
Domain Decomposition for Boundary

Integral Equations via Local Multi-Trace

Formulations

R. Hiptmair and C. Jerez-Hanckes and J. Lee and Z. Peng

Research Report No. 2013-08

February 2013
Latest revision: December 2013

Seminar für Angewandte Mathematik
Eidgenössische Technische Hochschule

CH-8092 Zürich
Switzerland

____________________________________________________________________________________________________



Domain Decomposition for Boundary Integral
Equations via Local Multi-Trace Formulations

Ralf Hiptmair1, Carlos Jerez-Hanckes2, Jin-Fa Lee3, and Zhen Peng4

Abstract We review the ideas behind and the construction of so-calledlocal multi-
trace boundary integral equations for second-order boundary value problems with
piecewise constant coefficients. These formulations have received considerable at-
tention recently as a promising domain-decomposition approach to boundary ele-
ment methods.
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1 Introduction

This article is devoted to a formal derivation and discussion of a class of boundary
integral equation (BIE) formulations that have recently been introduced for second-
order transmission problems. We chose to dub this class “local multi-trace BIE for-
mulations” (MTF), which is inspired by two key features of its members:

(i) The methods rely on at least two pairs of trace data as unknowns on interfaces.
The accounts for the attribute “multi-trace”.

(ii) Formally, they are constructed by taking into account transmission conditions
pointwise or, at least, on parts of sub-domain boundaries, which is indicated by
the “local” attribute.

Initially, the development of these new methods was pursuedindependently by
numerical analysts and in computational electrical engineering, driven by different
objectives. In numerical analysis, the focus was on composite structures, that is,
partial differential equations with piecewise constant coefficients. There, the main
motivation was to find first-kind boundary integral formulations that, after Galerkin
boundary element discretization, are amenable to operatorpreconditioning, a pos-
sibility not offered by classical approaches, see [3, Section 4]. In engineering, re-
searchers were guided by a domain decomposition paradigm, aiming to localize
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boundary integral equations for electromagnetic wave propagation at artificial inter-
faces for the sake of parallelization and block-preconditioning.

Both research efforts have been fairly successful: on the one hand, a comprehen-
sive theoretical understanding of the simplest representative of a local multi-trace
BIE formulations for Helmholtz transmission problem couldbe achieved in [8].
In a wider context the method is also covered in [3]. On the other hand, a host
of impressive applications of multi-trace methods is documented in computational
electromagnetism. A surface integral equation domain decomposition method based
on multi-trace formulation is presented in [15, 14] for time-harmonic electromag-
netic wave scatterings from homogeneous targets. The treatment of general bounded
composite targets is discussed in [13].

This article looks at MTF from a mathematical point of view, but, inspired by the
developments in the engineering community, adopts a different and more general
perspective compared to [8]. This work is mainly conceptualand does not aim to
pursue any comprehensive analysis. Rather it is meant to chart new ideas and direc-
tions of research. We have not included any numerical results nor are we going to
discuss details of Galerkin discretization by means of boundary elements. Detailed
studies of convergence of multi-trace BIE for 2D acoustic scattering discretized by
means of low-order boundary elements (BEM) are reported in [8, Sect. 5]. Concern-
ing the application of multi-trace methods for solving electromagnetic scattering
problems, convergence studies can be found in [13] for scattering at both single ho-
mogeneous objects and composite penetrable objects. Several complex large-scale
simulations are covered in [14] and demonstrate the capability of these methods to
model multi-scale electrically large targets.

2 Transmission Problems
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Let Ωi ⊂Rd, d= 2,3, i = 0, . . . ,N, be dis-
joint open connected Lipschitz “material
sub-domains” that form a partition in the
sense thatR3 = Ω0 ∪ ·· · ∪ ΩN. Among
them onlyΩ0 is unbounded. Two adjacent
sub-domainsΩi andΩ j are separated by
their common interfaceΓi j , whose union
forms the skeletonΣ. ForN> 1 the skele-
ton Σ will usually not be orientable, nor
be a manifold.

Given diffusion coefficientsµi > 0, i = 0, . . . ,N, we focus on the model trans-
mission problem that seeksUi ∈ H1

loc(Ωi), i = 0, . . . ,N, solving

LiUi :=−div(µi gradUi)+Ui = 0 in Ωi , (1a)
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Ui |Γi j
− U j

∣∣
Γi j

= 0 , µi
∂Ui

∂ni

∣∣∣∣
Γi j

+ µ j
∂U j

∂n j

∣∣∣∣
Γi j

= 0 onΓi j , (1b)

plus suitable decay conditions at infinity forU−Uinc, where the “incident field”Uinc

is an entire solution ofL0Uinc = 0 onΩ0 [11, Ch. 8]. The weak formulation of (1) is
posed on the Sobolev spaceH1(R3).

The transmission conditions (1b) connect two kinds of canonical traces on both
sides of interfaces. These traces are the Dirichlet traceTD,i , and Neumann trace
TN,i , defined for smooth functions onΩ i through

TD,i Ui := Ui |∂Ωi
, TN,i Ui := µi gradUi ·ni |∂Ωi

. (2)

They can be extended to continuous operators [16, Sect. 2.6 &2.7] 1

TD,i : H1(Ωi)→ H
1
2 (∂Ωi) , TN,i : H(∆ ,Ωi)→ H− 1

2 (∂Ωi) . (3)

Then, (1b) can be recast as
(
TD,i

TN,i

)
Ui =

(
Id 0
0 −Id

)(
TD, j

TN, j

)
U j onΓi j , (4)

for which we embrace the compact notationTi Ui =XT j U j with obvious meanings
of the operatorsTi andX.

Remark 1.In fact, multi-trace boundary integral equations were firstdeveloped for
acoustic and electromagnetic scattering problems and we emphasize that the ideas
of this article will naturally apply to them, see [3].

3 Basic Multi-Trace Formulation

For the sake of lucidity, in this section we largely restrictourselves to the situation
N = 2, as sketched in Figure 1 ford = 2. For the purpose of presenting the local
multi-trace formulation this case is generic and completely captures the ideas and
essence of the methods.

3.1 Preliminaries

The starting point for deriving multi-trace boundary integral equations is the charac-
terization of traces of local solutions of (1) as the range ofa (compound) boundary
integral operator known asCaldeŕon projector, see [3, Sect. 2.3], [16, Sect. 3.6],

1 As usual,H(∆ ,Ω) := {U ∈ H1(Ω) : ∆U ∈ L2(Ω)}.



4 R. Hiptmair, C. Jerez-Hanckes, J.F. Lee Z. Peng,

and [9, Sect. 5.6]. For the Calderón projector associated with the PDELiUi = 0 on
Ωi we write

Pi : H
1
2 (∂Ωi)×H− 1

2 (∂Ωi)→ H
1
2 (∂Ωi)×H− 1

2 (∂Ωi) , (5)

and recall thatPi is connected to the four key boundary integral operators for2nd-
order scalar PDEs according to

Pi = Ai +
1
2Id , Ai =

(
−Ki Vi

Wi K
′
i

)
, (6)

where we have adopted the notationsKi , Vi , Wi , K′
i from [16, Sect. 3.1] for the

double layer, single layer, hypersingular, and adjoint double layer boundary integral
operators on∂Ωi , respectively. The Calderón projectors owe their importance to the
following fundamental theorem [3, Thm. 2.6].

Theorem 1. If and only if Ui solvesLiUi = 0 in Ωi (and satisfies exponential decay
conditions at∞ for i = 0), then(Id−Pi)Ti Ui = 0.

Here, in the interest of compact notation, we relied on the total trace operator
Ti :=

(
TD,i
TN,i

)
. Thus, ifU is a solution of (1), we conclude from Theorem 1

(
−Ai +

1
2Id

)
Ti U = 0 , i = 1,2 ,

(
−A0+

1
2Id

)
T0(U −Uinc) = 0 .

(7)

Fig. 1 Geometric situation
“N = 2” in 2D for deriva-
tion of multi-trace boundary
integral formulations. Black
lines indicate the sub-domain
boundaries, magenta lines
stand for Cauchy traces, of
which there are two on each
interface in the multi-trace
setting. Red dots mark junc-
tion points.
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3.2 Derivation

The derivation of the basic MTF casts both (7) and the transmission conditions (4)
into weak form. To do so, we need bilinear pairings2

[ui ,vi ]∂Ωi
:= 〈u,ν〉∂Ωi

+ 〈v,µ〉∂Ωi
, ui :=

(
u
µ

)
, vi :=

(
v
ν

)
∈ T (∂Ωi) , (8)

on thelocal Cauchy trace spaces3

T (∂Ωi) := H
1
2 (∂Ωi)×H− 1

2 (∂Ωi) . (9)

In (8), angle brackets designated the bi-linear duality product betweenH
1
2 (∂Ωi) and

H− 1
2 (∂Ωi), which reduces to anL2-pairing for sufficiently regular functions. Then

(7) is equivalent to
[(
−Ai +

1
2Id

)
Ti U ,vi

]
∂Ωi

= r.h.s. ∀vi ∈ T (∂Ωi) , i = 0,1,2 , (10)

with “r.h.s.”, here and below, representing a linear form onthe trial space that pro-
vides the excitation.

A possible weak form the transmission conditions (4) can sloppily be stated as
[
Ti U −XT j U , vi |Γi j

]
Γi j

= 0 ∀ “vi ∈ T (∂Ωi)” . (11)

The attribute “sloppy” and the quotation marks hint at fundamental problems haunt-
ing (11) and those lurk in the failure of the bi-linear pairing [·, ·]Γi j

to be well defined
for restrictions of generic traces toΓi j .

Temporarily sweeping these difficulties under the rug (and restricting ourselves
to the situationN = 2 illustrated in Figure 1), we now combine (10) and (11) into

[(
A0−

1
2Id

)
T0U ,v0

]
∂Ω0

−σ01

[
T0U −XT1U , v0|Γ01

]
Γ01

−σ02

[
T0U −XT2U , v0|Γ02

]
Γ02

= r.h.s. ∀ “v0 ∈ T (∂Ω0)” ,

[(
A1−

1
2Id

)
T1U ,v1

]
∂Ω1

−σ10

[
T1U −XT0U , v1|Γ10

]
Γ10

−σ12

[
T1U −XT2U , v1|Γ12

]
Γ12

= r.h.s. ∀ “v1 ∈ T (∂Ω1)” ,

[(
A2−

1
2Id

)
T2U ,v2

]
∂Ω2

−σ21

[
T2U −XT1U , v2|Γ21

]
Γ21

−σ20

[
T2U −XT0U , v2|Γ20

]
Γ20

= r.h.s. ∀ “v2 ∈ T (∂Ω2)” ,

(12)

2 Fraktur font is used to designate functions in the Cauchy trace space, whereas Roman typeface is
reserved for Dirichlet traces, and Greek symbols for Neumann traces.
3 By Cauchy trace spaces we mean combined Dirichlet and Neumann traces.
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where theσi j are non-zero weights. These are equations satisfied by the local
Cauchy tracesTi U , i = 0,1,2. Next, we treat these traces as unknowns and call
themu1, u2, andu3 which converts (12) into a system of (variational) boundary
integral equations. It deserves the label “multi-trace”, because the unknowns are
separate Cauchy traces for each sub-domain, which yields two pairs of unknown
traces on each interface, twice the number used in most otherboundary integral for-
mulations, see Figure 1. Adopting a compact notation, (forN = 2) the problem is
posed on themulti-trace space

MT (Σ) := T (∂Ω0)×T (∂Ω1)×T (∂Ω2) . (13)

The special variant of (12) proposed in [8] is recovered by setting σi j = − 1
2. To

see, why this is a special choice, note that, for instance,
[
u0, v0|Γ01

]
Γ01

+
[
u0, v0|Γ02

]
Γ02

= [u0,v0]∂Ω0
, u,v ∈ T (∂Ω0) .

Thus, we achieve a massive cancellation of terms and arrive at thebasic multi-trace
formulation: seek(u0,u1,u2) ∈ MT (Σ) such that

[A0u0,v0]∂Ω0
− 1

2

[
X u1|Γ01

, v0|Γ01

]
Γ01
− 1

2

[
X u2|Γ02

, v0|Γ02

]
Γ02
= r.h.s.

∀ “v0 ∈ T (∂Ω0)” ,

[A1u1,v1]∂Ω1
− 1

2

[
X u0|Γ10

, v1|Γ10

]
Γ10
− 1

2

[
X u2|Γ12

, v1|Γ12

]
Γ12
= r.h.s.

∀ “v1 ∈ T (∂Ω1)” ,

[A2u2,v2]∂Ω2
− 1

2

[
X u1|Γ21

, v2|Γ21

]
Γ21
− 1

2

[
X u0|Γ20

, v2|Γ20

]
Γ20
= r.h.s.

∀ “v2 ∈ T (∂Ω2)” ,

(14)

where, again, the quotation marks acknowledge difficultiesbesetting the use of
generic traces as trial and test functions. The variationalformulations for general
N can be found in [3, Sect. 6] and [8, Sect. 3.2.3].

3.3 Analysis

Let us take a closer look at the coupling terms in (14). Forui ∈ T (∂Ωi) andv j ∈
T (∂Ω j) we find

X ui |Γi j
, v j

∣∣
Γi j

∈ H
1
2 (Γi j )×H− 1

2 (Γi j ) .
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Unfortunately,H
1
2 (Γi j ) andH− 1

2 (Γi j ) are not in duality with pivot spaceL2(Γi j ).

More precisely,(ui ,v j ) 7→
[
X ui |Γi j

, v j
∣∣
Γi j

]
Γi j

is not bounded onT (∂Ωi)×T (∂Ω j),

which renders (14) meaningless without the quotation marks.
As a remedy, more regular test functions have to be used, namely functions whose

restrictions toΓi j belong to theL2(Γi j )-dual ofH
1
2 (Γi j )×H− 1

2 (Γi j ), which is known

to coincide withH̃
1
2 (Γi j )×H̃− 1

2 (Γi j ), where the latter spaces are spaces of functions,

whose extensions by zero fromΓi j to ∂Ω j are still valid functions inH
1
2 (∂Ω j)×

H− 1
2 (∂Ω j). We remind that̃H

1
2 (Γi j )× H̃− 1

2 (Γi j ) is adensesubspace ofH
1
2 (Γi j )×

H− 1
2 (Γi j ) with strictly stronger norm, see [11, Ch. 3] and [8, Sect. 2]. Thus, proper

test spaces in (14) are

T̃ (∂Ω j ) =
⊗

i 6= j

H̃
1
2 (Γi j )× H̃− 1

2 (Γi j ) , j = 0,1,2 , (15)

since the bilinear formm associated with (14) turns out to be bounded as a mapping

m : MT (Σ)×M̃T (Σ)→ R ,

whereM̃T (Σ) is defined in analogy to (13) this time based oñT (∂Ω j ).
A key observation concerns theblock skew-symmetricstructure of (14) due to

[
X ui |Γi j

, v j
∣∣
Γi j

]
Γi j

=−
[
X v j

∣∣
Γi j
, ui |Γi j

]
Γi j

,
ui ∈ T̃ (∂Ωi),

v j ∈ T̃ (∂Ω j) .
(16)

In light of the well known ellipticity of the boundary integral operators [16, Sect. 3.5.1]

∃C> 0 : | [A j v j ,v j ]∂Ω j
| ≥C

∥∥v j
∥∥2

T (∂Ω j )
∀v j ∈ T (∂Ω j ) , (17)

(16) immediately implies theMT (Σ)-ellipticity of m:

∃C> 0 : |m(
−→
v ,

−→
v )| ≥C

∥∥−→v
∥∥2

MT (Σ)
∀−→v ∈ M̃T (Σ) . (18)

From (18) we conclude existence and uniqueness of solutionsof (14) with trial space
M̃T (Σ). Not straightforwardly, however, because the lack of continuity of m on
MT (Σ)×MT (Σ) bars us from appealing to the Riesz representation theorem.
Fortunately, as elaborated in [8, Sect. 3.2.8], we can rely aresult by J.L. Lions [10,
Ch. III, Thm. 1.1] along with the density of̃MT (Σ) in MT (Σ):

Theorem 2. The variational problem(14) on MT (Σ)× M̃T (Σ) possesses a
unique solution inMT (Σ) that depends continuously on the right hand side.

Remark 2.The result of Theorem 2 crucially hinges on the ellipticity (18), which
can be taken for granted only for the choiceσi j = − 1

2. For general weightsσi j

existence and uniqueness of solutions of (12) is an open problem.
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Remark 3.For scattering problems the sesqui-linear form of (14) willbe merely co-
ercive. In this case uniqueness of solutions has to be established by other arguments,
see [8, Sect. 3.2.6], and existence follows from Fredholm theory.

4 Transformed Multi-Trace Formulations

4.1 Optimal transmission conditions

An important motivation for the development of multi-traceBIE was the desire to
obtain linear systems of equations that readily lend themselves to additive Schwarz
(“block Jacobi”) preconditioning. On the level of the transmission problem (1), this
amounts to solving local boundary value problems onΩi using Dirichlet or Neu-
mann boundary data from the previous iterates on the adjacent sub-domains. How-
ever, the transmission conditions (1b) may not lead to satisfactory convergence.

To understand how alternative transmission conditions canboost an additive
Schwarz iteration, let us examine the very simple situationwith N = 1, Σ = Γ :=
∂Ω0 = ∂Ω1. There is a special transmission condition that effects convergence in
one step! To state it, we introduce the Dirichlet-to-Neumann (DtN) operators

DtN0,DtN1 : H
1
2 (Γ )→ H− 1

2 (Γ ) (19)

and their inverses, the Neumann-to-Dirichlet (NtD) operators

NtD0,NtD1 : H− 1
2 (Γ )→ H

1
2 (Γ ) , NtDi =DtN

−1
i . (20)

The subscript indicates whether they are associated with a boundary value problem
LiU = 0 on Ω0 or Ω1, respectively. Recall that DtN operators, sometimes called
Steklov-Poincaré operators, return the Neumann trace of asolution of a boundary
value problem for prescribed Dirichlet data [11, Ch. 4]. TheDtN operators asso-
ciated with bounded subdomains are linear, butDtN0 is merely affine due to the
“nonzero boundary condition at infinity” imposed throughUinc. In any case, the
linear parts of the operatorsDtNi andNtDi are symmetric and positive.

Based on these operators, we introduce modified transmission conditions across
Γ :

TD,1U −NtD1(TN,1U) = TD,0U +NtD1(TN,0U) , (21a)

DtN0(TD,1U)+TN,1U = DtN0(TD,0U)−TN,0U . (21b)

These transmission conditions are perfectly symmetric with respect toΩ0 andΩ1,
since, thanks toNtDi = DtN

−1
i , we can rewrite (21) in the equivalent form

DtN1(TD,1U)−TN,1U = DtN1(TD,0U)+TN,0U , (22a)

TD,1U +NtD0(TN,1U) = TD,0U −NtD0(TN,0U) . (22b)
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Invertibility of the involved operators yields another equivalence

(21) ⇔ (22) ⇔

{
TD,1U = TD,0U ,

TN,1U = −TN,0U ,
(23)

which confirms that the original transmission conditions (4) are implied by our mod-
ified versions.

Following the policy of Section 3.2, we aim for an MTF based on(21) and first
cast the transmission conditions into weak form

[(Id+M)T1U − (Id+M)X(T0U),v]Γ = 0 ∀v ∈ T (Γ ) , (24)

m

[(Id−M)T0U − (Id−M)X(T1U),v]Γ = 0 ∀v ∈ T (Γ ) , (25)

with an affine linear operator

M :=

(
0 −NtD1

DtN0 0

)
: T (Γ )→ T (Γ ) . (26)

Note that in the above manipulations, we have usedXM = −MX. This yields the
generalized multi-trace formulation: seeku0,u1 ∈ T (Γ ) such that

[(
−A0+

1
2Id

)
u0,v

]
Γ +σ01[(Id−M)u0− (Id−M)X u1,v]Γ = 0 , (27a)

σ10[(Id+M)u1− (Id+M)X u0,v]Γ +
[(
−A1+

1
2Id

)
u1,v

]
Γ = 0 , (27b)

for all v ∈ T (Γ ). Again, we may go after cancellation by settingσ01 = σ10 = − 1
2,

so that (27a) is simplified to: seeku0,u1 ∈ T (Γ ) such that

−
[
(A0−

1
2M)u0,v

]
Γ + 1

2 [(Id−M)X u1,v]Γ = 0 , (28a)
1
2 [(Id+M)X u0,v]Γ −

[
(A1+

1
2M)u1,v

]
Γ = 0 , (28b)

for all v ∈ T (Γ ). This linear variational problem may be solved by means of the

following (undamped) additive Schwarz method: given approximationsu(k)0 ,u
(k)
1 ∈

T (Γ ), k= 0,1, . . ., computeu(k+1)
0 ,u

(k+1)
1 ∈ T (Γ ) as solutions of

−
[
(A0−

1
2M)u

(k+1)
0 ,v

]
Γ
+ 1

2

[
(Id−M)X u

(k)
1 ,v

]
Γ
= 0 ,

1
2

[
(Id+M)X u

(k)
0 ,v

]
Γ
−
[
(A1+

1
2M)u

(k+1)
1 ,v

]
Γ
= 0 .

∀v ∈ T (Γ )
(29a)

(29b)

Lemma 1. Assuming unique solvability of the linear variational problem(29), and

u
(0)
0 = u

(0)
1 = 0, the iteration will become stationary after one step, withT0U = u

(1)
0

andT1U = u
(1)
1 , where U is the solution of the transmission problem(1).

Proof. Consider the boundary value problem posed onΩ0:
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−div(µ0 gradU (k+1))+U (k+1) = 0 in Ω0 , (30a)

DtN1(TD,0U (k+1))+TN,0U (k+1) = DtN1(TD,1U (k))−TN,1U (k) onΓ , (30b)

DtN0(TD,0U (k+1))−TN,0U (k+1) = DtN0(TD,1U (k))+TN,1U (k) onΓ , (30c)

U (k+1)−Uinc satisfies decay conditions at∞ , (30d)

and assume that it has a solution. Then, recalling Theorem 1 and the definition of

M, we find that withu(k)1 := T1U (k) the Cauchy tracesu(k+1)
0 := T0U (k+1) provide

a solution of (29a). However, in general (30) will fail to be ameaningful boundary
value problem, because too many boundary conditions are imposed onΓ . Yet, if
U (k) = 0, then the boundary conditions (30b) and (30c) become

DtN1(TD,0U (1))+TN,0U (1) = 0 onΓ , (31a)

DtN0(TD,0U (1))−TN,0U (1) = DtN0(0) onΓ . (31b)

Notice that (31b) is redundant, satisfied byany solution of (30a) complying with
(30d). What remains in terms of effective boundary conditions onΓ is (31a), which
represents a well-posed impedance boundary condition und guarantees the existence

of a unique solutionU (k+1). The Cauchy traceu(1)0 := T0U (k) of that solution will
satisfy

−
[
(A0−

1
2M)u

(1)
0 ,v

]
Γ
= 1

2

[(
0

DtN0(0)

)
,v

]

Γ
, (32)

which agrees with the variational problem (29a) to be solvedin the first step of the

Schwarz iteration with initial guessu(0)1 = 0.
Similar considerations apply to (29b). Here we start from the boundary value

problem with redundant boundary conditions

−div(µ1 gradU (k+1))+U (k+1) = 0 in Ω1 , (33a)

DtN0(TD,1U (k+1))+TN,1U (k+1) = DtN0(TD,0U (k))−TN,0U (k)0 onΓ , (33b)

DtN1(TD,1U (k+1))−TN,1U (k+1) = DtN1(TD,0U (k))+TN,0U (k) onΓ . (33c)

If this has a solutionu(k+1), its Cauchy traceu(k+1)
1 := T1U (k+1) will solve (29b)

provided thatu(k)0 := T0U (k). Again, if U (k) = 0, the boundary conditions onΓ are
converted into

DtN0(TD,1U (1))+TN,1U (1) = DtN0(0) onΓ , (34a)

DtN1(TD,1U (1))−TN,1U (1) = 0 onΓ , (34b)

and the second is always fulfilled and can be dropped. This results in a well posed

elliptic boundary value problem and the Cauchy traceu
(1)
1 := T1U (k+1) solves
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[
(A1+

1
2M)u

(1)
1 ,v

]
Γ
= 1

2

[(
0

DtN0(0)

)
,v

]

Γ
, (35)

which amounts to the second linear problem faced in the first step of the Schwarz
method (29) starting from zero.

By the definition of the Dirichlet-to-Neumann operators, the combined solutions
of the boundary value problems (30a), (31a), (30d) and (33a), (34a) provide a solu-

tion of the transmission problem (1). Thusu(1)0 andu(1)1 from (32) and (35) are the
Cauchy traces of that solution. Here we rely on the assumption of the Lemma that

ensures uniqueness ofu
(1)
0 andu(1)1 . Thus they are the desired final solutions and the

Schwarz iteration will become stationary after one step. �

As a consequence of this Lemma, the additive Schwarz iteration (29) converges
after two steps, thanks to the transmission conditions (21)/(22), which we call “op-
timal” for this reason. Unfortunately, the “optimal transmission conditions” destroy
positivity of the resulting multi-trace operator, which turned out a key property in
Section 3.3, see (18). We still find

[(Id−M)X v1,v0]Γ =− [(Id+M)X v0,v1]Γ ∀v0,v1 ∈ T (∂Ω ) ,

but the ellipticity of the diagonal operators, e.g.,

A0−
1
2M=

(
−K0 V0+

1
2NtD1

W0−
1
2DtN0 K

′
0

)
, (36)

is lost. Hence, rigorous results about existence and uniqueness of solutions of (28)
are still missing even in the caseN = 1. This is an open problem for future research.

Moreover, the optimal transmission conditions (21) require the realization of
DtN and NtD operators. Their exact implementation is not an option for practical
schemes. Thus, in the next section we consider local approximations for the optimal
transmission conditions.

4.2 Local impedance transmission conditions

The considerations of the previous section suggest that forN > 1 we use transmis-
sion conditions similar to (21)locally on the interfaceΓi j , whereDtN j ,DtNi etc.
are replaced by suitable approximations. The resulting so-called local impedance
transmission conditions across the interfaceΓi j can be written in the form

Bi j (TD,i U)+TN,i U = Bi j (TD, j U)−TN, j U , (37a)

B ji (TD,i U)−TN,i U = B ji (TD, j U)+TN, j U . (37b)

whereBi j andB ji are invertible (affine) linear operators of “DtN-type” mapping

H
1
2 (Γi j ) ontoH− 1

2 (Γi j ). Parallel to the switch from (21) to (22), invertibility of the
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involved operators yields another equivalence

TD,i U +Ci j (TN,i U) = TD, j U −Ci j (TN, j U) , (38a)

TD,i U −C ji (TN,i U) = TD, j U +C ji (TN, j U) . (38b)

whereCi j = B
−1
i j : H− 1

2 (Γi j )→ H
1
2 (Γi j ) andC ji = B

−1
ji : H− 1

2 (Γi j )→ H
1
2 (Γi j ). We

can then write the weak form of the local impedance transmission conditions as:

[(Id+Si j )T j U − (Id+Si j )X(Ti U),v]Γi j
= 0 ∀v ∈ T̃ (Γi j ) , (39)

m

[(Id−Si j )Ti U − (Id−Si j )X(T j U),v]Γi j
= 0 ∀v ∈ T̃ (Γi j ) , (40)

with an affine linear operator

Si j :=

(
0 Ci j

−B ji 0

)
: T (Γi j )→ T (Γi j ) . (41)

Retracing the steps detailed in Section 3.2 based on (39), weend up with thelocal
multi-trace variational problem, here stated forN = 2: seek(u0,u1,u2) ∈ MT (Σ)
such that

[A0u0,v0]∂Ω0
+ 1

2 [S01u0,v0]Γ01
+ 1

2 [S02u0,v0]Γ02
−

1
2 [(Id+S01)X u1,v0]Γ01

− 1
2 [(Id+S02)X u2,v0]Γ02

= 0 ,

[A1u1,v1]∂Ω1
+ 1

2 [S10u1,v1]Γ01
+ 1

2 [S12u1,v1]Γ12
−

1
2 [(Id+S10)X u0,v1]Γ01

− 1
2 [(Id+S12)X u2,v1]Γ12

= 0 ,

[A2u2,v2]∂Ω2
+ 1

2 [S20u2,v2]Γ02
+ 1

2 [S21u2,v2]Γ12
−

1
2 [(Id+S20)X u0,v2]Γ02

− 1
2 [(Id+S21)X u1,v2]Γ12

= 0 ,

(42)

for all (v1,v2,v3) ∈ M̃T (Σ). Of course, local pairings on interfaces involve re-
strictions onto those interfaces even if not apparent from the notation. As explained
in Section 3.3, this entails using the more regular test spaceM̃T (Σ).

An additive Schwarz method analogous to (29) may be applied to (42) as an
iterative solver or preconditioner. The corresponding undamped iteration seeks

(u
(k+1)
0 ,u

(k+1)
1 ,u

(k+1)
2 ) ∈ MT (Σ) such that
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[
A0u

(k+1)
0 ,v0

]
∂Ω0

+ 1
2

[
S01u

(k+1)
0 ,v0

]
Γ01

+ 1
2

[
S02u

(k+1)
0 ,v0

]
Γ02

−

1
2

[
(Id+S01)X u

(k)
1 ,v0

]
Γ01
− 1

2

[
(Id+S02)X u

(k)
2 ,v0

]
Γ02

= 0 ,

[
A1u

(k+1)
1 ,v1

]
∂Ω1

+ 1
2

[
S10u

(k+1)
1 ,v1

]
Γ01

+ 1
2

[
S12u

(k+1)
1 ,v1

]
Γ12

−

1
2

[
(Id+S10)X u

(k)
0 ,v1

]
Γ01
− 1

2

[
(Id+S12)X u

(k+1)
2 ,v1

]
Γ12

= 0 ,

[
A2u

(k+1)
2 ,v2

]
∂Ω2

+ 1
2

[
S20u

(k+1)
2 ,v2

]
Γ02

+ 1
2

[
S21u

(k+1)
2 ,v2

]
Γ12

−

1
2

[
(Id+S20)X u

(k)
0 ,v2

]
Γ02
− 1

2

[
(Id+S21)X u

(k)
1 ,v2

]
Γ12

= 0 ,

(43)

for all (v1,v2,v3) ∈ M̃T (Σ), where a superscript(k) indicates the use of approx-
imations from the previous iteration. As is clear from the considerations of Section
4.1 the choice ofBi , B j will directly affect the convergence of the Schwarz itera-
tion applied to the multi-trace variational problem. A systematic study still has to be
conducted.

Remark 4.So far, the development and analysis of multi-trace methodshave focused
on acoustic and electromagneticwave propagation problems, see [3, Sect. 1.2].
There the simplest choice for approximate local Dirichlet-to-Neumann operators
seems to be a first order complex Robin transmission condition (TC), introduced in
[4], where the operators are chosen in the form

Bi j = B ji =−ηi j ıκ , ηi j ∈ R . (44)

This choice makes the Schwarz iteration converge quickly for propagating eigen-
modes, though the evanescent modes fail to converge. Further work has sought to
improve the Robin TCs to ensure convergence of both propagating and evanescent
modes [2, 1]. Of particular interest are the so-called optimized Schwarz methods,
where the coefficients used in the transmission conditions are obtained by solving
min-max optimization problems for half-space model problems. These include the
optimized Schwarz method with two-sided Robin TCs [7] and optimized second
order transmission conditions [6]. Schwarz methods with high order transmission
conditions have also been developed for high frequency time-harmonic Maxwell’s
Equations. We mention recent works [5] and [12]. The former one is based on the
optimized Schwarz methods. The latter develops a true second order TC together
with a global plane wave deflation technique to further improve the convergence for
electrically large problems.
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