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for High Dimensional
Parametric Initial Value Problems ?

M. Hansen, Cl. Schillings, and Ch. Schwab

Abstract We consider the efficient numerical approximation on nonlinear
systems of initial value Ordinary Differential Equations (ODEs) on Banach
state spaces S over R or C. We assume the right hand side depends in affine
fashion on a vector y = (yj)j≥1 of possibly countably many parameters,
normalized such that |yj | ≤ 1. Such affine parameter dependence of the
ODE arises, among others, in mass action models in computational biol-
ogy and in stochiometry with uncertain reaction rate constants. We review
results from [19] on N -term approximation rates for the parametric solutions,
i.e. summability theorems for coefficient sequences of generalized polynomial
chaos (gpc) expansions of the parametric solutions {X(·; y)}y∈U with respect
to tensorized polynomial bases of L2(U). We give sufficient conditions on the
ODEs for N -term truncations of these expansions to converge on the entire
parameter space with efficiency (i.e. accuracy versus complexity) being in-
dependent of the number of parameters viz. the dimension of the parameter
space U . We investigate a heuristic adaptive approach for computing sparse,
approximate representations of the {X(t; y) : 0 ≤ t ≤ T} ⊂ S. We increase
efficiency by relating the accuracy of the adaptive initial value ODE solver to
the estimated detail operator in the Smolyak formula. We also report tests
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e-mail: markus.hansen@sam.math.ethz.ch.

Claudia Schillings
Seminar for Applied Mathematics, ETH Zürich, 8092 Zürich, Switzerland
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which indicate that the proposed algorithms and the analyticity results of
[19] hold for more general, nonaffine analytic dependence on parameters.

Key words: Ordinary differential equations, initial value problem, para-
metric dependence, analyticity in infinite dimensional spaces, Taylor series,
N -term approximation, adaptive sparse grid, Smolyak interpolation, Leja
points.

1 Introduction

Numerous systems in engineering and life- and in social sciences are modelled
by initial value ordinary differential equations (ODEs). In particular, complex
systems require state spaces S of high or even infinite dimension.

In recent years, in particular in connection with applications in life-
sciences, climate-sciences but also in economics, particular attention has been
paid to initial value ODE models for systems with uncertainty. We mention
only stochiometric descriptions of biochemical reaction pathways with un-
certain reaction rate constants, chemical reaction cascades with uncertain
reaction rate constants, mass action models with uncertain reaction rates. In
complex systems, the goal of computation is in obtaining the system charac-
teristics on the entire parameter space in one single numerical forward sim-
ulation. Besides the efficient numerical forward solution of parametric initial
value ODEs by combination of adaptive parameter collocation approaches
with adaptive numerical initial value solvers such as [17, 18] and the ref-
erences there, additional problems consist in optimization resp. in optimal
control of systems described by initial value ODEs.

Some form of Sparsity in the parametric dependence of the solution (resp.
the control resp. the optimum) is necessary in order to allow for efficient
approximations of the parametric solutions on the entire, possibly high-
dimensional parameter space. Here, we present theoretical results from [19]
on the sparsity of solutions of parametric ODEs and propose computational
approaches which allow to exploit computationally the sparse parameter de-
pendence of the solutions.

Unless stated otherwise, the state space S is assumed to be a separable,
reflexive Banach space, and will be understood over the coefficient field R;
occasionally, however, we shall also work with the extension of S to the
coefficient field C. By RN and CN, we denote the countable cartesian products
of R and C, respectively. Likewise, U = (−1, 1)N will denote the countable
product of the open interval (−1, 1) and U = [−1, 1]N. We shall denote the
state of the system by X(t) ∈ S for t ∈ [0, T ]. The parameter dependence of
X on the parameter sequence y ∈ U is indicated by X(t; y).

On the parameter domain U , we consider high-dimensional, parametric,
deterministic ODE initial value problems (ODE IVP):
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Given x0(y) ∈ S and T ∈ (0,∞), find X(t, x0; y) : [t0, T ]× S × U → S such
that in S

dX

dt
= f(t,X; y) , X(t0; y) = x0(y) , t0 ≤ t ≤ T , ∀y ∈ U . (1)

Here, S denotes the state space of the parametric model (1). We shall mostly
be concerned with the case of initial value ordinary differential equations
(ODEs), when S = Rd, with particular attention to the case of high or even
infinite dimensional state spaces, i.e. Rd with large d, but [19] covers also the
infinite dimensional case, when S is a separable and reflexive Banach space.

We denote N = {1, 2, ...} and N0 = N ∪ {0}. We use standard multiindex
notation: for a vector y = (yj)j≥1 of parameters and for a sequence ν ∈ NN

0

of nonnegative integers, we denote by F = {ν ∈ NN
0 : |ν| <∞}. As any ν ∈ F

has only finitely many nonzero entries, the definitions

ν! =
∏
j∈N

νj ! , |ν| =
∑
j∈N

νj , ∂νy =
∂|ν|

∂yν11 ∂y
ν2
2 · · ·

for multi-factorials, the length of a multi-index ν and for the partial derivative
of order ν are well-defined for ν ∈ F.

In practice efficient solution methods in the case where the number of
parameters is large are of interest. In particular, it would be highly desir-
able to identify methods which are dimensionally robust, i.e. whose efficiency
(meaning accuracy versus computational cost measured in terms of the total
number of floating point operations to achieve this accuracy) is provably ro-
bust with respect to the number of parameters which requires consideration of
(1) for parameter sequences. In [19] we showed, analogously to earlier results
for linear, elliptic partial differential equations [10, 11, 8, 16] sparsity of the
parametric solutions’ dependence on y.

It is well-known and classical (e.g. [23, Chap. 13]) that for parametric right
hand sides f(t,X; y) which are Lipschitz continuous with respect to (t,X) and
which depend analytically on the parameters y, the solution X(t; y) in turn
depends analytically on the parameter vector y. In [19], we extended the proof
in [23] of this (classical) result to a possibly countable number of parameters
with quantitative bounds on the size of domains of analyticity. This allows us
to establish in [19] best N -term convergence rates for parametric expansions of
the solution X(t; y) under a sparsity hypothesis on the vector field f(t,X; y).
The rates of best N -term approximation are shown to be achievable with
N -term truncated Taylor expansions of the solution X(t, y) in the parameter
space U which we prove to converge uniformly for all y belonging to the
parameter domain U . The key mathematical principle behind these results is
the fact that sparsity in the input vector field f(t,X; y) implies sparsity (in a
sense to be made precise below) in the parametric solution’s Taylor expansion
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X(t; y) =
∑
ν∈F

Tν(t)yν , Tν(t) :=
1

ν!
(∂νyX(t; y))|y=0 , t0 ≤ t ≤ T , y ∈ U .

(2)
In [19], similar results are also established for other polynomial expansions
of the solution, such as Legendre or Chebyshev expansions.

The theoretical result on sparse parameter dependence in [19] opens the
perspective of dimensionally robust, adaptive algorithms for the efficient solu-
tion of large systems of parametric ODE’s on possibly infinitely dimensional
parameter spaces. This requires to address the following issues: first, under
the (unrealistic) assumption of having available exact solutions of the ODE
IVP (1) for a single instance of the parameter vector y ∈ U at unit cost, con-
crete sequences of sparse, monotone index sets MN ⊂ F (to which we will
also refer as “sparsity models”) for at most N “active” Taylor coefficients
Tν(t), ν ∈ MN , can be constructed such that the corresponding, finitely
truncated parametric expansions

XMN
(t; y) =

∑
ν∈MN

Tν(t)yν (3)

realize the best N -term asymptotic convergence rate.
One particular class of sparsity models are monotone index sets Λ ⊂ F

which were introduced in [8] in the context of adaptive Taylor approximations
of parametric elliptic partial differential equations. This notion is based on
the following ordering of F: for any two indices µ, ν ∈ F, we say that µ ≤ ν
if and only if µj ≤ νj for all j ≥ 1. We will also say that µ < ν if and only if
µ ≤ ν for all j ∈ N and if µj < νj for at least one value of j.

Definition 1. A sequence (aν)ν∈F of nonnegative real numbers is said to be
monotone decreasing if and only if for all µ, ν ∈ F

µ ≤ ν ⇒ aν ≤ aµ .

A set ∅ 6= Λ ⊂ F is called monotone if and only if ν ∈ Λ and µ ≤ ν ⇒ µ ∈ Λ.

Once concrete, monotone MN sparsity models have been selected, the eval-
uation of the truncations (3) requires approximation of the expansion co-
efficients Tν(t) in (2) for ν ∈ MN . Naturally, the assumption of an exact
solution of the ODE IVP (1) for a single instance of the parameter vector y
in O(1) work and memory is not realistic. Thus to still achieve the rate of
best N -term approximation also for the approximate partial sums

X̃MN
(t; y) =

∑
ν∈MN

T̃ν(t)yν , (4)

where T̃ν(t) ∈ S are the Taylor coefficients obtained with an approximate
initial value ODE solver, the effort for computing the coefficients has to be
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balanced against the respective impact for approximating X(t; y) by an initial
value ODE solver.

In doing so, we obtain an approximate, adaptive numerical solution of the
parametric ODE IVP (1) to a prescribed accuracy ε uniformly on the entire
parameter domain U . This ultimately enables us to approximately calculate
all further relevant information about the parametric solution (e.g. statistical
moments), again up to an arbitrary prescribed accuracy, by several classes
of adaptive approximation algorithms based on Galerkin projection (see, e.g.
[14]) or by sparse collocation as in [21, 4, 3] or by adaptive truncation (4)
of the Taylor expansions (2) as in [8]. We let B denote a separable Banach
space both over R as well as its complexification over C (i.e. an extension of B
whose restriction to real valued elements coincides with the original space B).
We shall need spaces of (differentiable) functions with values in B. We denote
by C(U ;B) ≡ C0(U ;B) the space of functions from U into B which are, as
B-valued functions, continuous on U (where U is equipped with the product
topology). Moreover, for any k ∈ N, we denote by Ck([0, T ];B) the space of

functions f : [0, T ] → B whose k-th Fréchet derivative dkf
dtk

with respect to

t ∈ [0, T ] belongs to C0([0, T ];B). These spaces Ck([0, T ];B), equipped with
the norms

‖f‖Ck([0,T ];B) := max
0≤j≤k

{
‖d

jf
dtj f‖C0([0,T ];B)

}
, k ∈ N , (5)

are themselves Banach spaces. Similar notations are used, if the interval [0, T ]
is itself replaced by another Banach space S. Then the derivatives df

dx have

to be understood as Fréchet derivatives, i.e. df
dx is a mapping from S taking

values in L(S, B), the space of bounded linear operators from S into B.
Finally, spaces of locally Lipschitz continuous functions will be defined below.

2 Parametric Initial Value ODEs

For a parameter sequence y = (yj)j≥1 ∈ U and a Banach state space S, we
assume given an initial state x0(y) ∈ S and a parametric family of vector
fields f(t,X; y) : [0, T ] × S × U 7→ S. Then we are interested in solving (1)
numerically to a prescribed tolerance uniformly for all values y ∈ U .

As we think of applications to large mass-action models in computational
chemistry and biology, attention will be in the following on the particular
case when the dependence of the vector field f in (1) on the parameter vector
y ∈ U is affine, i.e. for every t ∈ [0, T ] and every X ∈ S,

f(t,X; y) = f0(t,X) +
∑
j≥1

yjfj(t,X) , 0 ≤ t ≤ T <∞ . (6)
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Here, we assume that each fj ∈ (fj)j≥0 is continuous with respect to t and
satisfies certain Lipschitz conditions with respect to X uniform in t ∈ [0, T ].
For the non-parametric problem dX

dt = g(t,X), X(t0) = x0, it is classical that
the right-hand-side g being locally Lipschitz continuous, i.e. for every X0 ∈ S
there is a neighbourhood U = U(X0) such that

∀X,X ′ ∈ U ∀t ∈ [0, T ] : ‖g(t,X)− g(t,X ′)‖S ≤ L(X0)‖X −X ′‖S (7)

for some constants L(X0), implies existence and uniqueness of local solutions,
i.e. existence of unique solutions on some maximally extended subinterval
[0, δ) ⊂ [0, T ], see e.g. [12]. To obtain global, parametric solutions we imposed
in [19] a local Lipschitz condition: for every R > 0, there exist constants
L(R) > 0 such that for every X,X ′ ∈ BR = {X ∈ S : ‖X‖S ≤ R} and for
every t ∈ [0, T ] holds

‖g(t,X)− g(t,X ′)‖S ≤ L(R)‖X −X ′‖S ,

where

L(R) := ‖g‖`Lip(S,R) = sup
t∈[0,T ],X 6=X′∈BR

‖g(t,X)− g(t,X ′)‖S
‖X −X ′‖S

<∞ .

A continuous function g belongs to `Lip(S), if L(R) <∞ for all R > 0. The
subclass `Lip0(S) consists of all functions g ∈ `Lip(S) which additionally
fulfill g(t, 0) = 0 for all t ∈ [0, T ]. Then `Lip0(S) equipped with the increasing
family of norms ‖ · ‖`Lip(S,R) becomes a complete locally convex vector space.
Our main assumption on (6) is fj ∈ `Lip0(S) for all j, i.e. for j = 0, 1, 2, . . .
holds

Lj(R) = sup
t∈[0,T ],X 6=X′∈BR

‖fj(t,X)− fj(t,X ′)‖S
‖X −X ′‖S

<∞ , fj(t, 0) = 0 . (8)

In order to prove results which are independent of the number of terms in the
affine expansion (6), we shall further require summability of the coefficient
sequence (fj)j≥1. Specifically, we assume the sequence of Lipschitz constants
to be summable, i.e.

∀R > 0 :
(
Lj(R)

)
j≥1 ∈ `

1(N) . (9)

Under this assumption, the sum in (6) converges uniformly with respect to
y ∈ U and for all (t,X) ∈ [0, T ]× S. In [19], we showed

Proposition 1. Let the conditions (8) and (9) be satisfied. Then the sum in
(6) converges absolutely and uniformly in U as a `Lip0(S)-valued mapping.

Moreover, we may also consider S to be a complex Banach space: besides
being of independent interest, the proofs in [19] used analytic continuations
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and complex variable techniques even for problems with real-valued param-
eter sequences y ∈ U . In [19] we showed

Theorem 1. Assume (8) and (9). Moreover, suppose the initial condition
x0 ∈ C(U ,S) satisfies

sup
z∈U
‖x0(z)‖S ≤ (1− κ)r , r = Re−L(R)T/κ (10)

for some R > 0 and 0 < κ < 1, where U = {ζ ∈ C : |ζ| < 1}N.
Then the IVP (1) (with t0 = 0) admits a unique solution X ∈ B1r,R ⊂

C1([0, T ];C(U ;S)), where

B1r,R =
{
Y ∈ C1([0, T ];C(U ;S)) : sup

(t,z)∈[0,T ]×U
e−tL(R)/κ‖Y (t, z)‖S ≤ r

}
If, in addition, for some k ∈ N

∀j ≥ 0 : fj : [0, T ]× S −→ S is k-times continuously differentiable , (11)

then for every z ∈ U the unique solution X(·, x0(z); z) of (1) belongs to
Ck+1([0, T ];S).

Moreover, the solution X(·, x0; z) depends continuously on the data x0 and
parameters z. If additionally the functions fj are analytic as Ck([0, T ];S)-
valued mappings, then X is analytic on U as a Ck+1([0, T ];S)-valued map-
ping.

3 Sparsity

It was shown in [19] that if the sequence fj in (1) is sparse in the sense that
if (‖fj‖`Lip0(S,R))j≥1 ∈ `p(N) for all R > 0 for some 0 < p < 1, then the
sequence (Tν)ν∈F of Taylor coefficients of the solution is equally sparse.

Theorem 2. Consider the parametric IVP ODE (1) for parameter vectors
y ∈ U = [−1, 1]N. If there exist real numbers R > 0 and 0 < κ < 1 with the
following properties:

1. In (1) the vector field f depends on the parameter vector y in the affine
fashion (6) with the coefficient functions fj satisfying for some 0 < p < 1(
‖fj‖`Lip0(S,R)

)
j≥1 ∈ `

p (N) and
(
ρj‖fj‖`Lip0(S,R)

)
j≥1 ∈ `

1 (N) ,

(12)
where the scaling vector ρ is given by ρj = max

(
1, δ

4Lj(R)

)
for some

arbitrary fixed δ > 0, and Lj(R) := ‖fj‖`Lip0(S,R).
2. The initial data x0 ∈ C([0, T ]× Uρ;S) satisfies



8 M. Hansen, Cl. Schillings, and Ch. Schwab

sup
z∈Uρ

‖x0(z)‖ ≤ (1− κ)Re−TL(ρ,R)/κ . (13)

Then the Taylor expansion (2) of the parametric solution X(t; y) of (1) is
p-sparse in the following sense: for every N ∈ N, there exists a monotone
set ΛN ⊂ F of indices ν ∈ F corresponding to N Taylor coefficients Tν with
largest norm in CL(ρ,R)/κ([0, T ];S) such that it holds

sup
y∈U

∥∥∥∥∥X(·; y)−
∑
ν∈ΛN

Tν(t)yν

∥∥∥∥∥
L(ρ,R)/κ,T,S

≤ CN−r, r =
1

p
− 1 (14)

and where ∑
ν∈ΛN

Tν(t)yν ∈ PΛN (U ;C1([0, T ];S))) . (15)

For 0 < p ≤ 1 as in (12), (Tν)ν∈F ∈ `p
(
F;C1([0, T ];S)

)
. Finally, let (11)

be satisfied for some k ≥ 0. Denote by ΛkN ⊂ F a monotone set of N largest
Taylor coefficients (measured in Ck+1

L(ρ,R)/κ([0, T ];S)). Then

sup
y∈U

∥∥∥∥∥∥X(·; y)−
∑
ν∈ΛkN

Tν(t)yν

∥∥∥∥∥∥
Ck+1
L(ρ,R)/κ

([0,T ];S)

≤ CN−r, r =
1

p
− 1 . (16)

In [19], also results analogous to Theorem 2 for N -term approximations
with monotone index sets for tensorized Legendre and Chebyshev systems
are proved. The sparsity result Theorem 2 yields the existence of a family
of sparse, N -term polynomial approximations of the parametric solutions
X(t; y). Apart from monotonicity its proof does not shed light on the struc-
ture resp. on the construction of concrete sets ΛN ⊂ F which would yield the
proven convergence rate with, possibly, a suboptimal constant.

Unlike in the case of linear problems which was considered in [8], due to the
strongly nonlinear nature of the problem (1), stable computation of Taylor
coefficients Tν(t) is, in general, not advisable (although in biological systems
engineering schemes are developed for efficient computation of sensitivities
Tej (t)).

We therefore consider collocation approximations of (1) using Smolyak
type collocation operators which are unisolvent on monotone sets (see, e.g.
[9]). In order to exploit sparsity in polynomial expansions of the parametric
solutions, as provided by Theorem 2, with collocation schemes, it is important
that for monotone sets Λ ⊂ F of “active” polynomial coefficients we have
available unisolvent, sparse polynomial interpolants.
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4 Numerical Examples

In the present section, we present heuristic adaptive algorithms which at-
tempt to iteratively localize a sequence {ΛN}N∈N of monotone sets which,
although possibly not optimal in the sense of best N -term approximation,
will deliver the optimal rate for given summability of the parametric inputs.
We place particular attention on high-dimensional parameter spaces, but also
investigate the scaling of the proposed algorithms with respect to the dimen-
sion p of the state space S (always assumed here to be finite dimensional, i.e.
S = Rp).

We emphasize that the examples which are presented here are illustrative
model problems, and that the development of “industrial strength” numerical
solvers for high-dimensional, parametric initial value ODEs is, currently, in
its infancy; the present section is intended to give a first indication of scaling
and performance of the proposed methods, and, in particular, also identifies
specific directions for further algorithm development.

The proposed algorithm successively tries to identify the most profitable
indices in a neighborhood of the monotone set ΛN of currently active indices
in terms of error and work contribution. Following [13, 2], the profit of a
multiindex ν ∈ F = Nd0 is given by

gν = max
t∈Ξ

∆E(ν; t)

∆W (ν)
, Ξ ⊂ [0, T ] , (17)

where ∆W (ν) =
∏d
k=1(mνk −mνk−1), m−1 := 0, denotes the work contribu-

tion and ∆E(ν; t) =
∑
j∈I ‖X(t;xν1j1 , . . . , x

νd
jd

) − A(U ; Λ̃)X(t;xν1j1 , . . . , x
νd
jd

)‖S
the error contribution with Λ̃ = {o ∈ Λ : |o| < |ν|} and I = {j ∈ Nd :
jl = 1, . . . ,mil , l = 1, . . . , d}. Note that the multiindices are assumed to be
finite, i.e. F = Nd0, which obviously fits into the theoretical framework dis-
cussed above, namely by setting the remaining entries equal to zero in the
infinite-dimensional case.

In what follows, we consider for a given monotone index set ΛN the
Smolyak interpolant (cf. [1])

A(U ;ΛN )X(t; y) =
∑
ν∈ΛN

(∆νX(t; ·))(y) ,

with the increment ∆νX(t; ·) =
⊗d

j=1(U ij − U ij−1)X(t; ·) , ν ∈ ΛN ,

U−1 :≡ 0 , Un(X(t; ·)) =

{
id, for n = 0∑mn
j=1X(t;xnj )lnj , for n ≥ 1

,

lnj univariate Lagrange interpolation polynomials at

1. Clenshaw-Curtis abscissas xnj in [−1, 1], i.e.

xnj = − cos
(
π(j−1)
mn−1

)
, j = 1, . . . ,mn if mn > 1 and n1 = 0 if mn = 1
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with m0 = 1 and mn = 2n−1 + 1, for n ≥ 1

2. symmetrized Leja abscissas xnj , e.g.
xn1 = 0 , if j = 1,
xn2 = 1 , if j = 2,
xn3 = −1 , if j = 3 and

xnj = arg maxx∈[−1,1]
∏j−1
k=1 |x− xnk | , j = 4, . . . ,mn, if j even,

xnj = −xnj−1 , j = 4, . . . ,mn, if j odd,
with mn = 2n+ 1, for n ≥ 0 (cf. [5, 6, 7]).

In order to approximate the monotone index set maximizing the profit
of each index with respect to the indicator (17), we consider the following
algorithm, due to [13].

1: function ASG

2: da ← 2, ν ← (0, 0), Λ← ∅, Iactive ← {ν}
3: Compute ∆ν(X(t; ·)) and the error indicator gν
4: while maxν∈Iactive (gν) > tol do

5: Select ν from Iactive with largest gν
6: if ν = ν − eda then

7: da ← da + 1, Iactive ← Iactive ∪ {eda}
8: Compute ∆eda (X(t; ·)) and the error indicator geda
9: end if

10: Λ← Λ ∪ {ν}
11: for j = 1, . . . , da do
12: o← ν + ej
13: if o− em ∈ Λ, ∀1 ≤ m ≤ d then
14: Iactive ← Iactive ∪ {o}
15: Compute ∆o(X(t; ·)) and the error indicator go
16: end if
17: end for

18: end while

19: end function

Due to the monotonicity requirement of the index set Λ, it holds {0} ⊂ Λ,
so that the proposed algorithm starts with the initial index set Λ0 = 0. Then,
all feasible neighbor indices are computed, so that the monotonicity of the
set Λ is preserved and the new index with the largest profit is added to
the index set Λ. This procedure is repeated until the estimated profit of the
remaining indices is smaller or equal than a given tolerance tol. Note that the
dimension of the indices is also adaptively controlled, i.e. the dimension of the
parameter space is iteratively enlarged according to the above results. The
example concerns a parametric initial value problem of the following form.
Given X(0, y) = x0 ∈ R, T = 1, U = [−1, 1]d, find X(t; y) : [0, 1] × U → R
such that X(0; y) = x0 = 1 ∈ R
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dX

dt
= f(t,X; y) = (f0 +

d∑
j=1

fjyj)
σX , 0 ≤ t ≤ 1 , (18)

with fi =
(

1
i+1

)s
, s > 1 , i ∈ N0.

In (18), the exponent σ = ±1 in all experiments which are considered
below. We note that σ = +1 implies affine dependence of the right hand
side in (18) on the parameter vector y, as was assumed in the theoretical
setting in Sections 2 - 3 above. Therefore, the parametric family of solutions
admits, indeed, sparse representations with respect to the parameter vector
y. We emphasize, however, that due to the linear character of the ODE IVP
(18), this can also be verified directly from the explicit expression (19). We
note that (19) reveals that for σ = +1, the parametric solution is a separable
function of the parameters yj , so that very favourable approximation prop-
erties by the Smolyak interpolation can be expected. On the other hand, for
σ = −1, the exact solution is not separable with respect to the parameters yj .
By direct analysis of the solution formula (19) ahead it can be verified that
the parametric solution of (18) allows a representation as unconditionally
convergent Taylor expansions with p-summable coefficients, even though for
σ = −1 the dependence of f(t,X; y) on the parameter vector y in (18) is not
affine, and the abstract existence theory in [19, Sect. 2 & 3] is not applicable;
the N -term approximation results in [19, Sect. 4], however, are applicable
based on Taylor coefficient estimates obtained from (19) ahead (indicating,
among others, that the theory in [19] could be generalized to certain types of
nonaffine, analytic dependence of f(t,X; y) on the parameter vector y). To
study the potential of the sparse approximation with respect to the variable
y, we will compare the resulting index sets with results based on the exact
solution of (18) given by

X(t; y) = x0 exp(t(f0 +

d∑
j=1

fjyj)
σ) , 0 ≤ t ≤ 1 , ∀y ∈ U . (19)

4.1 Separable parametric ODE

First, we consider the case of separable solutions σ = 1 and restrict the
discussion to the ten-dimensional case, i.e.

f(t,X; y) =

1 +

10∑
j=1

yj

(
1

j + 1

)sX.

In the following figure, the adaptively constructed monotone index sets
based on Clenshaw-Curtis and Leja points as well as the corresponding error
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contributions, where the adaptivity indicator is chosen as

gν = max
t∈Ξ

∆E(ν; t)

∆W (ν)
, Ξ = {0, 0.1, 0.2, . . . , 1.0} .

are shown. Results based on the exact solution using linear ansatz functions
to discretize the time interval [0, 1] (∆t = 2−8) are compared to the numerical
solution of the ODE (18) using MATLAB’s ode45 (Runge-Kutta method 4(5)
with variable time step and dense output, see [17, 18] for more details) with
prescribed tolerance eps = 2.22045 · 10−14. In the case of Clenshaw-Curtis
as well as of Leja points, it can be stated that both approaches lead to the
same adaptive index sets, so that the approximation of the solution (18) does
not affect the approximation of the solution with respect to the parameter
sequence y, see Figure 1.
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Fig. 1 Adaptively constructed index set Λ (left) and comparison of the error contribution
of each index ν ∈ Λ exemplarily shown at time t0 = 0.0, t5 = 0.5, t10 = 1.0 based on

the exact solution (black) and numerical solution (gray) (σ = 1, s = 4, d = 10, tol =
10−4,exact: ∆t = 2−8, Ξ = {0, 0.1, 0.2, . . . , 1.0}, ode45: eps = 2.22045 · 10−14, Clenshaw-

Curtis nodes (above), Leja nodes (below)).

We further investigate this effect by comparing the resulting grids for the
case s = 4 (cf. Figure 2 using Clenshaw-Curtis points and Leja nodes).
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Fig. 2 Adaptively constructed index set Λ (left) and comparison of the error contribution
of each index ν ∈ Λ exemplarily shown at time t0 = 0.0, t5 = 0.5, t10 = 1.0 based on

the exact solution (black) and numerical solution (gray) (σ = 1, s = 4, d = 10, tol =

10−4,exact: ∆t = 2−8, Ξ = {0, 0.1, 0.2, . . . , 1.0}, ode45: eps = 2.22045 · 10−14, Clenshaw-
Curtis nodes (above), Leja nodes (below)).

There is a perfect match between the two solutions in both cases, i.e.
considering Clenshaw-Curtis as well as Leja points. Finally, the sparsity of
the solution X(t; ·) with respect to y is explored by adapting the accuracy
of the ODE solver according to the impact of the index on the solution.
Therefore, we estimate the error contribution of a new feasible index ν by
the maximum of the error contributions of all predecessors

˜∆E(ν) = max
ν−ej∈Λ ,∀j∈supp(ν)

max
t∈Ξ

∆E(ν − ej ; t) , (20)

normalized by ˆ∆E(ν) =
˜∆E(ν)

∆E(0) , so that the error tolerance eps of the ODE

solver is chosen as
epsadapt(ν) =

eps

ˆ∆E(ν)
. (21)

The resulting adaptive index sets for the case s = 2 as well as s = 4 are
practically identical to the set obtained by using the exact solution. Figure
3 illustrates the error contribution based on the proposed adaptive strategy
compared to the solutions depicted in Figures 1 and 2. We can observe that
the fully adaptive strategy yields the same accuracy as the reference solution
while minimizing at the same time the work contribution for each index. The
same effect can be explored using Leja points.
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Fig. 3 Comparison of the error contribution of each index ν ∈ Λ for the case s = 2 (left)

and s = 4 (right) exemplarily shown at time t10 = 1.0 based on the adaptive strategy
controlling the tolerance of the ODE solver (light gray) with the exact solution (black)

and numerical solution with fixed error tolerance (gray) (σ = 1, d = 10, tol = 10−4,exact:

∆t = 2−8, Ξ = {0, 0.1, 0.2, . . . , 1.0}, ode45: eps = 2.22045 · 10−14, ode45: adaptive eps,
Clenshaw-Curtis nodes (above), Leja nodes (below)).

The speedup in terms of function evaluations required for the approxima-
tion of the ODE solution and in terms of computation time are summarized
in the following table.

Clenshaw-Curtis nodes Leja nodes

# feval CPU feval # feval CPU feval

s = 2
fixed tolerance 202575 41.28 sec. 328006 66.52 sec.
adaptive strategy 95399 20.84 sec. 138089 29.504 sec.

s = 4
fixed tolerance 29984 6.36 sec. 29985 6.14 sec.
adaptive strategy 14348 3.20 sec. 14350 3.13 sec.

Table 1 Comparison of the number of function evaluations and computation time using

the proposed adaptive strategy to control the error tolerance of the ODE solve and the
non-adaptive approach using a fixed tolerance of eps = 2.22045 · 10−14 (σ = 1, d = 10,
tol = 10−4, Apple Mac Mini, 2.66 GHz Intel Core 2 Duo, 4GB).

To verify the efficiency of the proposed method in the high-dimensional
case, the underlying problem is considered for d = 100. As in the previous
example, a variation of the parameter s (s = 2, s = 4) as well as results based
on the exact solution (19) and numerical solution of (18) using the Matlab
ode45 solver with fixed and adaptive error tolerance considering Clenshaw-
Curtis and Leja points are presented.
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Fig. 4 Adaptively constructed index set Λ (left) and comparison of the error contribution

of each index ν ∈ Λ exemplarily shown at time t10 = 1.0 based on the adaptive strategy
controlling the tolerance of the ODE solver (light gray) with the exact solution (black)

and numerical solution with fixed error tolerance (gray) (σ = 1, d = 100, s = 2, tol =

10−4,exact: ∆t = 2−8, Ξ = {0, 0.1, 0.2, . . . , 1.0}, ode45: eps = 2.22045 · 10−14, ode45:
adaptive eps, Clenshaw-Curtis nodes (above), Leja nodes (below)).

Figure 4 illustrate the case s = 2, where the grids based on the exact as
well as on the non-adaptive and adaptive numerical solution of the ODE are
identical. Increasing the parameter (s = 4) leads to the same monotone index
set as in the ten-dimensional case (see Figure 3). The statistics for the case
d = 100 are summarized in Table 2.

Clenshaw-Curtis nodes Leja nodes

# feval CPU feval # feval CPU feval

s = 2
fixed tolerance 3591145 830.50 sec. 4089927 935.77 sec.
adaptive strategy 1302439 312.56 sec. 1468805 349.63 sec.

s = 4
fixed tolerance 29984 9.86 sec. 29985 9.58 sec.
adaptive strategy 14348 4.73 sec. 14350 4.76 sec.

Table 2 Comparison of the number of function evaluations and computation time using
the proposed adaptive strategy to control the error tolerance of the ODE solver with the
non-adaptive approach using a fixed tolerance of eps = 2.22045 · 10−14 (σ = 1, d = 100,

tol = 10−4, Apple Mac Mini, 2.66 GHz Intel Core 2 Duo, 4GB).

4.2 Non-separable ODE

We will now discuss the non-separable case, i.e. σ = −1 in (18). Numerical
results are presented considering a variation of the parameter s in the ten-
dimensional case, i.e. d = 10. The following figure shows the adaptive index
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set and comparison of the error contribution of each index based on the
adaptive strategy controlling the tolerance of the ODE solver with the exact
solution and numerical solution with fixed error tolerance using Clenshaw-
Curtis interpolation points.
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Fig. 5 Adaptively constructed index set Λ (left) and comparison of the error contribution

of each index ν ∈ Λ exemplarily shown at time t10 = 1.0 based on the adaptive strategy
controlling the tolerance of the ODE solver (light gray) with the exact solution (black)

and numerical solution with fixed error tolerance (gray) (σ = −1, d = 10, s = 2, tol =
10−4,exact: ∆t = 2−8, Ξ = {0, 0.1, 0.2, . . . , 1.0}, ode45: eps = 2.22045 · 10−14, ode45:

adaptive eps, Clenshaw-Curtis nodes).

Comparing the results with the separable case (cf. Figure 1), we can state
that the number of indices of the adaptive sparse grid is enlarged approxi-
mately by factor 5 to reach the given tolerance. In the case of Leja points,
the prescribed tolerance cannot be reached in a reasonable computation time
due to the higher number of indices (resulting from the linear growth of the
interpolation nodes) and the related overhead caused by the search of new
admissible indices.
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Fig. 6 Adaptively constructed index set Λ (left) and comparison of the error contribution

of each index ν ∈ Λ exemplarily shown at time t10 = 1.0 based on the adaptive strategy
controlling the tolerance of the ODE solver (light gray) with the exact solution (black)

and numerical solution with fixed error tolerance (gray) (σ = −1, d = 10, s = 3, tol =
10−4,exact: ∆t = 2−8, Ξ = {0, 0.1, 0.2, . . . , 1.0}, ode45: eps = 2.22045 · 10−14, ode45:
adaptive eps, Clenshaw-Curtis nodes (above), Leja nodes (below)).
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Therefore, we additionally present results for the case s = 3 in order inves-
tigate the influence of the choice of interpolation nodes in the non-separable
case, see Figure 6. Increasing the sparsity with respect to the parameter y
can be exploited by the algorithm in both cases, that means in the case of
Clenshaw-Curtis and Leja points, cf. Figure 7.
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Fig. 7 Adaptively constructed index set Λ (left) and comparison of the error contribution

of each index ν ∈ Λ exemplarily shown at time t10 = 1.0 based on the adaptive strategy

controlling the tolerance of the ODE solver (light gray) with the exact solution (black)
and numerical solution with fixed error tolerance (gray) (σ = −1, d = 10, s = 4, tol =

10−4,exact: ∆t = 2−8, Ξ = {0, 0.1, 0.2, . . . , 1.0}, ode45: eps = 2.22045 · 10−14, ode45:

adaptive eps, Clenshaw-Curtis nodes (above), Leja nodes (below)).

Similar to the separable case (cf. Table 1 and Table 2), the proposed adap-
tive control of the accuracy of the ODE solver can significantly reduce the
overall costs of the algorithm (see Table 3). Further, the computational effort
needed to construct the monotone index sets in the case of Clenshaw-Curtis
and Leja nodes are comparable in the case s = 4 due to the low order of the
grids.

Clenshaw-Curtis nodes Leja nodes

# feval CPU feval # feval CPU feval

s = 2
fixed tolerance 974838 195.31 sec. - -
adaptive strategy 528549 108.97 sec. - -

s = 3
fixed tolerance 65433 14.28 sec. 227539 47.05 sec.
adaptive strategy 33378 7.54 sec. 88696 19.26 sec.

s = 4
fixed tolerance 34596 7.60 sec. 34269 7.19 sec.
adaptive strategy 15846 3.33 sec. 15779 3.38 sec.

Table 3 Comparison of the number of function evaluations and computation time using

the proposed adaptive strategy to control the error tolerance of the ODE solver with the

non-adaptive approach using a fixed tolerance of eps = 2.22045 · 10−14 (σ = −1, d = 10,
tol = 10−4, Apple Mac Mini, 2.66 GHz Intel Core 2 Duo, 4GB).
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4.3 ODE System

The separable as well as the non-separable case clearly demonstrate the
speedup which can be gained by the fully adaptive strategy. The savings
in CPU time become even more evident considering a high-dimensional
ODE where the main part of the computational effort results from the
numerical solution of the underlying differential equation. To investigate
this point, we consider the following system of parametric ODEs given by
X(t; y) : [0, 1]× U → Rp, T = 1, U = [−1, 1]d

dX

dt
= A(y)X , X(0; y) = x0 = 1 ∈ Rp , 0 ≤ t ≤ 1 , ∀y ∈ U (22)

with A(y) = (akl(y)) , k, l = 1, . . . , p given by

akl =

{
1 +

∑d
j=1 yj

(
1
j+1

)sk
, if k = p− l + 1

0 , otherwise

and s1 = 1.2 , sk = k, ∀k = 2, . . . , p. The error contribution of each index ν
is estimated by the maximum error contribution of the components Xi , i =
1, . . . p with X = (X1, . . . , Xp)

T . The results are summarized in Table 4.

Clenshaw-Curtis nodes Leja nodes

# feval CPU feval total CPU time # feval CPU feval total CPU time

d = 10 , p = 10

fixed tolerance 223554 96.28 sec. 470.53 sec. 223142 98.21 sec. 477.26 sec.
adaptive strategy 114448 50.25 sec. 423.99 sec. 114336 50.98 sec. 429.02 sec.

d = 10 , p = 100

fixed tolerance 224475 450.32 sec. 3921.83 sec. 224042 445.91 sec. 3914.81 sec.
adaptive strategy 114819 227.41 sec. 3698.53 sec. 114703 228.42 sec. 3677.16 sec.

Table 4 Comparison of the number of function evaluations and computation time using

the proposed adaptive strategy to control the error tolerance of the ODE solver with the

non-adaptive approach using a fixed tolerance of eps = 2.22045 · 10−14 (Apple Mac Mini,
2.66 GHz Intel Core 2 Duo, 4GB).

The presented investigations show the potential of the adaptive error con-
trol of the ODE solver. In terms of function evaluations needed for the nu-
merical solution of the underlying ODE and the corresponding CPU time, the
adaptive approach is able to halve the computational effort by maintaining
at the same time a comparable accuracy of the fully adaptive approximation
in t and with respect to y, cf. Table 4.

The presented sparsity results open the perspective of novel, adaptive pa-
rameter collocation approaches to efficiently obtain system characteristics on
the entire parameter space for numerous systems in engineering and life sci-
ences modelled by initial value ordinary differential equations. In order to
demonstrate the applicability of the proposed approach to real life applica-
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tions, we will briefly discuss the following systems biology model consisting
of a large, parametric system of ordinary differential equations capturing
input-output behaviour of ErbB signaling pathways.

4.4 EGFR Signaling Network

In systems biology, a main issue is to understand, quantify and control the
regulation of complex cellular pathways and of intercellular communication.
The modelling of dynamics is essentially based on the modelling of the kinet-
ics of the underlying biochemical reactions mainly described by mass action
models. The approach proposed in this paper provides an efficient framework
to quantify the influence of uncertain reaction parameters of the resulting
system of ODEs. Exemplarily, we consider in the following the quantification
of short term signaling by the epidermal growth factor receptor introduced
by [20]. The model can be described in the following rather abstract form

dX

dt
= f(t,X; y) , (23)

where X(0; y) = x0 ∈ R23, t ∈ [0, 120] and X(t; y) : [0, 120] × U → R23.
The parameters y ∈ R51 are assumed to be uniformly distributed in U =
[−0.05, 0.05]51, variations of the nominal values y0 ∈ R51 are given by yi0 ·
10y

i

, i = 1, . . . , 51. Nonlinearities of the model occur due to approximations
by the Michaelis-Menten kinetics. We refer to [20] for a detailed discussion of
the model. The numerical experiments presented below were performed on
the Brutus cluster at ETH Zurich using 32 CPUs. The quantity of interest is
the dynamic behavior of state 8 (PLCγP ) , computed at 5 time points.

10
0

10
2

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

# Λ

m
a
x

j=
1
,.
..
,K

|(
∆

ν
(Θ

))
j|

 

 

Leja

Clenshaw−Curtis

10
0

10
2

10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

# ODE solves

m
a
x

j=
1
,.
..
,K

|(
∆

ν
(Θ

))
j|

 

 

Leja

Clenshaw−Curtis

Fig. 8 L∞ error curves of the interpolation with respect to the cardinality of the index

set ΛN based on the sequences Leja and CC (left) and with respect to the number of
ODE solves needed (right), uniform distribution of the parameters in log-space, variation

of 10±0.05 times the nominal point.
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To solve the high-dimensional system, a second-derivative integrator es-
pecially designed for applications in systems biology is used, we refer to [15]
for a detailed description of the ODE solver. Figure 8 displays the estimated
approximation error with respect to the cardinality of the index set as well
as with respect to the number of ODE solves needed. Both interpolation
formulas lead to almost identical, satisfactory results.

The following figure shows the quantity of interest for randomly chosen
realisations of the parameter. In particular, we compare the reference solu-
tion with the approximated values given by the adaptive sparse grids. As
Figure 9 indicates, the absolute error of the Leja and Clenshaw-Curtis based
interpolation is in the predicted range, cf. Figure 8.
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Fig. 9 Comparison of the states approximated by the adaptive sparse grid based on Leja

and CC interpolation nodes and the solution of the underlying ODE at randomly chosen
realizations of the parameter.

The quantity of interest can be approximated by low order Leja and
Clenshaw-Curtis interpolation formulas, so that the results of both sequences
are almost identical. Further, we can observe an excellent agreement with the
reference solutions, which are obtained by solving the underlying system at
the randomly chosen realisations.
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5 Conclusions and Perspectives

We have presented recent theoretical results on sparsity of initial value ODEs
on high-dimensional, parametric systems which indicate that the parametric
solutions of these problems generically admit sparse expansions into tensor
products of polynomials with respect to the (possibly countably many) pa-
rameters, uniformly with respect to the dimension of the state space. The
sparsity result takes the form of N -term approximation rates which are,
again, independent of the dimension of the parameter space, and depend
only on sparsity in the system models’ parameter dependence.

We then propose a numerical algorithm based on Smolyak type interpo-
lation which is steered by adaptively probing the parameter space. At each
Smolyak point, the initial value problem is solved numerically, by a stepsize
- adaptive ODE initial value solver. The proposed interpolation algorithms
being nonintrusive, no modification of the initial value ODE solver is neces-
sary for the numerical solution; moreover, the collocation algorithm allows
easy incorporation of parallel numerical solution of initial value ODEs corre-
sponding to different parameter values.

The tolerance parameter of the adaptive ODE IVP solver was, moreover,
controlled by the expected upper bound for the contribution of each Smolyak
increment to the overall interpolant in the Smolyak formula.

Numerical experiments for model parametric ODEs indicate linear scaling
of the algorithm with respect to the number of parameters as well as with
respect to the dimension of the system’s state space, up to dimensions of
100. Applications from parametric ODE IVP models which arise in biochem-
ical reaction pathways indicate that the approach also allows for efficient
numerical solution of complex models with several hundred parameters and
state variables. The new, efficient forward simulation methods allow the ef-
ficient Bayesian inversion of such models, for large sets of noisy data with
the methodology in [22]. Technical details of this aspect of our work, as well
as further scalability results of our algorithm for very large models and for a
large number of processors will be reported in a forthcoming publication.
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