:

Corollary 4.5. We have
DzF

Λ,n,ε(z, f) = circΛ +A(z, f), (39)

where for every p ∈ [1,∞] it holds that

‖A(z, f)‖ℓp([n],RD)→ℓp([n],RD) = O
(

‖∇f‖ℓp([n],RK + ‖z‖ℓp([n],RD)

)

(40)

with the implicit constant independent of n.

We can now state the following injectivity result for the function F:

Proposition 4.6. Fix C,m > 0, 0 < ν0 < 1
2

(

supn∈N ‖circΛ‖
−1
ℓp([n],RK)→ℓp([n],RK)

)−1

and p ∈ [1,∞].

There exists n0 ∈ N such that for all n > n0, and z, z′, f with

‖z‖ℓp([n],RD), ‖z
′‖ℓp([n],RD) ≤ ν0, ‖f‖ℓm,p([n],RK) ≤ C

and ε ∈ T we have
∥

∥FΛ,n,ε(z, f)− FΛ,n,ε(z′, f)
∥

∥

ℓp([n],RD)
& ‖z− z′‖ℓp([n],RD) . (41)

Proof. Follows from Corollary 4.5 together with the fact that by (31b) and Corollary 4.2 the operator
circΛ has a bounded inverse in ℓp

(

[n],RD
)

with bound independent of n: We have the representation

FΛ,n,ε(z, f)− FΛ,n,ε(z′, f) =

∫ 1

0

DzF
Λ,n,ε(tz+ (1− t)z′, f)dt(z− z′), (42)

which by Corollary 4.5 can be written as

FΛ,n,ε(z, f)− FΛ,n,ε(z′, f) = (circΛ + B) (z− z′), (43)

for some B which satisfies the bounds

‖B‖ℓp([n],RD)→ℓp([n],RD) = O
(

‖∇f‖ℓp([n],RK) +max(‖z‖ℓp([n],RD), ‖z
′‖ℓp([n],RD))

)

(44)

with the implicit constant independent of n. It follows from (43) and (44) that
∥

∥FΛ,n,ε(z, f)− FΛ,n,ε(z′, f)
∥

∥

ℓp([n],RD)
& ‖circΛ(z− z′)‖ℓp([n],RD)

−
(

max(‖z‖ℓp([n],RD), ‖z
′‖ℓp([n],RD)) + ‖∇f‖ℓp([n],RK)

)

‖z− z′‖ℓp([n],RD)

≥

(

1

2

∥

∥circ−1
Λ

∥

∥

−1

ℓp([n],RD)→ℓp([n],RD)
− n−min(m,1)C

)

‖z− z′‖ℓp([n],RD).

Picking n large enough yields the desired claim.
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Lemma 4.7. We have for all ε, ε′ ∈ T and p ∈ [1,∞] the estimate

∥

∥

∥FΛ,n,ε(z, f)− FΛ,n,ε′(z, f)
∥

∥

∥

ℓp([n],RD)
. |ε− ε′|‖∇f‖ℓp([n],RK),

with the implicit constant independent of z and n.

Proof. This follows directly from the Lipschitz-continuity of g and (31a).

Now we are ready to prove the first main result of this section, namely the existence of a unique
solution to (34). The uniqueness has already been shown above in Proposition 4.6. In order to show
existence of a solution we first show the existence of a solution to the corresponding equation with ε = 0
and use a topological argument to infer existence for ε = 1.

Theorem 4.8. Fix C,m > 0, 0 < ν0 < 1
2

(

supn∈N ‖circΛ‖
−1
ℓp([n],RK)→ℓp([n],RK)

)−1

and p ∈ [1,∞]. Then

there exists n0 > 0 such that for all n > n0 and all

f ∈ ℓ
(

[n],RK
)

with ‖f‖ℓm,p([n],RK) ≤ C,

there exists a unique zf ∈ ℓ
(

[n],RD
)

with

‖zf‖ℓp([n],RD) ≤ ν0

and
FΛ,n,1(zf, f) = 0.

Proof. First we note that
FΛ,n,0(0, f) = 0. (45)

Fix n, ν0 such that Proposition 4.6 is valid, e.g., (41) holds. Define

ε∗ := inf{ε > 0 : ∄z : ‖z‖ℓp([n],RD) ≤ ν0 ∧ FΛ,n,ε(z, f) = 0}.

Assume that ε∗ < 1. For ease of notation in the following we omit the dependence on f in our notation
for the function F. Then by Lemma 4.7 we have that

0 ∈ ∂
(

FΛ,n,ε∗
{

z ∈ ℓ([n],RD) : ‖z‖ℓp([n],RD) ≤ ν0
})

.

Since by Proposition 4.6, the function FΛ,n,ε∗ is a homeomorphism, we have that

∂
(

FΛ,n,ε∗
{

z ∈ ℓ([n],RD) : ‖z‖ℓp([n],RD) ≤ ν0
})

= FΛ,n,ε∗∂
{

z ∈ ℓ([n],RD) : ‖z‖ℓp([n],RD) ≤ ν0
}

and consequently, there exists z∗ with ‖z∗‖ℓp([n],RD) = ν0 and FΛ,n,ε∗(z∗) = 0. By Proposition 4.6 we have

‖FΛ,n,ε∗(0)‖ℓp([n],RD) = ‖FΛ,n,ε∗(z∗)− FΛ,n,ε∗(0)‖ℓp([n],RD) & ν0, (46)

for all n ∈ N. On the other hand, using Lemma 4.7 and (45), we have that

‖FΛ,n,ε∗(0)‖ℓp([n],RD) = ‖FΛ,n,ε∗(0)− FΛ,n,0(0)‖ℓp([n],RD) . ‖∇f‖ℓp([n],RD) . n−min(m,1). (47)

Clearly, this becomes a contradiction for n large enough. This shows the existence of zf. The uniqueness
follows from Proposition 4.6.

Now we shall use Theorem 4.8 to construct smooth normal perturbation families for each function
f ∈ Wm,p(T,M) if m > 1/p. More precisely, putting τx : f(·) → f(· − x) the shift operator we make the
following definition.

Definition 4.9. For a function f ∈ Wm,p(T,M), m > 1/p, we define the family T = (tn
f
)n∈N as

tn
f
(x) :=

(

zSn(τxf)

)

0
.
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It is easy to see that the previous definition yields a normal perturbation family as in Definition 3.4.

Lemma 4.10. The family T from Definition 4.9 is a normal perturbation family for f and Λ.

Proof. First, since f ∈ Wm,p(T,M) there exists C > 0 such that

‖Sn(τxf)‖ℓmin(1,m),p([n],RK) < C, for all x ∈ T.

Therefore, by Theorem 4.8 there exists n0 such that for all n > n0, the function tn
f
is uniquely defined.

The fact that T constitutes a normal perturbation family follows directly from Definition 3.4, together
with the fact that

Sn(tn
f
) = zSnf .

Now that we have shown the existence of an essentially unique normal perturbation family we can
study the associated quasiinterpolation operators Qn

M as introduced in (23). In order to apply Theorem
3.7 to this setting it only remains to show that the normal perturbation family of Definition 4.9 is smooth.
This is shown in the following lemma.

Proposition 4.11. The function tn
f
satisfies

‖tn
f
‖Wk,p(T,RD) . 1 for all k ≤ m

with the implicit constant independent of n. In other words, the family T := (tn
f
)n∈N is a smooth normal

perturbation family for f .

Proof. First we note that we have

0 = FΛ,n,1 (Sn (τxt
n
f
) ,Sn (τxf)) for all x ∈ T. (48)

Repeatedly using the chain rule on equation (48) will yield the desired claim. We start with the case
k = 0. Then we have by Theorem 4.8 that

‖Sn (τxt
n
f
)‖ℓp([n],RD) . 1,

which implies that
∑

i∈[n]

∣

∣

∣

∣

tn
f

(

x+
i

n

)∣

∣

∣

∣

p

. 1 for all x ∈ T,

which implies that

‖tn
f
‖pLp =

∫ 1

0

|tn
f
(x)|

p
dx =

∫ 1/n

0

∑

i∈[n]

∣

∣

∣

∣

tn
f

(

x+
i

n

)∣

∣

∣

∣

p

dx . 1.

Assume from now on, that k > 0. Since we havem > 1/p all derivatives of order ≤ m−1 of f are bounded.
The rest of the argument can be shown by induction, noticing that computing the m-th derivative in x
of 48 yields the relation

0 = DzF
Λ,n,1 (Sn (τxt

n
f
) ,Sn (τxf))

dm

dxm
Sn (τxt

n
f
) + l.o.t,

where l.o.t. denotes terms containing lower order derivatives of Sn (τxt
n
f
). The elements of l.o.t. contain

products of derivatives of Sn (τxt
n
f
) of orders smaller than m and derivatives of FΛ,n,1 and Sn (τxf) of

order smaller or equal to n (this follows directly from the product rule and the chain rule). By the
induction hypothesis and ‖u‖Wk,∞ . ‖u‖Wm,p for all k < m and u ∈ Wm,p we can bound l.o.t. by a
constant.
Now we note that the derivative

DzF
Λ,n,1 (Sn (τxt

n
f
) ,Sn (τxf))
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is, for n sufficiently large, a bounded isomorphism on ℓp([n],RD), a direct consequence of Proposition 4.2
and Corollary 4.5. This, together with ‖l.o.t‖ℓp([n],RD) . 1 yields that

∥

∥

∥

∥

dm

dxm
Sn (τxt

n
f
)

∥

∥

∥

∥

ℓp([n],RD)

. 1. (49)

We can now apply the same integration argument as in the case m = 0 and obtain the desired bound
∥

∥

∥

∥

dm

dxm
tn
f

∥

∥

∥

∥

Lp(T,RD)

. 1. (50)

We can now state our main result.

Theorem 4.12. Assume that Φ ∈ C(T,R) satisfies Assumption 2.1 with a sequence Λ which satisfies
Assumption 4.1. For f ∈ Wm,p, m > 1/p and p ∈ [1,∞] define the nonlinear quasiinterpolation operator
Qn

M : C(T,M) → V n
M via (23), where T is the smooth normal perturbation family for f . Then we have

‖f −Qn
M f‖W l,p . nl−m,

whenever m ≤ d and Φ ∈ W∞,p. In particular the approximation spaces V n
M realize the optimal approxi-

mation rate.

Proof. By Proposition 4.11 the family T as defined in Definition 4.9 is a smooth normal perturbation
family. Therefore we can apply Proposition 3.7 which yields the desired result.

4.2 Choice of Λ

From the result in the previous subsections it follows that one can construct optimal M -valued quasiin-
terpolation operators, provided that there exist basis fuctions Φ and preprocessing sequences Λ such that
Assumptions 2.1 and 4.1 are satisfied. It is the purpose of the present subsection to verify that this is
indeed the case.

Proposition 4.13. For m ∈ N odd let Φ = Bm the cardinal B-spline as defined in Example 2.2. Then
there exists a sequence Λ such that polynomial reproduction of degree d = m+ 1 as in Assumption 2.1 is
satisfied and also Assumption 4.1 holds true.

Proof. The proof follows directly from results in [3]. For z ∈ C define Nm(z) :=
∑(m−1)/2

k=−(m−1)/2 Bm(k)zk,

D(z) = 1−Nm(z) and Λ by

Λ(z) =

(m−1)2/4
∑

k=−(m−1)2/4

λkz
k =

(m−1)/2
∑

l=0

(D(z))l.

As 0 ≤ Nm(z) ≤ 1 for all z ∈ C with ‖z‖ = 1 we have

Λ(z) =

(m−1)/2
∑

l=0

(D(z))l ≥ 1 for all z ∈ C with ‖z‖ = 1.

Therefore Assumption 4.1 is satisfied.
The polynomial exactness condition 2.1 can be written as

(m−1)/2
∑

i=−(m−1)/2

Bm(i)
S
∑

j=−S

λj(i+ j)r =

{

1 r = 0

0 r ∈ {1, . . . ,m}

which is equivalent to

dr

dzr
(Nm(z)Λ(z)) |z=1 =

{

1 r = 0

0 r ∈ {1, . . . ,m}.
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As D(z) is a symmetric Laurent polynomial with 1 as a zero we have D(z) = (z−1)2

z q(z) with a symmetric
Laurent polynomial q and

Λ(z)Nm(z) =





(m−1)/2
∑

l=0

(D(z))l



 (1−D(z)) = 1−D(z)(m+1)/2 = 1 +
(z − 1)m+1

z(m+1)/2
(q(z))(m+1)/2.

Hence it follows that
dr

dzr
(Nm(z)Λ(z)) |z=1 =

{

1 r = 0

0 r ∈ {1, . . . ,m}

which shows that Assumption 2.1 holds true.

Now we have assembled all pieces to prove the main result of this paper.

Theorem 4.14. For k ≥ m− 1 odd let Φ = Bk, Λ chosen as in Prop 4.13, Qn
M defined as in Definition

23 and assume that f ∈ Wm,p. Then for every n ∈ N we have that

‖f −Qn
M f‖W l,p . nl−m,

Proof. This follows directly from Theorem 4.12 and Proposition 4.13.

The sequence in the proof of Proposition 4.13 has length ≈ m2/2. An interesting question is if there
are any sequences with shorter length. e.g. ≈ m. For each odd m ∈ N there exists a sequence of length m
such that the polynomial reproduction property with Φ a B-spline of degree m holds. For small m these
sequences also satisfy the positive Fouriertransform condition as Figure 4.2 shows. However the authors
did not succeed to prove it for general m.
It is also unclear if Assumption 4.1 is necessary. Numerical experiments suggest that we get optimal

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

102

104
Σ

k=−S
S  λ

k
 e2π itk−1 for the shortest sequence λ

k
 wrt to B−splines for m=3,5,...21

t

Figure 3: Our conjecture is that the Fouriertransform is always larger or equal to 1. The lowest curve
corresponds to m = 3 and it seems that the family of the Fouriertransforms is monotonically increasing
in m.

convergence order even if Assumption 4.1 is not satisfied. As an example we can consider

(0, 13/240,−7/15, 73/40,−7/15, 13/240, 0) + c · (1,−6, 15,−20, 15,−6, 1).

For any c ∈ R the sequence together with quintic b-splines satisfies the polynomial reproduction assump-
tion for polynomials of degree 5. However Assumption 4.1 is not satisfied if e.g. c = 1. Nevertheless
numerical experiments show an optimal convergence rate of 6.
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3 4.0191
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9 9.9865

Figure 4: Approximation order of quasiinterpolation with normal perturbation family.

5 Implementation and Applications

Note that to evaluate the quasiinterpolation operator Qn
Mf we need to compute tni = Snt

n ∈ ℓ
(

[n],RD
)

.
We use Newtons Method with the system of equations

g ((circΛf
n
T)i) = g ((circΛ (fn +N(fn)tn))i) = 0

for all i ∈ [n] to solve for tn numerically. Since

dg
(

(circΛf
n
T)i
)

dtnj
= 0

whenever |i − j mod n| > S the Matrix of the equation which we need to solve is sparse with nonzero
entries on the diagonal band with bandwidth (2S + 1) ·D, on the upper right triangle with side length
S · D and on the lower left triangle with side length S · D. Hence one Newtoniteration can be done in
linear time with respect to n. As starting values we choose tni = 0.

5.1 Approximation for Sphere-Valued Functions

In this case we can set g(x) = xTx− 1 and N(x) = x for all x ∈ M . With the substitution sni = tni + 1
we get the equations

〈(circΛ(fs))i , (circΛ(fs))i〉 − 1 = 0

for all i ∈ [n] where fs is defined by (fs)i = fisi.
Measured approximation orders for the function f : T → S3 defined by

f(t) =









sin(x(t)) sin(y(t)) sin(z(t))
sin(x(t)) sin(y(t)) cos(z(t))
sin(x(t)) cos(y(t))
cos(x(t))









where x(t) = sin(2tπ), y(t) = cos(2tπ) and z(t) = sin(2xtπ) are displayed in Figure 4. We observe that
quasiinterpolation with normal perturbation yields optimal convergence rate.

5.2 Approximation for Functions with Values in the Special Orthogonal Group

In this case we can set g(X) = XTX − Ik where Ik is the k × k identity matrix. The space orthogonal
to SO(n) at a point X ∈ SO(k) can be generated by left multiplication of X with a symmetric matrix.
We therefore have to solve the equations

(circΛ(sf))
T
i (circΛ(sf))i − Ik = 0

for all i ∈ [n] where we seek the sequence of symmetric matrices s.
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Figure 5: Fairing of a regular sphere-valued function

5.3 Fairing of a regular sphere-valued function

For a function f ∈ W 1,2(T,M) we want to minimize the functional

J(g) =

∫ 1

0

d(g(t), f(t))2 + λ‖∇g(t)‖2dt

where d is the distance function on M . Let u be the minimizer of J w.r.t. W 1,2(T,M) and for n ∈ N let
un be the minimizer of J w.r.t. V n

M . Using the results of [12] one can prove that

‖un − u‖L2(T,M) . min
v∈V n

M

‖v − u‖L2(T,M).

By Lemma 3.5 we have
min
v∈V n

M

‖v − u‖L2(T,M) . n−(k+1).

Experiments were done for the function f : T → S2 defined by

f(t) =
a(t)

‖a(t)‖2
with a(t) =





1 + sin(2πt) + .2 sin(18πt)
1 + cos(2πt) + .2 cos(18πt)

1





and λ = 10−3. The functional is minimized using Newtons Method. A reference solution was computed
with n = 1000. Result is shown in Figure 5.

5.4 Level Sets on the sphere

Assume that we are given a two times differentiable function b : S2 → R and c ∈ Im(g). We further
assume that b−1(c) is homeomorphic to S1 and ∇b(x) 6= 0 for all x ∈ b−1(c). Let r ∈ b−1(c) and
f : T → S2 be the parametrization of b−1(c) with Im(f) = b−1(c), ‖df/dt‖2 = const, f(0) = r and
〈∇b(f(t)) × df(t)/dt, f(t)〉 > 0 for all t ∈ T. We will approximate f in two stages. In the first stage we
define for dl > 0 small enough a sequence (xn)n∈N0

by x0 = r, xi+1 ∈ S2 ∩ b−1(c) and ‖xi+1 −xi‖2 = dl.
Numerically we can find the sequence by iteratively solving Newton Problems. Let n∗ ≫ n be the smallest
positive integer such that ‖x0 − xn∗‖2 < dl. Then for n ∈ N we have fni ≈ x⌊n∗·i/n⌋ for all i ∈ [n]. We
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Figure 6: Level Sets on the Sphere

can apply the quasiinterpolation operator Qn
M developed in this paper to the data (x⌊n∗·i/n⌋)

n
i=1 to get

the sequence yni = Qn
M (x⌊n∗·i/n⌋)

n
i=1 ∈

(

S2
)n

which is an approximation for Qn
M fn.

In the second stage we minimize the functional J : V n
M → R given by

J(g) =

∫ 1

0

(b(g(t))− c)
2
dt+

∫ 1

0

∥

∥

∥

∥

dg(t)

dt

∥

∥

∥

∥

2

2

dt−

(∫ 1

0

∥

∥

∥

∥

dg(t)

dt

∥

∥

∥

∥

2

dt

)2

+ ‖g(0)− r‖2

using Newtons Method. We start with the function

t 7→ PM





∑

i∈[n]

yni Φ
PER
n (t− i/n)





which uses the values yni from the first stage. As in 5.3 one can show that

‖un − u‖L2(T,M) . n−(k+1).

In Figure 6 numerical result for the function b(x, y, z) = ez + xyz and c = 2 are shown.
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