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Domain Decomposition for Boundary Integral
Equationsvia Local Multi-Trace Formulations

Ralf Hiptmair, Carlos Jerez-Hanckes, Jin-Fa Lee, and ZlesrgP

Abstract We review the ideas behind and the construction of so-cédieal multi-
trace boundary integral equations for second-order bayngdue problems with
piecewise constant coefficients. These formulations heeeived considerable at-
tention recently as a promising domain-decomposition @gght to boundary ele-
ment methods.

Key words. Boundary integral equations (BIE), Calderon projecttsal multi-
trace BIE, optimized transmission conditions, Schwarzoet

1 Introduction

This article is devoted to a formal derivation and discussiba class of boundary
integral equation (BIE) formulations that have recentlgmetroduced for second-
order transmission problems. We chose to dub this clasal‘faalti-trace BIE for-
mulations” (MTF), which is inspired by two key features af ihembers:

(i) The methods rely on at least two pairs of trace data as mmks on interfaces.
The accounts for the attribute “multi-trace”.

(i) Formally, they are constructed by taking into accouansmission conditions
pointwise or, at least, on parts of sub-domain boundaribgwis indicated by
the “local” attribute.

Initially, the development of these new methods was pursugependently by
numerical analysts and in computational electrical ergying, driven by different
objectives. In numerical analysis, the focus was on con@asiuctures, that is,
partial differential equations with piecewise constargftioients. There, the main
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motivation was to find first-kind boundary integral formideus that, after Galerkin
boundary element discretization, are amenable to opepataonditioning, a pos-
sibility not offered by classical approaches, see [3, $adi]. In engineering, re-
searchers were guided by a domain decomposition paradignmato localize
boundary integral equations for electromagnetic wave ggagion at artificial inter-
faces for the sake of parallelization and block-precoaditig.

Both research efforts have been fairly successful: on tlieehamd, a comprehen-
sive theoretical understanding of the simplest represigataf a local multi-trace
BIE formulations for Helmholtz transmission problem codld achieved in [9].
In a wider context the method is also covered in [3]. On thesotiand, a host
of impressive applications of multi-trace methods is doentad in computational
electromagnetism. A surface integral equation domaingosition method based
on multi-trace formulation is presented in [17, 16] for thh@rmonic electromag-
netic wave scatterings from homogeneous targets. Thenessiof general bounded
composite targets is discussed in [15].

This article looks at MTF from a mathematical point of viewt linspired by the
developments in the engineering community, adopts a diffttand more general
perspective compared to [9]. This work is mainly conceparad does not aim to
pursue any comprehensive analysis. Rather it is meant tbrwba ideas and direc-
tions of research. We have not included any numerical resiglt are we going to
discuss details of Galerkin discretization by means of lbauyelements. Detailed
studies of convergence of multi-trace BIE for 2D acoustattsring discretized by
means of low-order boundary elements (BEM) are reporte8,iS¢ct. 5]. Concern-
ing the application of multi-trace methods for solving ¢étemagnetic scattering
problems, convergence studies can be found in [15] foresgadt at both single ho-
mogeneous objects and composite penetrable objects.abewvenplex large-scale
simulations are covered in [16] and demonstrate the capabilthese methods to
model multi-scale electrically large targets.

2 Transmission Problems

@ junction points { ng

LetQ cRY,d=2,3,i=0,...,N, bedis-
joint open connected Lipschitz “material
sub-domains” that form a partition in the
sense thaR® = Q;U--- U Qn. Among
them onlyQg is unbounded. Two adjacent
sub-domaing; and Q; are separated by
lo2 their common interfacéjj, whose union
forms the skeletox. ForN > 1 the skele-
0 ton 2 will usually not be orientable, nor
be a manifold.
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Given diffusion coefficientg; > 0,i = 0,...,N, we focus on the model trans-
mission problem that seekl € HL(Qi),i=0,...,N, solving

LiV; := —div(ygigradU;) +U; =0 in Q;, (1a)
. 1 oV oYi| 1
Uil = Vilg =0, migs I_ij+llja—njrij—0 onfij , (1b)

plus suitable decay conditions at infinity 1dr— Uj,c, where the “incident fieldUj,c
is an entire solution of gUj,c = 0 on Qg [12, Ch. 8]. The weak formulation of (1) is
posed on the Sobolev spadé(R3).

The transmission conditions (1b) connect two kinds of c&zaraces on both
sides of interfaces. These traces are the Dirichlet tfagg and Neumann trace
Tn,i, defined for smooth functions ap; through

ToiUi:=Uilyo » TniUii= pigradUi-nijyq - (2)
They can be extended to continuous operators [18, Sect. 2.68]&
Toi tHY Q) 5 HZ(0Q) , T H(A,Q) —»H 2(0Q). (3)

Then, (1b) can be recast as

Tp, ~_(Ild 0 Tp,j _ y
(o) = o) (o) onr @

for which we embrace the compact notatifit); = X T U; with obvious meanings
of the operator¥; andX.

Remark 1In fact, multi-trace boundary integral equations were filesteloped for
scattering problems and we emphasize that the ideas ofrtluteavill naturally ap-

ply to them. Theacoustic transmission scattering problémiolves the local partial
differential equations

—div(pgigradU;) — kUi =0 inQ, (5)

with wave numbek; > 0, and Sommerfeld radiation conditions at infinity [4, Ch. 2]
[13, Ch. 2]. The transmission conditions (1b) apply uncleah@nd the relevant
trace operators remain unchanged.

Electromagnetic transmission problefieature somewhat different transmission
conditions and read

curl(gicurlU) —k?U;i =0 inQ;, i=0,... N, (6)

n; x (Ui|l'ij xni)—nj X (Uj|l'i- ><n,-):0,
: onfij (7)

picurl Uil ni+ u,-curIUj],_ij xnj=0

+  Silver-Muller radiation conditions ab for U — Ujnc.
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From (7) we learn that now it is suitable tangential traces gupply the counter-
parts ofTp; andTy i, see [3, Concretization 2.2].

A unified treatment of all these transmission problems igigin [3], but here
we forgo this generality.

3 Basic Multi-Trace For mulation

3.1 Preliminaries

The starting point for deriving multi-trace boundary inteigequations is the char-
acterization of traces of local solutions of (1) as range ¢fampound) boundary
integral operator known aSaldeidn projector see [3, Sect. 2.3], [18, Sect. 3.6],
and [10, Sect. 5.6]. For the Calderon projector associatédtthe PDEL;U; = 0 on
Q; we write

Py HZ(0Q) x H 2(3Q)) — HZ(0Q) x H™2(9Q) , (8)

and recall tha®; is connected to the four key boundary integral operator&ial-
order scalar PDEs according to

Pi=Ai+3ld , A= (Wil K'I/> ; 9)
where we have adopted the notatidts Vi, Wi, K{ from [18, Sect. 3.1] for the
double layer, single layer, hypersingular, and adjointdelayer boundary integral
operators o Q;, respectively. The Calderdn projectors owe their impuwésto the

following fundamental theorem [3, Thm. 2.6].
Theorem 1. If and only if U solvesLjU; = 0in Q;, then(ld — ;) T;U; = 0.

Here, in the interest of compact notation, we relied on thel tbace operator
T := Gz:) Thus, ifU is a solution of (1), we conclude from Theorem 1
(-Ai+3ld)T{U =0, i=1,..,N,

(10)
(= Ag+3Id) To(U — Uinc) = 0.

For the sake of lucidity we restrict ourselves to the siturall = 2, as sketched in
Figure 1 ford = 2. For the purpose of presenting the local multi-trace fdation
this case is generic and completely captures the ideas aad@sof the methods.
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Fig. 1 Geometric situation o1
“N = 2" in 2D for deriva-
tion of multi-trace boundary
integral formulations. Black
lines indicate the sub-domain
boundaries, magenta lines
stand for Cauchy traces, of
which there are two on each
interface in the multi-trace 02
setting. Red dots mark junc-
tion points.

3.2 Derivation

The derivation of the basic MTF casts both (10) and the trégsson conditions (4)
into weak form. To do so, we need bilinear pairifgs

u %
[uiani]in = <uvv>in + <Vau>d(2i ;o W= <u>v vj = (V) € y(agl) , (11)
on thelocal Cauchy trace spacés
T(0Q) =HZ(0Q) x H 2(3C) . (12)

In (11), angle brackets designated the bi-linear dualipdpct betweem-l%((?Qi)

andH*%(in), which reduces to ah?-pairing for sufficiently regular functions.
Then (10) is equivalent to
[(—Ai+31d) TiU,0i] ;o =rh.s. Vo€ 7(9Qi),i=0,...,N,  (13)
with “r.h.s.”, here and below, representing a linear forntla trial space that pro-
vides the excitation.
A possible weak form the transmission conditions (4) capgly be stated as

[Tiu_mju,niwp =0 Ve T(0Q) . (14)
ij

1 Fraktur font is used to designate functions in the Caucloetspace, whereas Roman typeface is
reserved for Dirichlet traces, and Greek symbols for Neunieaces.

2 By Cauchy trace spaces we mean combined Dirichlet and Neuirares.
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The attribute “sloppy” and the quotation marks hint at fuméatal problems haunt-
ing (14) and those lurk in the failure of the bi-linear pagrin -],-ij to be well defined
for restrictions of generic traces i) .

Temporarily sweeping these difficulties under the rug astrieing ourselves to
the situatiorN = 2 illustrated in Figure 1, we now combine (13) and (14) into

[(Ao—31d) ToU, v0] 50 — 001 [ToU — XT3, vol |

o1

— Oop [TOU —XT,U, no|r02] L =ths Ve 7000
[(Alf%ld)’ﬂ‘lu,nl]mlfalo{TlufX’JI‘oU,nﬂrm]l_lO -

15
—012 [Tlu —XToU, tJl|l’12} M =rhs. Vo€ 7(0Q1)",

[(A2—31d) T2U7°2]392 — 021 {TzU -XT U, 02|r21},_
21

G [Tzu —XToU, n2|r20] L =rhs. Vo e 7(00),
where thea;; are non-zero weights. These are equations satisfied by ta lo
Cauchy trace;U, i =0,1,2. In turns, now we treat these traces as unknowns and
call themuy, up, andug which converts (15) into a system of (variational) bound-
ary integral equations. It deserves the label “multi-tfabecause the unknowns are
separate Cauchy traces for each sub-domain, which yieldpairs of unknown
traces on each interface, twice the number used in most btherdary integral
formulations, see Figure 1. Adopting a compact notationNe= 2 the problem is
posed on thenulti-trace space

MT(Z):=T(0Q0) x T(0Q1) x T(0Q2) . (16)
The special variant of (15) proposed in [9] is recovered liyirspo;; = f%. To
see, why this is a special choice, note that, for instance,
[uo, Uo|,—01} I_01+ |:uo, Uo|,—02:| oz = [uO’UO]BQO , upe y(on) .

Thus, we achieve a massive cancellation of terms and arrihe basic multi-trace
formulation seek(ug,u1,u2) € .# .7 (Z) such that
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1 1 _
[Aouo,Uo]on -3 [Xulh—m, Uo|,—01} l'o: 5 [Xuzh—oz, t)o|,—02} l'ozi r.h.s.
V*og € T(0Q0)"

1 1 —
[Alulanl]an T2 |:Xu0|r107 l]:|.|I—10:| rlO_ 2 [Xu2|l'127 Ul|l’12} [-12_ rhS (17)

Vi€ 7(0Q1)

1 1 —
[Azuz,nz]agz -3 |:§gu1|l—217 02|I—21:| ['21_ 3 |:§§uo|l—207 02|I—20:| [_20— rhS

V0p € T(0Qy)"

where, again, the quotation marks acknowledge difficultiesetting the use of
generic traces as trial and test functions. The variatiforahulations for general
N can be found in [3, Sect. 6] and [9, Sect. 3.2.3].

3.3 Analysis

Let us take a closer look at the coupling terms in (17). ko 7 (0Q;) andv €
T (0Q;) we find

1 1
Xuilg;, 0j|s € H2(Mij) x H72(Mj) .

Unfortunately,H%(I'ij) andH*%(ﬁj) are not in duality with pivot space?(5;).
More precisely(uj,vj) — [Xuﬂﬁj ,0j ],_ij } - is notbounded o7 (0 Q) x .7 (0Qj),
ij

which renders (17) meaningless without the quotation marks
As aremedy, more regular test functions have to be used,lpémnetions whose

restrictions tdj; belong to the 2(rj; )-dual OfH%(rij) X H~2 (hij), which is known

to coincide withH 2 (hj) x H-2 (hij), where the latter spaces are spaces of functions,
whose extensions by zero froff) to dQj are still valid functions irH%(an) X
H=2(Q;). We remind thati2 (Ij) x H~2(F;;) is adensesubspace of 2 (F5) x
H*%(I'ij) with strictly stronger normsee [12, Ch. 3] and [9, Sect. 2]. Thus, proper
trial spaces in (17) are

7(00y) = @Hz(rj) x A 2(rj), j=0.1.2, (18)
i#]
since the bilinear fornm associated with (17) turns out to be bounded as a mapping

m:MT(ENx MT(E) >R,

where////?‘(z) is defined in analogy to (16) this time basedﬁ@dﬂj).
A key observation concerns tiock skew-symmetritructure of (17) due to
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_ _ . . _ u € 7(0%),
[Xu'|ﬁi’°‘|ﬁj}m B {an‘ﬁj’u'hi}m b e.7(09;)). (19)

In light of the well known ellipticity of the boundary integlroperators [18, Sect. 3.5.1]
2
AC>0: [[Aj0j,0ila0,| 2 Cllvj|[ 750, Yoi€7(0Q),  (20)
(19) immediately implies the# .7 (Z)-ellipticity of m:

C>0: m(¥,0)=C|V|°, 55 VO EALT(E). (1)

From (21) we conclude existence and uniqueness of solutiqig) with trial space
1%(2). Not straightforwardly, however, because the lack of carity of m on
M T () x AT (Z) bars us from appealing to the Riesz representation theorem.
Fortunately, as elaborated in [9, Sect. 3.2.8], we can regsalt by J.L. Lions [11,

Ch. lll, Thm. 1.1] along with the density o%(Z) in.#7(%):

Theorem 2. The variational problem(17) on .#Z 7 (%) x ;/Z/?(Z) possesses a
unique solution in# .7 (X) that depends continuously on the right hand side.

Remark 2The result of Theorem 2 crucially hinges on the ellipticidd), which,
in turns, can be expected only for the choime = —%. For general weightsy;
existence and unigueness of solutions of (15) is an operigarob

Remark 3For scattering problems the sesqui-linear form of (17) ballmerely co-
ercive. In this case unigqueness of solutions has to be egtablby other arguments,
see [9, Sect. 3.2.6], and existence follows from Fredhokoit

4 Transformed Multi-Trace Formulations

4.1 Optimal transmission conditions

An important motivation for the development of multi-tra8H was the desire to
obtain linear systems of equations that readily lend théras¢o additive Schwarz
(“block Jacobi”) preconditioning. On the level of the tramssion problem (1), this
amounts to solving local boundary value problems@rusing Dirichlet or Neu-
mann boundary data from the previous iterates on the adjaabrdomains. How-
ever, the transmission conditions (1b) may not lead tofsatisry convergence.

To understand how alternative transmission conditions lwaost an additive
Schwarz iteration, let us examine the very simple situatith N =1,5> =1 =
0Qp = 0Q1. There is a special transmission condition that enablegergence in
one step! To state it, we introduce the Dirichlet-to-Neum@édtN) operators

DtNo, DtNy : HZ(I) — H™2(I") (22)
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and their inverses, the Neumann-to-Dirichlet (NtD) oparsit
NtDo,NtDy 1 H 2(I) — HZ(F) , NtD; =DtN. L. (23)

The subscript indicates whether they are associated wituadary value problem
LiU = 0 on Qp or Qq, respectively. Recall that DtN operators, sometimes dalle
Steklov-Poincaré operators, return the Neumann tracesofwion of a boundary
value problem for prescribed Dirichlet data [12, Ch. 4]. TN operators asso-
ciated with bounded subdomains are linear, btitlp is merely affine due to the
“nonzero boundary condition at infinity” imposed through.. In any case, the
linear parts of the operatoBN; andNtD; are symmetric and positive.

Based on these operators, we introduce modified transmiseiaditions across
r:

TD’]_U — NtDl(TNle) = TD70U + NtDl(TN’QU) , (24a)
DtNo(TDJU)—I—TNle = DtNo(TDpU) — TN’()U . (24b)

These transmission conditions are perfectly symmetrib véispect taQy andQ;,
since, thanks tdltD; = DtNi’l, we can rewrite (24) in the equivalent form

DtNl(TDJU) — TN’j_U = DtNl(TDpU)ﬁLTN,oU , (258)
TD’1U + NtDo(TNle) = TD70U — NtDo(TN’()U) . (25b)

Invertibility of the involved operators yields another églence

{TD,lu =TpoU,

(24) < (25) TaiU = — TaoU

(26)
which confirms that the original transmission conditionsai implied by our mod-
ified versions.

Following the policy of Section 3.2, we aim for an MTF based(d4) and first
cast the transmission conditions into weak form

[(Id+M)T1U — (Id+ M) X(ToU),v] =0 Yoe 7 (), (27)
(i
[(Id = M) ToU — (Id — M) X(T1U),0] =0 Yoe 7 (), (28)

with an affine linear operator

M= (DtONO N0tD1> L T(M) = T(T). (29)

Note that in the above manipulations, we have uséd = —MX. This yields the
generalized multi-trace formulation: seeku; € 7 (I') such that

[(—Ao+31d) uo,v] - + o1 [(Id — M)uo — (Id — M) Xuy, 0], =0,  (30a)
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o10[(Id+M)ug — (Id + M) Xuo, 0] + [(— A1 +3ld) ug,0] - =rh.s,  (30b)

forallv € 7(I). Again, we may go after cancellation by setiog = 010 = f%,
which yields: seelg,u; € .7 (I") such that
— [(Ao—3M)ug,v] - + 3 [(Id — M) Xug,0] =0, (31a)
(1d + M) X ug, 0] — [(A1+3M)ug, 0] =r.h.s, (31b)

foralloe 7(I).
Assuming the invertibility of the diagonal blocks, let usns@er an additive

Schwarz iteration with initial gues%o) = u(lo) = 0 applied to (31). In the first step,
it computeal(()l),ugl) € 7 (I) satisfying

—[(ao—3rmui” 0] = 2na(0).0] (32a)

[(AH%M)@,U} =300, 0] - (32b)

Now consider the following boundary value problems with hdary conditions
derived from the transmission conditions (24): firstly, @g,

—div(gogradU®) +U® =0 inQp, (33a)

DtNy(TpoUW) +TnoU®W =0 onr, (33b)

DtNo(TpoU®W) —TnoU® =0 onr, (33c)

UD —Uine satisfy decay conditions &t , (33d)

and, secondly, o®;:

—div(pgradU™) +U® =0 inQy, (34a)
DtNo(TpaUW) + TyaUY =0 onr, (34b)

DtNy(TpaUW) - Ty UY =0 onr. (34c)

These are meaningful boundary value problems, because (B8t) and (34c)
are implied by (33a) and (34a), respectively. Obviously,tiy definition of the
Dirichlet-to-Neumann operators and (26)Y) solves the transmission problem (1).

The key observation is thatpU® = u" and T;U® = u{! for the Cauchy
tracem(ll) anduél) from (32), if these equations possess a unique solutionn8og
up, the additive Schwarz iteration converges in one stgmkifito the transmission
conditions (24)/(25), which we call “optimal” for this reas.

Unfortunately, the “optimal transmission conditions” tteg positivity of the
resulting multi-trace operator, which turned out a key myin Section 3.3, see

(21). We still find

[(Id —M)Xvq,00] = —[(Ild4+M)Xvg,01] Vovg,01 € T(9Q),
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but the ellipticity of the diagonal operators, e.g.,

—Ko Vo+ %NtDl) (35)

M=
Ao—3M (Wo%DtNo Kj,

is lost. Hence, rigorous results about existence and unegsgeof solutions of (31)
are missing even in the cabe= 1.

Moreover, the optimal transmission conditions (24) regjuhe realization of
DtN and NtD operators. Their exact implementation is not ptiom for practical
schemes. Thus, in the next section we consider local appadians for the optimal
transmission conditions.

4.2 Local impedance transmission conditions

The considerations of the previous section suggest tha fsrl we use transmis-
sion conditions similar to (24) locally on the interfaGe, whereDtNj, DtN; etc.
are replaced by suitable approximations. The resultingadled local impedance
transmission conditions across the interfagean be written in the form

Bij(Tp,iU)+ Tn,iU = Bij(Tp,jU) —Tn,jU, (36a)
Bji(TD,iU)fTN,iU :Bji(TDij)+TN7jU. (36b)

whereBj; and Bj are invertible (affine) linear operators mappiHé(ﬁj) onto
H*%(I'ij) of “DtN-type”. Parallel to the switch from (24) to (25), invertiijl of

the involved operators yields another equivalence
Tp,iU+Gij(TniU) = Tp,jU—GCjj(Tn,;U), (37a)
TD,iU—CJ‘i(TN,iU)ZTD’jU—i-Cji(TN’jU). (37b)
whereCij = BjjY 1 H™2(I5;) — H3(Fij) andCj = B L : H- (1)) — H2 (). We
can then write the weak form of the local impedance transorissonditions as:

[(1d+8)TjU — (ld+8)X(TiU), 0], =0 Vo e F(F), (38)
i
[(1d—S) TiU — (Id = S) X(T; U), 0], =0 Yoe 7(), (39)

with an affine linear operator

5; = (?3 %J)  T() = T(Ty). (40)
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Retracing the steps detailed in Section 3.2 based on (38hdeie with thelocal
multi-trace variational problemhere stated foN = 2: seek(ug, ug,u2) € 4 .7 (X)
such that

[Aouo, bo]q, + 3 [So1to, volr, + 3 [Sozto, vo]r, —

3 [(1d+ So1) X iz, 0], — 3 [(Id + So2) X iz, 0], = r.h.s.,
[Aqug,01]50, + 3 [S10m1, 01, + 3 [S12u1,01] 7, — 1)

3 [(1d +S10) X 10, 03], — 5 [(1d +S12) X up, 03], = .h.s,,
[A2u2,02] 50, + 5 [S20u2, 02], + 3 [S21u42, 2], —

3 [(1d +S20) X 10, 0]~ 5 [(1d +Sp1) X g, 03], = .h.s,,

for all (v1,02,03) € Q%(Z). Of course, local pairings on interfaces entail restric-
tions onto those interfaces even if not apparent from thatiot.

An additive Schwarz method analogous to (32) may be apptie@1) as an
iterative solver or preconditioner. As is clear from the siderations of Section 4.1
the choice ofB;, B; will directly affect the convergence of the Schwarz itevati
applied to the multi-trace variational problem. So farsathemes and investigations
have focused on acoustic and electromagnetic wave prapagabblems, that is,
the transmission problems (5) and (6).

There the simples choice is a first order complex Robin trégsson condition
(TC), introduced in [5], where the operators are chosenerfdhm

Bij =Bji =—nijik, nij R, (42)

It makes the Schwarz iteration converge quickly for propiageigenmodes, though
the evanescent modes fail to converge. Further work hashsdgagmprove the
Robin TCs to ensure convergence of both propagating anetsgant modes [2, 1].
Of particular interest are the so-called optimized Schwaethods, where the co-
efficients used in the transmission conditions are obtaliyesblving min-max op-
timization problems for half-space model problems. Thestude the optimized
Schwarz method with two-sided Robin TCs [8] and optimizetbse order trans-
mission conditions [7]. Schwarz methods with high ordensraission conditions
have also been developed for high frequency time-harmorixviil's Equations.
We mention recent works [6] and [14]. The former one is basethe optimized
Schwarz methods. The latter develops a true second ordeygethter with a global
plane wave deflation technique to further improve the cayeece for electrically
large problems.
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