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Abstract. We establish posterior sparsity in Bayesian inversion for systems with
distributed parameter uncertainty subject to noisy data. We generalize the particular
case of scalar diffusion problems with random coefficients in [29] to broad classes
of operator equations. For countably parametric, deterministic representations of
uncertainty in the forward problem which belongs to a certain sparsity class, we
quantify analytic regularity of the (countably parametric) Bayesian posterior density
and prove that the parametric, deterministic density of the Bayesian posterior
belongs to the same sparsity class. Generalizing [32, 29], the considered forward
problems are parametric, deterministic operator equations, and computational
Bayesian inversion is to evaluate expectations of quantities of interest (QoIs) under
the Bayesian posterior, conditional on given data.

The sparsity results imply, on the one hand, sparsity of Legendre (generalized)
polynomial chaos expansions of the Bayesian posterior and, on the other
hand, convergence rates for data-adaptive Smolyak integration algorithms for
computational Bayesian estimation which are independent of dimension of the
parameter space. The convergence rates are, in particular, superior to Markov Chain
Monte-Carlo sampling of the posterior, in terms of the number N of instances of the
parametric forward problem to be solved.

Keywords: Bayesian Inverse Problems, Parametric Operator Equations, Smolyak
Quadrature, Sparsity, Uniform Prior Measures.
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1. Introduction

The problem of computational and mathematical treatment of inference of responses
of uncertain systems, in the presence of “large data” possibly subject to observation
noise, is a key problem in engineering and the sciences. A “most likely” response
of the uncertain system is offered by Bayesian Inversion, which characterizes the
expected system response as an average over all realizations of system uncertainty,
conditional on the given data. Computational methods for the efficient evaluation
of such expectations have received considerable interest in recent years. The most
widely used numerical methods for the numerical treatment of Bayesian inversion
and prediction problems are based on statistical sampling from the posterior
measure, and are therefore Monte-Carlo (MC) type algorithms, in particular the
so-called Markov-Chain Monte-Carlo (MCMC) methods (eg. [19, 20, 26, 27]).
While these methods are widely used and their theoretical foundation is well-
understood, their drawbacks are slow convergence, in particular since for each
draw of the Markov-Chain, one instance of the forward problem’s governing
equation must be solved numerically. In systems where these equations are partial
differential or other operator equations, generating many samples of the Markov-
Chain can be computationally costly. In [21], a stochastic Newton method is
proposed with the aim of accelerating the MCMC approach by exploiting gradient
and Hessian information of the posterior density. In the context of multilevel
discretizations for partial differential equations, multilevel MCMC sampling strategies
provide substantial improvements.

However, the convergence rate which can be achieved by MLMC approaches
is, ultimately, limited to the order 1/2 of convergence of MC methods. We refer to
[1, 2, 18] for references and a detailed analysis.

A second challenge for computationally efficient Bayesian inversion of systems
governed by PDEs and more general operator equations with random inputs is the
“distributed” nature of the uncertainty: rather than expectations w.r. to a finite
number of real-valued parameters, mathematical expectations over a space X of
uncertain coefficient functions u which are distributed w.r. to a prior measure µ0

must be computed. Typical cases in point are spatially heterogeneous conductivity
tensors, permeabilities in subsurface flow, dielectric tensors in electromagnetism,
obstacle shapes in scattering to name but a few. Their presence mandates Bayesian
inversion for uncertainty in forward problems which is described by random fields
rather than by real-valued random parameters.

The design and the numerical analysis of efficient, deterministic algorithms
for computational Bayesian inversion of PDE problems with distributed parameter
uncertainty is the purpose of the present paper. A computational framework for
the treatment of distributed uncertainties based on linearization of the infinite
dimensional inverse problem is proposed in [4]. The linearization about a nominal
state in combination with low-rank approximations of the covariance of the posterior
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density allows to derive dimension independent convergent rates for the linearized
inverse problem. The adaptive, infinite-dimensional quadrature approach in [29]
and the present work does not rely on linearization, is (through the posterior-
density) data-adaptive, and quantifies uncertainty over all scenarios (not just those
which are close to nominal). The use of polynomial chaos expansions in the Bayesian
posterior to accelerate computational Bayesian inversion has been pioneered in
[24, 23, 22] and further analyzed in [18]. Here, as in our previous work [32, 29], we
reformulate the Bayesian inversion problem as a deterministic, infinite-dimensional
quadrature problem with respect to the posterior measure, given noisy observation
data δ of a QoI φ, and analyze the regularity of the deterministic posterior in terms
of the parameters in the parametrization of the uncertainty in the forward problem.

This infinite-dimensional, deterministic quadrature problem is subsequently
treated numerically by either a dimension-adaptive Smolyak quadrature algorithm
as proposed in [29] or by a Quasi Monte-Carlo quadrature rule such as a polynomial
lattice rule.

Affine parametric dependence of the forward problems results, for example,
from expansions of the uncertainty in terms of principal components as afforded
by Karhunen-Loève expansions. Then, under certain regularity assumptions on
the covariance spectrum of the unknown system parameters, our results imply
that these dimension adaptive integration algorithms can converge at higher rates
than the rate 1/2 (in terms of the number of solutions of the forward problem
for N instances of the uncertain input u) which is best possible for the Markov-
Chain MC algorithm. This program has been implemented recently in [32, 29] for
a class of scalar, isotropic diffusion problems with uncertain diffusion coefficient.
Here, we generalize this approach to systems governed by an abstract class of
parametric operator equations; while the technicalities of the analysis, in particular
the proof of sparsity of the posterior, as well as the convergence analysis of the
Smolyak quadrature, are analogous to [32] and to [29], respectively, the increase in
scope afforded by the presently considered abstraction is as follows: the approach
is equally applicable for definite or indefinite elliptic and for parabolic evolution
problems, with scalar or tensorial unknowns (such as arise, for example, in models
of anisotropic media) with single or multiple scales (as, eg., in [1, 16]), and
also to Bayesian inversion subject to uncertainty in coefficients, in loadings and
in domains. Also, the Smolyak quadrature convergence result given in [29] is
generalized herein: whereas in [29], the integrand functions were required to allow
for analytic extensions into polydiscs, here this condition is weakened to analyticity
in polyellipses of possibly large eccentricities, thereby allowing poles in the analytic
continuations of integrand functions which are situated arbitrarily close to the
domain of integration; in [10], this was shown in certain cases to allow global
analytic continuation of parametric solutions, also for large data.

The outline of this paper is as follows: in Section 2, we present the Bayesian
approach to inverse problems for PDEs set in function spaces. We consider, in
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particular, an abstract class of operator equations which depend on a sequence y =

(yj)j≥1 of parameters which will be the forward model in the ensuing analysis, and
examples for conrete instance of such equations. Section 4 presents new results on
sparsity of the posterior density, generalizing the results in [32]. These results will be
used in Section 5 presents the sparse Smolyak quadratur algorithm and shows that
this algorithm can realize the (dimension-independent) convergence rates afforded
by the sparsity of the Bayesian posterior. Section 6 presents detailed numerical
experiments for parabolic evolution problems with distributed uncertainty which
corroborate the theoretical results.

Finally, in Section 7 we summarize the principal conclusions and indicate the
application to new quadrature algorithms as well as to sparse tensor discretizations.

2. Bayesian Inversion of Parametric Operator Equations

We define a class of operator equations which depend on an uncertain datum
u taking values in a separable Banach space X via a possibly countably infinite
sequence y = (yj)j∈J of parameters.

2.1. Linear Operator Equations

We denote by X and Y two reflexive Banach spaces over R (for some of the
technical arguments which follow, we shall require also extensions of these spaces to
Banach spaces over the coefficient field C; we shall use these without distinguishing
these extensions notationally) with (topological) duals X ′ and Y ′, respectively. By
L(X ,Y ′), we denote the set of bounded linear operators A : X → Y ′. Via the
Riesz representation theorem, we associate to each A ∈ L(X ,Y ′) in a one-to-one
correspondence a bilinear form G(·, ·) : X × Y → R via (with Y 〈·, ·〉Y ′ denoting the
Y × Y ′-duality pairing)

a(v, w) :=Y 〈w, Av〉Y ′ for all v ∈ X , w ∈ Y . (1)

A key role will be played by bounded invertibility of differentials of operator
equations at so-called “nominal” parameter values (being either a mathematical
expectation, or an otherwise fixed reference for the uncertain input). Consider
therefore the linear operator equation Au = f where A ∈ L(X ,Y ′) is boundedly
invertible; necessary and sufficient criteria for this are the so-called “inf-sup”
conditions; we state these conditions here for reference (see, eg., [3]).

Proposition 2.1. A bounded, linear operator A ∈ L(X ,Y ′) is boundedly invertible if and
only if its bilinear form satisfies inf-sup conditions: there exists µ > 0 such that

inf
0 6=v∈X

sup
0 6=w∈Y

a(v, w)

‖v‖X ‖w‖Y
≥ µ , inf

0 6=w∈Y
sup

0 6=v∈X

a(v, w)

‖v‖X ‖w‖Y
≥ µ . (2)

If (2) holds then for every f ∈ Y ′ the operator equation

find q ∈ X : a(q, v) = 〈 f , v〉Y ′×Y ∀v ∈ Y (3)
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admits a unique response q ∈ X and there holds ‖q‖X = ‖A−1 f ‖X ≤ µ−1‖ f ‖Y ′ .

2.2. Bayesian Inversion

By G : X → R we denote a “forward” response map from some separable Banach
space X of unknown parameters u in the operator A into a Banach space R of
responses which contains the Quantity of Interest (QoI) in the Bayesian inversion.
We equip X and X with norms ‖ · ‖X and with ‖ · ‖X , respectively. We have in mind
an abstract (possibly nonlinear) operator equation of the form

Given u ∈ X, find q ∈ X : A(u; q) = f (4)

where f ∈ Y ′ is assumed to be known, and where the uncertain operator A(u; ·) ∈
L(X ,Y ′) is assumed to be boundedly invertible, at least locally for the uncertain
input u sufficiently close to a nominal input u0 ∈ X, ie. for ‖u− u0‖X small enough
so that, for such u, the response of the forward problem (4) is

q(u) = G(u; f ) ∈ X .

In our notation, we omit the dependence of the response on f and simply write
q = G(u). We also assume given an observation functional O(·) : X → RK

denoting a bounded linear observation operator on the space X of system responses,
i.e. O ∈ (X ∗)K, the dual space of the space X of system responses. We assume that
the number of observations is finite so that K < ∞, and equip RK with the Euclidean
norm, denoted by | · |.

In this setting, we wish to predict computationally an expected (under the
Bayesian posterior) system response of the QoI, conditional on given, noisy
measurement data δ. Specifically, we assume the data δ to consist of observations of
QoI system responses corrupted by additive noise, ie.

δ = O(G(u)) + η ∈ RK (5)

where η ∈ RK represents gaussian noise in the K-vector of observation funcationals
O(·) = (ok(·))K

k=1. In the present paper, we assume that the noise process η is
Gaussian, i.e. a random vector η ∼ N (0, Γ), for a positive definite covariance
operator Γ on RK (ie., a symmetric, positive definite K × K covariance matrix Γ)
which we assume to be known. We define the uncertainty-to-observation map of the
system by G : X → RK by G = O ◦ G, so that

δ = G(u) + η = (O ◦ G)(u) + η : X 7→ L2
Γ(R

K)

where L2
Γ(R

K) denotes random vectors taking values in RK which are square
integrable with respect to the Gaussian measure on RK. In view of Bayes’ formula,
we define the least squares functional (also referred to as “potential” in what
follows) Φ : X×RK → R by Φ(u; δ) = 1

2 |δ−G(u)|2Γ where | · |Γ = |Γ− 1
2 · |. Then, the

Bayesian potential takes the form

ΦΓ(u; δ) =
1
2

(
(δ− G(u))>Γ−1(δ− G(u))

)
. (6)
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In [34] an infinite-dimensional version of the Bayes rule is shown to hold in the
present setting. It states that, under appropriate continuity conditions on the
uncertainty-to-observation map G = (O ◦ G)(·) and the prior measure on u, the
posterior distribution µδ of u given data δ is absolutely continuous with respect
to the prior measure µ0. In particular, then, the Radon-Nikodym derivative of the
Bayesian posterior w.r. to the prior measure admits a bounded density Θ w.r. to the
prior µ0.

2.3. Uncertainty Parametrization

We parametrize the uncertain datum u in the forward equation (4). In parametric
statistical estimation, u is a (low-dimensional) vector containing a few unknown
parameters (yj)j∈J, for a finite index set J = {1, 2, ..., J} with small cardinality J so
that X ' RJ . In the context of PDEs, often the case where u ∈ X, a separable
Banach space is of interest. We assume that there exists a countable, unconditional
base (ψj)j∈J of X such that, for some “nominal” value 〈u〉 ∈ X of the uncertain
datum u, and for some coefficient sequence y = (yj)j∈J (depending on u− 〈u〉 ∈ X)
the uncertainty u is parametrized by y in the sense that there holds

u = u(y) := 〈u〉+ ∑
j∈J

yjψj ∈ X (7)

with unconditional convergence. We refer to u− 〈u〉 as “fluctuation” of u about the
nominal value 〈u〉 ∈ X.

Many choices for the functions ψj in (7) are conceivable; among them are
standard spline bases, but also Karhunen-Loève eigenfunctions. If the uncertain
datum is an X-valued random field u in arbitary domains D, and for general
covariance kernels, the ψj must be obtained numerically, eg. by Fast Multipole
Methods together with a Krylov subspace iteration, cp. [33]. With yj denoting
the coordinate variables, the parametrization (7) is deterministic. In order to
place (5), (7) into the (probabilistic) Bayesian setting of [34], we introduce (after
possibly rescaling the fluctuations) a “reference” parameter domain U = [−1, 1]J =

∏j∈J[−1, 1], and equip this countable cartesian product of sets with the product
sigma-algebra B =

⊗
j∈J B1, with B1 the sigma-algebra of Borel sets on [−1, 1].

On the measurable space (U,B) we introduce a probability measure µ0 (which will
serve a Bayesian prior in what follows), and which we shall choose as µ0 =

⊗
j∈J

1
2 λ1

with λ1 denoting the Lebesgue measure on [−1, 1]. Then (U,B, µ0) becomes (as
countable product of probability spaces) a probability space on the set U of all
sequences of coefficient vectors y. Then the uncertain datum u in (7) becomes
a random field, with µ0 charging the possible realizations of u. As indicated in
[12, 32, 29], analyticity of uncertainty parametrization (7) with respect to the parameter
sequence y can be used to derive sparsity results for this posterior.
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2.4. (p, ε)-Analyticity

Analytic dependence of responses on the components yj of the parameter y ∈ U
plays an important role for polynomial approximation results, as well as for the
sparsity of the Bayesian posterior. To state it, we recall the notion of Bernstein-ellipse
which denotes the closed ellipse Er ⊂ C with foci at z = ±1 and with semiaxis sum
r > 1, ie. Er = {(w + 1/w)/2 : 1 ≤ |w| ≤ r}. Note that dist(∂Er, [−1, 1]) = r− 1 and
that in the limit r ↓ 1, Er degenerates to [−1, 1].

Definition 2.2. Given a summability exponent 0 < p < 1 and a real number ε > 0, we
say that the parametric family {q(y) : y ∈ U} ⊂ X is (p, ε)-analytic if

(p, ε) : 1 (well-posedness of the forward problem)
for each y ∈ U, there exists a unique realization u(y) ∈ X of the uncertainty and
a unique solution q(y) ∈ X of the forward problem (4). This solution satisfies the
a-priori estimate

∀y ∈ U : ‖q(y)‖X ≤ C0(y) (8)

where U 3 y 7→ C0(y) ∈ L1(U; µ0); we say that (4) is uniformly well-posed if in
(8) the bound C0 does not depend on y.

(p, ε) : 2 (analyticity)
There exists 0 ≤ p ≤ 1 and a sequence b = (bj)j∈J ∈ `p(J) such that for every
0 < ε ≤ 1, there exists Cε > 0 and a sequence ρ = (ρj)j∈J of poly-radii ρj > 1 such
that

∑
j∈J

ρjbj ≤ 1− ε , (9)

and such that solution map U 3 y 7→ q(y) ∈ X admits an analytic continuation to
the open polyellipse Eρ := ∏j∈J Eρj ⊂ CJ and satisfies the bound

∀z ∈ Eρ : ‖q(z)‖X ≤ Cε(y) (10)

where y := <(z) ∈ ⊗j∈J[−ρj, ρj] ⊂ RJ and where Cε(y) ∈ L1(U; µ0). If in (10) the
bound Cε does not depend on y, we say that q(y) is uniformly (p, ε)-sparse.

In the ensuing arguments, we shall occasionally also consider the stronger (p, ε)-
analyticity in open polydiscs centered at the origin zj = 0 ∈ C which have radii ρj > 0.
We denote these polydiscs by

Uρ =
⊗
j∈J

{zj ∈ C||zj| < ρj} ⊂ CJ , ρ = (ρj)j∈J (11)

and we refer to ρ as poly-radius. In the case when ρj = 1 for all j ∈ J, we simply
write U in place of Uρ to denote the unit disc in CJ. Observe that U ⊂ Eρ ⊂ Uρ.

2.5. (p, ε)-Analyticity of Affine Parametric Operator Families

At the core of the deterministic approach proposed and analyzed here is a
reformulation of the forward problem (4) with uncertain distributed parameter u ∈ X of the
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form (7) as parametric deterministic operator equation, on a possibly infinite-dimensional
parameter space U. We are thus interested in expressing the posterior distribution
in terms of the parametric representation (7) of the uncertain parameter u. For
Bayesian inversion, we think of the uncertain input u ∈ X to the forward map as
random field input to the operator A. Assuming that the uncertain random input
has finite second moments under the Bayesian prior µ0 as X-valued random variable,
it can be represented as a (L2(Ω, µ0; X)-convergent) Karhunen-Loève expansion
with independent random coefficients. We accordingly choose the prior µ0 on
the uncertainty in Bayes’ theorem 2.7 ahead as countable product probability
measure. The above assumption on affine parametrization of the distributed system
uncertainty by the sequence y = (yj)j∈J of (possibly countably many) parameters
results in a parametric operator equation of the form

A(y) = A0 + ∑
j∈J

yj Aj ∈ L(X ,Y ′) . (12)

Recall that either J = {1, 2, ..., J} or J = N. All assertions proved in the sequel hold
in either case, and in the former case all bounds are in particular independent of
J = #(J).

In (12), y = (yj)j∈J is assumed to be an i.i.d sequence of real-valued random
variables yj ∼ U (−1, 1), A0 is a “nominal operator” (representing the non-perturbed
system) and the sequence (Aj)j∈J ⊂ L(X ,Y ′) denotes a sequence of “fluctuations”
about the “nominal operator”A0 = A(0). Affine parameter dependences (12) result
when the unknown u in (7) is modelled as random field via its Karhunen-Loève
expansion in X (or in a closed subspace X′ ⊂ X).

In order for the sum in (12) to converge, we impose the following assumptions
on the sequence {Aj}j≥0 ⊂ L(X ,Y ′). In doing so, we associate with the operator
Aj the bilinear forms aj(·, ·) : X ×Y → R via

∀v ∈ X , w ∈ Y : aj(v, w) =Y 〈w, Ajv〉Y ′ , j = 0, 1, 2....

Assumption 2.3. The operator family {Aj}j≥0 ∈ L(X ,Y ′) in (12) satisfies:

(i) The “nominal” or “mean field” operator A0 ∈ L(X ,Y ′) is boundedly invertible, i.e.
(cf. Proposition 2.1) there exists µ0 > 0 such that

A1 inf
0 6=v∈X

sup
0 6=w∈Y

a0(v, w)

‖v‖X ‖w‖Y
≥ µ0 , inf

0 6=w∈Y
sup

0 6=v∈X

a0(v, w)

‖v‖X ‖w‖Y
≥ µ0 .(13)

(ii) The “fluctuation” operators {Aj}j≥1 are small with respect to A0 in the following sense:
there exists a constant 0 < κ < 1 such that for µ0 as in (13) holds

A2 ∑
j∈J

bj ≤ κ < 1 , where bj := ‖A−1
0 Aj‖L(X ,Y ′) , (14)

(iii) (p summability) For some 0 < p < 1, the operators Bj are p-summable, in the sense
that with the sequence b = (bj)j∈J as in (14) holds

A3 ‖b‖p
`p(J)

= ∑
j∈J

bp
j < ∞ . (15)
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Condition (14) (and, hence, Assumption 2.3) is sufficient for the bounded
invertibility of A(y), uniformly with respect to the parameter sequence y ∈ U =

[−1, 1]J and, as we shall show ahead, also for (p, ε)-analyticity of the parametric
solutions q(y)

Theorem 2.4. Under Assumption 2.3, for every realization y ∈ U of the parameters, the
affine parametric operator family A(y) is boundedly invertible, uniformly with respect to
the parameter sequence y ∈ U. In particular, for the parametric bilinear form a(y; ·, ·) :
X ×Y → R associated with A(y) ∈ L(X ,Y ′) via

a(y; w, v) :=Y 〈v, A(y)w〉Y ′ (16)

there hold the uniform inf-sup conditions with µ = (1− κ)µ0,

∀y ∈ U : inf
0 6=v∈X

sup
0 6=w∈Y

a(y; v, w)

‖v‖X ‖w‖Y
≥ µ , inf

0 6=w∈Y
sup

0 6=v∈X

a(y; v, w)

‖v‖X ‖w‖Y
≥ µ .(17)

In particular, for every f ∈ Y ′ and for every y ∈ U, the parametric operator equation

find q(y) ∈ X : a(y; q(y), v) = 〈 f , v〉Y×Y ′ ∀v ∈ Y (18)

admits a unique solution q(y) = (A(y))−1 f which is uniformly bounded over U, ie.

sup
y∈U
‖q(y)‖X ≤

‖ f ‖Y ′
µ

. (19)

If the observation functional O : X → RK comprises K continuous, linear functionals
ok ∈ X ′, k = 1, . . . , K, then

∀y ∈ U : |G(y)| = |O(q(y))| ≤ ‖ f ‖Y ′
µ

( K

∑
k=1
‖ok‖2

X ′
) 1

2 . (20)

The forward maps q : U → X and G : U → RK are globally Lipschitz.
Specifically (see [32, Lemma 3.3, Theorem 3.4]) if q and q̃ are solutions of (4) with

the same right hand side f with operators A(y) and A(y′), respectively, then the forward
solution map y → q(y) = (A(y))−1 f is Lipschitz as a mapping from U into X , ie. there
exists a constant C > 0 (depending only on κ and µ0 in Assumption 2.3) such that for every
y, ỹ ∈ U holds

‖q(y)− q(ỹ)‖X ≤ C‖y− ỹ‖`∞‖ f ‖Y ′ . (21)

Moreover, the parametric response map U 3 y→ G(y) := (O ◦ q)(y) is globally Lipschitz
as a mapping from `∞ into RK, in the sense that

|G(y)− G(ỹ)| ≤ C
( K

∑
k=1
‖ok‖2

X ′
) 1

2‖y− ỹ‖`∞(J)‖ f ‖Y ′ . (22)

Proof. The assertions (19) and (20) are straightforward consequences of the inf-sup
conditions (17). We therefore address the Lipschitz dependence (21) and (22). For
any y ∈ U, the equation f = A(y)q(y) implies ‖q(y)‖−1

X ≤ ‖A(y)‖‖ f ‖Y ′ .
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For y, ỹ ∈ U, we write A in place of A(y) and Ã in place of A(ỹ). We observe

A = A(y) = A0(I + ∑
j≥1

yj A−1
0 Aj) =: A0(I − F) , F := −∑

j≥1
yjBj .

We write analogously Ã = A0(I − F̃).
Due to (13), A0 is boundedly invertible, and Bj := A−1

0 Aj ∈ L(X ,X ) is well-
defined for every j ∈ J. By Assumption (14), we also have for every y, ỹ ∈ U
the following bound of the “fluctuation” operators F, F̃ (which express the relative
deviation of the forward system from its nominal state A0) ‖F‖ ≤ ‖y‖∞ ∑j≥1 bj ≤
κ < 1, and likewise ‖F̃‖ ≤ κ < 1. Therefore, by a Neumann series argument,
for all y ∈ U, the inverses (I − F)−1 and (I − F̃)−1 exist and are bounded by
1/(1 − ‖F‖) ≤ 1/(1 − κ) = 1/(1 − κ). The inverses are given explicitly by the
(norm-convergent in L(X ,X )) geometric (or Neumann) series

(I − F)−1 = ∑
j≥0

Fj , (I − F̃)−1 = ∑
j≥0

F̃j .

Therefore we may write, for every y, ỹ ∈ U, with q and q̃ denoting the corresponding
solutions,

q− q̃ = (A−1 − Ã−1) f = ((I − F)−1 − (I − F̃)−1)A0 f
=

[
∑j≥1(Fj − F̃j)

]
A−1

0 f .
(23)

We estimate

∆ :=

∥∥∥∥∥∑
j≥1

(Fj − F̃j)

∥∥∥∥∥ =

∥∥∥∥∥F ∑
j≥1

Fj−1 − F ∑
j≥1

F̃j−1 + F ∑
j≥1

F̃j−1 − F̃ ∑
j≥1

F̃j−1

∥∥∥∥∥
≤ ‖F‖

∥∥∥∥∥∑
j≥1

Fj−1 − F̃j−1

∥∥∥∥∥+ ‖F− F̃‖
∥∥∥∥∥∑

j≥1
F̃j−1

∥∥∥∥∥
≤ ‖F‖∆ + ‖F− F̃‖∑

j≥0
‖F̃‖j ,

from where we find

(1− ‖F‖)∆ ≤ ‖F− F̃‖∑
j≥0
‖F̃‖j =

‖F− F̃‖
1− ‖F̃‖

or, finally, recalling that (14) implies ‖F‖ ≤ κ < 1 and ‖F̃‖ ≤ κ < 1,∥∥∥∥∥∑
j≥1

(Fj − F̃j)

∥∥∥∥∥ ≤ ‖F− F̃‖
(1− ‖F̃‖)(1− ‖F‖)

≤ ‖F− F̃‖
(1− κ)2 .

With (23) it follows that

‖q(y)− q(ỹ)‖X ≤
‖y− ỹ‖∞‖b‖1

(1− κ)2 ‖A−1
0 f ‖X ≤ ‖y− ỹ‖∞

κ

µ0(1− κ)2‖ f ‖Y ′

which is (21). The assertion (22) then follows from the linearity and the
boundedness of the observation functional O(·) : X 7→ RK.
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To verify (p, ε)-analyticity, we consider a complex extension of the forward
problem. To this end, we extend the spaces X and Y to spaces over C.

We write, for every j ∈ J, zj = yj + iwj where i :=
√
−1 denotes the imaginary

unit. We extend the forms a0(·, ·) and aj(·, ·) : X ×Y → R in the usual fashion‡
to sesquilinear forms aj(·, ·) : X ×Y → C so that

a0(v, w) :=Y 〈w, A0v〉Y ′ , aj(v, w) :=Y 〈w, Ajv〉Y ′ , v ∈ X , w ∈ Y

with the overline denoting complex conjugation. Denoting by |zj| = (|yj|2 +

|wj|2)1/2 the modulus of zj ∈ C, we impose the following complex analog of A1
in Assumption 2.3, (13): there exists a constant µ0 > 0 such that

A1C inf
0 6=v∈X

sup
0 6=w∈Y

<a0(v, w)

‖v‖X ‖w‖Y
≥ µ0 , inf

0 6=w∈Y
sup

0 6=v∈X

<a0(v, w)

‖v‖X ‖w‖Y
≥ µ0 .(24)

We recall from (A2) in Assumption 2.3 the definition of the sequence bj which remain
unchanged in the complex variable setting.

By Proposition 2.1, Assumption A1C implies that the operator A0 ∈ L(X ,Y ′)
is boundedly invertible, and, for zj ∈ C, we may therefore consider the parametric
operator family

A(z) := A0 + ∑
j∈J

zj Aj ∈ L(X ,Y ′), z ∈ CJ (25)

or, equivalently, recalling Bj := A−1
0 Aj for j ∈ J,

B(z) := I + ∑
j∈J

zj A−1
0 Aj = I + ∑

j∈J

zjBj ∈ L(X ,X ), z ∈ CJ . (26)

Lemma 2.5. Under Assumption A1C, A2 and A3, for every poly-radius ρ such that

∀j : ρj > 1 , κ < 1− ε := ∑
j∈J

ρjbj < 1 (27)

with bj := ‖A−1
0 Aj‖, the parametric operator equation

find q(z) : A(z)q(z) = f in Y ′ , ∀z ∈ Uρ (28)

admits a unique solution for every z ∈ Uρ which satisfies the apriori estimate

sup
z∈Uρ

‖q(z)‖X ≤
‖ f ‖Y ′

µ0ε
. (29)

Moreover, for every z ∈ Uρ, the solution q(z) is a holomorphic function taking values in X
of each coordinate zj of z ∈ Uρ.

If, moreover, A3 holds with some 0 < p < 1, then the forward solution q(z) is
uniformly (p, ε)-analytic.

‡ If X is a Hilbertspace, for u1, u2, v1, v2 ∈ X we set u = u1 + iu2 and v = v1 + iv2 with i =
√
−1.

Then u, v ∈ XC, the “complexified” version of the Hilbert space X , which is a Hilbert space with the
innerproduct (u, v)C := (u1, v1) + (u2, v2) + i[(u2, v1)− (v1, v2)]. Linear operators A ∈ L(X ,Y ′) are
extended via ACu := Au1 + iAu2 and a bilinear form a(·, ·) : X × X 7→ R to a sesquilinear form
aC(·, ·) via aC(u, v) := a(u1, v1) + a(u2, v2) + i[a(u1, v2) + a(u2, v1)]. We omit the subscript C.
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Proof. Using the bounded invertibility of A0, we convert (28) to the equivalent form
B(z)q(z) = g where g := A−1

0 f ∈ X and where B(z) is as in (26).
We apply Proposition 2.1 and verify to this end the inf-sup conditions (2) for

the parametric operator B(z). To this end, for every v ∈ X and for every z ∈ Uρ we
have

<
(
X 〈v, B(z)v〉X

)
≥ ‖v‖2

X

(
1−∑j∈J |zj|bj

)
= µ‖v‖2

X

where µ = 1− κ̂ = 1− (1− ε) = ε > 0 by (27). Hence, for every z ∈ Uρ, the operator
B(z) satisfies the uniform inf-sup conditions (2) with constant µ = ε > 0. Therefore,
for every z ∈ Uρ the parametric operator equation B(z)q(z) = g = A−1

0 f admits a
unique solution q(z) ∈ X which satisfies the a-priori estimate

sup
z∈Uρ

‖q(z)‖X ≤
‖g‖X

µ
=
‖A−1

0 f ‖X
µ

≤ ‖ f ‖Y ′
µ0µ

which is (29).
To show the strong holomorphy of the X -valued function q(z) with respect to

all components zj of the parameter sequence z, we observe that the power series
argument in the proof of Theorem 2.4 extends verbatim to the complex setting.

Alternatively, a difference quotient argument as in [12] shows that the
parametric mapping q(z) is complex differentiable w.r. to zj at z ∈ Uρ for every
j ∈ J. Since the parameter dependence is affine, the complex derivative ∂zj q(z)
satisfies the parametric equation

A(z)(∂zj q(z)) = −Ajq(z) , z ∈ Uρ .

Since complex differentiability and the reflexivity of X imply strong holomorphy
of the function q(z), we conclude. The proof of (p, ε)-analyticity follows from the
complex differentiability as in [12, 14, 10].

Given κ = ∑j≥1 bj < 1 as in A2 of Assumption 2.3, call a poly-radius ρ which
satisfies (27) for some sufficiently small ε > 0 a ε-admissible poly-radius. Evidently,
every ε-admissible poly-radius ρ is also ε′-admissible for every 0 < ε′ < ε < 1− κ.

2.6. Examples

We illustrate the foregoing general concepts with several examples: diffusion
problems with an isotropic, random coefficient function, in the stationary as well
as in the time-dependent case.

2.6.1. Elliptic Divergence-form Equations with Uncertain Coefficient Let D ⊂ Rd be a
bounded interval if d = 1 or a bounded domain in Rd when d ≥ 2, with Lipschitz

boundary ∂D. Let further
(

H, (·, ·), ‖ · ‖
)

denote the Hilbert space L2(D) which we
will identify throughout with its dual space, i.e. H ' H∗. The stationary diffusion
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problem will fit in the abstract setting with the choices X = Y = V = H1
0(D). The

dual space X ′ = V∗ is isomorphic to the Hilbert space H−1(D). Unless explicitly
stated otherwise, we shall assume for the (deterministic) data f that f ∈ V∗. For
given f ∈ L2(D), and for an uncertain diffusion tensor u ∈ X = (L∞(D))d×d

sym , we
consider the stationary elliptic diffusion problem

Aq := −∇ ·
(
u∇q

)
= f in D, q = 0 in ∂D. (30)

A weak solution of (30) is q ∈ X which satisfies∫
D

u(x)∇q(x) · ∇q̃(x)dx =X 〈q̃, f 〉X ∗ for all q̃ ∈ X . (31)

Here X 〈·, ·〉X ∗ denotes the dual pairing between elements of V and V∗, and in (30)
the uncertain diffusion coefficient u(x) ∈ (L∞(D))d×d

sym admits the representation

u(x, y) = ā(x) + ∑
j∈J

yjψj(x), x ∈ D, (32)

where ā ∈ (L∞(D))d×d
sym and (ψj)j∈J ⊂ (L∞(D))d×d

sym . The problem (30) formally fits
into Assumption 2.3 if we choose in (12) the operators A0 = −∇ · (ā∇) and, for
j ≥ 1, Aj = −∇ · (ψj∇). The validity of (17) is ensured by

Assumption 2.6. For every x ∈ D and for every 0 6= ξ ∈ Rd holds

0 < a
min
≤ ξ>u(x)ξ

ξ>ξ
≤ a

max
< ∞ , 0 < āmin ≤

ξ> ā(x)ξ
ξ>ξ

≤ āmax < ∞(33)

and there exists 0 ≤ κ < 1 such that the tensors ā and ψj in (32) satisfy

∑
j∈J

sup
0 6=ξ∈Rd

∥∥∥∥∥ξ>ψj(x)ξ
ξ>ξ

∥∥∥∥∥
L∞(D)

≤ κa
min

,

with a
min

= ess infx∈D inf0 6=ξ∈Rd
ξ> ā(x)ξ

ξ>ξ
> 0 .

Assumption 2.6 implies that the operator A in (30) with coefficient (32) satisfies (2).
Therefore, in particular, we have uniqueness of the response q(y) of (31).

‖G(u)‖X = ‖q‖V ≤
‖ f ‖V∗

a
min

(34)

where we denoted by ‖q‖X = ‖∇q‖L2(D) the norm in V. The inverse problem
consists of determining the unknown diffusion coefficient u from given noisy
observation data δ in order to compute the expectation of a quantity of interest
(47), given this data (see [32] for the proof). Analogous results hold for problems of
linearized elasticity in D, where the response q(y) : D 7→ Rd is a displacement field,
and the uncertain “coefficient” is the spatially inhomogeneous, parametric fourth
order complicance tensor Cklmn(x, y) in the Lame-Navier equations

divσ[q] = f in D, σ[q] = C(x, y)ε[q], ε[q] =
1
2
(gradq + gradq>) ∈ Rd×d

sym .
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Here, A(y)q = −div(C(·, y)ε[q]), X = (L∞(D))d2×d2
sym , V is a subspace of H1(D)d

with essential boundary conditions to be satisfied by q(y). The uncertain compliance
tensor C admits the expansion C(x, y) = 〈C〉(x) + ∑j∈J yjψj(x) with suitable (fourth
order) tensor functions ψj ∈ X which could be, for example, principal components
of a given covariance (eight order) tensor kernel function.

2.6.2. Parabolic Problems with Uncertain Operator The previous examples addressed
the case when the abstract forward equation (18) is elliptic in nature. However, the
general, parametric operator (12) in the forward equation (18) also accomodates
parabolic problems as we shall show next. To this end, we denote by B(y) ∈
L(V, V∗) a parametric operator pencil with affine parameter dependence (12) of
an elliptic operator family such as those considered in Section 2.6.1. We further
assume that we are given a second Hilbert space H which we identify with its own
dual H∗ which constitutes a Gel’fand evolution triple

V ⊆ H ' H∗ ⊆ V∗ . (35)

For the parametric family B(y) we assume the validity of a Garding in equality, i.e.
that there exist a constant α > 0 and a compact bilinear form k(·, ·) : V × V → R

such that

∀y ∈ U , ∀v ∈ V : b(y; v, v) + k(v, v) ≥ α‖v‖2
V . (36)

For the (space-time) variational formulation of the evolution problems, for a given
time horizen 0 < T < ∞, we define the Bochner spaces

X = L2(0, T; V) ∩ H1(0, T; V∗), Y = L2(0, T; V)× H . (37)

Then the parametric evolution operator is, formally, given by A(y) := (∂t + B(y), ι0)

where ι0 denotes the time t = 0 trace of the argument, i.e. ι0u = u(0). It follows
from the continuous embedding X ⊂ C0([0, T]; H) that for every v ∈ X , ι0v is
well-defined as an element of H and there holds the continuity estimate

‖ι0v‖H ≤ CT‖v‖X , where ‖v‖X :=
(
‖v‖2

L2(0,T;V) + ‖v‖
2
H1(0,T;V∗)

)1/2
.

In this case, the space-time variational formulation of the parametric forward model
A(y)p(y) = f is given, for v ∈ X and for w = (w1, w2) ∈ Y , by the bilinear form

a(y; v, w) :=
∫ T

0
(V〈w1, ∂tv〉V∗ +V 〈w1, B(y)v〉V∗) dt +H 〈v(0), w2〉H

=
∫ T

0
(V〈w1, ∂tv〉V∗ + b(y; v, w1)) dt +H 〈v(0), w2〉H

(38)

and by the linear form

`(w) =
∫ T

0
(V〈w1(·, t), f (·, t)〉V∗) dt +H 〈w2, u0〉H . (39)

Note that then in the weak formulation

∀y ∈ U : p(y) ∈ X : a(y; p(y), w) = `(w) ∀w ∈ Y (40)
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the initial condition ι0u = u0 has been imposed weakly. For the variational space-
time formulation (40) it is once more known (see, eg., [31, Appendix]) that the
parametric bilinear form satisfies the inf-sup conditions (17), provided that the
parametric spatial operator B(y) satisfies the Garding inequality (36).

2.6.3. Elliptic Multiscale Problems with Uncertainty In [17], a general framework for
uncertainty modelling in elliptic divergence form equations with scale-separated,
uncertain coefficients aε(y; x) = a(y; x, ε−1x) where 0 < ε << 1 is a known
nondimensional length scale parameter and where a(y; x, ξ) is independent of ε,
1-periodic w.r. to ξ and depends on y once more in an affine fashion (see [17, Eqns.
(1.7), (1.10)] for details). Such problems fit once more into the general framework of
the present paper, with all bounds in error estimates valid uniformly w.r. to ε due to the
use of two-scale convergence and the avoidance of homogenization formulas.

2.7. Parametric Bayesian Posterior

Motivated by [32, 29], the basis for the presently proposed, adaptive deterministic
quadrature approaches for Bayesian estimation via the computational realization of
Bayes’ formula is a parametric, deterministic representation of the derivative of the
posterior measure with respect to the uniform prior measure µ0. The prior measure
µ0 being uniform, we admit in (12) sequences y which take values in the parameter
domain U = [−1, 1]J . As explained in Section 2.3, we consider the parametric,
deterministic forward problem in the probability space

(U,B, µ0) . (41)

We assume throughout what follows that the prior measure on the uncertain input data,
parametrized in the form (12), is the uniform measure µ0(dy). We add in passing
that unbounded parameter ranges as arise, e.g., in lognormal random diffusion
coefficients in models for subsurface flow [25], can be treated by the techniques
developed here, at the expense of additional technicalities. With the parameter
domain U as in (41) the parametric forward map Ξ : U → RK is given by

Ξ(y) = G(u)
∣∣∣
u=ā+∑j∈J yjψj

. (42)

The mathematical foundation of Bayesian inversion is Bayes’ theorem. We
present a version of it, from [32] (see also [34]). To do so, we view U as unit ball in
`∞(J), the Banach space of bounded sequences taking values in U.

Theorem 2.7. Assume that Ξ : Ū → RK is bounded and continuous. Then µδ(dy), the
distribution of y ∈ U given δ, is absolutely continuous with respect to µ0(dy), ie.

dµδ

dµ0
(bsy) =

1
Z

Θ(y) (43)
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with the parametric Bayesian posterior Θ given by

Θ(y) = exp
(
−ΦΓ(u; δ)

)∣∣∣
u=ā+∑j∈J yjψj

, (44)

where the Bayesian potential ΦΓ is as in (6) and the normalization constant Z is given by

Z = Eµ0 [1] =
∫

U
Θ(y)dµ0(y) . (45)

Computational Bayesian inversion is concerned with approximation of a “most
likely” system response φ : X → S (sometimes also referred to as Quantity of Interest
(QoI) which may take values in a Banach space S) for given (noisy) observation
data δ of the QoI φ. In particular the choices φ(u) = G(u) (with S = X ) and
φ(u) = G(u)⊗ G(u) (with S = X ⊗ X ) facilitate computation of the “most likely”
(given the data δ) mean and covariance of the system’s response.

With the QoI φ we associate the (infinite-dimensional) parametric map

Ψ(y) = Θ(y)φ(u) |u=ā+∑j∈J yjψj

= exp
(
−ΦΓ(u; δ)

)
φ(u)

∣∣∣
u=ā+∑j∈J yjψj

: U → S . (46)

Then the Bayesian estimate of the QoI φ, given noisy data δ, takes the form

Eµδ
[φ] = 1

Z

∫
y∈U Ψ(y)µ0(dy)

=
1
Z

∫
y∈U

exp
(
−ΦΓ(u; δ)

)
φ(u)

∣∣∣
u=ā+∑j∈J yjψj

µ0(dy) .
(47)

Our aim is to approximate the expectations Z′ and Z which, in the
parametrization with respect to y ∈ U, take the form of infinite-dimensional
integrals with respect to the uniform prior µ0(dy).

In the next section we establish the joint analyticity of the posterior densities
Θ(y) and Ψ(y), as a function of the parameter sequence y ∈ U. Following [32], we
then deduce sharp estimates on size of domain of analyticity of the forward solution
q(y) and of the densities Θ(y) and Ψ(y) as a function of each coordinate yj, j ∈ N.
These will then be used to infer sparsity of gpc expansions which, in turn, are the
basis for N-term approximation rates as well as of convergence rates for various
quadrature methods.

3. Sparsity of the Forward Solution

As shown in [32, 29] for scalar, isotropic diffusion problems, dimension-independent
convergence rates of numerical approximations of integrals like (45), (47) are based
on sparsity results for the posterior density Θ which arises in Bayes’ theorem. In the
present section, we establish such sparsity results in the general setting of our affine
parametric uncertainty model, ie. the operator equation (12). As in [12, 14], the
sparsity results will be based on analytic dependence of the forward solution q(y)
of the parametric operator equation (18), with precise bounds on the size of domain
of analyticity.
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3.1. Sparsity

Sparsity of the dependence of the forward solution q(y) on the parameter sequence y
is a consequence of the (p, ε)-analyticity established in Section 2.5: we approximate
the parametric solution q(y) by partial sums of tensorized Taylor and Legendre
series. As was shown in [11, 12, 8, 14], (p, ε)-analyticity of the forward solution q(y)
implies that such expansions are sparse. Sparsity of tensorized Taylor expansions
requires (p, ε)-analyticity of the forward map on the polydiscs Uρ (as in [14]), whereas
(p, ε)-analyticity of q(y) on the (smaller) poly-ellipses Eρ (as in [12]) suffices for
sparsity of Legendre expansions.

Unconditional convergence and p-sparsity of forward maps are available for
various Legendre and Tschebyscheff expansions, also for nonaffine parameter
dependence, and for certain nonlinear operator equations (see, eg., [12, 14, 10]).
To define the Legendre polynomial chaos expansions, we introduce the univariate
Legendre polynomials Lk(zj) of degree kth of the variable zj ∈ C, normalized such
that ∫ 1

−1
(Lk(t))2 dt

2
= 1, k = 0, 1, 2, ... (48)

Since L0 ≡ 1, the Legendre polynomials Lk in (48) can be tensorized on the
parameter domains U via

Lν(z) = ∏
j∈J

Lνj(zj), z ∈ CJ, ν ∈ F . (49)

The set of tensorized Legendre polynomials

L(U) = {Lν : ν ∈ F} (50)

forms a countable orthonormal basis in L2(U, µ0).
This observation suggests, by virtue of the square integrability discussed below,

approximations by truncated mean square convergent gpc-expansions such as

q(y) = ∑
ν∈F

qνLν(y) , y ∈ U . (51)

For the statement of sparsity in the response map, we shall approximate the
parametric solution q(y) of (18) and also the Bayesian posterior density in terms
of N-term truncations of the Taylor or Legendre series (51).

Truncations of tensorized Taylor and Legendre expansions take the form of
partial sums over finite sets ΛN ⊂ F of indices of cardinality at most N. We shall
say that a sequence (ΛN)N≥1 ⊂ F of index sets exhausts F , if for every finite subset
Λ ⊂ F there exists N0(Λ) such that for all N ≥ N0, Λ ⊂ ΛN. We recall that, by
Lemma 2.5, under assumptions A1C, A2 and A3, the parametric forward solution
q(y) of the forward equation (4) with the affine-parametric operator family (12)
is (p, ε)-analytic on a family Uρ of polydiscs (and therefore also on a family Eρ of
poly-ellipses).
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The sparsity results which follow are based on establishing p-summability of
(the X -norms of) Legendre coefficients of the parametric forward solutions q(y)
and, in the next section, also of the Bayesian posterior density. The p-summability
(with exponent p as in the sparsity assumption (9) of Definition 2.2) will imply
convergence rates of best N-term truncations of generalized polynomial chaos (gpc
for short) expansions. In general, however, sets ΛN ⊂ F of N largest gpc coefficients
could be quite arbitrary. In view of numerical approximations it is important to have
further information about their structure. For general, (p, ε)-analytic, parametric
mappings, it was shown in [8] that partial sums of (51) with summation over nested
sequences of so-called monotone index sets ΛN ⊂ F of cardinality at most N already
achieve the convergence rates of best N-term approximations, albeit with a possibly
worse constant (cp. [8, Remarks 2.2 and 2.3]).

Definition 3.1. (Monotone Index Sets) A subset ΛN ⊂ F of finite cardinality N is called
monotone if (M1) {0} ⊂ ΛN and if (M2) ∀0 6= ν ∈ ΛN it holds that ν− ej ∈ ΛN for
all j ∈ Iν, where ej ∈ {0, 1}J denotes the index vector with 1 in position j ∈ J and 0 in all
other positions i ∈ J\{j}.

Properties (M1) and (M2) in Definition 3.1 imply for monotone ΛN ⊂ F
LΛN(U) = span{yν : ν ∈ ΛN} = span{Lν : ν ∈ ΛN} .

Closely related to the notion of monotone index sets is the notion of monotone
majorant which was introduced in [8] (see also [9, 10]).

Definition 3.2. A monotone majorant of a sequence (aν)ν∈F ⊂ X is a sequence
a∗ = (a∗ν)ν∈F ⊂ R which is defined by a∗ν := supµ≥ν ‖aν‖X , ν ∈ F . Here, µ ≥ ν for
µ, ν ∈ F means that µj ≥ νj for all j ∈ J.

The monotone majorant depends on the norm ‖ ◦ ‖X on X and

‖a‖`p
m(F ;X ) = ‖a

∗‖`p(F ) .

Sets ΛN of N largest coefficients of monotone majorants can be chosen to be
monotone sets (cp. [8, Remark 2.2]). Further, if Λ ⊂ F is any monotone set, ν ∈ Λ
and µ ≤ ν imply that µ ∈ Λ.

3.2. Sparse Legendre Expansions

We recall for ν ∈ F the definition (49) of the tensorized Legendre polynomials
Lν(y); the normalization (48) differs slightly from the classical one, where

Pk(1) = 1, ‖Pk‖L∞(−1,1) = 1 , k = 0, 1, ... (52)

Also for the system (Pk)k≥0, P0 ≡ 1, and hence the (formally countable) tensor
product polynomials contain for each ν ∈ F only finitely many nontrivial factors.
Hence,

Pν(y) := ∏
j∈J

Pνj(yj), ν ∈ F
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is meaningful. We also note that due to the L2(U; µ0)-orthonormality of the Lν, we
may expand every q(y) ∈ L2(U, µ0)

q(y) = ∑
ν∈F

qL
ν Lν(y) = ∑

ν∈F
qP

ν Pν(y) (53)

where
‖q‖2

L2(U,µ0;X ) = ∑
ν∈F
‖qL

ν‖2
X < ∞, qL

ν :=
∫

U
q(y)Lν(y)dµ0(y)

and where the coefficient sequences qL
ν and qP

ν in (53) are related by

qL
ν =

(
∏
j∈J

(1 + 2νj)

)1/2

qP
ν , ν ∈ F . (54)

Lemma 3.3. If the parametric forward map q(y) is (p, ε)-analytic in a poly-ellipse Eρ ⊂ CJ,
then for every ν ∈ F there holds, for every ρ as in (9) in Definition 2.2, the estimate

‖qL
ν‖X ≤

‖ f ‖Y ′
µ0ε ∏

j∈J,νj 6=0
ρ
−νj
j . (55)

Proof. As in [14, Theorem 9, Proposition 5], the result follows by using Rodrigues’
formula and partial integration.

Due to ‖qP
ν ‖X ≤ ‖qL

ν‖X , the summability of the sequence (‖qL
ν‖X )ν∈F directly

implies the summability of (‖qP
ν ‖X )ν∈F . The next result, from [12, 14] specifies the

type of convergence in the Legendre expansions (53), and also quantifies sparsity
in the sequences {qL

ν : ν ∈ F} and {qP
ν : ν ∈ F} of Legendre coefficients. Its

proof is analogous to the arguments in [12, 10, 14]. The estimate of the Legendre
coefficients of Lemma 3.3 allows to construct a monotone majorant q∗ = (q∗ν)ν∈F of
the sequence (‖qL

ν‖X )ν∈F and thus obtain that (‖qP
ν ‖X )ν∈F ∈ `p(F ) reasoning as in

the proof of [8, Theorem 2.4].

Theorem 3.4. Assume that the parametric forward solution map q(y) admits a (p, ε)-
analytic extension to the poly-ellipse Eρ ⊂ CJ with ρ satisfying condition (9) in Definition
2.2. Then the following holds.

(i) the Legendre series (53) converge unconditionally, in L2(U, µ0;X ) resp. in
L∞(U, µ0;X ), to q,

(ii) with 0 < p < 1 as in (9) of Definition 2.2, the sequence (qL
ν )ν∈F of Legendre

coefficients admits a monotone majorant q∗ = (q∗ν)ν∈F which is p-summable in norm,
in the sense that

C(p, q) := ‖q‖`p
m(F ) =

(
∑

ν∈F
|q∗ν|

p

)1/p

< ∞ .
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Denoting, for every N ∈N by ΛL
N ⊂ F a set of N largest coefficients of the monotone

majorant q∗ of the Legendre expansion (53), there holds the error bound∥∥∥∥∥∥q(·)− ∑
ν∈ΛL

N

qL
ν Lν(·)

∥∥∥∥∥∥
L2(U,µ0;X )

≤ C(p, q)N−(1/p−1/2) . (56)

(iii) Likewise, denoting by ΛP
N ⊂ F a set of N largest (in X -norm) terms of the monotone

majorant q of the sequence of Legendre coefficients qP
ν ∈ X in the Legendre expansions

(53), there holds the error bound

sup
y∈U

∥∥∥∥∥∥q(y)− ∑
ν∈ΛP

N

qP
ν Pν(y)

∥∥∥∥∥∥
X

≤ C(p, v)N−(1/p−1) . (57)

4. Sparsity of the Posterior Density Θ

For operator equations (4) with operators A(u; q) with parametric uncertainty
which produce parametric solutions which are (p, ε)-analytic in the sense of
Definition 2.2, in Theorem 3.4 the representation of the forward solution in
unconditionally convergent Legendre polynomial chaos expansions was presented,
with coefficient sequences which admit p-sparse, monotone majorants. In the
present section, we show corresponding results also for the Bayesian posterior
density Θ(y) which was defined in (43), (44).

4.1. (p, ε)-Analyticity of Θ

Our verification of (p, ε)-analyticity of Θ will be based on verifying (p, ε)-analyticity
for the parametric posterior density Θ(y) defined in (43), (44). Once this is
established, sparsity and N-term approximation results for Θ will follow similarly
as for the parametric solution q(y) of (4). As in [29], we then infer convergence rates
for Smolyak quadratures from N-term approximation rates for truncated tensorized
Legendre approximation rates for the posterior density Θ.

Theorem 4.1. Consider the Bayesian inversion of the parametric operator equation (4) with
uncertain input u ∈ X, parametrized by the sequence y = (yj)j∈J ∈ U. Assume further
that the corresponding forward solution map U 3 y 7→ q(y) is (p, ε)-analytic for some
0 < p < 1 and δ > 0.

Then the Bayesian posterior density Θ(y) is, as a function of the parameter y, likewise
(p, ε)-analytic, with the same p and the same δ.

The modulus of the holomorphic extension of the Bayesian posterior Θ(y) over the
polyellipse Eρ is bounded by C exp(b2‖Γ−1‖) with Γ > 0 denoting the positive definite
covariance matrix in the additive, Gaussian observation noise model (5). Here, the constants
b, C > 0 in the bound of the modulus supz∈∂Eρ

|Θ(z)| depend on the condition number of
the uncertainty-to-observation map G(·) = (O ◦ G)(·) but are independent of Γ in (5).
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Proof. By Lemma 2.5, the (p, ε)-analyticity of the operator implies that the forward
solution map q(y) admits a holomorphic extension, denoted q(z), to z ∈ Eρ with ρ

as in (9).
We consider first the case there is only a single parameter, ie. that J = {1}.

Then ρ = {ρ1} and we may write u = 〈u〉 + zψ ∈ X, with z ∈ Eρ1 ⊂ C and by
assumption the foward map is holomorphic with respect to z ∈ Eρ1 .

The unique holomorphic extension of the Bayesian potential ΦΓ(u; δ) defined in
(6) is, in this case, given by (assuming that the data δ, 〈u〉 and ψ are real-valued)

ΦΓ(〈u〉+ zψ; δ) =
1
2
(δ− G(〈u〉+ zψ))> Γ−1 (δ− G(〈u〉+ zψ)) .

By the holomorphy of q(z) ∈ X , the response function z 7→ G(〈u〉 + zψ) is
holomorphic in Eρ1 . Therefore, the complex extension of ΦΓ, ie.

Eρ1 3 z 7→ ΦΓ(u(z); δ) :=
1
2
(δ− G(〈u〉+ zψ))> Γ−1 (δ− G(〈u〉+ zψ))(58)

is holomorphic in Eρ1 , being a quadratric polynomial of G(〈u〉+ zψ).
The preceding argument immediately generalizes to any coordinate yj for

j ∈ J ⊆N so that we infer that the Bayesian potential

ΦΓ(u; δ) |〈u〉+∑j∈J zjψj
=

1
2

(
δ− G

(
〈u〉+ ∑

j∈J

zjψj

))>
Γ−1

(
δ− G

(
〈u〉+ ∑

j∈J

zjψj

))

is holomorphic on the polyellipse Eρ ⊂ CJ. Hence, also the Bayesian posterior
admits a holomorphic extension to Eρ ⊂ CJ which is given by

Θ(z) = exp
(
−ΦΓ(u; δ)|u=〈u〉+∑j∈J zjψj

)
. (59)

By the holomorphy of the Bayesian potential ΦΓ(u; δ) |〈u〉+∑j∈J zjψj
with respect to

the parameters z, the extension Θ(z) in (59) is, as composition of a holomorphic
function with the entire, analytic function exp(·), holomorphic on Eρ and, therefore,
Θ(z) in (59) is the unique analytic continuation of the Bayesian posterior Θ(y) from
U to Eρ ⊂ CJ.

It remains to deduce bounds on the modulus of this holomorphic continuation
of the posterior density Θ(z) in (59) as a function of the parameters z over the
polyellipses Eρ of holomorphy, with the semiaxes ρ as in (9). Recalling the definition
G(·) = (O ◦ G)(·), we find

G(u) |u=〈u〉+∑j∈J zjψj
= (ok(G(u)))K

k=1 = (ok(q(z)))K
k=1 ∈ CK .

This implies that the modulus of the posterior density Θ(z) can be bounded as

sup
z∈Eρ

|Θ(z)| ≤ exp

sup
z∈Eρ

1
2

∥∥∥∥∥δ− G
(
〈u〉+ ∑

j∈J

zjψj

)∥∥∥∥∥
2

Γ
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where ‖ ◦ ‖Γ denotes the covariance-weighted Euclidean norm in CK. Based on the
definition (58), and on the fact that δ ∈ RK, and the definition (5) of G(·), we find

∀z ∈ Eρ : |Θ(z)| ≤ exp
(

1
2

Im (G(u(z)))> Γ−1Im (G(u(z)))
)

. (60)

Since the map Eρ 3 z 7→ G(u(z)) does not depend on the observation noise
covariance Γ, a bound for the modulus supz∈Eρ

|Θ(z)| which is explicit in terms of Γ
can be inferred from (60). This establishes the asserted dependence of the modulus
of Θ(z) over Eρ and completes the proof.

Exactly the same results on analyticity and on N-term approximation of Ψ(z)
hold, cp. [32]. We omit details for reasons of brevity of exposition and confine
ourselves to establishing rates of convergence of N-term truncated representations
of the posterior density Θ. In the following, we analyze the convergence rate of
N-term truncated Legendre gpc-approximations of Θ and, with the aim of an adaptive
sparse quadrature approximation to efficiently evaluate the expectation of interest with
respect to the posterior Θ(y) in U in Section 5 ahead, we analyze also N-term
truncated monomial gpc-approximations of Θ(y). For the deterministic approximation
of the posterior density Θ(y) in (44) we shall use tensorized polynomial bases
similar to what is done in so-called “polynomial chaos” expansions of random fields.

4.2. Sparse Legendre Expansions of Θ

Since we assumed that the prior measure µ0 is built by tensorization of the
uniform probability measures 1

2 λ1 on [−1, 1], the normalization (48) implies that the
polynomials Lν(z) in (49) are well-defined for any z ∈ CJ since the finite support
of each element of ν ∈ F implies that Lν in (49) is the product of only finitely
many nontrivial polynomials. This observation suggests, by virtue of the square
integrability discussed below, the use of mean square convergent gpc-expansions
and their truncations to represent and approximate the densities Θ and Ψ. Such
expansions can also serve as a basis for sampling of these quantities with draws that
are equidistributed with respect to the prior µ0. In particular, the density Θ : U → R

is square integrable with respect to the prior µ0 over U, i.e. Θ ∈ L2(U, µ0
)
.

Moreover, if the QoI φ(·) : U → S in (46) is bounded, then∫
U
‖Ψ(y)‖2

Sdµ0(y) < ∞, (61)

i.e. Ψ ∈ L2(U, µ0;S
)
.

Remark 4.2. If the QoI is the parametric solution, S = X ie. when φ(u) = G(u) =

q(y) ∈ X , we have ‖Ψ(y)‖V ≤ C‖ f ‖V∗ for all y ∈ U, where the constant C is
independent of the data δ. Thus Ψ ∈ L2(U, µ0;S

)
holds for calculation of the

expectation of the pressure under the posterior distribution on u. Indeed the
assertion holds for all moments of the pressure, the concrete examples which we
concentrate on here.
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Since L(U, µ0) in (50) is a countable orthonormal basis of L2(U, µ0), the
density Θ(y) of the posterior measure given data δ ∈ Y, and the posterior
reweighted pressure Ψ(y) can be represented in L2(U, µ0) by (parametric and
deterministic) generalized Legendre polynomial chaos expansions. We first address
the representation of the scalar valued function Θ(y).

Θ(y) = ∑
ν∈F

θL
ν Lν(y) = ∑

ν∈F
θP

ν Pν(y) in L2(U, µ0) (62)

where the gpc expansion coefficients θL
ν and θP

ν are defined by (cf. also (54))

θL
ν =

∫
U

Θ(y)Lν(y)µ0(dy) , θL
ν =

(
∏
j∈J

(1 + 2νj)

)1/2

θP
ν , ν ∈ F .

By Parseval’s equation and the normalization (48), it follows immediately from (62)
and (61) with Parseval’s equality that the second moment of the posterior density
with respect to the prior is finite and can be expressed as

‖Θ‖2
L2(U,µ0

= ∑
ν∈F
|θL

ν |2 = ‖θL‖2
`2(F ) . (63)

4.3. Monotone N-term Approximation of Θ in L2(U, µ0) and L∞(U, µ0)

For every N ∈ N, denote by ΛL
N ⊂ F a set of indices ν ∈ F corresponding to N

largest θ∗ν of the monotone majorant θL of the Legendre coefficient sequence (θL
ν )ν∈F

in (62), and denote by

ΘL
ΛN

(y) := ∑
ν∈ΛL

N

θL
ν Lν(y) (64)

the corresponding N-term truncated Legendre expansion (62) of the posterior.
Then, with 0 < p < 1 in the (p, ε)-analyticity of the parametric forward solution,
there is a sequence {ΛN}N≥0 of nested, monotone index sets ΛN ⊂ F which
exhausts F , with #(ΛN) ≤ N and which are such that there hold the N-term
approximation results

‖Θ(y)−ΘL
ΛN

(y)‖L2(U,µ0)
≤ CN−s‖θL‖`p

m(F ), s :=
1
p
− 1

2
. (65)

Likewise, denoting by ΛP
N ⊂ F a set of indices ν ∈ F corresponding to N largest

(in ‖ ◦ ‖X -norms) of the coefficients of the monotone majorant θP of the Legendre
coefficient sequence (θP

ν )ν∈F in (62), and denote by

ΘP
ΛN

(y) := ∑
ν∈ΛP

N

θP
ν Lν(y) (66)

the corresponding N-term truncated Legendre expansion (62) of the posterior.
Then, with 0 < p < 1 in the (p, ε)-analyticity of the parametric forward solution,
there hold the N-term approximation results

‖Θ(y)−ΘP
ΛN

(y)‖L∞(U,µ0) ≤ CN−s‖θP‖`p
m(F ), s :=

1
p
− 1 . (67)
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In (67) and (65), the constant C ≥ 1 depends on s and on the covariance Γ > 0 in
the additive observation noise η in (5), but is independent of N. We refer to [30] for
an analysis of the limit Γ→ 0.

5. Sparse Adaptive Smolyak Quadrature

5.1. Univariate Quadrature and Tensorization

We consider a sequence (Qk)k≥0 of univariate quadrature formulas of the form

Qk(g) =
nk

∑
i=0

wk
i · g(zk

i ) ,

associated with the quadrature points (zk
j )

nk
j=0 ⊂ [−1, 1] with zk

j ∈ [−1, 1] , ∀j, k
and zk

0 = 0 , ∀k and weights wk
j , 0 ≤ j ≤ nk, ∀k ∈ N0, where g is a function

g : [−1, 1] 7→ S , taking values in some Banach space S . We impose the following
assumptions on the sequence (Qk)k≥0.

Assumption 5.1.

(i) (I −Qk)(vk) = 0 , ∀vk ∈ Sk := Pk ⊗ S , Pk = span{yj : j ∈N0, j ≤ k},
with I(vk) =

∫
[−1,1] vk(y)

λ1(dy)
2 .

(ii) wk
j > 0 , 0 ≤ j ≤ nk, ∀k ∈N0.

Defining the univariate quadrature difference operator by

∆j = Qj −Qj−1, j ≥ 0 .

with Q−1 = 0, Qk can be rewritten as telescoping sum

Qk =
k

∑
j=0

∆j ,

where Z k = {zk
j : 0 ≤ j ≤ nk} ⊂ [−1, 1] denotes the set of points corresponding to

Qk. Following [29], we introduce the tensorized multivariate operators

Qν =
⊗
j≥1

Qνj , ∆ν =
⊗
j≥1

∆νj . (68)

for ν ∈ F with associated set of multivariate points Zν = ×j≥1Zνj ∈ U. The
tensorization can be defined inductively: for a S-valued function g defined on U,

• If ν = 0F , then ∆νg = Qνg denotes the integral over the constant polynomial
with value g(z0F ) = g(0F ).

• If 0F 6= ν ∈ F , then denoting by ν̂ = (νj)j 6=i

Qνg = Qνi(t 7→
⊗
j≥1

Qν̂j gt) , i ∈ Iν
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and

∆νg = ∆νi(t 7→
⊗
j≥1

∆ν̂j gt) , i ∈ Iν ,

for g ∈ Z , gt is the function defined on ZN by gt(ŷ) = g(y), y =

(. . . , yi−1, t, yi+1, . . .) , i > 1 and y = (t, y2, . . .) , i = 1, see [9, 29].

5.2. Sparse Quadrature Operator

Based on the definitions in the previous subsection, we will now introduce the
sparse quadrature operator

QΛ = ∑
ν∈Λ

∆ν = ∑
ν∈Λ

⊗
j≥1

∆νj ,

for any finite monotone set Λ ⊂ F with associated collocation grid

ZΛ = ∪ν∈ΛZν .

Lemma 5.2. For any monotone index set ΛN ⊂ F , the sparse quadrature QΛN is exact for
any polynomial g ∈ SΛN , i.e. there holds

QΛN(g) = I(g), ∀g ∈ SΛN := PΛN ⊗ S ,

with PΛN = span{yν : ν ∈ ΛN} = span{Pν : ν ∈ ΛN} i.e. SΛN =

span
{

∑ν∈ΛN
sνyν : sν ∈ S

}
, and I(g) =

∫
U g(y)dµ0(y).

For the proof, we refer to [29, Theorem 4.2].
We will now establish convergence rates for the approximation of the

expectation of QoI with respect to the posterior, given data δ, based on the (p, ε)-
analyticity results presented in sections 3 and 4. In particular, we will prove the
existence of two sequences (Λ1

N)N≥1, (Λ2
N)N≥1 of monotone index sets Λ1,2

N ⊂ F
such that #Λ1,2

N ≤ N which exhaust F and such that, for some C1, C2 > 0
independent of N,

|I(Θ)−QΛ1
N
(Θ)| ≤ C1N−s , s =

1
p
− 1 ,

with I(Θ) =
∫

U Θ(y)dµ0(y) and

‖I[Ψ]−QΛ2
N
[Ψ]‖S ≤ C2N−s , s =

1
p
− 1 ,

with I[Ψ] =
∫

U Ψ(y)dµ0(y), respectively. By Lemma 5.2, we have

‖(I −QΛN)(g)‖S = ‖(I −QΛN)(g− ΥN)‖S
≤ (|||I|||+ |||QΛN |||) · inf

Υn∈SΛN

‖g− Υn‖L∞(U;S)

≤ (1 + CQΛN
) · CN−s ,
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since |||I||| = µ0(U) = 1 and |||QΛN ||| =: CQΛN
, for a S-valued function g on U. Then

CQΛN
≤ ∑

ν∈ΛN

∏
j≥1

(cνj + cνj−1) ≤ #Λlog2 3 (69)

with ck = 1 , k ≥ 0 (note that |||Qk||| = 1 by Assumption 5.1 (ii)) and c−1 := 0, see [29,
Lemma 4.4]. In the tensor product case, the exact value of the constant CRν

is given
by

CRν
= ∏

j≥1
cνj = 1 , with Rν = {µ ∈ F : µ ≤ ν},

so that bound (69) is pessimistic in this case.
The quadrature error for the normalization constant (45) and the quantity Z′

(47) can be bounded by relating the error with the Legendre coefficients θP
ν of

Θ = ∑ν∈F θP
ν Pν(y) and ψP

ν of Ψ = ∑ν∈F ψP
ν Pν(y) as follows:

Lemma 5.3. Assume for a S-valued function g on U that g(y) = ∑ν∈F gP
ν Pν(y) in the

sense of unconditional convergence in L∞(U,S). Then, we have

‖I(g)−QΛ(g)‖S ≤ 2 · ∑
ν/∈Λ

γν‖gP
ν ‖S

for any monotone set Λ ⊂ F , where γν := ∏j∈J(1 + νj)
2.

For the proof, we refer to [29, Lemma 4.5].

Theorem 5.4. If the forward solution map U 3 y 7→ q(y) is (p, ε)-analytic for some
0 < p < 1 and ε > 0, then (γν|θP

ν |)ν∈F ∈ lp
m(F ) and (γν‖ψP

ν ‖S)ν∈F ∈ lp
m(F ). Denoting

by Λθ
N, Λψ

N the sets of N-largest terms of the monotone majorants of (γν|θP
ν |)ν∈F and

(γν‖ψP
ν ‖S)ν∈F , respectively, then there holds the error bound for s = 1/p− 1,

|I[Θ]−QΛθ
N
[Θ]| ≤ C1N−s , (70)

with I[Θ] =
∫

U Θ(y)dµ0(y) and, with I[Ψ] =
∫

U Ψ(y)dµ0(y),

‖I[Ψ]−QΛψ
N
[Ψ]‖S ≤ C2N−s . (71)

Proof. The proof proceeds in two steps: first, we will construct a ε
2 -admissible

sequence ρ in the sense of (27) based on the estimate of the Legendre coefficients
in Lemma 3.3. Then, we use the resulting estimate to prove (γν|θP

ν |)ν∈F ∈ lp(F )
and (γν‖ψP

ν ‖S)ν∈F ∈ lp(F ), respectively and construct a lp-summable monotone
majorant of (γν|θP

ν |)ν∈F and (γν‖ψP
ν ‖S)ν∈F . We follow [9, 12, 29], and present the

details. Due to the (p, ε)-analyticity of the forward solution map, it holds

∑
j≥1

bj ≤ 1− ε

for some 0 < ε ≤ 1. In order to construct a ε
2 -admissible sequence ρ, we choose a

constant 1 < κ ≤ 2 such that

(κ − 1) ∑
j≥1

bj ≤
ε

6
.
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and an integer J0 as the smallest integer such that

∑
j>J0

bj ≤
ε

12e2 .

We set E := {j : 1 ≤ J0} and F := N \ E and denote denote by νE and νF the
restrictions of ν on E and F for each ν ∈ F . Then, we define the sequence ρ = ρ(ν)

by

ρj = κ , j ∈ E ; ρj =
ενj

4|νF|bj
+ e2 , j ∈ F ,

with |νF| = ∑j>J0
νj (with the convention

νj
|νF|

= 0, if |νF| = 0). The sequence ρ

satisfies

∑
j≥1

ρjbj = κ ∑
j≤J0

bj + ∑
j>J0

ενj

4|νF|bj
bj + e2 ∑

j>J0

bj

= (κ − 1) ∑
j≤J0

bj + ∑
j≤J0

bj +
ε

4
+ e2 ∑

j>J0

bj

≤ ε

6
+ ∑

j≥1
bj +

ε

4
+ e2 ∑

j>J0

bj ≤
ε

2
+ ∑

j≥1
bj ≤ 1− ε

2
,

and thus, is ( ε
2 )-admissible. Similar to the proof of Theorem 4.2 in [9], we have

pν|θP
ν | ≤ C ε

2

(
∏
j≤J0

(1 + νj)
2

κνj

)(
∏
j>J0

(1 + νj)
2

ρνj

)
,

and it follows
pν|θP

ν | ≤ C · α(νE) · β(νF) ,

where α(νE) := ∏j≤J0
ηνj , β(νF) := ∏j>J0

( |νF|dj
νj

)νj
with η := 1+κ

2κ and dj :=

4e2bj/ε. It holds ∑j>J0
dj < 1

3 . The summability of (γν|θP
ν |)ν∈F follows then as

in Subsection 3.2 in [12]. The same argument implies also the summability of
(γν‖ψP

ν ‖S)ν∈F .
With the same argument as in [9] Section 4.2, it holds that (γν|θP

ν |)ν∈F ∈ lp
m(F )

and (γν‖ψP
ν ‖S)ν∈F ∈ lp

m(F ), since the sequence (α(νE) · β(νF))ν∈F is monotonically
decreasing. Exactly the same analysis allows to bound the quadrature error of the
density Ψ.

5.3. Adaptive Smolyak Construction of Monotone Index Sets

We now discuss the adaptive construction of a sequence of monotone index
sets (ΛN)N≥1 which are, in general, not equal to sets generated by N-term
approximations of monotone envelopes, but which yield in practice approximations
of the Bayesian estimates which converge with rate s = 1/p (rather than 1/p− 1 as
predicted in the theoretical error bounds). The idea is to successively identify the
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index set ΛN corresponding to the N largest contributions of the sparse quadrature
operator to the approximation of the integral Z and Z′, i.e. to the N largest

‖∆ν(Ξ)‖S = ‖
⊗
j≥1

∆νj(Ξ)‖S , ν ∈ F

with Ξ = Θ , S = R or Ξ = Ψ , S = X , minimizing the approximation error (70)
and (71), respectively (cf. [29, 9, 15, 13]).

Following [13, 9, 8], We use a greedy-type strategy based on finite sets of
reduced neighbors defined by

N (Λ) := {ν /∈ Λ : ν− ej ∈ Λ, ∀j ∈ Iν and νj = 0 , ∀j > j(Λ) + 1}

for any monotone set Λ ⊂ F , where j(Λ) = max{j : νj > 0 for some ν ∈ Λ}. This
approach attempts to control the global approximation error by locally collecting
indices of the current set of reduced neighbors with the largest error contributions.
In the following, the resulting algorithm to adaptively construct the monotone index
set Λ in the Smolyak quadrature is summarized. We refer to [29, 9, 8, 15, 13] for
more details.

1: function ASG
2: Set Λ1 = {0} , k = 1 and compute ∆0(Ξ).
3: Determine the set of reduced neighbors N (Λ1).
4: Compute ∆ν(Ξ) , ∀ν ∈ N (Λ1).
5: while ∑ν∈N (Λk)

‖∆ν(Ξ)‖S > tol do
6: Select ν from N (Λk) with largest ‖∆ν‖S and set Λk+1 = Λk ∪ {ν}.
7: Determine the set of reduced neighbors N (Λk+1).
8: Compute ∆ν(Ξ) , ∀ν ∈ N (Λk+1).
9: Set k = k + 1.

10: end while
11: end function

The sparse quadrature operator is constructed based on the following univariate
sequences (zk

j )
nk
j=0 of quadrature points

• Clenshaw-Curtis (CC),
zk

j = − cos
(

π j
nk−1

)
, j = 0, . . . , nk − 1, if nk > 1

and zk
0 = 0 , if nk = 1 with n0 = 1 and nk = 2k + 1, for k ≥ 1,

• R-Leja sequence (RL), projection on [−1, 1] of a Leja sequence for the complex
unit disk initiated at i, i.e.
zk

0 = 0 , zk
1 = 1 , zk

2 = −1 , if j = 0, 1, 2 and
zk

j = R(ẑ), with ẑ = argmax|z|≤1 ∏
j−1
l=1 |z− zk

l | , j = 3, . . . , nk, if j odd ,

zk
j = −zk

j−1 , j = 3, . . . , nk, if j even , with nk = 2 · k + 1, for k ≥ 0, see [6].
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The positivity assumption on the quadrature weights 5.1 (ii) is not satisfied in
the case of the Leja sequence. However, Theorem 5.4 can be generalized to
these quadrature formulas due to the moderate, algebraic growth of the Lebesgue
constants (cp. [29, 5, 6, 7]). The following result is shown as in [29, Lemma 4.10].

Proposition 5.5. Let QRL
Λ denote the sparse quadrature operator for any monotone set

Λ based on the univariate quadrature formulas associated with the R-Leja sequence. If
the forward solution map U 3 y 7→ q(y) is (p, ε)-analytic for some 0 < p < 1 and
ε > 0, then (γν|θP

ν |)ν∈F ∈ lp
m(F ) and (γν‖ψP

ν ‖S)ν∈F ∈ lp
m(F ). Furthermore, there

exist two sequences (ΛRL,1
N )N≥1, (ΛRL,2

N ))N≥1 of monotone index sets ΛRL,i
N ⊂ F such that

#ΛRL,i
N ≤ N, i = 1, 2, and such that, for some C1, C2 > 0 independent of N, with s = 1

p − 1,

|I[Θ]−QΛRL,1
N

[Θ]| ≤ C1N−s ,

where I[Θ] =
∫

U Θ(y)dµ0(y) and, with I(Ψ) =
∫

U Ψ(y)dµ0(y), there holds

‖I[Ψ]−QΛRL,2
N

[Ψ[‖S ≤ C2N−s .

6. Numerical Experiments

We consider the following parametric, parabolic problem

∂tq(t, x)− div(u(x)∇q(t, x)) = f (t, x) (t, x) ∈ T × D ,

q(0, x) = 0 x ∈ D , (72)

q(t, 0) = q(t, 1) = 0 t ∈ T ,

with f (t, x) = 100 · tx, D = (0, 1) and T = (0, 1). The uncertain coefficient u is
parametrized as

u(x, y) = ā +
64

∑
j=1

yjψj , where ā = 1 and ψj = αjχDj

with Dj = [(j− 1) 1
64 , j 1

64 ], y = (yj)j=1,...,64 and αj =
0.9
jζ , ζ = 2, 3, 4.

For a given realization of u(x), the forward problem (72) is numerically solved
by a backward Euler scheme in time with uniform time step hT = 2−11 and by a
finite element method using continuous, piecewise linear ansatz functions in space
on a uniform mesh with meshwidth hD = 2−11. The solution of the linear system in
each time step is computed by LAPACK’s DPTSV routine.

For given noisy observational data δ, the goal of computation is the conditioned
expectation Eµδ

[φ] of the QoI φ(u) = G(u) given by

Z′ =
∫

U
exp

(
−Φ(u; δ)

)
φ(u)

∣∣∣
u=ā+∑64

j=1 yjψj
dµ0(y) ,

with φ(u) = G(u), S = X and with the normalization constant Z given by

Z =
∫

U
exp

(
−Φ(u; δ)

)∣∣∣
u=ā+∑64

j=1 yjψj
dµ0(y) .
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The noisy observational data is computed as a single realization of

δ = G(u) + η ,

with η ∼ N (0, Γ) and G : L∞(D) → RK, with K = 1, 3, 9. The noise η = (ηj)j=1,...,K
in the measurements is assumed to be independent and normally distributed with
ηj ∼ N (0, 1) and ηj ∼ N (0, 0.12). The observation operator O consists of K system
responses at K observation points in T × D at ti = i

2NK,T
, i = 1, . . . , 2NK,T − 1 and

xj = j
2NK,D

, k = 1, . . . , 2NK,D − 1, ok(·, ·) = δ(· − tk)δ(· − xk) with K = 1, NK,D =

1, NK,T = 1, K = 3, NK,D = 2, NK,T = 1, K = 9, NK,D = 2, NK,T = 2. The
numerical results presented below are based on synthetic noisy observational data,
i.e. for a given realization of u(x), the forward problem is solved with meshwidth
hT = hD = 2−12, the data δ is then computed according to (5) by the sum of the
observed solution and a realization of the additive noise η.

In the following, we will compare the results of the proposed adaptive
algorithm with a reference solution computed by the Smolyak algorithm with a
fixed number of indices, #Λ = 1500, i.e. altogether the number of PDE solves for the
computation of the reference solution is in the range of 6149− 18721, depending on
the adaptively determined set Λ of active Smolyak details. The algorithm is used in
the 64 dimensional parameter space, i.e. the dimension is not adaptively controlled
in the case of the reference solution. Therefore, the set of reduced neighbours
coincides with the set of neighbours.

Figure 1 and 2 show the quadrature error of the normalization constant Z with
respect to the cardinality of the index set Λ based on the sequence CC.
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Figure 1. Comparison of the estimated error and actual error. Curves computed by
the reference solution of the normalization constant Z with respect to the cardinality
of the index set ΛN based on the sequence CC with K = 1, 3, 9, η ∼ N (0, 1) and with
ζ = 2 (l.), ζ = 3 (m.) and ζ = 4 (r.), #J = 64 and hT = hD = 2−11 for the reference
and the adaptively computed solution.

10
0

10
1

10
2

10
3

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

s
u
p
re

m
u
m

 e
rr

o
r

# Λ

Z, ζ=2, η
j
∼ N(0,0.1

2
)

 

 

Estimated error, K=1 CC
Estimated error, K=3 CC
Estimated error, K=9 CC
Error (ref. sol.), K=1 CC
Error (ref. sol.), K=3 CC
Error (ref. sol.), K=9 CC

10
0

10
1

10
2

10
3

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

s
u
p
re

m
u
m

 e
rr

o
r

# Λ

Z, ζ=3, η
j
∼ N(0,0.1

2
)

 

 

Estimated error, K=1 CC
Estimated error, K=3 CC
Estimated error, K=9 CC
Error (ref. sol.), K=1 CC
Error (ref. sol.), K=3 CC
Error (ref. sol.), K=9 CC

10
0

10
1

10
2

10
3

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

s
u
p
re

m
u
m

 e
rr

o
r

# Λ

Z, ζ=4, η
j
∼ N(0,0.1

2
)

 

 

Estimated error, K=1 CC
Estimated error, K=3 CC
Estimated error, K=9 CC
Error (ref. sol.), K=1 CC
Error (ref. sol.), K=3 CC
Error (ref. sol.), K=9 CC

Figure 2. Comparison of the estimated error and actual error. Curves computed by
the reference solution of the normalization constant Z with respect to the cardinality
of the index set ΛN based on the sequence CC with K = 1, 3, 9, η ∼ N (0, 0.12) and
with ζ = 2 (l.), ζ = 3 (m.) and ζ = 4 (r.), #J = 64 and hT = hD = 2−11 for the
reference and the adaptively computed solution.

The corresponding, estimated error curves and error curves computed by the
reference solution of the normalization constant Z based on the sequence RL are
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displayed in Figure 3 and 4.
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Figure 3. Comparison of the estimated error and actual error. Curves computed by
the reference solution of the normalization constant Z with respect to the cardinality
of the index set ΛN based on the sequence RL with K = 1, 3, 9, η ∼ N (0, 1) and with
ζ = 2 (l.), ζ = 3 (m.) and ζ = 4 (r.), #J = 64 and hT = hD = 2−11 for the reference
and the adaptively computed solution.
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Figure 4. Comparison of the estimated error and actual error. Curves computed by
the reference solution of the normalization constant Z with respect to the cardinality
of the index set ΛN based on the sequence RL with K = 1, 3, 9, η ∼ N (0, 0.12) and
with ζ = 2 (l.), ζ = 3 (m.) and ζ = 4 (r.), #J = 64 and hT = hD = 2−11 for the
reference and the adaptively computed solution.
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We observe that the estimated error by the adaptive algorithm provides a
good indicator, so that the proposed algorithm shows an optimal performance with
respect to the convergence rates. The theoretical convergence rate can be observed
for all values of the parameter ζ controlling the sparsity class of the unknown
coefficient u. Further, the Clenshaw-Curtis points show a better convergence
behaviour with respect to the cardinality of the index set Λ than the Leja points.
This behaviour could be already observed in the elliptic test case, cp. [29] and can
be attributed to the exponential growth of the number of quadrature points within
the order of CC sequences. As Figure 5 and Figure 6 exemplarily show, this effect
is not any more observable in the error curves of the normalization constant with
respect to the number of PDE solves needed.
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Figure 5. Comparison of the estimated error and actual error. Curves computed by
the reference solution of the normalization constant Z with respect to the number of
PDE solves needed based on the sequence CC with K = 1, 3, 9, η ∼ N (0, 1) and with
ζ = 2 (l.), ζ = 3 (m.) and ζ = 4 (r.), #J = 64 and hT = hD = 2−11 for the reference
and the adaptively computed solution.
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Figure 6. Comparison of the estimated error and actual error. Curves computed by
the reference solution of the normalization constant Z with respect to the number of
PDE solves needed based on the sequence RL with K = 1, 3, 9, η ∼ N (0, 1) and with
ζ = 2 (l.), ζ = 3 (m.) and ζ = 4 (r.), #J = 64 and hT = hD = 2−11 for the reference
and the adaptively computed solution.

The same convergence behavior for the approximation of the quantity Z′ can
be observed, cp. Figure 7 - Figure 10 showing the error curves with respect to the
cardinality of the index set Λ.
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Figure 7. Comparison of the estimated error and actual error. Curves computed by
the reference solution of the quantity Z′ with respect to the number of PDE solves
needed based on the sequence CC with K = 1, 3, 9, η ∼ N (0, 1) and with ζ = 2 (l.),
ζ = 3 (m.) and ζ = 4 (r.), #J = 64 and hT = hD = 2−11 for the reference and the
adaptively computed solution.
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Figure 8. Comparison of the estimated error and actual error. Curves computed by
the reference solution of the quantity Z′ with respect to the number of PDE solves
needed based on the sequence CC with K = 1, 3, 9, η ∼ N (0, 0.12) and with ζ = 2
(l.), #J = 64 and ζ = 3 (m.) and ζ = 4 (r.), hT = hD = 2−11 for the reference and the
adaptively computed solution.
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Figure 9. Comparison of the estimated error and actual error. Curves computed by
the reference solution of the quantity Z′ with respect to the number of PDE solves
needed based on the sequence RL with K = 1, 3, 9, η ∼ N (0, 1) and with ζ = 2 (l.),
ζ = 3 (m.) and ζ = 4 (r.), #J = 64 and hT = hD = 2−11 for the reference and the
adaptively computed solution.
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Figure 10. Comparison of the estimated error and actual error. Curves computed
by Comparison of the estimated error and actual error. Curves computed by the
reference solution of the quantity Z′ with respect to the number of PDE solves
needed based on the sequence RL with K = 1, 3, 9, η ∼ N (0, 0.12) and with ζ = 2
(l.), ζ = 3 (m.) and ζ = 4 (r.), #J = 64 and hT = hD = 2−11 for the reference and the
adaptively computed solution.

In order to numerically verify the dimension robust behavior of the proposed
algorithm, we will finally investigate the convergence rates of the model parametric
parabolic problem (72) in the 128 dimensional parameter case, i.e. the uncertain
coefficient u is parametrized by

u(x, y) = ā +
128

∑
j=1

yjψj , where ā = 1 and ψj = αjχDj

with Dj = [(j− 1) 1
128 , j 1

128 ], y = (yj)j=1,...,128 and αj =
0.6
jζ , ζ = 2, 3, 4.

The doubling of the number of parameters has no effect on the observed
convergence rates, cp. Figure 11 and 12, this observation is consistent with the
theoretical results derived in Theorem 5.4.
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Figure 11. Comparison of the estimated error and actual error. Curves computed by
the reference solution of the normalization constant Z with respect to the cardinality
of the index set ΛN based on the sequence CC with K = 1, 3, 9, η ∼ N (0, 1) and with
ζ = 2 (l.), ζ = 3 (m.) and ζ = 4 (r.), #J = 128 and hT = hD = 2−11 for the reference
and the adaptively computed solution.
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Figure 12. Comparison of the estimated error and actual error. Curves computed
by the reference solution of the quantity Z′ with respect to the number of PDE solves
needed based on the sequence CC with K = 1, 3, 9, η ∼ N (0, 1) and with ζ = 2 (l.),
ζ = 3 (m.) and ζ = 4 (r.), #J = 128 and hT = hD = 2−11 for the reference and the
adaptively computed solution.
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In summary, for the parametric, parabolic evolution problem with random
coefficients, our theoretical results could be numerically verified, and the
experimentally observed convergence rates are even slightly better. Further, the
variation of the number of observation points as well as the variation of the
observational noise do not influence the convergence behaviour of the proposed
method. The convergence only depends on the sparsity class of the unknown
coefficient u and is independent on the dimension of the underlying parameter
space.

7. Discussion and Conclusions

We consider the Bayesian inversion for classes of operator equations with distributed
uncertainties u taking values in a Banach space X. We showed sparsity of coefficient
sequences in polynomial chaos representations of the Bayesian posterior density Θ
for parametrizations of the uncertain forward solution map of the system in terms
of possibly countably many variables y = (yj)j∈J, provided that the parametric
responses q(y) satisfy the (p, ε)-analyticity condition in Definition 2.2 with some
0 < p < 1.

This analyticity condition is valid for a wide range of PDE problems.
We showed that a certain type of degree and dimension adaptive Smolyak

quadrature can, in principle, achieve convergence rate N−(1/p−1) where N denotes
the number quadrature points; numerical experiments indicate that even the higher
rate N−1/p is achieved by the proposed deterministic quadrature methods, provided
that covariance Γ > 0 of the observation noise is not small.

In the case of observation noise with variance Γ→ 0, the bound (60) reveals that
the constants in the bounds on the Legendre coefficients θP

ν in the gpc expansions
(62) and, via (63), also the constants C > 0 in the error bounds (65), (67)
and, in turn, also the constants Ci in the Smolyak quadrature error estimates
(70), (71), depend on Γ as C ∼ exp(b/Γ) for some constant b > 0. We also
not that the convergence rates in (70), (71) are not affected by the size of Γ. In
our numerical experiments, we observe this dependence on Γ, which renders our
approach infeasible for small values of Γ. This is due to concentration effects in the
integrand functions of the integrals ZΓ and Z′Γ in (47), (45) for small values of Γ.
Since the integrals (47), (45) are nonoscillatory, as Γ → 0+, all contributions to the
integrals ZΓ and Z′Γ in (47), (45) come from the vicinity of points y0 ∈ U where
the potential ΦΓ(y; δ) is minimal, and the asymptotics of ZΓ and Z′Γ as Γ → 0+

can be analyzed by Laplace’s method. Specifically, assuming that the number K of
observations equals one to simplify notation, we define

S(y) := −ΦΓ(y; δ) = −1
2

Γ−1(r(y))2 , Γ > 0

where the residuum r(y) := G(y)− δ ≥ 0 of the uncertainty-to-observation map is
independent of Γ and a smooth function of the coordinates yj of y ∈ U. Assume,
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moreover, that the dimension U (resp. the set J) is finite, #(J) = J < ∞ (which
could be achieved by dimension truncation in the parametric representation (7) of
the uncertain input u).

Since U = [−1, 1]J is compact, the continuous function S(y) ≤ 0 attains its
maximum on U in a point y0 ∈ U, say. Two cases can occur: y0 ∈ int(U) and
y0 ∈ ∂U. Assume the former, ie. dist(y0, ∂U) > 0. Then y0 is a critical point of S(·),
and there holds the first order necessary condition

0 = ∇yS(y0)⇐⇒ r(y)∇yr(y)|y=y0 = 0 . (73)

Again two cases can occur: either (“consistent case”) r(y0) = 0 in which case the
observed noise-free data is the exact system response for the realization u = u(y0)

of the uncertainty, or (“inconsistent case”) r(y0) 6= 0. In the latter case, S(y0) < 0
and (73) implies ∇yr(y)|y=y0 = 0 i.e. that y0 is a critical point of the residuum.
Assume that y0 is nondegenerate, so that S(y0) < 0 is a local maximum of S (and,
hence, a local minimum of the potential ΦΓ) and the Hessian Syy(y0) is negative
definite.

Asymptotic analysis of ZΓ and of Z′Γ via Laplace’s method shows, as Γ→ 0+,

Z′Γ = exp(Γ1S(y0))(2πΓ)J/2 φ(y0) + O(Γ)√
|det(Syy(y0))|

and likewise for ZΓ with φ(y) replace by 1. Under the provision of nondegeneracy
of the Hessian Syy(y0), the Bayesian estimate (47) admits an asymptotic expansion
with respect to small observation noise variance Γ,

Eµδ
[φ] =

Z′Γ
ZΓ
∼ φ(y0) + ∑

k≥1
akΓk as Γ→ 0+ .

In the case that the maximum is degenerate or that y0 ∈ ∂U analogous arguments
can be applied; we refer to [30]. Apart from being of interest in its own right
(it indicates that in the limit of noise-free observations the expected response
φ(y0) occurs at a realization which is a (nonlinear) least square minimizer of the
uncertainty for the determination of which deterministic methods from optimization
are available) the precise asymptotic information afforded by the asymptotic
analysis will also allow the regularization of the integrand functions Θ(y) and Ψ(y)
in (47) and (45). This will be presented in [30].

For Γ > 0 not necessarily small, we showed in particular for parametric operator
equations whose solutions q(y) are (p, ε)-analytic, that in inverse problems for
such operator equations, under parametric uncertainty, the density of the Bayesian
posterior measure with respect to a uniform prior µ0 on the parametrization space
U of the uncertainty is, likewise, (p, ε)-analytic on U. This implies that the
adaptive Smolyak quadrature algorithms presented herein can, in principle, achieve
convergence rate s = 1/p − 1 for the approximation of the Bayesian posterior,
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which rate is superior to the Monte-Carlo rate s = 1/2 for p < 2/3. In numerical
experiments, we observed the rate s = 1/p indicating convergence rates which are
even higher than the MC rate 1/2 whenever p < 2.

We assumed in the present paper that the uncertainties u ∈ X were charged
with a uniform prior measure µ0 which assigns equal probability to all relizations
of each coordinate yj in the uncertainty parametrization (7): we worked within
the probability space (U,B, µ0). However, all results and algorithms generalize
straightforwardly also the more general setting where U = ∏j∈J Γj with Γj ⊂ R

compact, with 1
2 λ1 replaced by the probability measures ρj(yj)dyj with

∫ 1
−1 ρj(ξ)dξ =

1. In this case, the families {Qk}k≥0 of univariate quadratures on which the Smolyak
construction in Section 5 was based will be replaced by coordinate-dependent
families {Qk,j}k≥0, j ∈ J, such as, for example, Gaussian quadratures with weight
function ρj which are tailored to the prior with respect to coordinate yj in the
parametric representation (7) of the distributed uncertainty u ∈ X.

The extension of the present theory to U = RN which arises, for example,
in the context of lognormal Gaussian models for the uncertain input u, will
require technical modifications; however, the adaptive Smolyak algorithm for fast,
deterministic Bayesian estimation presented in Section 5 ahead does generalize to
this case. See, eg., [28].

So far, we assumed that the forward problems are solved numerically with high
accuracy so that the discretization error is negligible with respect to the quadrature
error; the present error analysis allows, however, to adapt the discretization error of
the forward problem to the expected significance of its contribution to the Bayesian
estimate, leading to substantial reduction in overall computational complexity. We
refer to [15] for first numerical experiments on this in the context of adaptive
solution of parametric initial value problems. The use of the presently proposed
Smolyak quadrature scheme in connection with efficient processing of large sets of
data δ will be dealt with in a forthcoming work.
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