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ISOTROPIC GAUSSIAN RANDOM FIELDS ON THE SPHERE:

REGULARITY, FAST SIMULATION, AND STOCHASTIC PARTIAL

DIFFERENTIAL EQUATIONS

ANNIKA LANG AND CHRISTOPH SCHWAB

Abstract. Isotropic Gaussian random fields on the sphere are characterized by Karhunen–
Loève expansions with respect to the spherical harmonic functions and the angular power
spectrum. The smoothness of the covariance is connected to the decay of the angular power
spectrum and the relation to sample Hölder continuity and sample differentiability of the
random fields is discussed. Rates of convergence of their finitely truncated Karhunen–Loève
expansions in terms of the covariance spectrum are established, and algorithmic aspects of
fast sample path generation via fast Fourier transforms on the sphere are indicated. The
relevance of the results on sample path regularity for isotropic Gaussian random fields and the
corresponding lognormal random fields on the sphere for several models from environmental
sciences is indicated. Finally, the stochastic heat equation on the sphere driven by additive,
isotropic Wiener noise is considered and strong convergence rates for spectral discretizations
based on the spherical harmonic functions are proven.

1. Introduction

Path regularity of Gaussian random fields (GRFs) on subsets of Euclidean space is well
studied, where the spectral theory of these fields is used (see, e.g., [26, 27, 28]). However,
the general theory of second order random fields as developed in [26, 27, 28] requires a group
structure on the space of realizations. The (practically relevant) case of GRFs indexed by the
sphere, which we denote by S

2, (and, more generally, S2n) takes a special role with regard to
invariance under (topological) group actions (see, e.g., [19] and the references there for a lucid
discussion), so that the general results in [26] do not apply directly. Due to the relevance of
GRFs on S

2 in applications, in particular in environmental modeling, it is of some interest to
develop a theory of sample path regularity, stochastic partial differential equations, and their
numerical analysis. The contribution of some basic results with direct proofs is the purpose
of the present paper.

Specifically, we derive the connection between the smoothness of the covariance kernel of
an isotropic GRF on S

2 and the decay of its angular power spectrum and characterize its
P-a.s. sample path Hölder continuity and sample differentiability. Furthermore, we construct
isotropic Q-Wiener processes using isotropic GRFs. We solve the stochastic heat equation
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on S
2 driven by isotropic Q-Wiener noise with a series expansion with respect to the spherical

harmonic functions. We show that the convergence rate of the fully discrete approximation
scheme given by the truncation of the series expansion depends only on the decay of the
angular power spectrum and that it is independent of the chosen space and time discretization.

The outline of this paper is as follows: In Section 2 we recapitulate basic definitions of
isotropic GRFs on S

2 and of the Karhunen–Loève expansions in spherical harmonic functions
of these fields from [10]. A characterization of the the decay of the angular power spectrum of
isotropic GRFs in terms of a regularity of the covariance kernel in a scale of weighted Sobolev
spaces on S

2 is presented in Section 3. Section 4 contains a version of the Kolmogorov–
Chentsov theorem for random fields on S

2 and therefore sample Hölder continuity of random
fields is addressed. Sufficient conditions on the angular power spectrum are presented for P-a.s.
sample Hölder continuity and differentiability of isotropic GRFs. In Section 5 we approximate
isotropic Gaussian random fields by finite truncation of their Karhunen–Loève expansions.
We discuss convergence rates of these approximations in p-th moment and in the P-a.s. sense.
The topic of Section 6 is the introduction of the practically important case of lognormal
random fields. These are crucial in a number of applications, in particular in meteorology
and in climate modeling. In this section, we give analogous results to Section 4, i.e., sample
path regularity of lognormal random fields in terms of Hölder continuity and differentiability
is addressed. Finally, isotropic Q-Wiener processes are introduced in Section 7. We consider
the stochastic heat equation on S

2 driven by an isotropic Q-Wiener process and solve the
stochastic partial differential equation (SPDE) with spectral methods. We approximate the
solution by truncation of the derived spectral representation and show convergence rates in
p-th moment as well as P-almost surely. These results are illustrated by numerical examples.

2. Isotropic Gaussian random fields on the sphere

In this section we introduce isotropic Gaussian random fields and their properties. We
focus especially on Karhunen–Loève of these random fields. In doing so, we follow closely
the introduction of Gaussian random fields in Chapter 5 in [10]. Throughout, we denote by
(Ω,A,P) a probability space and write S

2 for the unit sphere in R
3, i.e.,

S
2 = {x ∈ R

3, ‖x‖ = 1},

where ‖ · ‖ denotes the Euclidean norm. Let (S2, d) be the compact metric space with the
geodesic metric given by

d(x, y) = arccos〈x, y〉R3

for all x, y ∈ S
2. We denote by B(S2) the Borel σ-algebra of S2.

Definition 2.1. A A ⊗ B(S2)-measurable mapping T : Ω × S
2 → R is called a real-valued

random field on the unit sphere.
The random field T is called strongly isotropic if, for all k ∈ N, x1, . . . , xk ∈ S

2, and for
g ∈ SO(3) the multivariate random variables (T (x1), . . . , T (xk)) and (T (gx1), . . . , T (gxk))
have the same law, where SO(3) denotes the group of rotations on S

2.
It is called n-weakly isotropic for n ≥ 2 if E(|T (x)|n) < +∞ for all x ∈ S

2 and if for
1 ≤ k ≤ n, x1, . . . , xk ∈ S

2 and g ∈ SO(3),

E(T (x1) · · ·T (xk)) = E(T (gx1) · · ·T (gxk)).
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Furthermore, it is called Gaussian if for all k ∈ N, x1, . . . , xk ∈ S
2 the multivariate ran-

dom variable (T (x1), . . . , T (xk)) is multivariate Gaussian distributed, i.e.,
∑k

i=1 aiT (xi) is a
normally distributed random variable for all ai ∈ R, i = 1, . . . , k.

In what follows, we focus on real-valued random fields. Similarly to a Gaussian random
field (GRF for short) on R

d, d ∈ N, a GRF on S
2 has the following property proven, e.g., in

Proposition 5.10(3) in [10]:

Proposition 2.2. Let T be a GRF on S
2. Then, T is strongly isotropic if and only if T is

2-weakly isotropic.

A key role in our analysis and simulation of isotropic GRFs on S
2 is taken by their

Karhunen–Loève expansions. To introduce Karhunen–Loève expansions of isotropic GRFs
(and the corresponding Q-Wiener processes on S

2 in the formulation of SPDEs on S
2 in Sec-

tion 7), we first have to define the spherical harmonic functions on S
2 which take a crucial

role. We recall that the Legendre polynomials (Pℓ, ℓ ∈ N0) are for example given by Rodrigues’
formula (see, e.g., [21])

Pℓ(µ) := 2−ℓ 1

ℓ!

∂ℓ

∂µℓ
(µ2 − 1)ℓ

for all ℓ ∈ N0 and µ ∈ [−1, 1]. The Legendre polynomials define the associated Legendre
functions (Pℓm, ℓ ∈ N0,m = 0, . . . , ℓ) by

Pℓm(µ) := (−1)m(1− µ2)m/2 ∂
m

∂µm
Pℓ(µ)

for ℓ ∈ N0, m = 0, . . . , ℓ, and µ ∈ [−1, 1]. Here and throughout, we do not separate indices
for doubly subscripted functions and coefficients by a comma, with the understanding that
the reader will recognize double indices as such. With this in mind, we further introduce
the surface spherical harmonic functions Y := (Yℓm, ℓ ∈ N0,m = −ℓ, . . . , ℓ) as mappings
Yℓm : [0, π]× [0, 2π) → C, which are given by

Yℓm(ϑ, ϕ) :=

√

2ℓ+ 1

4π

(ℓ−m)!

(ℓ+m)!
Pℓm(cosϑ)eimϕ,

for ℓ ∈ N0, m = 0, . . . , ℓ, and (ϑ, ϕ) ∈ [0, π]× [0, 2π), and by

Yℓm := (−1)mYℓ−m,

for ℓ ∈ N and m = −ℓ, . . . ,−1. By the Peter–Weyl theorem (see, e.g., Proposition 3.29
in [10]), Y is an orthonormal basis of L2(S2;C) which we abbreviate by L2(S2). Every real-
valued function f in L2(S2) admits the spherical harmonics series expansion

f =
∞
∑

ℓ=0

ℓ
∑

m=−ℓ

fℓmYℓm

and the coefficients satisfy (cf., e.g., Remark 3.37 in [10])

fℓm = (−1)mfℓ−m,

i.e., f can be represented in L2(S2) by the series expansion

f =

∞
∑

ℓ=0

(

fℓ0Yℓ0 + 2

ℓ
∑

m=1

(Re fℓmReYℓm − Im fℓm ImYℓm)
)

.
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In what follows, we set for y ∈ S
2

Yℓm(y) := Yℓm(ϑ, ϕ),

where y = (sinϑ cosϕ, sinϑ sinϕ, cosϑ), i.e., we identify (with a slight abuse of notation)
Cartesian and angular coordinates of the point y ∈ S

2. Furthermore we denote by σ the
Lebesgue measure on the sphere which admits the representation

dσ(y) = sinϑ dϑ dϕ

for y ∈ S
2, y = (sinϑ cosϕ, sinϑ sinϕ, cosϑ).

We define the spherical Laplacian, also called Laplace–Beltrami operator, in terms of spher-
ical coordinates similarly to Section 3.4.3 in [10] by

∆S2 = (sinϑ)−1 ∂

∂ϑ

(

sinϑ
∂

∂ϑ

)

+ (sinϑ)−2 ∂
2

∂ϕ2
.

It is well-known (see, e.g., Theorem 2.13 in [13]) that the spherical harmonic functions Y are
the eigenfunctions of ∆S2 with eigenvalues (−ℓ(ℓ+ 1), ℓ ∈ N0), i.e.,

∆S2Yℓm = −ℓ(ℓ+ 1)Yℓm

for all ℓ ∈ N0, m = −ℓ, . . . , ℓ. Furthermore it is shown in Theorem 2.42 in [13] that L2(S2)
has the direct sum decomposition

L2(S2) =
∞
⊕

ℓ=0

Hℓ(S
2),

where the spaces (Hℓ, ℓ ∈ N0) are spanned by spherical harmonic functions

Hℓ(S
2) = span{Yℓm,m = −ℓ, . . . , ℓ},

i.e., Hℓ(S
2) denotes the space of eigenfunctions of ∆S2 that correspond to the eigenvalue

−ℓ(ℓ+ 1) for ℓ ∈ N0.
The significance of the spherical harmonic functions lies in the fact that every 2-weakly

isotropic random field admits a convergent Karhunen–Loève expansion. The following result,
which is proven in Theorem 5.13 in [10], makes this precise.

Theorem 2.3. Let T be a 2-weakly isotropic random field on S
2, then the following statements

hold true:

(1) T satisfies P-almost surely
∫

S2

T (x)2 dσ(x) < +∞.

(2) T admits a Karhunen–Loève expansion

(1) T =
∞
∑

ℓ=0

ℓ
∑

m=−ℓ

aℓmYℓm

with

aℓm =

∫

S2

T (y)Yℓm(y) dσ(y),

for ℓ ∈ N0 and m ∈ {−ℓ, . . . , ℓ}.
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(3) The series expansion (1) converges in L2(Ω× S
2;R), i.e.,

lim
L→∞

E

(

∫

S2

(T (y)−
L
∑

ℓ=0

ℓ
∑

m=−ℓ

aℓmYℓm(y))2 dσ(y)
)

= 0.

(4) The series expansion (1) converges in L2(Ω;R) for all x ∈ S
2, i.e., for all x ∈ S

2

lim
L→∞

E
(

(T (x)−
L
∑

ℓ=0

ℓ
∑

m=−ℓ

aℓmYℓm(x))2
)

= 0.

This result implies that every 2-weakly isotropic random field is an element of L2(Ω;L2(S2)).
For the efficient computational simulation of 2-weakly isotropic Gaussian random fields, which
we will call in the following just isotropic Gaussian random fields, we will exploit special
properties of the random coefficients A = (aℓm, ℓ ∈ N0,m = −ℓ, . . . , ℓ). It turns out that the
properties are similar to those of invariant GRFs on the torus with Fourier series expansions
(see, e.g., [8]). First of all, we have by Remark 6.4, Proposition 6.6, and Equation (6.6) in [10]
the following lemma:

Lemma 2.4. Let T be a strongly isotropic random field on S
2. The elements of the sequence A

are, except for a00, centered random variables, i.e., E(aℓm) = 0 for all ℓ ∈ N and m =
−ℓ, . . . , ℓ. Furthermore they are complex-valued random variables that satisfy

E(aℓ1m1aℓ2m2) = Aℓ1δℓ1ℓ2δm1m2 ,

for ℓ1, ℓ2 ∈ N and mi = −ℓi, . . . , ℓi, i = 1, 2, where δnm = 1 if n = m and zero else. For the
first element a00, it holds that

E(a00aℓm) = (A0 + E(a00)
2)δ0ℓδ0m.

The sequence of nonnegative real numbers (Aℓ, ℓ ∈ N0) is called the angular power spectrum
of T .

The random variables aℓm and aℓ−m satisfy for ℓ ∈ N and m = 1, . . . , ℓ that

aℓm = (−1)m aℓ−m.

In the case of interest in this manuscript that T is an isotropic GRF, Theorem 6.12 in [10]
implies that A+ = (aℓm, ℓ ∈ N0,m = 0, . . . , ℓ) is a sequence of independent, complex-valued,
Gaussian random variables. By Proposition 6.8 in [10], the elements of A+ for m 6= 0 satisfy
that Re aℓm and Im aℓm are symmetric random variables that are equal in law, uncorrelated,
i.e., E(Re aℓm Im aℓm) = 0, and that have variance

E((Re aℓm)2) = E((Im aℓm)2) = Aℓ/2 .

By Lemma 2.4 the elements of A that are not in A+ can be calculated by the formula

Re aℓm = (−1)mRe aℓ−m, Im aℓm = (−1)m+1 Im aℓ−m,

for ℓ ∈ N andm = −ℓ, . . . ,−1. Furthermore we deduce from Proposition 6.11, Proposition 6.6,
and Equation (6.12) in [10] and Lemma 2.4 in this manuscript that Re aℓ0 is N (0, Aℓ) dis-
tributed, i.e., it is normally distributed with mean zero and variance Aℓ, and Im aℓ0 = 0 for
ℓ ∈ N and that Re a00 is N (E(T )2

√
π,A0) distributed while Im a00 = 0.

So, in conclusion, we have the following corollary.
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Corollary 2.5. Let T be a 2-weakly isotropic Gaussian random field on S
2. Then T admits

the Karhunen–Loève expansion

T =
∞
∑

ℓ=0

ℓ
∑

m=−ℓ

aℓmYℓm,

where (Yℓm, ℓ ∈ N0,m = −ℓ, . . . , ℓ) is the sequence of spherical harmonic functions and the
sequence A = (aℓm, ℓ ∈ N0,m = −ℓ, . . . , ℓ) is a sequence of complex-valued, centered, Gaussian
random variables with the following properties:

(1) A+ = (aℓm, ℓ ∈ N0,m = 0, . . . , ℓ) is a sequence of independent, complex-valued Gauss-
ian random variables.

(2) The elements of A+ with m > 0 satisfy Re aℓm and Im aℓm are independent and
N (0, Aℓ/2) distributed.

(3) The elements of A+ with m = 0 are real-valued and the elements Re aℓ0 are N (0, Aℓ)
distributed for ℓ ∈ N while Re a00 is N (E(T )2

√
π,A0) distributed.

(4) The elements of A with m < 0 are deduced from those of A+ by the formulae

Re aℓm = (−1)mRe aℓ−m, Im aℓm = (−1)m+1 Im aℓ−m.

3. Decay of the angular power spectrum

The error in a κ-term truncation of the Karhunen–Loève expansion of an isotropic GRF T
on S

2 is closely related to the decay of the angular power spectrum of T . As we show next, the
decay of the angular power spectrum is characterized by the behavior of the covariance kernel
function that characterizes the isotropic GRF T . Often the kernel function kT is prescribed
in applications.

To specify this relation, we start with the definition of the kernel kT of the covariance of
an isotropic Gaussian random field with prescribed angular power spectrum (Aℓ, ℓ ∈ N0). It
is given for x, y ∈ S

2 by the formula

kT (x, y) := E(T (x)T (y)) =
∞
∑

ℓ=0

Aℓ

ℓ
∑

m=−ℓ

Yℓm(x)Yℓm(y) =
∞
∑

ℓ=0

Aℓ
2ℓ+ 1

4π
Pℓ(〈x, y〉R3).

We observe that the covariance kernel kT just depends on the inner product resp. the (spheri-
cal) distance. Accordingly, we denote by k : [0, π] → R the kernel as a function of the distance
r = d(x, y), i.e.,

k(r) :=
∞
∑

ℓ=0

Aℓ
2ℓ+ 1

4π
Pℓ(cos r),

for r ∈ [0, π]. A third way to look at the kernel is in terms of the inner product 〈x, y〉R3 .
Therefore, we define kI : [−1, 1] → R by

kI(µ) := k(arccosµ)

for all µ ∈ [−1, 1]. This implies overall for x, y ∈ S
2 that

kT (x, y) = k(d(x, y)) = kI(〈x, y〉R3).

In the following Proposition, we give a relation between the weak weighted differentiability
of the kernel kI and the decay of the corresponding angular power spectrum in terms of
summability.
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Proposition 3.1. For every n ∈ N0, it holds that the sequence (ℓn+1/2Aℓ, ℓ ≥ n) is in ℓ2(N0)

if and only if (1− µ2)n/2 ∂n

∂µnkI(µ), µ ∈ (−1, 1) is in L2(−1, 1), i.e.,

1

(4π)2

∑

ℓ≥n

A2
ℓ

2ℓ+ 1

2
ℓ2n < +∞

if and only if
∫ 1

−1

∣

∣

∣

∣

∂n

∂µn
kI(µ)

∣

∣

∣

∣

2

(1− µ2)n dµ < +∞.

Proof. Let us observe first that by definition

∫ 1

−1

∣

∣

∣

∣

∂n

∂µn
kI(µ)

∣

∣

∣

∣

2

(1− µ2)n dµ

=

∫ 1

−1

(

∞
∑

ℓ=0

Aℓ
2ℓ+ 1

4π

∂n

∂µn
Pℓ(µ)

)2

(1− µ2)n dµ

=

∞
∑

ℓ,ℓ′=0

Aℓ
2ℓ+ 1

4π
Aℓ′

2ℓ′ + 1

4π

∫ 1

−1

(

∂n

∂µn
Pℓ(µ)

)(

∂n

∂µn
Pℓ′(µ)

)

(1− µ2)n dµ.

By (P
(α,β)
ℓ , ℓ ∈ N0) we denote the Jacobi polynomials given, e.g., by Rodrigues’ formula

P
(α,β)
ℓ (µ) :=

(−1)ℓ

2ℓℓ!
(1− µ)−α(1 + µ)−β ∂ℓ

∂µℓ

(

(1− µ)α(1 + µ)β(1− µ2)ℓ
)

for ℓ ∈ N0, α, β > −1, and µ ∈ [−1, 1]. They satisfy that

∂

∂µ
P

(α,β)
ℓ (µ) =

1

2
(ℓ+ α+ β + 1)P

(α+1,β+1)
(ℓ−1) (µ).

Since Legendre polynomials are particular instances of Jacobi polynomials for α = β = 0, we
conclude by recursion that

∂n

∂µn
Pℓ(µ) =

∂n

∂µn
P

(0,0)
ℓ (µ) =

(ℓ+ n)!

2n ℓ!
P

(n,n)
(ℓ−n)(µ)

for every n ≤ ℓ. This implies that
∫ 1

−1

(

∂n

∂µn
Pℓ(µ)

)(

∂n

∂µn
Pℓ′(µ)

)

(1− µ2)n dµ

=

∫ 1

−1

(ℓ+ n)!

2n ℓ!
P

(n,n)
(ℓ−n)(µ)

(ℓ′ + n)!

2n ℓ′!
P

(n,n)
(ℓ′−n)(µ)(1− µ)n(1 + µ)n dµ

= δℓℓ′
2

2ℓ+ 1

(ℓ+ n)!

(ℓ− n)!
,

where the last equation follows from the orthogonality of the Jacobi polynomials (see, e.g., [21])
and

∫ 1

−1

(

P
(n,n)
(ℓ−n)(µ)

)2
(1− µ)n(1 + µ)n dµ =

22n+1

2ℓ+ 1

ℓ! ℓ!

(ℓ− n)! (ℓ+ n)!
.
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In conclusion we have shown that
∫ 1

−1

∣

∣

∣

∣

∂n

∂µn
kI(µ)

∣

∣

∣

∣

2

(1− µ2)n dµ =
∞
∑

ℓ=n

A2
ℓ

2ℓ+ 1

2(4π)2
(ℓ+ n)!

(ℓ− n)!
,

since for n > ℓ the n-th derivative of Pℓ vanishes. To finish the proof it remains to show that
for n ≤ ℓ there exist constants c1(n) and c2(n) such that

c1(n)ℓ
2n ≤ (ℓ+ n)!

(ℓ− n)!
≤ c2(n)ℓ

2n.

This follows from Stirling’s inequalities
√
2π ℓℓ+1/2e−ℓ ≤ ℓ! ≤ e · ℓℓ+1/2e−ℓ, ℓ ∈ N

by writing

(ℓ+ n)ℓ+n

(ℓ− n)ℓ−n
= ℓℓ+n−(ℓ−n) (1 + n/ℓ)ℓ(1+n/ℓ)

(1− n/ℓ)ℓ(1−n/ℓ)

and by using the properties of the exponential function. �

Proposition 3.1 provides a necessary and sufficient criterion for the weighted 2-summability
of the angular power spectrum (Aℓ, ℓ ∈ N0) in terms of weighted square integrability of the
n-th weak derivatives of kI with respect to the weight function (1−µ2)n. It can be formalized
in the framework of weighted Sobolev spaces, which we will cover in what follows.

For n ∈ N0, let H
n(−1, 1) ⊂ L2(−1, 1) denote the standard Sobolev spaces. We define the

function spaces V n(−1, 1) as the closures of Hn(−1, 1) with respect to the weighted norms
‖ · ‖V n(−1,1) given by

‖u‖2V n(−1,1) :=
n
∑

j=0

|u|2V j(−1,1),

where for j ∈ N0 the seminorm | · |V j(−1,1) is defined by

|u|2V j(−1,1) :=

∫ 1

−1

∣

∣

∣

∣

∂j

∂µj
u(µ)

∣

∣

∣

∣

2

(1− µ2)j dµ.

With this definition, (V n(−1, 1), n ∈ N0) is a decreasing scale of separable Hilbert spaces, i.e.,

L2(−1, 1) = V 0(−1, 1) ⊃ V 1(−1, 1) ⊃ · · · ⊃ V n(−1, 1) ⊃ · · ·
By Ehrling’s lemma, the norm of V n(−1, 1) is equivalent to the first and the last element of
the sum, i.e.,

‖u‖2V n(−1,1) ≃ ‖u‖2L2(−1,1) + |u|2V n(−1,1)

for all u ∈ V n(−1, 1). We will in the sequel not distinguish between these norms by a separate
notation.

In what follows we are deriving further equivalent norms of V n(−1, 1) similarly to Propo-
sition 3.1. Therefore let us first observe that any u ∈ L2(−1, 1) can be expanded in the
L2(−1, 1) convergent Fourier–Legendre series

u =

∞
∑

ℓ=0

uℓ
2ℓ+ 1

2
Pℓ
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with

uℓ :=

∫ 1

−1
u(x)Pℓ(x) dx

for all ℓ ∈ N0. Setting

Aℓ := 2πuℓ,

we obtain that

u =
∞
∑

ℓ=0

Aℓ
2ℓ+ 1

4π
Pℓ,

i.e., u is a valid kernel kI . In conclusion we have proven the following version of Proposi-
tion 3.1.

Proposition 3.2. Let u ∈ L2(−1, 1) and n ∈ N0 be given. Then u ∈ V n(−1, 1) if and only if

∞
∑

ℓ=0

u2ℓ
2ℓ+ 1

2
(1 + ℓ2n) < +∞,

i.e.,

‖u‖2V n(−1,1) ≃
∞
∑

ℓ=0

u2ℓ
2ℓ+ 1

2
(1 + ℓ2n)

is an equivalent norm in V n(−1, 1).

In other words we have just shown an isomorphism between the spaces V n(−1, 1) and the
weighted sequence spaces ℓn := ℓ2((2ℓ+1

2 (1 + ℓ2n), ℓ ∈ N0)), where (2ℓ+1
2 (1 + ℓ2n), ℓ ∈ N0)

denotes the sequence of weights. Our goal is to extend this isomorphism to spaces V η(−1, 1)
with η /∈ N0. We define for n < η < n + 1 the interpolation space V η(−1, 1) with the real
method of interpolation in the sense of [23] by

V η(−1, 1) =
(

V n(−1, 1), V n+1(−1, 1)
)

η−n,2

equipped with the norms ‖ · ‖V η(−1,1) given by

‖u‖2V η(−1,1) =

∫ ∞

0
t−2(η−n)|K(t, u)|2 dt

t
,

where the K-functional is defined by

K(t, u) = inf
u=v+w

(

‖v‖V k(−1,1) + t‖w‖V n(−1,1)

)

for t > 0.
The definition of the interpolation spaces ℓη for η /∈ N0 is done similarly. The interpolation

property of the spaces (see, e.g., step 4 in proof of Theorem 1.3.3 in [23] or Proposition 2.4.1
in [22]) implies that the spaces V η(−1, 1) and ℓη are also isomorphic. So the only thing that
remains to show to extend Proposition 3.2 to fractional differentiation orders is the equivalence
of the norm induced by the real method of interpolation and the sequence of weights with
parameter η instead of n. This is done with the interpolation theorem of Stein–Weiss in the
following proposition.
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Proposition 3.3. Let u ∈ L2(−1, 1) and η ∈ R+ be given. Then u ∈ V η(−1, 1) if and only if

∞
∑

ℓ=0

u2ℓ
2ℓ+ 1

2
(1 + ℓ2η) < +∞,

i.e.,

‖u‖2V η(−1,1) ≃
∞
∑

ℓ=0

u2ℓ
2ℓ+ 1

2
(1 + ℓ2η)

is an equivalent norm in V η(−1, 1).

Proof. The proposition is already proven for η ∈ N0 in Proposition 3.2. So let n < η < n+1 for
some n ∈ N0 be given and set θ := η− n. Applying the interpolation theorem of Stein–Weiss
(see, e.g., Theorem 5.4.1 in [1]), we get that the weights of ℓη are given by

(

2ℓ+ 1

2
(1 + ℓ2n)

)1−θ (2ℓ+ 1

2
(1 + ℓ2(n+1))

)θ

=
2ℓ+ 1

2
(1 + ℓ2n)1−θ(1 + ℓ2(n+1))θ.

It remains to show that this is equivalent to 2ℓ+1
2 (1+ ℓ2η). But this follows immediately with

the observation that the function xp, p ∈ (0, 1) is concave on R+ and satisfies (x + y)p ≥
2p−1(xp + yp). �

For more details on this we refer to Appendix A.In conclusion we have shown in this
section that the decay of the angular power spectrum in terms of summability is equivalent
to the smoothness of the corresponding kernel kI in terms of elements of (a scale of) weighted
Sobolev spaces.

4. Sample Hölder continuity and differentiability

So far, our analysis of GRFs via the Karhunen–Loève expansion in Section 2 focused on
mean square properties. In this section we consider sample properties of isotropic GRFs in-
troduced in Section 2. Specifically, we are interested how the P-almost sure Hölder continuity
of isotropic GRFs depends on the decay of the angular power spectrum (Aℓ, ℓ ∈ N0) which is
one possible characterization of isotropic GRFs on S

2 by Theorem 2.3 and Lemma 2.4.
The following lemma relates the decay of the angular power spectrum to the Hölder con-

tinuity of the kernel k at zero.

Lemma 4.1. Let (Aℓ, ℓ ∈ N0) be the angular power spectrum of an isotropic GRF on S
2 with

∞
∑

ℓ=0

Aℓℓ
1+β < +∞

for some β ∈ [0, 2]. Then the corresponding kernel function k satisfies that there exists a
constant Cβ such that for all r ∈ [0, π]

|k(0)− k(r)| ≤ Cβr
β ,

Proof. We observe that Pℓ(1) = 1 for all ℓ ∈ N0 and that the derivative of Pℓ(x) is bounded
by P ′

ℓ(1). Therefore

|1− Pℓ(x)| =
∣

∣

∣

∫ 1

x
P ′
ℓ(y) dy

∣

∣

∣
≤ |1− x|ℓ(ℓ+ 1)

2
.
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Furthermore we have that

|1− Pℓ(x)| ≤ 2.

This implies by interpolation that

|1− Pℓ(x)| ≤
(

|1− x|ℓ(ℓ+ 1)

2

)γ

21−γ ≤ 2|1− x|γ(ℓ(ℓ+ 1))γ

for all γ ∈ [0, 1]. Using this estimate we obtain that

|k(0)− k(r)| ≤
∞
∑

ℓ=0

Aℓ
2ℓ+ 1

4π
|1− Pℓ(cos r)|

≤ (2π)−1|1− cos r|γ
∞
∑

ℓ=0

Aℓ(2ℓ+ 1)(ℓ(ℓ+ 1))γ

where the series converges if
∑∞

ℓ=0Aℓℓ
2γ+1, which holds by the made assumptions for all

γ ≤ β/2. Finally we observe that

|1− cos r| =
∣

∣

∣

∫ r

0
sinx dx

∣

∣

∣
≤ r sin r = r

∫ r

0
cosx dx ≤ r2 · 1,

which implies overall with the choice β = 2γ that

|k(0)− k(r)| ≤ Cβr
β ,

where

Cβ := (2π)−1
∞
∑

ℓ=0

Aℓ(2ℓ+ 1)(ℓ(ℓ+ 1))β/2.

This finishes the proof of the lemma. �

Lemma 4.1 asserts Hölder continuity of k(r) near r = 0 in terms of a ℓ1 criterion on the
angular power spectrum of the isotropic GRF T , while we provided ℓ2 criteria in Section 3.
To relate these criteria we first observe that for ǫ > 0

∞
∑

ℓ=0

Aℓℓ
1+β ≤ ζ(1 + ǫ)1/2

(

∞
∑

ℓ=0

A2
ℓℓ

3+2β+ǫ

)1/2

by the Cauchy–Schwarz inequality, where ζ denotes the Riemann zeta function. This implies
with Proposition 3.3 that

∞
∑

ℓ=0

Aℓℓ
1+β < +∞

if the kernel kI is in V η(−1, 1) for some η > β + 1.
Our next step is to give bounds on moments of T (x) − T (y) for x, y ∈ S

2 in terms of the
geodesic distance d(x, y). We prove the lemma by expressing the moments in terms of the
kernel k and by an application of the preceding lemma.

Lemma 4.2. Let T be an isotropic Gaussian random field on S
2 with angular power spectrum

(Aℓ, ℓ ∈ N0). If the angular power spectrum satisfies that

∞
∑

ℓ=0

Aℓℓ
1+β < +∞
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for some β ∈ [0, 2], then for all p ∈ N there exists a constant Cβ,p such that

E(|T (x)− T (y)|2p) ≤ Cβ,p d(x, y)
βp

for all x, y ∈ S
2.

Proof. First note that T (x) − T (y) is a centered Gaussian random variable. Furthermore, if
X is a N (0, σ2)-distributed random variable, then

E(|X|2p) = E(|σY |2p) = (σ2)p E(|Y |2p) = E(X2)pc2p

for p ∈ N, where Y is a standard normally distributed random variable and c2p denotes the
2p-th moment of Y . We also observe that E(|T (x) − T (y)|2) can be expressed in terms of k
since

E(|T (x)− T (y)|2) = E(T (x)2)− 2E(T (x)T (y)) + E(T (y)2)

= kT (x, x)− 2kT (x, y) + kT (y, y)

= 2
(

k(0)− k(d(x, y))
)

.

Combining the two previous observations, we conclude that

E(|T (x)− T (y)|2p) = c2p E(|T (x)− T (y)|2)p

= 2 c2p(k(0)− k(d(x, y)))p

≤ 2 c2pC
p
β d(x, y)

βp,

where we applied Lemma 4.1 in the last step. This finishes the proof of the lemma. �

The following result is a version of the Kolmogorov–Chentsov theorem for random fields
with domain S

2. Note that in this result the fields do not have to be Gaussian or isotropic.

Theorem 4.3 (Kolmogorov–Chentsov theorem). Let T be a random field on the sphere that
satisfies for some p > 0 and some ǫ ∈ (0, 1] that there exists a constant C such that

E(|T (x)− T (y)|p) ≤ Cd(x, y)2+ǫp

for all x, y ∈ S
2. Then there exists a continuous modification of T that is locally Hölder

continuous with exponent γ for all γ ∈ (0, ǫ).

Proof. Let us first construct six charts (Ui, i = 1, . . . , 6) that cover the sphere by taking the
six possible hemispheres given by the coordinate system such that the boundary is a circle
of radius r with r ∈ (

√

2/3, 1), i.e., we take a bit less than the complete hemispheres but
enough to cover the whole sphere. Let the coordinate maps (ϕi, i = 1, . . . , 6) be given by the
projection onto the plane that divides the hemispheres, i.e., if U is contained in the northern
hemisphere than the corresponding coordinate map ϕ is given by ϕ((x1, x2, x3)) := (x1, x2)
for x = (x1, x2, x3) ∈ U and maps onto the disc {x ∈ R

2, ‖x‖R2 < r}.
For a given chart (U,ϕ), we have to show that the Euclidean norm in R

2 is equivalent to
the metric on S

2, i.e., that there exist constants C1, C2 > 0 such that for all x, y ∈ U

C1‖ϕ(x)− ϕ(y)‖R2 ≤ d(x, y) ≤ C2‖ϕ(x)− ϕ(y)‖R2

or equivalently that

C1 ≤
arccos(〈x, y〉R3)

‖ϕ(x)− ϕ(y)‖R2

≤ C2.

We show this estimate for U contained in the northern hemisphere. The calculations for the
other five charts are similar and the bounds are the same due to symmetry.
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One first calculates that

〈x, y〉R3 = 1− 1

2
(‖ϕ(x)− ϕ(y)‖2

R2 + |x3 − y3|2)

and shows that

0 ≤ |x3 − y3|2 ≤
2r2

1− r2
‖ϕ(x)− ϕ(y)‖2

R2 .

This implies that we can bound the quotient of interest from above and below by

arccos(1− 1
2‖ϕ(x)− ϕ(y)‖2

R2)

‖ϕ(x)− ϕ(y)‖R2

≤ arccos(〈x, y〉R3)

‖ϕ(x)− ϕ(y)‖R2

≤
arccos(1− (12 + r2

1−r2
)‖ϕ(x)− ϕ(y)‖2

R2)

‖ϕ(x)− ϕ(y)‖R2

,

since arccos is a monotonically decreasing function. Let us define f : [0, 2r) → R by

f(a) :=
arccos(1− αa2)

a

for a ∈ (0, 2r), where α = 1/2, 1/2 + r2/(1 − r2). Then one shows with standard methods
from real analysis that f is well-defined on [0, 2r) and monotonically increasing which leads
with the observation that f(0) =

√
2α by l’Hôpital’s rule to the conclusion that

C1 := 1 ≤ arccos(〈x, y〉R3)

‖ϕ(x)− ϕ(y)‖R2

≤
arccos(2r

4+3r2−1
r2−1

)

2r
=: C2 < +∞

and finishes the proof of the equivalence of geodetic and Euclidean distances on the sphere
and in the charts.

For a, b ∈ ϕ(U) it holds for the random field on the chart by the made assumptions and
the equivalence of the distances that

E(|T (ϕ−1(a))− T (ϕ−1(b))|p) ≤ Cd(ϕ−1(a), ϕ−1(b))2/p+ǫ ≤ C · C2/p+ǫ
2 ‖a− b‖2/p+ǫ.

Since ϕ(U) is a domain in R
2, we obtain by the Kolmogorov–Chentsov theorem for domains

(see Theorem 2.1 in [11] or Theorem 4.5 in [16]) that there exists a continuous modification T1◦
ϕ−1 that is locally Hölder continuous with exponent γ for all γ ∈ (0, ǫ) and so is T1 on U due
to the smoothness of the coordinate map.

With the same proof we obtain continuous modifications (Ti, i = 1, . . . , 6) on all charts
(Ui, i = 1, . . . , 6). We glue these together with a smooth partition of unity (ρi, i = 1, . . . , 6)
on S

2, which is subordinate to the open covering, (see, e.g., Theorem 1.73 in [9]), by

T̃ (x) :=

6
∑

i=1

ρi(x)Ti(x)

for all x ∈ S
2, where Ti(x) = 0 for x /∈ Ui. Then T̃ is a continuous modification of T that is

locally Hölder continuous with the same exponent γ for all γ ∈ (0, ǫ) due to the smoothness
of the partitions of unity. This finishes the proof of the theorem. �

With the made observations, we are now prepared to prove one of the main results of this
section which states that if the angular power spectrum of an isotropic Gaussian random field
is summable with weights ℓ1+β , than there exists a continuous modification which is Hölder
continuous of exponent γ for all γ < β/2.
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Theorem 4.4. Let T be an isotropic Gaussian random field on S
2 with angular power spec-

trum (Aℓ, ℓ ∈ N0). If the angular power spectrum satisfies that

∞
∑

ℓ=0

Aℓℓ
1+β < +∞

for some β ∈ [0, 2], then there exists a continuous modification of T that is Hölder continuous
of exponent γ for all γ < β/2.

Proof. The claim follows by the application of the previous results in the following way: It
holds by Lemma 4.2 that for all p ∈ N and x, y ∈ S

2 the random field satisfies

E(|T (x)− T (y)|2p) ≤ Cβ,p d(x, y)
βp = Cβ,p d(x, y)

2+(β/2−1/p)2p.

Theorem 4.3 implies that there exists a continuous modification that is locally Hölder contin-
uous of exponent γ for all γ < β/2−1/p for any p ∈ N, i.e., of exponent γ for all γ < β/2. �

Just as an example let us calculate the parameters of P-almost sure Hölder continuity for
the two choices of α that we simulate in the following sections. For α = 3 we get β < 1 which
implies γ < 1/2 in Theorem 4.4 and α = 5 implies β = 2 and therefore γ < 1.

Furthermore as second main result of this section we are interested in the assumptions on
the angular power spectrum that imply the existence of differentiable modifications of isotropic
GRFs. In particular in the context of approximate, numerical solutions of partial differential
equations, regularity properties of samples are essential for the derivation of convergence rates
for, e.g., Finite Element or Finite Difference discretizations.

Theorem 4.5. Let T be an isotropic Gaussian random field on S
2 with angular power spec-

trum (Aℓ, ℓ ∈ N0) and expectation zero. If the angular power spectrum satisfies that

∞
∑

ℓ=0

Aℓℓ
1+β < +∞

for some β > 0, then there exists a modification of T that is k-times continuously differentiable
for all nonnegative integers k < β/2− 1.

Proof. Let us first observe that the made assumptions imply that T has a continuous modifica-
tion by Theorem 4.4. Without loss of generality let T already be the continuous modification,
which is an isotropic Gaussian random field with the same parameters and has a Karhunen–
Loève expansion with the same parameters by Corollary 2.5.

We observe that the norms in the Sobolev spaces Hη(S2) ⊂ L2(S2) for η > 0 are equivalent
to the norm ‖ · ‖∆η given by

‖u‖2∆η
:= ‖u‖2L2(S2) + ‖(−∆)η/2u‖2L2(S2) =

∞
∑

ℓ=0

ℓ
∑

m=−ℓ

|uℓm|2 (1 + (ℓ(ℓ+ 1))η)

for u ∈ Hη(S2) with expansion

u =

∞
∑

ℓ=0

ℓ
∑

m=−ℓ

uℓmYℓm.
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Furthermore it holds that Hη(S2) is continuously embedded into Ck(S2) for all k < η − 1 by
Theorem 6.5 in [25]. Now T satisfies that

E(‖T‖2∆η
) = E

(

∞
∑

ℓ=0

ℓ
∑

m=−ℓ

|aℓm|2 (1 + (ℓ(ℓ+ 1))η)

)

=
∞
∑

ℓ=0

(

Aℓ + 2
ℓ
∑

m=1

Aℓ/2

)

(1 + (ℓ(ℓ+ 1))η)

=
∞
∑

ℓ=0

Aℓ(ℓ+ 1) (1 + (ℓ(ℓ+ 1))η)

< +∞
for all η ≤ β/2 by our assumptions, where we applied Corollary 2.5. Together with a Cauchy
sequence argument this implies that the series expansion of T converges in L2(Ω;Hβ(S2)) and
therefore in probability. By the Itô–Nisio theorem [4] the series converges P-almost surely to
the same limit. Therefore T ∈ Hβ(S2) P-almost surely and by the above Sobolev embedding
and the continuity of the random field, T ∈ Ck(S2) for all k < β/2 − 1 P-almost surely.
Setting T to zero on the remaining P-null set of Ω, we obtain a modification of T in Ck(S2)
for all k < β/2− 1. This finishes the proof of the theorem. �

5. Approximation of isotropic Gaussian random fields

Let us approximate and simulate isotropic Gaussian random fields in this section, where
we use the properties of the random fields that were introduced in Section 2. In what follows,
we consider centered random fields without loss of generality. It is clear by Corollary 2.5 that
we can transform the centered, isotropic random field into a field with nonzero expectation
by adding the expectation, which is a constant according to Lemma 2.4. To prepare the
presentation of the approximation of isotropic GRFs on S

2, we rewrite its series expansions,
where we use the properties of the spherical harmonic functions and the structure of real-
valued random fields.

Lemma 5.1. Let T be a strongly isotropic, centered, Gaussian random field. For ℓ ∈ N,
m = 1, . . . , ℓ, and ϑ ∈ [0, π], set

Lℓm(ϑ) :=

√

2ℓ+ 1

4π

(ℓ−m)!

(ℓ+m)!
Pℓm(cosϑ).

Then, for y = (sinϑ cosϕ, sinϑ sinϕ, cosϑ),

T (y) =

∞
∑

ℓ=0

√

AℓX
1
ℓ0Lℓ0(ϑ) +

√

2Aℓ

ℓ
∑

m=1

Lℓm(ϑ)(X1
ℓm cos(mϕ) +X2

ℓm sin(mϕ))

in law, where ((X1
ℓm, X

2
ℓm), ℓ ∈ N0,m = 0, . . . , ℓ) is a sequence of independent, real-valued,

standard normally distributed random variables and X2
ℓ0 = 0 for ℓ ∈ N0.

Proof. By Corollary 2.5, T can be represented in the (mean-square convergent) Karhunen–
Loève expansion

T =
∞
∑

ℓ=0

ℓ
∑

m=−ℓ

aℓmYℓm.
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This sum can be rewritten to

T =
∞
∑

ℓ=0

(

aℓ0Yℓ0 +
ℓ
∑

m=1

(aℓmYℓm + aℓ−mYℓ−m)
)

=
∞
∑

ℓ=0

(

aℓ0Lℓ0(ϑ) +
ℓ
∑

m=1

(aℓmYℓm + (−1)maℓm(−1)mYℓm))
)

=
∞
∑

ℓ=0

(

aℓ0Lℓ0(ϑ) +
ℓ
∑

m=1

(aℓmYℓm + aℓmYℓm))
)

=

∞
∑

ℓ=0

(

aℓ0Lℓ0(ϑ) +

ℓ
∑

m=1

2Re(aℓmYℓm)
)

by Lemma 2.4 and the properties of the spherical harmonic functions. We observe that

Yℓm(ϑ, ϕ) = Lℓm(ϑ)eimϕ = Lℓm(ϑ)(cos(mϕ) + i sin(mϕ))

for (ϑ, ϕ) ∈ [0, π]× [0, 2π) and therefore, by the properties of complex numbers, that

Re(aℓmYℓm(ϑ, ϕ)) = Lℓm(ϑ)
(

Re aℓm cos(mϕ)− Im aℓm sin(mϕ)
)

.

Let ((X1
ℓm, X

2
ℓm), ℓ ∈ N0,m = 0, . . . , ℓ) be a sequence of independent, real-valued, standard

normally distributed random variables, then

Re aℓm =

√

Aℓ

2
X1

ℓm and − Im aℓm = Im aℓm =

√

Aℓ

2
X2

ℓm

in law for ℓ ∈ N and m = 1, . . . , ℓ by Corollary 2.5. Furthermore the corollary implies that

aℓ0 =
√

AℓX
1
ℓ0

for ℓ ∈ N0. The insertion these observations into the Karhunen–Loève expansion of T com-
pletes the proof. �

For a given sequence ((X1
ℓm, X

2
ℓm), ℓ ∈ N0,m = 0, . . . , ℓ) as specified in Lemma 5.1, set

T (y) :=

∞
∑

ℓ=0

√

AℓX
1
ℓ0Lℓ0(ϑ) +

√

2Aℓ

ℓ
∑

m=1

Lℓm(ϑ)(X1
ℓm cos(mϕ) +X2

ℓm sin(mϕ)).

In what follows, we truncate the series expansion in order to implement it and prove its
convergence. For κ ∈ N, we set

T κ(y) :=

κ
∑

ℓ=0

√

AℓX
1
ℓ0Lℓ0(ϑ) +

√

2Aℓ

ℓ
∑

m=1

Lℓm(ϑ)(X1
ℓm cos(mϕ) +X2

ℓm sin(mϕ)),

where y = (sinϑ cosϕ, sinϑ sinϕ, cosϑ) and (ϑ, ϕ) ∈ [0, π]× [0, 2π).

Proposition 5.2. Let the angular power spectrum (Aℓ, ℓ ∈ N0) decay algebraically with order
α > 2, i.e., there exist constants C > 0 and ℓ0 ∈ N such that Aℓ ≤ C · ℓ−α for all ℓ > ℓ0.
Then the series of approximate random fields (T κ, κ ∈ N) converges to the random field T
in L2(Ω;L2(S2)) and the truncation error is bounded by

‖T − T κ‖L2(Ω;L2(S2)) ≤ Ĉ · κ−(α−2)/2
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for κ ≥ ℓ0, where

Ĉ2 = C ·
( 2

α− 2
+

1

α− 1

)

.

Proof. Since ((X1
ℓm, X

2
ℓm), ℓ ∈ N0,m = 0, . . . , ℓ) is a sequence of independent, standard nor-

mally distributed random variables, the error is equal to

‖T−T κ‖L2(Ω;L2(S2))

=

∞
∑

ℓ=κ+1

(

Aℓ E((X
1
ℓ0)

2)‖Yℓ0‖2L2(S2)

+ 2Aℓ

ℓ
∑

m=1

(

E((X1
ℓm)2)‖ReYℓm‖2L2(S2) + E((X2

ℓm)2)‖ ImYℓm‖2L2(S2)

)

)

=

∞
∑

ℓ=κ+1

(

Aℓ‖Yℓ0‖2L2(S2) + 2Aℓ

ℓ
∑

m=1

(

‖ReYℓm‖2L2(S2) + ‖ ImYℓm‖2L2(S2)

)

)

.

We observe that ‖Yℓ0‖2L2(S2) = 1 and ‖ReYℓm‖2L2(S2) + ‖ ImYℓm‖2L2(S2) = 1 for ℓ ∈ N0 and

m = 1, . . . , ℓ. Therefore, the sum simplifies to

‖T − T κ‖L2(Ω;L2(S2)) =
∞
∑

ℓ=κ+1

(2ℓ+ 1)Aℓ,

which is bounded by

∞
∑

ℓ=κ+1

(2ℓ+ 1)Aℓ ≤ C
∞
∑

ℓ=κ+1

(2ℓ−(α−1) + ℓ−α)

due to the assumed properties of the angular power spectrum. We rewrite the sum and bound
it by the corresponding integral which leads to

∞
∑

ℓ=κ+1

(2ℓ−(α−1) + ℓ−α) =
∞
∑

ℓ=1

(2(ℓ+ κ)−(α−1) + (ℓ+ κ)−α)

≤
∫ ∞

0

(

2(x+ κ)−(α−1) + (x+ κ)−α
)

dx

=
( 2

α− 2
+

1

α− 1
κ−1

)

κ−(α−2).

This finishes the proof since κ−1 is bounded by 1. �

In an implementation in MATLAB we verified the theoretical results. We took as “exact”
solution the random fields with κ = 27 since for larger κ the elements of the angular power
spectrum Aℓ and therefore the increments were so small that MATLAB failed to calculate
the series expansion. Instead of the L2(S2) error in space, we used the maximum over all grid
points which is a stronger error. In Figure 1 the results and the theoretical convergence rates
are shown for α = 3, 5. One observes that the simulation results match the theoretical results
in Proposition 5.2.

Since we discussed P-almost sure Hölder continuity in Section 4, we are also interested in
P-almost sure convergence rates of the approximate random fields (T κ, κ ∈ N). Therefore,
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(a) Angular power spectrum with parameter α = 3.
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(b) Angular power spectrum with parameter α = 5.

Figure 1. L2 error of the approximation of Gaussian random fields with
different angular power spectrum and 1000 Monte Carlo samples.

we include the following result on Lp(Ω;L2(S2)) convergence since we need it for optimal
pathwise convergence rates of the approximate random fields (T κ, κ ∈ N).

Lemma 5.3. Let the angular power spectrum (Aℓ, ℓ ∈ N0) decay algebraically with order
α > 2, i.e., there exist constants C > 0 and ℓ0 ∈ N such that Aℓ ≤ C · ℓ−α for all ℓ > ℓ0.
Then the series of approximate random fields (T κ, κ ∈ N) converges to the random field T
in Lp(Ω;L2(S2)) for any finite p > 0, and the truncation error is bounded by

‖T − T κ‖Lp(Ω;L2(S2)) ≤ Ĉp · κ−(α−2)/2

for κ ≥ ℓ0, where Ĉp is a constant that depends on p, C, and α.

Proof. For p ≤ 2 the result follows with Proposition 5.2 and Hölder’s inequality. Therefore
let us consider p > 2 now. We prove the claim for p = 2m, m ∈ N. For all other p ∈ R+,
the result follows again by Hölder’s inequality. So let m ∈ N, then Corollary 2.17 in [2] states
that there exists a constant Cm such that

‖T − T κ‖2mL2m(Ω;L2(S2)) ≤ Cm‖T − T κ‖2mL2(Ω;L2(S2)).

Applying Proposition 5.2 we conclude that

‖T − T κ‖L2m(Ω;L2(S2)) ≤ (Cm)1/(2m) Ĉ · κ−(α−2)/2,

where

Ĉ2 = C ·
( 2

α− 2
+

1

α− 1

)

,

which finishes the proof. �

We have just shown that the convergence rate does not depend on p. This is necessary
to get up to an epsilon the same sample convergence rates as in the p-th moment by the
Borel–Cantelli lemma, which we show in what follows.
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(a) Angular power spectrum with parameter α = 3.
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(b) Angular power spectrum with parameter α = 5.

Figure 2. Error of the approximation of a sample of Gaussian random fields
with different angular power spectrum.

Corollary 5.4. Let the angular power spectrum (Aℓ, ℓ ∈ N0) decay algebraically with order
α > 2, i.e., there exist constants C > 0 and ℓ0 ∈ N such that Aℓ ≤ C · ℓ−α for all ℓ > ℓ0.
Then the series of approximate random fields (T κ, κ ∈ N) converges to the random field T
P-almost surely and the truncation error is bounded by

‖T − T κ‖L2(S2) ≤ κ−β , P-a.s.

for all β < (α− 2)/2.

Proof. Let β < (α− 2)/2, then the Chebyshev inequality and Lemma 5.3 imply that

P(‖T − T κ‖L2(S2) ≥ κ−β) ≤ κβp E(‖T − T κ‖p
L2(S2)

) ≤ Ĉp
pκ

(β−(α−2)/2)p.

For all p > ((α− 2)/2− β)−1 the series

∞
∑

κ=1

κ(β−(α−2)/2)p < +∞

converges and therefore the Borel–Cantelli lemma implies the claim. �

In Figure 2, we show the corresponding error plots to Figure 1 but instead of a Monte
Carlo simulation of the approximate L2(Ω;L2(S2)) error we plotted the error of one sample.
The convergence results coincide with the theoretical results in Corollary 5.4.

To give the reader an idea of the structure of the Gaussian random fields in dependence of
the decay of the angular power spectrum, we include two samples in Figure 3. Here we chose
Aℓ = (ℓ + 1)−α for ℓ ∈ N0 and α = 3, 5. Therefore, Aℓ ≤ ℓ−α for all ℓ ≥ 1, which meets the
assumptions of Proposition 5.2. We truncated the series at κ = 100, since larger κ do not
affect the pictures, but the numerical accuracy suffers due to multiplication and addition of
very small numbers.

We remark that similarly to fast Fourier transforms, there exist fast transforms for spherical
harmonic functions, see, e.g., [12] and the set of C routines SpharmonicKit explained in [3].
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(a) Angular power spectrum with parameter α = 3. (b) Angular power spectrum with parameter α = 5.

Figure 3. Two samples of isotropic Gaussian random fields with different
angular power spectrum and truncation at κ = 100.

These allow to simulate isotropic Gaussian random fields with the suggested approximations
efficiently also for large choices of κ.

6. Lognormal isotropic Gaussian random fields

In this section we consider lognormal random fields on S
2, i.e., if T is an isotropic Gaussian

random field on S
2 then we are interested in exp(T ) given by exp(T (x)) for all x ∈ S

2. These
random fields are especially of interest when modeling Saharan dust particles (see, e.g., [15]),
feldspar particles (cf., [24]), and ice crystals (cf., [14]). We show in the following that the
sample regularity of a lognormal random field is the same as that of the underlying Gaussian
random field. This is done by first proving regularity in Lp(Ω;R) and then applying the
Kolmogorov–Chentsov theorem similarly to Section 4.

Lemma 6.1. Let T be an isotropic Gaussian random field on S
2 with angular power spectrum

(Aℓ, ℓ ∈ N0). If the angular power spectrum satisfies that Aℓ ≤ Cℓ−α for all ℓ ∈ N, some
α > 2, and some constant C, then for all p ∈ N and β < α − 2, β ≤ 2 there exists a
constant Cβ,p such that

‖ exp(T (x))− exp(T (y))‖Lp(Ω;R) ≤ 2 exp(p k(0))Cβ,p d(x, y)
β/2

for all x, y ∈ S
2.

Proof. Let us first observe that for a, b ∈ R it holds that

|ea − eb| =
∣

∣

∣

∣

∫ a

b
ez dz

∣

∣

∣

∣

≤ |a− b|max{ea, eb} ≤ |a− b|(ea + eb).

This implies for x, y ∈ S
2 that

‖ exp(T (x))− exp(T (y))‖pLp(Ω;R) ≤ E

(

(

exp(T (x)) + exp(T (y))
)p|T (x)− T (y)|p

)

≤ E

(

(

exp(T (x)) + exp(T (y))
)2p
)1/2

· E(|T (x)− T (y)|2p)1/2,
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(a) Angular power spectrum with parameter α = 3. (b) Angular power spectrum with parameter α = 5.

Figure 4. Corresponding lognormal samples to Figure 3 with κ = 100.

where we applied Hölder’s inequality in the last step. By Lemma 4.2 the second term is
bounded by

E(|T (x)− T (y)|2p)1/2 ≤ Cp
β,pd(x, y)

pβ/2

for any β < α− 2, β ≤ 2. The first term satisfies that

E

(

(

exp(T (x)) + exp(T (y))
)2p
)1/2

≤ 2(2p−1)/2
(

E(exp(2pT (x))) + E(exp(2pT (y)))
)1/2

.

Since T (x) and T (y) are real-valued Gaussian random variables with expectation zero and
variance k(0), the moment generating function is given by

E(exp(2pT (x))) = exp(2p2k(0)),

which implies that

E

(

(

exp(T (x)) + exp(T (y))
)2p
)1/2

≤ 2(2p−1)/221/2 exp(p2k(0)) = 2p exp(p2k(0)).

Therefore we overall conclude that

‖ exp(T (x))− exp(T (y))‖Lp(Ω;R) ≤ 2 exp(p k(0))Cβ,pd(x, y)
β/2,

which finishes the proof. �

The lemma enables us to conclude that the lognormal random field of an isotropic Gaussian
random field T has the same sample Hölder continuity properties as T .

Corollary 6.2. Let T be an isotropic Gaussian random field on S
2 with angular power spec-

trum (Aℓ, ℓ ∈ N0). If the angular power spectrum satisfies that Aℓ ≤ C · ℓ−α for all ℓ ∈ N,
some α > 2, and some constant C, then there exists a modification of exp(T ) that is Hölder
continuous of exponent s for all s < (α− 2)/2, s ≤ 1.

Proof. The proof is the same as the one of Theorem 4.4, where we apply Lemma 6.1 instead
of Lemma 4.2. �
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In Figure 4 we took the Gaussian random field samples that are shown in Figure 3 and
plotted the deformed sphere with the corresponding lognormal radius which is done when
modeling dust or feldspar particles resp. ice crystals.

In Theorem 4.5 we have shown the existence of k-times continuously differentiable modifi-
cations of isotropic GRFs depending on the convergence of the corresponding angular power
spectrum. The compactness of the unit sphere, the smoothness of the exponential func-
tion, and the chain rule imply as a direct consequence that the same properties hold for the
corresponding lognormal random fields.

Corollary 6.3. Let T be an isotropic Gaussian random field on S
2 with angular power spec-

trum (Aℓ, ℓ ∈ N0) and expectation zero. If the angular power spectrum satisfies that

∞
∑

ℓ=0

Aℓℓ
1+β < +∞

for some β > 0, then there exists a modification of the corresponding lognormal random
field exp(T ) that is k-times continuously differentiable for all nonnegative integers k < β/2−1.

7. Stochastic partial differential equations on the sphere

In this section we consider the heat equation on the sphere with additive Q-Wiener noise as
an example of a stochastic partial differential equation (SPDE) on S

2. To discuss stochastic
partial differential equations we first introduce Q-Wiener processes on the sphere.

To this end let us consider Q-Wiener processes that take values in L2(S2) and that are
isotropic in space. Then, by Lemma 5.1 and by the construction of Q-Wiener processes out
of GRFs as was done in an abstract setting, e.g., in [2, 17], a Q-Wiener process taking values
in L2(S2) can be characterized by the Karhunen–Loève expansion

W (t, y) =
∞
∑

ℓ=0

ℓ
∑

m=−ℓ

aℓm(t)Yℓm(y)

=

∞
∑

ℓ=0

√

Aℓβ
1
ℓ0(t)Yℓ0(y) +

√

2Aℓ

ℓ
∑

m=1

(β1ℓm(t)ReYℓm(y) + β2ℓm(t) ImYℓm(y))

=
∞
∑

ℓ=0

√

Aℓβ
1
ℓ0(t)Lℓ0(ϑ) +

√

2Aℓ

ℓ
∑

m=1

Lℓm(ϑ)(β1ℓm(t) cos(mϕ) + β2ℓm(t) sin(mϕ)),

where y = (sinϑ cosϕ, sinϑ sinϕ, cosϑ) and ((β1ℓm, β
2
ℓm), ℓ ∈ N0,m = 0, . . . , ℓ) is a sequence

of independent, real-valued Brownian motions and β2ℓ0 = 0 for ℓ ∈ N0 and t ∈ R+. The
covariance operator Q is characterized similarly to the introduction in [7] by

QYLM =

∞
∑

ℓ=0

ℓ
∑

m=−ℓ

E((W (1), YLM )H(W (1), Yℓm)H)Yℓm =

∞
∑

ℓ=0

ℓ
∑

m=−ℓ

E(aLM (1)aℓm(1))Yℓm

= ALYLM

for L ∈ N0 and M = −L, . . . , L, i.e., the eigenvalues of Q are characterized by the angular
power spectrum (Aℓ, ℓ ∈ N0) and the eigenfunctions are the spherical harmonic functions.
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Let us calculate ‖W (t)‖L2(Ω;L2(S2)) for t ∈ R+ next. It holds similarly to the proof of
Proposition 5.2 that

‖W (t)‖2L2(Ω;L2(S2)) =
∞
∑

ℓ=0

(

Aℓ E((β
1
ℓ0(t))

2)‖Yℓ0‖2L2(S2)

+ 2Aℓ

ℓ
∑

m=1

(

E((β1ℓm(t))2)‖ReYℓm‖2L2(S2) + E((β2ℓm(t))2)‖ ImYℓm‖2L2(S2)

)

= t

∞
∑

ℓ=0

(2ℓ+ 1)Aℓ = tTrQ.

This expression is finite for any finite t ∈ R+, if

∞
∑

ℓ=0

Aℓℓ < +∞.

With the made introductions of Q-Wiener processes and the Laplace operator on the sphere
in Section 2, we are now able to write down the stochastic heat equation

(2) dX(t) = ∆S2X(t) dt+ dW (t)

with initial condition X(0) = X0 ∈ L2(Ω;L2(S2)), where t ∈ T = [0, T ], T < +∞.
Looking for solutions in L2(S2), we rewrite Equation (2) to

X(t) = X0 +

∫ t

0
∆S2X(s) ds+

∫ t

0
dW (s) = X0 +

∫ t

0
∆S2X(s) ds+W (t)

and further, since the spherical harmonic functions Y form an orthonormal basis of L2(S2)
and are eigenfunctions of ∆S2 , we have that

∞
∑

ℓ=0

ℓ
∑

m=−ℓ

(X(t), Yℓm)L2(S2)Yℓm

=

∞
∑

ℓ=0

ℓ
∑

m=−ℓ

(

(X0, Yℓm)L2(S2)Yℓm +

∫ t

0
(X(s), Yℓm)L2(S2)∆S2Yℓm ds+ aℓm(t)Yℓm

)

=
∞
∑

ℓ=0

ℓ
∑

m=−ℓ

(

(X0, Yℓm)L2(S2) − ℓ(ℓ+ 1)

∫ t

0
(X(s), Yℓm)L2(S2) ds+ aℓm(t)

)

Yℓm.

This is equivalent to solve for all ℓ ∈ N0 and m = −ℓ, . . . , ℓ the stochastic (ordinary) differ-
ential equation

(X(t), Yℓm)L2(S2) = (X0, Yℓm)L2(S2) − ℓ(ℓ+ 1)

∫ t

0
(X(s), Yℓm)L2(S2) ds+ aℓm(t).

The variations of constants formula yields

(X(t), Yℓm)L2(S2) = e−ℓ(ℓ+1)t(X0, Yℓm)L2(S2) +

∫ t

0
e−ℓ(ℓ+1)(t−s) daℓm(s).
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So overall, the solution of the stochastic heat equation (2) reads

X(t) =
∞
∑

ℓ=0

ℓ
∑

m=−ℓ

(

e−ℓ(ℓ+1)t(X0, Yℓm)L2(S2) +

∫ t

0
e−ℓ(ℓ+1)(t−s) daℓm(s)

)

Yℓm

=
∞
∑

ℓ=0

(

ℓ
∑

m=−ℓ

e−ℓ(ℓ+1)t(X0, Yℓm)L2(S2)Yℓm +
√

Aℓ

(

∫ t

0
e−ℓ(ℓ+1)(t−s) dβ1ℓ0(s)Yℓ0

+
√
2

ℓ
∑

m=1

(

∫ t

0
e−ℓ(ℓ+1)(t−s) dβ1ℓm(s)ReYℓm +

∫ t

0
e−ℓ(ℓ+1)(t−s) dβ2ℓm(s) ImYℓm

)

))

=:
∞
∑

ℓ=0

Xℓ(t),

and we choose the sequence of stochastic processes (Xℓ, ℓ ∈ N0) accordingly. Each process in
this sequence satisfies the recursion formula

Xℓ(t+ h) = e−ℓ(ℓ+1)hXℓ(t) +
√

Aℓ

(

∫ t+h

t
e−ℓ(ℓ+1)(t+h−s) dβ1ℓ0(s)Yℓ0

+
√
2

ℓ
∑

m=1

(

∫ t+h

t
e−ℓ(ℓ+1)(t+h−s) dβ1ℓm(s)ReYℓm

+

∫ t+h

t
e−ℓ(ℓ+1)(t+h−s) dβ2ℓm(s) ImYℓm

)

)

.

Similarly to [5] we observe that by the Itô formula (see, e.g., [6])

(3)

∫ t

0
e−ℓ(ℓ+1)(t−s) dβiℓm(s)

is normally distributed with mean zero and variance (2ℓ(ℓ + 1))−1(1 − e−2ℓ(ℓ+1)t) for ℓ ∈ N,
m = 1, . . . , ℓ, and i = 1, 2. This implies that

∫ t+h

t
e−ℓ(ℓ+1)(t+h−s) dβiℓm(s) ∼ N (0, σ2ℓh),

where

σ2ℓh := (2ℓ(ℓ+ 1))−1(1− e−2ℓ(ℓ+1)h).

For ℓ = 0 we have no convolution integral and therefore the distribution of the expression is
that of (the increment of) a standard Brownian motion, i.e., σ20h = h.

For the simulation of paths of the solution, we have to compute the solution on a discrete
time grid 0 = t0 < t1 < · · · < tn = T , n ∈ N, on which the path of the Brownian motion resp.
the stochastic integral (3) is known. The stochastic integral (3) at time tk, k = 0, . . . , n, is
equal in law to a sum of weighted, standard normally distributed random variables

∫ tk

0
e−ℓ(ℓ+1)(tk−s) dβiℓm(s) =

k−1
∑

j=0

∫ tj+1

tj

e−ℓ(ℓ+1)(tk−s) dβiℓm(s)

=
k−1
∑

j=0

e−ℓ(ℓ+1)(tk−tj+1)

∫ tj+1

tj

e−ℓ(ℓ+1)(tj+1−s) dβiℓm(s)
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=
k−1
∑

j=0

e−ℓ(ℓ+1)
∑k

i=j+1 hiσℓhj
Xi

ℓm(j),

where hj = tj+1 − tj , j = 0, . . . , n − 1 and (Xi
ℓm(j), ℓ ∈ N0,m = 0, . . . , ℓ, i = 1, 2, j =

0, . . . , n − 1) is a sequence of independent, standard normally distributed random variables.
This enables us to write down the solution of Equation (2) recursively

Xℓ(tk+1)

= e−ℓ(ℓ+1)hkXℓ(tk) +
√

Aℓσℓhk

(

X1
ℓ0(k)Yℓ0 +

√
2

ℓ
∑

m=1

(

X1
ℓm(k)ReYℓm +X2

ℓm(k) ImYℓm
)

)

for all ℓ ∈ N0 and k = 0, . . . , n−1. Using the notation of Lemma 5.1, we rewrite the recursion
to

Xℓ(tk+1) = e−ℓ(ℓ+1)hkXℓ(tk) + ψℓ(k)

= e−ℓ(ℓ+1)tk+1

ℓ
∑

m=−ℓ

(X0, Yℓm)L2(S2)Yℓm +

k
∑

j=0

e−ℓ(ℓ+1)
∑k

i=j+1 hiψℓ(j),

where the increments are given by

ψℓ(j, y) =
√

Aℓσℓhj

(

X1
ℓ0(j)Lℓ0(ϑ) +

√
2

ℓ
∑

m=1

Lℓm(ϑ)
(

X1
ℓm(j) cos(mϕ) +X2

ℓm(j) sin(mϕ)
)

)

for y = (sinϑ cosϕ, sinϑ sinϕ, cosϑ) ∈ S
2 and j = 0, . . . , n− 1. We observe for later use that

k
∑

j=0

e−ℓ(ℓ+1)
∑k−1

i=j+1 hiψℓ(j)

=
√

Aℓ

(

(
k
∑

j=0

e−ℓ(ℓ+1)
∑k

i=j+1 hiσℓhj
X1

ℓ0(j))Lℓ0(ϑ)

+
√
2

ℓ
∑

m=1

Lℓm(ϑ)
(

(
k
∑

j=0

e−ℓ(ℓ+1)
∑k

i=j+1 hiσℓhj
X1

ℓm(j)) cos(mϕ)

+ (
k
∑

j=0

e−ℓ(ℓ+1)
∑k

i=j+1 hiσℓhj
X2

ℓm(j)) sin(mϕ)
)

)

and that
k
∑

j=0

e−ℓ(ℓ+1)
∑k

i=j+1 hiσℓhj
Xi

ℓm(j)

is a normally distributed random variable with mean zero and variance

(e−ℓ(ℓ+1)
∑k

i=j+1 hiσℓhj
)2 =

1

2ℓ(ℓ+ 1)
(1− e−2ℓ(ℓ+1)tk+1) = σ2ℓtk+1

.
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This implies that we have equality in law of

k
∑

j=0

e−ℓ(ℓ+1)
∑k

i=j+1 hiψℓ(j, y)

=
√

Aℓσℓtk+1

(

X1
ℓ0Lℓ0(ϑ) +

√
2

ℓ
∑

m=1

Lℓm(ϑ)
(

X1
ℓm cos(mϕ) +X2

ℓm sin(mϕ)
)

)

,

where ((X1
ℓm, X

2
ℓm), ℓ ∈ N0,m = 0, . . . , ℓ) is a sequence of independent, standard normally

distributed random variables.
To implement the solution, we calculate Xℓ exactly for finitely many ℓ ∈ N0 on a finite time

and space grid. One way to discretize the sphere is to take an equidistant grid in ϑ ∈ [0, π]
and ϕ ∈ [0, 2π). Then we add the calculated Xℓ and get an approximate solution, i.e., we
simulate the approximate solution Xκ, κ ∈ N0 by

Xκ =
κ
∑

ℓ=0

Xℓ

on finitely many time and space points. In what follows let us estimate the mean square error
when truncation of the series expansion at κ ∈ N is done.

Lemma 7.1. Let t ∈ T and 0 = t0 < · · · < tn = t be a discrete time partition for n ∈ N,
which yields a recursive representation of the solution X of Equation (2). Furthermore,
assume that there exist ℓ0 ∈ N, α > 0, and a constant C > 0 such that the angular power
spectrum (Aℓ, ℓ ∈ N0) satisfies Aℓ ≤ C · ℓ−α for all ℓ > ℓ0. Then the error of the approximate
solution Xκ is bounded uniformly in time and independently of the time discretization by

‖X(t)−Xκ(t)‖L2(Ω;L2(S2)) ≤ Ĉ · κ−α/2

for all κ ≥ ℓ0, where

Ĉ2 = ‖X0‖2L2(Ω;L2(S2)) + C ·
( 2

α
+

1

α+ 1

)

.

Proof. Let t ∈ T and 0 = t0 < · · · < tn = t be a partition of [0, t] for some n ∈ N. Since
E(ψℓ(j)) = 0 for all ℓ ∈ N0 and j = 0, . . . , n− 1, we first observe that

‖X(tn)−Xκ(tn)‖2L2(Ω;L2(S2))

=
∥

∥

∥

∞
∑

ℓ=κ+1

ℓ
∑

m=−ℓ

e−ℓ(ℓ+1)tn(X0, Yℓm)L2(S2)Yℓm +
∞
∑

ℓ=κ+1

n−1
∑

j=0

e−ℓ(ℓ+1)
∑n−1

i=j+1 hiψℓ(j)
∥

∥

∥

2

L2(Ω;L2(S2))

=
∥

∥

∥

∞
∑

ℓ=κ+1

ℓ
∑

m=−ℓ

e−ℓ(ℓ+1)tn(X0, Yℓm)L2(S2)Yℓm

∥

∥

∥

2

L2(Ω;L2(S2))

+
∥

∥

∥

∞
∑

ℓ=κ+1

n−1
∑

j=0

e−ℓ(ℓ+1)
∑n−1

i=j+1 hiψℓ(j)
∥

∥

∥

2

L2(Ω;L2(S2))
.

(4)

We define an isotropic Gaussian random field as in Lemma 5.1 by

T :=
∞
∑

ℓ=0

√

Aℓσℓtn

(

X1
ℓ0Lℓ0(ϑ) +

√
2

ℓ
∑

m=1

Lℓm(ϑ)
(

X1
ℓm cos(mϕ) +X2

ℓm sin(mϕ)
)

)
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with angular power spectrum (Aℓσ
2
ℓtn
, ℓ ∈ N0) and denote similarly to Section 5 by T κ the

truncated series expansion. Then

∥

∥

∥

∞
∑

ℓ=κ+1

n−1
∑

j=0

e−ℓ(ℓ+1)
∑n−1

i=j+1 hiψℓ(j)
∥

∥

∥

2

L2(Ω;L2(S2))
= ‖T − T κ‖2L2(Ω;L2(S2)).

The angular power spectrum satisfies with the made assumptions that

Aℓσ
2
ℓtn = Aℓ

1

2ℓ(ℓ+ 1)
(1− e−2ℓ(ℓ+1)tn) ≤ Cℓ−αℓ−2 · 1 = Cℓ−(α+2) .

With these parameters we apply Proposition 5.2 to the difference of T and T κ which yields

‖T − T κ‖2L2(Ω;L2(S2)) ≤ Ĉ2κ−α = C ·
( 2

α
+

1

α+ 1

)

κ−α.

The first term in the last line of (4) is bounded by

∥

∥

∥

∞
∑

ℓ=κ+1

ℓ
∑

m=−ℓ

e−ℓ(ℓ+1)tn(X0, Yℓm)L2(S2)Yℓm

∥

∥

∥

2

L2(Ω;L2(S2))

=
∞
∑

ℓ=κ+1

ℓ
∑

m=−ℓ

e−2ℓ(ℓ+1)tn‖(X0, Yℓm)L2(S2)Yℓm‖2L2(Ω;L2(S2)) ≤ e−2(κ+1)(κ+2)tn‖X0‖2L2(Ω;L2(S2)).

Therefore, it converges faster than any polynomial, especially it can be bounded by κ−α. So
overall we bound

‖X(tn)−Xκ(tn)‖2L2(Ω;L2(S2)) ≤
(

C ·
( 2

α
+

1

α+ 1

)

+ ‖X0‖2L2(Ω;L2(S2))

)

κ−α,

which finishes the proof of the lemma. �

We remark that it is not necessary that the angular power spectrum (Aℓ, ℓ ∈ N0) of the
Q-Wiener process decays with ℓ−α for α > 2 but that it is sufficient to assume that α > 0.

In an implementation in MATLAB we verified the theoretical results of Lemma 7.1. We
took as “exact” solution the approximate solution at time T = 1 with κ = 27 since for larger
κ the elements of the angular power spectrum Aℓ and therefore the increments were so small
that MATLAB failed to calculate the series expansion. We calculated the solution in one
time step since we have shown in Lemma 7.1 that the convergence rate is independent of the
number of calculated time steps. Instead of the L2(S2) error in space, we used the maximum
over all grid points which is a stronger error. In Figure 5 the results and the theoretical
convergence rates are shown for α = 1, 3, 5. One observes that the simulation results match
the theoretical results from Lemma 7.1.

Similarly to the proof of almost sure convergence of approximations of isotropic Gaussian
random fields in Section 5, we need a Lp convergence result for the approximation of the
solution of the stochastic heat equation to show pathwise convergence. This is proven in the
following by a combination of Lemma 5.3 and Lemma 7.1.

Lemma 7.2. Let t ∈ T and 0 = t0 < · · · < tn = t be a discrete time partition for n ∈ N, which
yields a recursive representation of the solution X of Equation (2). Furthermore assume that
there exist ℓ0 ∈ N, α > 0, and a constant C > 0 such that the angular power spectrum
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(a) Angular power spectrum with parameter α = 1.

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

number of series elements κ

L
2
 e

rr
o

r

α = 3

 

 

L
2
 error

O(κ
3/2

)

(b) Angular power spectrum with parameter α = 3.
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(c) Angular power spectrum with parameter α = 5.

Figure 5. L2 error of approximation of the stochastic heat equation different
angular power spectrum of the Q-Wiener process and 100 Monte Carlo sam-
ples.

(Aℓ, ℓ ∈ N0) satisfies Aℓ ≤ C · ℓ−α for all ℓ > ℓ0. Then the error of the approximate solution
Xκ is bounded uniformly in time and independently of the time discretization by

‖X(t)−Xκ(t)‖Lp(Ω;L2(S2)) ≤ Ĉp · κ−α/2

for all p > 0 and κ ≥ ℓ0, where Ĉp is a constant that depends on ‖X0‖Lmax(p,2)(Ω;L2(S2)), p, C,

and α.

Proof. The result follows for p ≤ 2 with Lemma 7.1 and with Hölder’s inequality. So we
assume that p > 2 from here on. Let t ∈ T and 0 = t0 < · · · < tn = t be a partition of [0, t]
for some n ∈ N. We first observe that

‖X(tn)−Xκ(tn)‖Lp(Ω;L2(S2)) ≤
∥

∥

∥

∞
∑

ℓ=κ+1

ℓ
∑

m=−ℓ

e−ℓ(ℓ+1)tn(X0, Yℓm)L2(S2)Yℓm

∥

∥

∥

Lp(Ω;L2(S2))
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+
∥

∥

∥

∞
∑

ℓ=κ+1

n−1
∑

j=0

e−ℓ(ℓ+1)
∑n−1

i=j+1 hiψℓ(j)
∥

∥

∥

Lp(Ω;L2(S2))
.

Similarly to the proof of Lemma 7.1, the second term is equal to the Lp norm of the approxima-
tion error of an isotropic Gaussian random field with angular power spectrum (Aℓσ

2
ℓtn
, ℓ ∈ N0),

which satisfies by Lemma 5.3 that

∥

∥

∥

∞
∑

ℓ=κ+1

n−1
∑

j=0

e−ℓ(ℓ+1)
∑n−1

i=j+1 hiψℓ(j)
∥

∥

∥

Lp(Ω;L2(S2))
= ‖T − T κ‖Lp(Ω;L2(S2))

≤ (Cp)
1/pC1/2 ·

( 2

α− 2
+

1

α− 1

)1/2
κ−α/2.

Furthermore the first term satisfies similarly to the proof of Lemma 7.1 that

∥

∥

∥

∞
∑

ℓ=κ+1

ℓ
∑

m=−ℓ

e−ℓ(ℓ+1)tn(X0, Yℓm)L2(S2)Yℓm

∥

∥

∥

Lp(Ω;L2(S2))
≤ e−(κ+1)(κ+2)tn‖X0‖Lp(Ω;L2(S2)),

which converges faster than any polynomial and therefore can be bounded by κ−α/2. So
combining these two estimates, we finish the proof. �

Corollary 7.3. Let t ∈ T and 0 = t0 < · · · < tn = t be a discrete time partition for
n ∈ N, which yields a recursive representation of the solution X of Equation (2). Furthermore
assume that there exist ℓ0 ∈ N, α > 0, and a constant C such that the angular power spectrum
(Aℓ, ℓ ∈ N0) satisfies Aℓ ≤ C · ℓ−α for all ℓ > ℓ0. Then the error of the approximate solution
Xκ is bounded uniformly in time, independently of the time discretization, and asymptotically
in κ by

‖X(t)−Xκ(t)‖L2(S2) ≤ κ−β

for all β < α/2.

Proof. The proof is similar to the one for isotropic Gaussian random fields in Corollary 5.4
but for completeness we include it here. Let β < α/2, then the Chebyshev inequality and
Lemma 7.2 imply that

P(‖X(t)−Xκ(t)‖L2(S2) ≥ κ−β) ≤ κβp E(‖X(t)−Xκ(t)‖p
L2(S2)

) ≤ Ĉp
pκ

(β−α/2)p.

For all p > (α/2− β)−1, the series

∞
∑

κ=1

κ(β−α/2)p < +∞

converges and therefore the Borel–Cantelli lemma implies the claim. �

In Figure 6, we show the corresponding error plots to Figure 5 but instead of a Monte
Carlo simulation of the approximate L2(Ω;L2(S2)) error we plotted the error of one path of
the stochastic heat equation. The convergence results coincide with the theoretical results in
Corollary 7.3.
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(a) Angular power spectrum with parameter α = 1.
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(b) Angular power spectrum with parameter α = 3.
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(c) Angular power spectrum with parameter α = 5.

Figure 6. Error of approximation of a path of the stochastic heat equation
different angular power spectrum of the Q-Wiener process.

Appendix A. Interpolation spaces

In this appendix we give a more detailed introduction to interpolation spaces than in
Section 3 and show uniqueness of the spaces, i.e., that they are independent of the chosen
interpolation couple.

We consider the sequence of spaces (V n(−1, 1), n ∈ N0) that was introduced in Section 3 and
start now with the definition of fractional order spaces by the real method of interpolation (see,
e.g., [23, Chap. 1]). We observe that for any two integers k, n ∈ N0 with 0 ≤ k < n the pair
(V k(−1, 1), V n(−1, 1)) is an interpolation couple with V n(−1, 1) ⊂ V k(−1, 1) ⊂ L2(−1, 1).
For integers k,m, n ∈ N0 with 0 ≤ k < m < n so that 0 < θ := (m− k)/(n− k) < 1, we may
therefore define the intermediate space at “fine-index” q ∈ [1,+∞]

B
m,(k,n)
2,q (−1, 1) =

(

V k(−1, 1), V n(−1, 1)
)

θ,q
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by the real method of interpolation as is introduced in [23, Chap. 1]. Then, these spaces are
equipped with the usual norms ‖ · ‖

B
m,(k,n)
2,q (−1,1)

given by

‖u‖Bm
2,q(−1,1) =











(
∫ ∞

0
t−θq|K(t, u)|q dt

t

)1/q

, for 1 ≤ q < +∞,

supt>0 t
−θK(t, u), for q = +∞,

where the K-functional is defined by

K(t, u) = inf
u=v+w

(

‖v‖V k(−1,1) + t‖w‖V n(−1,1)

)

for t > 0. We observe that in particular the pair of spaces (V n(−1, 1), V n+1(−1, 1)) is an
interpolation couple for every n ∈ N0. Therefore, with n ∈ N0 and for 1 ≤ q ≤ ∞, we

may extend the family (B
m,(k,n)
2,q (−1, 1))0≤k<m<n,q∈[1,+∞] of exact interpolation spaces also to

noninteger numbers s = n+ θ, θ ∈ (0, 1), via

Bn+θ
2,q (−1, 1) := (V n(−1, 1), V n+1(−1, 1))θ,q.

Let us from here on simplify the notation and denote V n(−1, 1) by V n and B
m,(k,n)
2,q (−1, 1)

by B
m,(k,n)
2,q . Our next proposition states that for q = 2 and m ∈ N, the Besov spaces B

m,(k,n)
2,2

are equal to V m for any choice k < m < n.

Proposition A.1. Let m ∈ N be given. For any k, n ∈ N0 with 0 ≤ k < m < n, it holds that

B
m,(k,n)
2,2 = V m.

Proof. This result is classical (see, e.g., [23], [18] or [20, Chap. 6.5] and the references there).
We present the detailed argument here for completeness.

By Proposition 3.2 we already know that the norm in V m is equivalent to weighted square
summability of the coefficients of the Fourier–Legendre expansion. So it is sufficient to show

the equivalence of the B
m,(k,n)
2,2 -norm and the convergence of the sum for all 0 ≤ k < m < n.

Therefore we choose any k, n ∈ N0 with 0 ≤ k < m < n and u ∈ L2(−1, 1). Then u admits
the Fourier–Legendre expansion

u =
∞
∑

ℓ=0

uℓ
2ℓ+ 1

2
Pℓ

as has been seen above. Consider now u ∈ V m ∪ Bm,(k,n)
2,2 ⊂ V k. We split u into the sum

v + w with v ∈ V k and w ∈ V n and the series expansions

v =

∞
∑

ℓ=0

(uℓ − wℓ)
2ℓ+ 1

2
Pℓ and w =

∞
∑

ℓ=0

wℓ
2ℓ+ 1

2
Pℓ.

Then Proposition 3.2 implies that

K(t, u)2 ≃ inf
u=v+w

(‖v‖2V k + t2‖w‖2V n)

≃ inf
u=v+w

∞
∑

ℓ=0

2ℓ+ 1

2

(

(uℓ − wℓ)
2(1 + ℓ2k) + w2

ℓ (1 + ℓ2n)
)

.
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We observe further that the infimum over all u = v+w is equal to the infimum over all square
summable sequences (wℓ)ℓ∈N0 ∈ ℓ2(N0), i.e.,

K(t, u)2 ≃ inf
(wℓ)ℓ∈N0

∈ℓ2(N0)

∞
∑

ℓ=0

2ℓ+ 1

2
Gℓ(uℓ, wℓ; t, k, n),

where

Gℓ(a, d; t, k, n) := (a− d)2(1 + ℓ2k) + t2d2(1 + ℓ2n)

is with respect to d ∈ R a quadratic polynomial with positive leading coefficient for all ℓ ∈ N0.
For ℓ ∈ N0, its minimum is attained at

dℓ :=
a

1 + t2gkn(ℓ)
,

where

gkn(ℓ) :=
1 + ℓ2n

1 + ℓ2k
≥ 1.

This implies that

K(t, u)2 ≃
∞
∑

ℓ=0

2ℓ+ 1

2

(

(uℓ − dℓ)
2(1 + ℓ2k) + d2ℓ (1 + ℓ2n)

)

=
∞
∑

ℓ=0

2ℓ+ 1

2
u2ℓ (1 + ℓ2k)t2

gkn(ℓ)

1 + t2gkn(ℓ)

and leads with the definition of the norm and the theorem of Fubini–Tonelli to

‖u‖2
B

m,(k,n)
2,2

=

∫ ∞

0
t−2θK(t, u)2

dt

t

≃
∞
∑

ℓ=0

2ℓ+ 1

2
u2ℓ (1 + ℓ2k)

∫ ∞

0
t−(2θ+1) t2gkn(ℓ)

1 + t2gkn(ℓ)
dt

=
∞
∑

ℓ=0

2ℓ+ 1

2
u2ℓ (1 + ℓ2k)gkn(ℓ)

∫ ∞

0

t1−2θ

1 + t2gkn(ℓ)
dt,

where θ := (m− k)/(n− k) ∈ (0, 1). To finish the proof it remains to show that
∞
∑

ℓ=0

2ℓ+ 1

2
u2ℓ (1 + ℓ2k)gkn(ℓ)

∫ ∞

0

t1−2θ

1 + t2gkn(ℓ)
dt ≃

∞
∑

ℓ=0

u2ℓ
2ℓ+ 1

2
(1 + ℓ2m)

by Proposition 3.2, i.e., we have to prove the equivalence

(1 + ℓ2k)gkn(ℓ)

∫ ∞

0

t1−2θ

1 + t2gkn(ℓ)
dt ≃ 1 + ℓ2m = 1 + ℓ2((1−θ)k+θn).

Therefore let us split the integral first into
∫ ∞

0

t1−2θ

1 + t2gkn(ℓ)
dt =

∫ gkn(ℓ)
−1/2

0

t1−2θ

1 + t2gkn(ℓ)
dt+

∫ ∞

gkn(ℓ)−1/2

t1−2θ

1 + t2gkn(ℓ)
dt

and bound the two terms on the right hand side from below and from above by

1

2

∫ gkn(ℓ)
−1/2

0
t1−2θ dt ≤

∫ gkn(ℓ)
−1/2

0

t1−2θ

1 + t2gkn(ℓ)
dt ≤

∫ gkn(ℓ)
−1/2

0
t1−2θ dt =

1

2− 2θ
gkn(ℓ)

θ−1
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and

1

2gkn(ℓ)

∫ ∞

gkn(ℓ)−1/2

t−1−2θ dt ≤
∫ ∞

gkn(ℓ)−1/2

t1−2θ

1 + t2gkn(ℓ)
dt

≤ 1

gkn(ℓ)

∫ ∞

gkn(ℓ)−1/2

t−1−2θ dt =
1

2θ
gkn(ℓ)

θ−1.

This implies overall that

1

4(1− θ)θ
gkn(ℓ)

θ−1 ≤
∫ ∞

0

t1−2θ

1 + t2gkn(ℓ)
dt ≤ 1

2(1− θ)θ
gkn(ℓ)

θ−1

and moreover that

(1 + ℓ2k)gkn(ℓ)

∫ ∞

0

t1−2θ

1 + t2gkn(ℓ)
dt ≃ (1 + ℓ2k)gkn(ℓ)

θ = (1 + ℓ2k)1−θ(1 + ℓ2n)θ.

We observe that the function xp, p ∈ (0, 1) is concave on R+ and satisfies (x+y)p ≥ 2p−1(xp+
yp), which implies finally that

(1 + ℓ2k)1−θ(1 + ℓ2n)θ ≃ (1 + ℓ2(1−θ)k)(1 + ℓ2θn) ≃ 1 + ℓ2((1−θ)k+θn) = 1 + ℓ2m.

This concludes the proof. �

Based on Proposition A.1, it is clear that one can use for every m ∈ N in place of B
m,(k,n)
2,2

simply V m. Moreover, for fractional η = n + θ with n ∈ N0 and some 0 < θ < 1, we write
also V η in place of Bη

2,2.
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[17] Claudia Prévôt and Michael Röckner. A Concise Course on Stochastic Partial Differential Equations,
volume 1905 of Lecture Notes in Mathematics. Berlin: Springer, 2007.

[18] Thomas Runst and Winfried Sickel. On strong summability of Jacobi-Fourier-expansions and smoothness
properties of functions. Math. Nachr., 99:77–85, 1980.
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