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OPTIMALITY OF ADAPTIVE GALERKIN METHODS

FOR

RANDOM PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

CLAUDE JEFFREY GITTELSON, ROMAN ANDREEV, AND CHRISTOPH SCHWAB

Abstract. Galerkin discretizations of a class of parametric and random para-
bolic partial differential equations (PDEs) are considered. The parabolic PDEs
are assumed to depend on a vector y = (y1, y2, ...) of possibly countably many
parameters yj which are assumed to take values in [−1, 1]. Well-posedness
of weak formulations of these parametric equation in suitable Bochner spaces
is established. Adaptive Galerkin discretizations of the equation based on a
tensor product of a generalized polynomial chaos in the parameter domain
Γ = [−1, 1]N, and of suitable wavelet bases in the time interval I = [0, T ] and

the spatial domain D ⊂ R
d are proposed and their optimality is established.

Introduction

In recent years, based on the pioneering works [4, 5], and the subsequent refine-
ments [23, 13, 8, 21, 22], a rigorous theory of optimal (in the sense that convergence
rates which are afforded by best N -term approximations from a biorthogonal ex-
pansion of the unknown solution in some a-priori given Riesz basis are achieved)
adaptive Galerkin approximation methods has emerged. After initial applications
to linear elliptic partial differential equations in [4, 5] using isotropically supported
multiresolution bases, extensions to integrodifferential operators have been consid-
ered in [23, 13], first applications to elliptic multiscale problems using anisotropic
tensor product Riesz bases have been considered in [8, 21] and, subsequently, to
the space-time compressive discretization of linear parabolic (integro)differential
equations have been considered in [22].

In recent years, in particular in connection with the numerical solution of partial
differential equations with random inputs, for example with random coefficients
given by Karhunen–Loève expansions, initial boundary value problems of paramet-
ric, deterministic partial differential operators which depend on a sequence of count-
ably many parameters have been considered. Various discretization approaches, for
example collocation and Monte Carlo sampling techniques, have been considered
(see, e.g., [20] and the references therein).

While affording convenient implementation, the analysis of sampling methods
currently leaves open the question of optimality. Here, the situation for the so-called
stochastic Galerkin discretizations is quite different: since the discretization consists
in a mean-square projection onto a polynomial chaos, i.e. onto a finite span from
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a countable ensemble of tensorized orthogonal polynomials, in principle techniques
for establishing optimality of Galerkin projection methods for the approximate
solution of operator equations can be brought to bear. This programme has been
implemented in [15] and the references therein for parametric operator equations.

In the present paper, we adapt these techniques to prove optimality of an adap-
tive Galerkin scheme for linear, parametric and parabolic equations. Here, we use
a Legendre generalized polynomial chaos in the parameter space, and a space-time
tensor product wavelet basis that was shown to lead to a an optimal Galerkin ap-
proximation for the non-parametric, parabolic initial boundary problems in [22].
Based on the approach and the tensorized space-time Riesz bases for the Bochner
space in these references, we develop in the present paper a family of adaptive
Galerkin discretizations which are based on tensorizing the generalized polynomial
chaos and the space-time tensor product wavelet bases, resulting in discretization
schemes which are simultaneously adaptive in space-time and in the parameter
space. We establish here optimality of the resulting algorithm, which implies that
the best N -term approximation rates which are afforded by the exact solution from
the tensorized basis are, indeed, realized by the sequence of finitely supported ap-
proximations generated by the proposed adaptive Galerkin discretization.

The outline of this note is as follows. In Section 1.1, we present an abstract
class of parametric, parabolic problems which may depend on a countable number
of parameters. We elaborate the specific class of affine parameter dependence of
the parameteric operator equations.

In Section 2, we introduce a space-time weak formulation which also includes a
weak form of the parameter dependence.

Sections 3 and 4 introduce the requirement for polynomial chaos type Riesz bases
in the parameter domain, and for the multiresolultion (wavelet) Riesz bases on the
space and time domains.

Section 5 introduces an equivalent bi-finite matrix equation which, in particular,
allows for suitable compressibility results.

Section 6 present elements of the general adaptive Galerkin framework, based on
the general reference [4, 5, 13] where adaptive wavelet methods were developed in
the context of wavelet discretizations of elliptic operator equations, to the extent
required by the ensuing developments.

Section 7 recapitulates from [15] general results on the optimality of adaptive
Galerkin approximations of deterministic operator equations. Finally, Section 8
contains statements and proofs of the main result of the present paper, the optimal-
ity of the proposed adaptive Galerkin approximations in space, time and parameter
domain by sparse, tensorized bases consisting of tensor products of Riesz bases Θ,
Σ and of P .

1. Random and parametric parabolic equations

1.1. Abstract setting. Let V and H be real or complex separable Hilbert spaces.
We denote by V ∗ the dual space of V , which consists of all bounded antilinear
functionals on V . Assuming a dense embedding V →֒ H, we obtain a Gelfand
triple V →֒ H →֒ V ∗, where H is canonically identified with its dual.

We shall consider equations in V that depend on a temporal variable t ∈ I :=
[0, T ] and also on a parameter sequence y ∈ Γ := [−1, 1]N. On Γ , we define a
probability measure

π =
⊗

m∈N

πm , (1.1)

where each πm is assumed to be a probability measure on [−1, 1] with the Borel
σ-algebra. Although the product structure of the domain Γ and the measure π
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is irrelevant for the abstract problem formulation, it is pivotal to the subsequent
construction of a basis on the parameter domain in Section 3.

For a.e. t ∈ I and π-a.e. y ∈ Γ , we denote by A(t, y; ·, ·) a sesquilinear form on
V ×V such that for any v, w ∈ V , the map (t, y) 7→ A(t, y; v, w) is Borel-measurable
on I × Γ , and such that for a.e. t and y

|A(t, y; v, w)| ≤ cmax‖v‖V ‖w‖V ∀v, w ∈ V , (1.2)

ℜA(t, y; v, v) + c0‖v‖
2
H ≥ cmin‖v‖

2
V ∀v ∈ V , (1.3)

with fixed constants cmax > 0, cmin > 0 and c0 ≥ 0. For any v ∈ V , the antilinear
functional A(t, y; v, ·) is an element of V ∗. This allows us to interpret A(t, y) as a
bounded linear map from V to V ∗ for a.e. t and y.

We are interested in solving the parametric parabolic equation
{

∂tu(t, y) +A(t, y)u(t, y) = g(t, y) , t ∈ I ,

u(0, y) = h(y)
(1.4)

for given g(·, y) ∈ L2(I;V ∗) and h(y) ∈ H, for a.e. y ∈ Γ .

1.2. The heat equation. Let D ⊂ R
d be a bounded Lipschitz domain. In I ×

D × Γ , we consider the random parabolic initial boundary value problem

∂tu(t, x, y)−∇x · (a(t, x, y)∇xu(t, x, y)) = g(t, x, y) , (t, x, y) ∈ I ×D×Γ , (1.5)

with boundary condition u|∂D = 0 and initial condition u(0, x, y) = h(x, y). Here, a
may be interpreted as a random field on the space-time cylinder I ×D. Due to the
frequently used Karhunen–Loève expansion to parametrize random field coefficients,
we are particularly interested in the case that this field is expanded in a series as

a(t, x, y) = ã(t, x) +
∞
∑

m=1

ymam(t, x) , (t, x) ∈ I ×D , y = (ym)∞m=1 ∈ Γ . (1.6)

Our assumption that the measure π be a product measure (1.1) on Γ is equivalent
to the condition that the coefficients ym in this series expansion correspond to
independent random variables.

For this example, the spaces V and H are H = L2(D) and, due to the ho-
mogeneous Dirichlet boundary conditions V = H1

0 (D), with dual V ∗ = H−1(D)
(the ensuing analysis will remain valid also for mixed or even Neumann boundary
conditions with the obvious modifications of V ). Furthermore,

A(t, y; v, w) :=

∫

D

a(t, x, y)∇xv(x) · ∇xw(x) dx , v, w ∈ H1
0 (D) . (1.7)

When interpreted as an operator from V to V ∗, this isA(t, y)v = −∇x·(a(t, ·, y)∇xv).
Due to (1.6), the corresponding parametric operator A can be expanded into a series

A(t, y) = Ã(t) +
∞
∑

m=1

ymAm(t) , (1.8)

where Ã(t)v = −∇x · (ã(t, ·)∇xv) and Am(t)v = −∇x · (am(t, ·)∇xv) for v ∈ V ,
with unconditional convergence in L(V, V ∗) under suitable decay assumptions on
am.

We specialize to operators of the form (1.8) in the following subsection. For this
example, the assumptions (1.10) and (1.11) below are satisfied with c0 = 0 if

0 < c̃min ≤ ℜã(t, x) ≤ |ã(t, x)| ≤ c̃max <∞ ∀(t, x) ∈ I ×D . (1.9)

Furthermore, ‖Am(t)‖V→V ∗ = ‖am‖L∞(I×D) in (1.12).
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1.3. Affine dependence on the parameter. We consider abstract operators of
the form (1.8), with

|Ã(t; v, w)| ≤ c̃max‖v‖V ‖w‖V ∀v, w ∈ V , (1.10)

ℜÃ(t; v, v) + c0‖v‖
2
H ≥ c̃min‖v‖

2
V ∀v ∈ V , (1.11)

for a.e. t and constants c̃max > 0, c̃min > 0 and c0 ≥ 0. Under the assumption
∞
∑

m=1

‖Am(t)‖V→V ∗ ≤ γc̃min ∀t ∈ I (1.12)

with γ ∈ [0, 1), since |ym| ≤ 1 for all m, (1.2) and (1.3) hold with constants

cmin = (1− γ)c̃min and cmax = c̃max + γc̃min . (1.13)

2. Weak formulation

2.1. Weak interpretation of the parameter dependence. We abbreviate V :=
L2
π(Γ ;V ) andH := L2

π(Γ ;H). IdentifyingH with its dual, and V∗ with the Bochner
space L2

π(Γ ;V
∗), we obtain a Gelfand triple V →֒ H →֒ V∗ of separable Hilbert

spaces with dense injections. Due to (1.2) and (1.3), the π-averaged sesquilinear
form

A(t; v, w) :=

∫

Γ

A(t, y; v(y), w(y)) dπ(y) , v, w ∈ V , (2.1)

is bounded and coercive on V with

|A(t; v, w)| ≤ cmax‖v‖V‖w‖V ∀v, w ∈ V , (2.2)

ℜA(t; v, v) + c0‖v‖
2
H ≥ cmin‖v‖

2
V ∀v ∈ V , (2.3)

for a.e. t ∈ I. Omitting the arguments v and w in (2.1), we interpret A(t) also as
a bounded linear operator from V to V∗ mapping v ∈ V to A(t; v, ·).

For g ∈ L2(I;V∗) and h ∈ H, we arrive at the parabolic equation
{

∂tu(t) +A(t)u(t) = g(t) , t ∈ I ,

u(0) = h .
(2.4)

It can be shown as in e.g. [20, Thm. 2.18] by testing (2.4) with v ∈ V multiplied
by the indicator function of an arbitrary measurable subset of Γ that the solutions
of (2.4) and (1.4) coincide for π-a.e. y ∈ Γ .

2.2. Variational formulation of the parabolic equation. In the form (2.4),
the random parabolic equation fits the setting of [22]. Consequently, the variational
formulation derived there applies. It is based on the spaces

X := L2(I;V) ∩H1(I;V∗) = L2(I;L2
π(Γ ;V )) ∩H1(I;L2

π(Γ ;V
∗)) (2.5)

and

Y := L2(I;V)×H = L2(I;L2
π(Γ ;V ))× L2

π(Γ ;H) . (2.6)

Due to the tensor product structure of Bochner spaces, X and Y can be identified
with the Hilbert tensor product spaces

X = (L2(I)⊗ L2
π(Γ )⊗ V ) ∩ (H1(I)⊗ L2

π(Γ )⊗ V ∗)

= L2
π(Γ )⊗ [(L2(I)⊗ V ) ∩ (H1(I)⊗ V ∗)] (2.7)

and

Y = (L2(I)⊗ L2
π(Γ )⊗ V )× (L2

π(Γ )⊗H) = L2
π(Γ )⊗ [(L2(I)⊗ V )×H] . (2.8)

In particular, X and Y are tensor products of L2
π(Γ ) with spaces X := L2(I;V ) ∩

H1(I;V ∗) and Y := L2(I;V )×H, respectively, that do not depend on π and Γ .
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By e.g. [7, Ch. 18], X →֒ C (I;H), and consequently

X = L2
π(Γ ;X) →֒ L2

π(Γ ;C (I;H)) →֒ C (I;H) , (2.9)

with H = L2
π(Γ ;H). Of course, the weaker statement X →֒ C (I;H) follows directly

from [7].
Following [22], we define the sesquilinear form B(·, ·) on X × Y as

B(w, (v1, v2)) :=

∫

I

〈∂tw(t), v1(t)〉+A(t;w(t), v1(t)) dt+ (w(0), v2)H , (2.10)

and interpret this also as a bounded linear operator B from X to Y∗. Then for the
right hand side f ∈ Y∗ given by

f(v1, v2) :=

∫

I

〈g(t), v1(t)〉 dt+ (h, v2)H , (v1, v2) ∈ Y , (2.11)

we formulate (2.4) as the operator equation

Bu = f . (2.12)

Theorem 2.1. The operator B : X → Y∗ is boundedly invertible.

For a proof of Thm. 2.1 with bounds on the norm of B and its inverse, we refer
to [22, Thm. 5.1]; see also [7, 25].

3. A polynomial basis on the parameter domain

3.1. Univariate orthonormal polynomials. For all m ∈ N, let (Pm
n )∞n=0 be an

orthonormal polynomial basis of L2
πm

([−1, 1]) where Pm
n is a polynomial of degree

n. Such a basis satisfies the three term recursion Pm
−1 := 0, Pm

0 := 1 and

βm
n P

m
n (ξ) := (ξ − αm

n−1)P
m
n−1(ξ)− βm

n−1P
m
n−2(ξ) , n ∈ N , (3.1)

with

αm
n :=

∫ 1

−1

ξPm
n (ξ)2 dπm(ξ) and βm

n :=
cmn−1

cmn
, (3.2)

where cmn is the leading coefficient of Pm
n , βm

0 := 1, and Pm
n is chosen as normalized

to unit norm in L2
πm

([0, 1]). This basis is unique e.g. if cmn is chosen to be positive.
We refer to e.g. [14, 24] for details.

3.2. Countable tensor products of orthonormal polynomials. We define the
set of finitely supported sequences in N0 as

Λ := {µ ∈ N
N

0 ; # suppµ <∞} , (3.3)

where the support of a sequence µ in N0 is

suppµ := {m ∈ N ; µm 6= 0} , µ ∈ N
N

0 . (3.4)

Then countably infinite tensor product polynomials are given by

P := (Pµ)µ∈Λ , Pµ :=

∞
⊗

m=1

Pm
µm

, µ ∈ Λ . (3.5)

Note that each of these functions depends nontrivially on only finitely many vari-
ables; for all y = (ym)∞m=1 ∈ Γ ,

Pµ(y) =

∞
∏

m=1

Pm
µm

(ym) =
∏

m∈suppµ

Pm
µm

(ym) , µ ∈ Λ , (3.6)

since Pm
0 = 1 for all m ∈ N.

Theorem 3.1. P is an orthonormal basis of L2
π(Γ ).

We refer to e.g. [16, Theorem 2.8] for a proof of Theorem 3.1; see also [12].
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4. Wavelet bases on the spatial and temporal domains

In this section we construct Riesz bases Φ and Ψ of X = L2(I;V ) ∩H1(I;V ∗)
and Y = L2(I;V ) × H, respectively. These will consist of suitable bases for the
spaces L2(I) and V . We remark that in general, Φ and Ψ can be chosen separately.
Here we forego that generality and follow the construction given in [22].

Let Θ = {ϑλ ; λ ∈ ∇t} ⊂ H1(I). We assume that Θ is a (multi-)wavelet basis
constructed using dyadic refinements, that is, to each index λ ∈ ∇t a level |λ| ∈ N0

is associated such that {λ ∈ ϑ ; |λ| = k} ∼ 2k. We assume that

(1) Θ is a normalized Riesz basis in L2(I),
(2) Θ can be rescaled to a Riesz basis in H1(I)
(3) Θ is of order dt > 1 (in the sense of e.g. [21, 22]).

Concerning the wavelet nature of the basis Θ we further assume that it is

(1) local, that is supt∈I,k∈N0
#{λ ∈ ∇t ; |λ| = k ∧ t ∈ suppϑλ} <∞,

(2) piecewise polynomial of order dt, in particular, the singular support of each
ϑλ is a subset of the closure of I with uniformly bounded finite cardinality,

(3) continuous, and ‖ϑλ‖L∞(I) + 2−|λ|‖ϑ′λ‖L∞(I) . 2
1
2 |λ|,

(4) such that ϑλ has d̃t ≥ dt vanishing moments for all |λ| ≥ 1.

With these assumptions, it was shown in [22] that the matrices

[(‖ϑλ′‖−1
H1(I)ϑ

′
λ′ , ϑλ)L2(I)]λ′,λ∈∇t

, [(ϑλ′ , ϑλ)L2(I)]λ′,λ∈∇t
(4.1)

and their adjoints are s∗-computable for any s∗ > 0.
Bases Θ with properties required above are well-known. Examples include

biorthogonal spline wavelets, see e.g. [6, 18, 19] and references therein.
Let Σ = {σν ; ν ∈ ∇x} ⊂ V be a basis for V . We begin by assuming that Σ

(1) is a normalized Riesz basis for H,
(2) can be rescaled to a Riesz basis for V , and properly rescaled constitutes a

Riesz basis for V ∗.

This already greatly restricts the choice of bases Σ. We will moreover need s∗-
computability of the matrices

[(‖σν′‖−1
V ∗σν′ , ‖σν‖

−1
V σν)H ]ν′,ν∈∇x

, [(σν′ , σν)H ]ν′,ν∈∇x
(4.2)

and their adjoints.
In the situation that A(t, y) is a linear integro-differential operator of order 2m

on the spatial domain D, sufficient conditions for s∗-computability of the matrices
(4.2) were discussed in [22]. Here we are primarily interested in the case that A(t, y)
is given by (1.7), i.e. m = 1, which shall be therefore discussed in more detail. We

further focus on the case that D ⊂ R
d is a cube, i.e. D =

∏d
i=1(ai, bi) with ai < bi.

The coefficient a(t, x, y) in (1.7) is, however, not required to be a separable as a

function D ∋ x → a(t, x, y). We thus assume that Σ =
⊗d

i=1 Σi with wavelet
bases Σi satisfying similar assumptions as for Θ. We state these first in the case
d = 1. For some rx ∈ N0 with m− 1 ≤ rx ≤ dx − 2, and d̃x ∈ N0, we assume that
σν

(1) are local and piecewise polynomial of order dx,

(2) are globally Crx , specifically
∑rx+1

k=0 2−k|ν|‖σ
(k)
ν ‖L∞(a1,b1) . 2

1
2 |ν|

(3) for |ν| ≥ 1 have the cancellation property of order d̃x, that is
∣

∣

∣

∣

∣

∫

(a1,b1)

w(x)σν(x) dx

∣

∣

∣

∣

∣

. 2−|ν|( 1
2+k)‖w‖Wk,∞(a1,b1) (4.3)

for all k ∈ {0, d̃x}, w ∈W k,∞(a1, b1) ∩H
1
0 (a1, b1).
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When d ≥ 1, we assume that these properties hold for each Σi, i = 1, . . . , d.
Piecewise polynomial (L2-orthonormal) wavelets on an interval satisfying these

assumptions were constructed in [9, 10, 17] (see also [11]), and used in e.g. [8]
for the adaptive tensor product wavelet method for an elliptic problem. These are
constructions based on [9], where it was shown that given a multiresolution analysis
(MRA) Vℓ ⊂ Vℓ+1 ⊂ L2(R), ℓ ∈ Z, generated by finitely many compactly supported
scaling functions, there exist q ∈ N0, m ∈ N and an orthogonal MRA V̌ℓ ⊂ V̌ℓ+1 ⊂
L2(R), ℓ ∈ Z, generated by finitely many compactly supported orthogonal scaling
functions with Vq ⊂ V̌0 ⊂ Vq+m. Moreover, an orthogonal MRA on a bounded
interval can be derived, see [10, Theorem 4.4].

The Riesz bases Φ ⊂ X and Ψ ⊂ Y are then defined analogously to [21] by

Φ =







ϑλ ⊗ σν
√

‖ϑλ‖2L2(I)‖σν‖
2
V + ‖ϑλ‖2H1(I)‖σν‖

2
V ∗

; (λ, ν) ∈ ∇t ×∇x







(4.4)

and

Ψ =

{(

ϑλ ⊗ σν
‖ϑλ‖L2(I)‖σν‖V

, 0

)

; (λ, ν) ∈ ∇t ×∇x

}

∪ {(0, σν); ν ∈ ∇x} . (4.5)

5. Equivalent bi-infinite matrix equation

5.1. Derivation. Due to Parseval’s identity, Theorem 3.1 states that the synthesis
operator

TP : ℓ2(Λ) → L2
π(Γ ) , (cµ)µ∈Λ 7→

∑

µ∈Λ

cµPµ (5.1)

is unitary. The property that Φ is a Riesz basis of X can be expressed as bounded
invertibility of the synthesis operator

TΦ : ℓ2(Ξ) → X , (cι)ι∈Ξ 7→
∑

ι∈Ξ

cιϕι . (5.2)

In particular, the synthesis operator of P ⊗Φ = (Pµ ⊗ ϕι)(µ,ι)∈Λ⊗Ξ ,

TP⊗Φ = TP ⊗ TΦ : ℓ2(Λ× Ξ) → X = L2
π(Γ ;X) (5.3)

is an isomorphism of Hilbert spaces, i.e. P × Φ is a Riesz basis of X . Similarly,
since Ψ is a Riesz basis of Y , the products P ⊗ Ψ = (Pµ ⊗ ψη)(µ,η)∈Λ×Υ form a

Riesz basis of Y = L2
π(Γ ;Y ).

We reformulate (2.12) equivalently in sequence spaces using the above synthesis
operators. Let

u := T−1
P×Φu ∈ ℓ2(Λ× Ξ) , f := T ∗

P×Ψf ∈ ℓ2(Λ× Υ ) (5.4)

and

B := T ∗
P×ΨBTP×Φ : ℓ2(Λ× Ξ) → ℓ2(Λ× Υ ) . (5.5)

Then (2.12) is equivalent to the bi-infinite scalar linear system

Bu = f . (5.6)

The solution u can be reconstructed from u = (uµι) as

u = TP×Φu =
∑

(µ,ι)∈Λ×Ξ

uµιPµ ⊗ ϕι . (5.7)
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5.2. Structure of the discrete operator. We separate the spatial and temporal
discretization from that in the parameter y ∈ Γ . Here and in the following, we
restrict to the setting of Section 1.3, i.e. A(t, y) has the form (1.8) with affine
dependence on y ∈ Γ .

We construct an approximation to the parabolic sesquilinear form B independent
of the parameter y ∈ Γ ,

B̃(w, (v1, v2)) :=

∫

I

〈∂tw(t), v1(t)〉+ Ã(t;w(t), v1(t)) dt+ (w(0), v2)H , (5.8)

for w ∈ X and (v1, v2) ∈ Y , and interpret B̃ also as an operator B̃ ∈ L(X,Y ∗).
Similarly, we interpret Am as a bounded linear map from X to Y ∗. Then due to
the series expansion (1.8),

B(w, (v1, v2)) =

∫

Γ

B̃(w, (v1, v2)) +

∞
∑

m=1

ymAm(w, v1) dπ(y) , (5.9)

for w ∈ X and (v1, v2) ∈ Y.

Let B̃ := T ∗
Ψ B̃TΦ and Am := T ∗

ΨAmTΦ. These are bounded linear maps from
ℓ2(Ξ) to ℓ2(Υ ) and, as such, can be interpreted as bi-infinite matrices.

To capture the dependence on the parameter sequence y ∈ Γ , we consider the
representation of

Km : L2
π(Γ ) → L2

π(Γ ) , v(y) 7→ ymv(y) (5.10)

with respect to the polynomial basis P . Solving for the term ξPm
n−1 in (3.1), it

follows that for all m ∈ N, Km := T ∗
PKmTP ∈ L(ℓ2(Λ)) has the form

(Kmc)µ = βm
µm+1cµ+ǫm + αm

µm
cµ + βm

µm
cµ−ǫm , µ ∈ Λ , (5.11)

for c = (cµ)µ∈Λ ∈ ℓ2(Λ), where cµ := 0 if µm < 0 for any m ∈ N, and ǫm denotes
the Kronecker sequence (ǫm)n = δmn. Also, let I be the identity on ℓ2(Λ).

Combining the above basis representations leads to

B = I ⊗ B̃ +

∞
∑

m=1

Km ⊗Am , (5.12)

with convergence in L(ℓ2(Λ× Ξ), ℓ2(Λ× Υ )), see [15, Prop. 2.3].

As discussed in [22, Sec. 6], the matrix representation B̃ of the discrete deter-

ministic parabolic operator B̃ has the form
[

‖ϑλσν‖
−1
X ‖σν′

1
‖−1
V

(

(ϑ′λ, ϑλ′)L2(I)(σν , σν′

1
)H +

∫

I
Ã(t;ϑλ(t)σν , ϑλ′(t)σν′

1
) dt

)

‖ϑλσν‖
−1
X (ϑλ(0)σν , σν′

2
)H

]

(5.13)
with column indices (λ, ν) ∈ ∇t ×∇x and row indices (λ′, ν′1, ν

′
2) ∈ ∇t ×∇x ×∇x.

The matrix representations Am of Am are
[

‖ϑλσν‖
−1
X ‖σν′

1
‖−1
V

∫

I
Am(t;ϑλ(t)σν , ϑλ′(t)σν′

1
) dt

0

]

, (5.14)

with the same indexation.

5.3. The discrete adjoint operator and the normal equations. Since B is
not symmetric, we consider the discrete normal equations

B∗Bu = B∗f , (5.15)

where B∗ is the discrete adjoint operator

B∗ = T ∗
P×ΦB

∗TP×Ψ : ℓ2(Λ× Υ ) → ℓ2(Λ× Λ) . (5.16)

Since B∗ is bijective, (5.15) is equivalent to (5.6).
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The operator B∗ has the same tensor product structure as B, with B̃ and Am

replaced by their repsective adjoints. Since I and Km are symmetric,

B∗ = I ⊗ B̃
∗
+

∞
∑

m=1

Km ⊗A∗
m . (5.17)

The bi-infinite matrices B̃
∗
and A∗

m are given by the transpositions of (5.13) and
(5.14), respectively.

6. Adaptive Galerkin methods

6.1. Overview. Adaptive Galerkin discretization methods are set on the abstract
level of coefficients with respect to a Riesz basis, where a linear operator equation
is recast as a bi-infinite linear system of the form (5.6). As such, these methods can
be applied in our setting, with the Riesz bases P × Φ and P × Ψ , provided that
certain subroutines discussed below are available. To keep the exposition general,
we consider an arbitrary linear system Bu = f , and enumerate both index sets
such that this equation is set in ℓ2.

In [4, 13], for elliptic problems, the bi-infinite linear system is approximated by a
sequence of adaptively generated finite sections, the solutions of which are Galerkin
projections onto finite dimensional spaces. The refinement of the active set of
indices is governed by approximations of the discrete residuals. Sufficient accuracy
in the computation of each residual is shown in [4, 13] to ensure a reduction in the
error of the Galerkin solution on the refined set of active indices by a fixed factor,
independent of the support size of the “active” components of the operator section.

A different approach is followed in [5]. There, an iterative solver is applied di-
rectly to the full bi-infinite linear system. Operations in each step are replaced
by approximate counterparts with sufficient accuracy to ensure convergence of the
method. We note in passing that an a priori selection of stable space-time sparse
trial and test spaces for space-time Petrov-Galerkin formulations of parabolic evo-
lution equations is also possible [1, 2], which would lead to an a priori known finite
section of the bi-infinite linear system.

Although originally formulated for positive symmetric systems, both approaches
extend to nonsymmetric linear equations by solving the normal equations (5.15),
as noted in [5]. This is developed explicitely for parablic problems in [22].

The adaptive wavelet methods described above can be applied quite generically
as black-box solvers, provided that the application of the bi-infinite matrix B to
any finitely supported vector can be approximated to any desired accuracy. This
is achieved by a routine

ApplyB[w, ǫ] 7→ z (6.1)

which, for any ǫ > 0 and any finitely supported vector w, constructs a finitely
supported vector z with ‖Bw − z‖ℓ2 ≤ ǫ. The discrete operator B is called s∗-

admissible for a given s∗ ∈ (0,∞] if, for all s ∈ (0, s∗), # supp z . ǫ−1/s‖w‖
1/s
As

∞
(ℓ2)

and the number of arithmetic operations and storage locations used by ApplyB[w, ǫ]
is bounded by

ǫ−1/s‖w‖
1/s
As

∞
(ℓ2) +#suppw + 1 (6.2)

up to a fixed constant independent of w. Here As
∞(ℓ2) denotes the subspace of ℓ2

defined by the quasi-norm

‖v‖As
∞

(ℓ2) := sup
N∈N0

(N + 1)s‖v − PN (v)‖ℓ2 , (6.3)

where PN (v) is any best N -term approximation of v in ℓ2.



10 C. J. GITTELSON, R. ANDREEV, AND CH. SCHWAB

In the case of nonsymmetric problems, since we consider the normal equations
(5.15), we also require a routine ApplyB∗ for approximating the application of the
adjoint operator.

Similarly, we need to approximate the right hand side f to arbitrary precision
by finitely supported vectors. We assume that a routine RHSf [ǫ] is available which,
for any ǫ > 0, constructs a finitely supported vector f ǫ with ‖f − f ǫ‖ℓ2 ≤ ǫ and

# suppf ǫ ≤ inf{N ∈ N ; ‖f − PN (f)‖ ≤ Cǫ} (6.4)

for a fixed constant C ≥ 1.

Theorem 6.1. If B is symmetric positive definite and s∗-admissible, then for any

ǫ > 0, the adaptive wavelet methods from [4, 5, 13] construct an approximation

uǫ of u with ‖u − uǫ‖ℓ2 ≤ ǫ. If u ∈ As
∞(ℓ2) for any s > 0, then #suppuǫ .

ǫ−1/s‖u‖As
∞

(ℓ2). If s < s∗, then the number of arithmetic operations and storage

locations used to compute uǫ is bounded by an affine function of ǫ−1/s‖u‖As
∞

(ℓ2).

We refer to [4, 5, 13] for proofs of Theorem 6.1 for each of these adaptive solvers.

Remark 6.2. The estimate # suppuǫ . ǫ−1/s‖u‖As
∞

(ℓ2) can be interpreted as

follows: if ‖u − PN (u)‖ℓ2 . N−s, then ‖u‖As
∞

(ℓ2) is finite, and consequently

‖u − uǫ‖ℓ2 ≤ ǫ . (# suppuǫ)
−s. Thus adaptive Galerkin methods recover the

optimal convergence rate in terms of the support size, albeit with a larger con-
stant in the error estimate. In the case s < s∗, the same estimate holds for the
computational cost and, in this sense, the solvers have optimal complexity.

Remark 6.3. Replacing B by B∗B and f by B∗f , Theorem 6.1 applies to the
normal equations for nonsymmetric systems. Valid Apply and RHS routines are
given by

ApplyB∗B[w, ǫ] := ApplyB∗ [ApplyB[w, ǫ/(2‖B‖)], ǫ/2] (6.5)

and
RHSB∗f [ǫ] := ApplyB∗ [RHSf [ǫ/(2‖B‖)], ǫ/2] , (6.6)

where ‖B‖ denotes the operator norm of B. The product B∗B is s∗-admissible if
both B and B∗ are s∗-admissible, and a slightly weaker but sufficient variant of
(6.4) holds for RHSB∗f . We note that, in principle, (6.4) can be satisfied be lowering
the tolerances in (6.6) and appending a thresholding step, but the practical merit
of this procedure is questionable.

6.2. Approximate application of discrete operators. The construction of a
routine ApplyB hinges on the ability to approximate B by sparse matrices. We
call a bi-infinite matrix B ∈ L(ℓ2) n-sparse if each column of B contains at most
n nonzero entries. It is s∗-compressible for an s∗ ∈ (0,∞] if there exists a sequence
(Bj)j∈N in L(ℓ2) such that Bj is nj-sparse with (nj)j∈N ∈ N

N strictly increasing
and satisfying

sup
j∈N

nj+1

nj
<∞ (6.7)

and such that for every s ∈ (0, s∗),

sup
j∈N

nsj‖B −Bj‖ℓ2→ℓ2 <∞ . (6.8)

This last condition states that the sparse operators Bj converge to B with a rate
of essentially s∗ with respect to nj .

By (6.7), the sequence (nj)j∈N grows at most geometrically. Consequently, for
any r > 0, there is a j(r) such that nj(r) ≤ r and supr>0 r

s‖B −Bj(r)‖ < ∞ for
all s ∈ (0, s∗). Here, we extend the sequence of approximations by B0 := 0 with
n0 = 0. In particular, we may assume without loss of generality that nj = j, as is
done e.g. in [13, 22].
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In the definition of s∗-compressibility, nj is proportional to the cost of accessing
one column ofBj . In order to capture also the assembly cost, we introduce following
[23, 13], a somewhat stronger notion of s∗-computability: a bi-infinite matrix B ∈
L(ℓ2) is s∗-computable if it is s∗-compressible and if the number of arithmetic
operations and storage locations used to construct an arbitrary column of Bj is
bounded by a multiple of nj for all j ∈ N.

Proposition 6.4. Any s∗-computable B ∈ L(ℓ2) is s∗-admissible.

Proposition 6.4 is proven by constructing a suitable routine ApplyB. This is done
in [4]; see also [8, 15] for a variant of this method with quantitative improvements.
All of these algorithms partition the argument w in (6.1) according to the modulus
of its entries. Then approximations Bj with large j are used for the most significant
entries of w, and coarser approximations suffice for smaller entries of w.

7. Approximations of deterministic operators

7.1. Compressibility of discrete parabolic operators. The wavelets in Sec-
tion 4 were chosen to ensure that the deterministic operators appearing in the series
expansions (5.12) and (5.17) of B and B∗ be s∗-computable.

Proposition 7.1. For sufficiently smooth ã and am, m ∈ N, the bi-infinite matrices

B̃, B̃
∗
, Am and A∗

m are s∗-computable with s∗ = min(d̃t, d̃x).

A proof of Proposition 7.1 is given in [22, Sec. 8]; see also [21] for time-independent
operators. We refer to [22] for compressibility properties in more general settings,
for example if D is not a product domain.

Proposition 7.1 implies that there is a sequence (B̃j)j∈N of bi-infinite matrices

such that B̃j is n0,j-sparse with (n0,j)j∈N increasing and satisfying (6.7), and

‖B̃ − B̃j‖ℓ2(Ξ)→ℓ2(Υ ) . n−s
0,j ∀s ∈ (0, s∗) . (7.1)

Furthermore, the number of arithmetic operations and storage locations required to
compute any column of B̃j is an affine function of n0,j . We extend these sequences

by B̃0 := 0 and n0,0 := 0.

Analogous properties hold for B̃
∗
, Am and A∗

m. We denote the sequences of

sparse approximations by (B̃
∗

j )j∈N0 , (Am,j)j∈N0 and (A∗
m,j)j∈N0 , and the corre-

sponding sparsities by (n∗0,j)j∈N0
, (nm,j)j∈N0

and (n∗
m,j)j∈N0

, respectively. Al-

though B̃
∗

j may be the adjoint of B̃j in some situations, as suggested by the
notation, this is not assumed; similarly, A∗

m,j need not be the adjoint of Am,j .

7.2. Numerical approximation of error bounds. In order to construct sparse
approximations of B, we require explicit knowledge of the constants in the esti-
mates (7.1) and similar estimates for Am or, more precisely, we require numerical
sequences (ẽm,j)j∈N0 , m ∈ N0, such that

‖B̃ − B̃j‖ℓ2(Ξ)→ℓ2(Υ ) ≤ ẽ0,j and ‖Am −Am,j‖ℓ2(Ξ)→ℓ2(Υ ) ≤ ẽm,j . (7.2)

Optimal values of ẽ0,j are given by the square roots of the spectral radii of the

positive symmetric operators (B̃ − B̃j)
∗(B̃ − B̃j) since

‖B̃ − B̃j‖
2
ℓ2(Ξ)→ℓ2(Υ ) = sup

‖v‖
ℓ2(Ξ)=1

|vH(B̃ − B̃j)
∗(B̃ − B̃j)v| , (7.3)

and similarly for ẽm,j . Following [15, Sec. 6], we approximate these bounds by a
power iteration with suitably approximated matrix-vector multiplies.

The primary component of this power iteration is the repeated approximate
application of the operators (B̃ − B̃j)

∗ and B̃ − B̃j to finitely supported vectors.
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This is achieved using the sparse approximations B̃j+k − B̃j , k ∈ N, of B̃ − B̃j

and B̃
∗

j+k − (B̃j)
∗ of (B̃ − B̃j)

∗ in routines

NApplyB−Bj
[v, N ] 7→ z and NApply(B−Bj)∗

[w, N ] 7→ z (7.4)

similar to ApplyB from (6.1), but with a prescribed maximal support size # supp z ≤
N instead of a target accuracy ǫ. These routines combine to

NApply(B−Bj)∗(B−Bj)
[v, N ] := NApply(B−Bj)∗

[NApplyB−Bj
[v, N ], N ] . (7.5)

All vectors appearing within these routines are ensured to have support size not
larger than N .

The approximate power iteration for the computation of ẽ0,j consists of repeated
application of NApply(B−Bj)∗(B−Bj)

and normalization of the resulting vector. The

approximations of ẽ0,j are given by the scalar products

ẽ0,j ≈ ẽn0,j :=
vH
n vn+1

vH
n vn

, vn+1 := NApply(B−Bj)∗(B−Bj)
[vn, N ] , (7.6)

where v0 is chosen randomly and N is fixed. We use analogous iterations to ap-
proximate ẽm,j as well as the bounds in

‖B̃
∗
− B̃

∗

j‖ℓ2(Ξ)→ℓ2(Υ ) ≤ ẽ∗0,j and ‖A∗
m −A∗

m,j‖ℓ2(Ξ)→ℓ2(Υ ) ≤ ẽ∗m,j (7.7)

used to construct sparse approximations of B∗.
Convergence of a somewhat idealized variant of (7.6) is shown in [15, Thm. 6.3].

The analysis differs substantially from the standard analysis of the power iteration
for matrices since, in the present infinite-dimensional setting, no gap between the
largest and second-largest eigenvalues is assumed. We refer to [15] for further
details.

8. Approximations of discrete random parabolic operators

8.1. Sparse approximation of discrete random operators. We construct spar-
se approximations of B by truncating the series (5.12) and by replacing the remain-

ing bi-infinite matrices B̃ and Am by appropriate sparse approximations B̃j0 and
Am,jm .

To this end, we assume that sequences (ẽm,j)j∈N0 are available for all m ∈
N0 such that (7.2) holds. These can be computed numerically as described in
Section 7.2 and [15, Sec. 6] or derived analytically as in [23, 3]. By switching to a
subsequence, we assume without loss of generality that (ẽm,j)j∈N0

is nonincreasing
for all m ∈ N0 and, if i ≥ j, then

−(ẽm,i+1 − ẽm,i)

nm,i+1 − nm,i
≤

−(ẽm,j+1 − ẽm,j)

nm,j+1 − nm,j
, (8.1)

where B̃j,0 is n0,j-sparse and Am,j is nm,j-sparse.
For all finitely supported sequences j := (jm)m∈N0

in N0, we define

Bj := I ⊗ B̃j0 +

∞
∑

m=1

Km ⊗Am,jm . (8.2)

Since j is finitely supported and since Am,0 = 0 for all m, the sum in (8.2) is finite,
and no convergence issues arise. By the triangle inequality,

‖B −Bj‖ℓ2(Λ×Ξ)→ℓ2(Λ×Υ ) ≤

∞
∑

m=0

ẽm,jm =: ẽj . (8.3)

By (5.11), Km is σm-sparse with σm = 2 if the distribution πm is symmetric, and
σm = 3 in general. Consequently, Km ⊗ Am,j is σmnm,j-sparse. We set σ0 := 1
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such that I ⊗ B̃j is σ0n0,j-sparse for all j ∈ N0. Then the total number of nonzero
elements in any column of Bj is at most

Nj :=

∞
∑

m=0

σmnm,jm , (8.4)

and, assuming that entries of B̃j and Am,j can be computed in unit time, Nj is
also a bound for the cost of constructing any column of Bj .

We use a greedy algorithm to select a sequence (jk)k∈N0
, and define Bk := Bjk

,
which is an approximation of B with error at most ẽk := ẽjk

, and containing at
most Nk := Njk

nonzero elements per column.
As usual, the initial approximation is B0 = 0, with j0 := 0. Going from

jk = (jk,m)m∈N0
to jk+1, the entry jk,m for which m maximizes

−(ẽm,jk,m+1 − ẽm,jk,m
)

σm(nm,jk,m+1 − nm,jk,m
)

(8.5)

is incremented by one. If this m is not unique, one maximum is selected, e.g. the
smallest m that maximizes (8.5).

In order to ensure optimality of this greedy algorithm, we assume that the se-
quence (ẽm,0)m∈N is in ℓ1 and σ−1

m n−1
m,1(ẽm,1 − ẽm,0) is nonincreasing in m. The

following optimality property of the sparse approximations Bk is [15, Cor. 7.2].

Theorem 8.1. For all k ∈ N0, jk minimizes the error bound ẽj among all finitely

supported sequences j in N0 with Nj ≤ Nk. Furthermore, if ẽk 6= 0, then jk
minimizes Nj among all j with ẽj ≤ ẽk.

Remark 8.2. Since the structure of B∗ is identical to that of B, the discussion in
this section, including Sec. 8.2 below, applies verbatim to the adjoint operator B∗,

with B̃ replaced by B̃
∗
and Am replaced by A∗

m.

8.2. Compressibility and computability. In order to derive s∗-compressibility
of B, we assume that the estimate (6.7) holds uniformly for all (nm,j)j∈N, i.e.

sup
m∈N0

sup
j∈N

nm,j+1

nm,j
<∞ . (8.6)

The following theorem is the first case of [15, Thm. 8.4]. All unspecified norms
refer to operator norms between sequence spaces ℓ2 for the appropriate index sets.

Theorem 8.3. If (8.6) holds, ã and am, m ∈ N, are sufficiently smooth, and

∞
∑

m=1

(

sup
j∈N

ns
m,j‖Am −Am,j‖

)
1

s+1 <∞ (8.7)

for all s ∈ (0, s̄), then B is s∗-compressible for s∗ = min(d̃t, d̃x, s̄) and (Bk)k∈N0

from Sec. 8.1 is a valid sequence of sparse approximations, satisfying

Ns
k‖B−Bk‖ ≤

(

(

sup
j∈N

ns
0,j‖B̃− B̃j‖

)
1

s+1 +

∞
∑

m=1

(

sup
j∈N

ns
m,j‖Am −Am,j‖

)
1

s+1

)s+1

,

(8.8)
for all s ∈ (0, s∗), where Bk is Nk-sparse.

Compressibility ofB can also be derived if (8.7) does not hold, as in the following
theorem, which is the second case of [15, Thm. 8.4].

Theorem 8.4. If (8.6) holds, ã and am, m ∈ N, are sufficiently smooth,

∞
∑

m=1

‖Am‖
1

s+1 <∞ (8.9)
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for all s ∈ (0, s̄0), and

sup
M∈N

M−τ
M
∑

m=1

(

sup
j∈N

ns
m,j‖Am −Am,j‖ℓ2(Ξ)→ℓ2(Υ )

)
1

s+1 <∞ (8.10)

for all s ∈ (0, ŝ), then B is s∗-compressible for

s∗ :=
min(d̃t, d̃x, ŝ)

1 + τ/s̄0
(8.11)

and (Bk)k∈N0 from Sec. 8.1 is a valid sequence of sparse approximations.

Remark 8.5. A numerical algorithm for constructing an arbitrary column of Bk

is provided in [15, Sec. 7.2]. It assumes that either (jk) are precomputed, or
the operators Bk are accessed sequentially, such that only one step of the greedy
optimization needs to be performed the first time Bk is accessed. With this small
caveat, s∗-computability, and thus s∗-admissibility, of B follow from Theorems 8.3
and 8.4.

The above discussion carries over to show s∗-computability of B∗, and s∗-
admissibility of B∗B follows as in Remark 6.3. In particular, Theorem 6.1 applies,
showing optimality of adaptive Galerkin discretizations based on tensori products
of Legendre polynomial chaos with wavelet bases in D applied to the parametric
operator equation (5.15).
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