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EFFICIENT CONVOLUTION BASED IMPEDANCE BOUNDARY CONDITION

ALBERTO PAGANINI∗ AND MARÍA LÓPEZ-FERNÁNDEZ†

Abstract. We consider an eddy current problem in time-domain and rely on impedance boundary conditions on
the surface of the conductor(s). With a “method of lines policy” in mind, we pursue a semi-discretization in space
by a finite element Ritz-Galerkin discretization. The resulting set of Volterra integral equations in time is discretized
by means of Runge-Kutta convolution quadrature (CQ) focusing on fast and oblivious implementations. The final
algorithm is validated by several numerical experiments.

Key words. eddy current problem, impedance boundary conditions, convolution quadrature, fast and oblivious
algorithms

1. Introduction. Due to the skin effect, alternating electromagnetic fields decay expo-
nentially when penetraiting a good conductor. In transient eddy current problems this prop-
erty can be exploited by modelling the conductor with the well-known Leontovich boundary
condition (Senior 1960, De Santis, Cruciani, Feliziani and Okoniewski 2012). Such a simpli-
fication is acceptable, if the conductor has smooth surface with small curvature. Conversely,
if the conductor features edges and corners, the Leontovich boundary condition is hard to
justify, though often used in practice. In the frequency domain, the lowest order impedance
boundary condition involves a multiplication of the tangential traces of the fields with a fre-
quency dependent coefficient. This multiplication becomes a convolution in time domain,
when harmonic oscillations of the fields can not be assumed.

Since convolution is generically non-local in time, developing a stable and memory ef-
ficient discretization becomes a challenge. In (Oh and Schutt-Aine 1995) this issue has been
tackled in the context of FDTD methods. There the Laplace transform of the convolution
kernel is approximated via a truncated series expansion and then an approximated impedance
boundary condition in time domain is derived.

As an alternative C. Lubich developed the so-called Convolution Quadrature method
(CQ) in (Lubich 1988a, Lubich 1988b, Lubich and Ostermann 1993). It requires only knowl-
edge of the Laplace transform K(s) of the convolution kernel k(t) and enjoys excellent con-
vergence and stability properties both for computing convolutions and solving Volterra con-
volution equations (Banjai, Lubich and Melenk 2011). Finally, a fast oblivious1 algorithm for
approximate CQ (FOCQ) with considerably reduced memory requirements was presented in
(Schädle, López-Fernández and Lubich 2006).

Focusing on algorithmic aspects and with a semi-discretization in space by a finite el-
ements in mind, we demonstrate how the FOCQ can be applied for the efficient temporal
discretization of eddy current problems that involve impedance boundary conditions. The
eventual scheme inherits the algebraic convergence in timestep size and meshwidth, respec-
tively, of both discretizations. Thanks to FOCQ it is unconditionally stable and the compu-
tational cost scales almost linearly with the number of timesteps. The rigorous mathematical
analysis of this approach is conducted in the companion work (Hiptmair, Paganini and López-
Férnandez 2013).
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1The term “oblivious” refers to the important feature that only few terms must be kept in memory as the number
of iterations increases.
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2. Eddy Current model. We consider a linear transient eddy current problem with a
conductor occupying the bounded and connected polyhedron ΩC ⊂ R3. In frequency domain
at fixed angular frequency ω > 0 the Leontovich boundary condition reads (Senior 1960,
De Santis et al. 2012)

(Ĥ× n)(x) =

√
iωσ(x)

µ(x)
Êt(x) , x ∈ Γ , (2.1)

where n : Γ → R3 is the exterior unit normal vector field on the conductor surface Γ,
and Ĥ and Ê denote the complex amplitudes of the magnetic and electric field, respectively,
and Êt

..= (n × Ê) × n is the tangential component. The material coefficients µ (magnetic
permeability) and σ (conductivity) are uniformly positive, but may vary in space.

Assuming that all fields vanish for t ≤ 0, from (2.1) we derive the following transient
impedance boundary condition for the time-dependent fields

H(x, t)× n(x) =

∫ t

0

η(x)k(t− τ)Et(x, τ) dτ , t ≥ 0 , x ∈ Γ , (2.2)

with a uniformly positive function η(x) ..=
√
σ(x)µ(x)−1, x ∈ Γ, and a convolution kernel

k : Γ× R+ → R, whose temporal Laplace transform is given by

K(s) ..= (Lk(·))(s) =
√
s , s ∈ C \ (−∞, 0) . (2.3)

For the sake of brevity we adopt the “operational calculus notation” for (2.2) (Lubich 1988a),
expressing it as H× n = ηK(∂t)Et.

With a finite element discretization in mind we artificially truncate the fields to a simple
bounded domain Ω ⊂ R3 with ΩC ⊂ Ω. Then, the evolution of the (scaled) electromagnetic
fields in D ..= Ω \ ΩC (see picture 2.1) is governed by the following initial-boundary value
problem that we consider up to a fixed final time T > 0:

curl curl E = j(x, t) , div E = 0 in D×]0, T [ , (2.4a)
curl E× n = η(x)K(∂t)Et on Γ×]0, T [ , (2.4b)
curl E× n = 0 on ∂Ω×]0, T [ , (2.4c)
E(·, 0) = 0 on D . (2.4d)

This is the so-called E-based formulation of an eddy current problem (Alonso-Rodriguez
and Valli 2010, Sect. 2.1). The zero divergence condition on E in (2.4a) should be regarded
as a gauging, which ensures uniqueness of the electric field inside D. The right-hand side j
stands for a solenoidal source current supported insideD that engenders an exciting magnetic
field.

Remark. In the case of translational symmetry we end up with the so-called TM/TE eddy
current models that give rise to boundary value problems for a single scalar unknown, e.g.,

−∆u = f in D̃×]0, T [ , (2.5a)

gradu · ñ = η(x̃)K(∂t)u on Γ̃×]0, T [ , (2.5b)

u = 0 on ∂Ω̃×]0, T [ , (2.5c)

u(·, 0) = 0 on D̃ , (2.5d)

where the scalar unknown u = u(x̃, t) represents a single component of the electric field and
the ˜ tags two-dimensional cross-sections of the domains/boundaries. In Section 7 we report
numerical results for this dimensionally reduced model.
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FIG. 2.1. The computational domain D is an open region surrounding the conductor ΩC , with boundaries Γ
and ∂Ω and outward pointing unit normal vectorfield n.

3. Spatial discretization. Adopting the method of lines policy (Knabner and
Angermann 2003, Section 7.2) an approximation of (2.4) is obtained by discretizing in space
first, followed by a suitable discretization in time. We rely on a finite element Galerkin dis-
cretization in space, starting from the variational formulation: seek E = E(t) ∈ H(curl, D)
and a dummy potential (Hiptmair 2002, Sect. 6.1) V ∈ H1

Γ(D) ..= {v ∈ H1(D) : v |Γ = 0},
such that∫
D

curl E · curl E′ dx+
∫
D

E′ · gradV dx+K(∂t)
∫
Γ

ηEt ·E′t dS =
∫
D

j ·E′ dx ,∫
D

E · gradV ′ dx−
∫
D

V V ′ dx = 0 ,

(3.1)

for all E′ ∈ H(curl, D), V ′ ∈ H1
Γ(D). Note that a priori V = 0 is known as div j = 0.

We equip D with a (tetrahedral and hexahedral) finite element mesh, approximate E by
means of lowest order edge elements (Hiptmair 2002, Section 3.2), and V by means of piece-
wise (bi-)linear continuous functions. Using the standard locally supported basis functions
for these finite element spaces along with mass lumping for the L2-inner product occurring
in (3.1), we end up with the linear evolution problem

Cµ(t) + GT ψ(t) + K(∂t)Bµ(t) = ϕ(t) ,
Gµ(t) − Dψ(t) = 0 .

(3.2)

Here µ(t), ψ(t) are the time-dependent basis coefficient vectors for the approximations of E
and V , respectively, and

ϕ(t) ..=

(∫
D

j(t) · φ1
h dx, . . . ,

∫
D

j(t) · φMh dx

)T
,

with φih, i = 1, . . . ,M , denoting the basis of the edge element space. The matrices C, G, B,
and D are the sparse Galerkin matrices arising from the various bilinear forms in (3.1), where
D is diagonal thanks to mass lumping (Hiptmair 2002, Section 6.1). Thus an elimination of
ψ(t) becomes feasible and we end up with the Volterra integral equation in RM

(C + GTD−1G)︸ ︷︷ ︸
=..A

µ(t) +K(∂t)Bµ(t) = ϕ(t) , (3.3)
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with A ∈ RM,M symmetric positive definite and B ∈ RM,M symmetric positive semi-
definite . In particular both matrices are sparse and B acts only on the boundary degrees of
freedom.

Remark. Spatial discretization of (2.5) is easier: testing withH1
∂Ω̃

(D̃) functions, the vari-
ational formulation of (2.5) reads∫

D̃

gradu · grad v dx+K(∂t)

∫
Γ̃

η u v dS =

∫
D̃

f v dx for all v ∈ H1
∂Ω̃

(D̃) . (3.4)

A Ritz-Galerkin discretization of (3.4) by piecewise linear Lagrangian finite elements leads
to a system of integral equations

Aµ(t) +K(∂t)Bµ(t) = ϕ(t) for t ∈]0, T [ , (3.5)

where the vector µ(t) ∈ RM contains the time-dependent coefficients of an approximation
in space of u with respect to the finite element basis.

4. Convolution quadrature (CQ). The Convolution Quadrature (CQ) is based on
Runge-Kutta methods and approximates the continuous convolution

K(∂t)g ..=

∫ T

0

k(T − τ)g(τ) dτ (4.1)

at the time T ..= (N + 1)∆t, ∆t > 0, with the last component of the discrete convolution
vector

(
K(∂∆t)g

)(N) ..=

N∑
j=0

WN−jgj , (4.2)

where the entries of the vector

gj ..= (g(tj + c1∆t), . . . , g(tj + cm∆t))T ∈ Rm (4.3)

are the values of the function g at the Runge–Kutta internal times at tj ..= j∆t.
In this article we consider the family of m-stage RadauIIA methods (Hairer and Wanner

2010, Chapter IV.5) as underlying Runge-Kutta method because it has become the standard
choice for CQ.

The CQ requires only the knowledge of the Laplace Transform K(s) of the convolution
kernel k(t), which is assumed to be analytic in the sector

Σ(ϕ, σ) ..= {s ∈ C : |arg(s− σ)| < π − ϕ, with ϕ <
1

2
π and σ ≥ 0} . (4.4)

The convolution weights Wn ∈ Rm,m are defined by the power series expansion (Lubich
and Ostermann 1993, Section 2)

∞∑
n=0

Wnζ
n ..= K

(
∆(ζ)

∆t

)
, ∆(ζ) ..=

(
Oι+

ζ

1− ζ
1bT

)−1

, (4.5)

where Oι is the Runge–Kutta coefficient matrix, bT is the Runge-Kutta weight vector and
1 ..= (1, . . . , 1)T .
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The convolution weights can be approximated by discretizing the Cauchy integral

Wn =
1

2πi

∫
|ζ|=ρ

ζ−1−nK

(
∆(ζ)

∆t

)
dζ ,

≈ ρ−n

L

L−1∑
`=0

K

(
∆(ρe2πi`/L)

∆t

)
e−2πin`/L , (4.6)

with 0 < ρ < 1 (Lubich and Ostermann 1993, Section 2). An error of magnitude O(
√
ε),

where ε stands for the machine precision, can be easily achieved by choosing ρ ≈ 2N
√
ε and

the number of quadrature poins L = N (Lubich 1988b, Section 7).
The CQ is also efficient in solving Volterra convolution equations (Banjai et al. 2011). A

discretization of (3.3) is achieved by approximating the coefficient vector µ(t) at the Runge–
Kutta internal times with the vectors

µ̃i ≈ (µ(ti + c1∆t), · · · ,µ(ti + cm∆t))
T ∈ RmM .

Replacing the continuous convolution with Runge–Kutta CQ turns (3.3) into the linear im-
plicit scheme

(Im ⊗A) µ̃i +

i∑
j=0

(Wi−j ⊗B) µ̃j = ϕ̃i for i = 0, .., N , (4.7)

where ⊗ is the Kronecker product, Im ∈ Rm,m is the identity matrix and

ϕ̃i
..= (ϕ(ti + c1∆t), . . . ,ϕ(ti + cm∆t))T .

The solution vectors µ̃i are then recursively given by

(Im ⊗A + W0 ⊗B) µ̃i = ϕ̃i −
i−1∑
j=0

(Wi−j ⊗B) µ̃j , (4.8)

with i = 0, . . . , N . The last M entries of µ̃N are an approximation in time of algebraic order
min(2m− 1,m+ 1) of the exact solution µ(T ), see (Hiptmair et al. 2013, Lemma 4.1).

Note that at the iteration time i all terms in the right-hand side of (4.8) are explicitely
known. Note also that the indices of the summands shift as the iteration time increases. Hence
to recover an approximation of (3.3) at the final time T = (N + 1)∆t with a naive imple-
mentation all the vectors µ̃i must be stored and O(N2) multiplications must be computed.

5. Fast and oblivious convolution quadrature (FOCQ). A fast and oblivious Runge–
Kutta based CQ (FOCQ) has been developed in (Schädle et al. 2006). Its key ingredient is the
integral representation

Wn =
h

2πi

∫
γ

K(λ)En(hλ) dλ (5.1)

of the convolution weights. The contour γ has increasing imaginary part and lies in the ana-
lyticy region of K (see Figure 5.1, left) and to the left of the poles of the matrix function

En(z) ..= R(z)n−1(Im − zOι)−11bT (Im − zOι)−1 .

Here

R(z) ..= 1 + zbT (Im − zOι)−11
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FIG. 5.1. Left: Contour γ for the convolution weight representation formula (5.1). Right: Particular of trun-
cated left branch of hyperbolae for different contours withB = 10,NQ = 10 and ∆t = 0.25. The circles indicates
the position of the quadrature nodes. Note that as ` increases the nodes become closer.

denotes the stability function of the underlying Runge–Kutta method and Im ∈ Rm,m is the
identity matrix.

By choosing a suitable parametrization of γ, the contour representation (5.1) can be
approximated by means of the composite trapezoidal rule with an exponentially small error
when n > n0

2, see (López-Fernández, Lubich, Palencia and Schädle 2005, Theorem 3).
Although the optimal choice of the contour depends on the index n, the same contour can
be used for a range of convolution weights Wn whose indices n belong to a geometrically
growing interval of the form [B`−1, B`], for some prescribed ratio B > 1 and ` ∈ N. Thus,
with a clever choice of the parameters, few contours Γ` are enough for computing all the
convolution weights with a target accuracy ε using the same number of quadrature nodes on
all contours (see Figure 5.2).

In practice the contours are parametrized as the left branch of a hyperbola

R→ Γ : x 7→ γ(x) ..= µ (1− sin(α+ ix)) + σ , (5.2)

whose parameters µ > 0 and 0 < α < π
2 − ϕ are chosen accordingly to (López-Fernández,

Palencia and Schädle 2006, Section 4) and ϕ and σ from (4.4) (see Figure 5.1).
By introducing a strongly monotone decreasing sequence (b`)

dlogB ne
`=0

3 of real values so
that b0 = n, bdlogB ne = 0 and n − j ∈ [B`−1, B`] for j ∈ [b`, b`−1 − 1], the convolution
quadrature (4.2) can be rearranged in

(
K(∂∆t)g

)(n)
= W0gn +

dlogB ne∑
`=1

U(`)
n , (5.3)

where

U(`)
n

..=

b`−1−1∑
j=b`

Wn−jgj =

b`−1−1∑
j=b`

∆t

2πi

∫
Γ`

K(λ)En−j(∆tλ)gj dλ .

2The approximation is poor for the the first few Wn which will be thus computed with (4.6).
3By dlogB ne we denote the smallest integer not less than logB n. An explicit pseudo–code for computing this

sequence is given in (Schädle et al. 2006, Section 4.1)
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FIG. 5.2. Convolution weight approximation error in the Euclidean norm of (5.1) for the 2-stage RadauIIA
method with γ as in (5.2) by composite trapezoidal rule discretization with NQ quadrature nodes. With different
contours and a clever choice of the contour parameters the error can be made uniformly small for n > n0.

Note that for each U
(`)
n we choose a suitable contour Γ`. By sorting the sum and defining

y(b`−1, b`, λ) ..=

b`−1−1∑
j=b`

∆tR(∆tλ)(b`−1−1)−jbT (Im −∆tλOι)−1gj , (5.4)

we have

U(`)
n =

1

2πi

∫
Γ`

K(λ)R(∆tλ)n−b`−1(Im −∆tλOι)−11y(b`−1, b`, λ) dλ ,

≈
NQ∑

j=−NQ

ω
(`)
j R(∆tλ

(`)
j )n−b`−1(Im −∆tλ

(`)
j Oι)

−11y(b`−1, b`, λ
(`)
j ) . (5.5)

The last step stands for a trapezoidal rule approximation of the contour representation of U
(`)
n

with 2NQ − 1 quadrature nodes. The trapezoidal rule weights ω(`)
j and the trapezoidal rule

nodes λ(`)
j are given by

ω
(`)
j =

iτ

2π
γ′`(τj), λ

(`)
j = γ`(τj),

where the parameter τ is adapted to µ and α in (López-Fernández et al. 2006, Section 4).
Note that (5.4) can be computed in parallel for the different contours with the recursive

formula{
y(b, b, λ) = 0 for b ∈ N,
y(k + 1, b, λ) = R(∆tλ)y(k, b, λ) + ∆tbT (Im −∆tλOι)−1gk for k ≥ b.

(5.6)

Thus, by exploiting the good approximation of the convolution weights along hyperbolae,
each U

(`)
n can be approximated as in (5.5) in O(n log(1/ε)) effort, where ε is the target

accuracy and the complexity n is only due to the computation of (5.6).
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The FOCQ is very effective in the context of Volterra equations and its application to
(4.8) is the central topic of the next section. Basically, rearranging the sum in (4.8) as in (5.3)
and updating the values of (5.4) with (5.6) as the iteration index of (4.8) increases from 0 to
N reduces the computational effort and the memory requirements toO(N logN log( 1

ε )) and
to O(logN log( 1

ε )) respectively (Schädle et al. 2006). The additional perturbation error due
to the convolution weight approximation along hyperbolae can be controlled by ε (Hiptmair
et al. 2013, Section 5.2) and in practice the same convergence of the CQ is observed.

6. Algorithm. From (4.8) it is clear that the algorithm can be implemented in a direct
way. The computational domain D is equipped with a (tetrahedral and hexahedral) finite
element mesh. Precomputing the matrices A and B from (3.3) and W0 = K(Oι−1/∆t), we
can define and store the sparse matrix

M ..= Im ⊗A + W0 ⊗B ∈ RmM,mM , (6.1)

whereM is the size of the finite element space andm is the number of stages of the underlying
Runge–Kutta method. We can then rewrite (4.8) as the linear system

M µ̃i = ϕ̃i −
i−1∑
j=0

(Wi−j ⊗B) µ̃j for i = 0, .., N . (6.2)

Algorithm 1 naive implementation
1: create a spatial mesh and assembleA,B from (3.3)
2: set ∆t ..= T/(N + 1)
3: compute M from (6.1)
4: for i = 0 : N do
5: compute Wi with (4.6)
6: compute oldconv ..=

∑i−1
j=0 (Wi−j ⊗B) µ̃j

7: solve the linear system M µ̃i = ϕ̃i − oldconv
8: end for

Algorithm 1 shows how (6.2) can be solved with a naive implementation. At each itera-
tion we have to compute the partial convolution in step 6. Since the matrix B represents an
integration on the conductor boundary Γ, this convolution can be restricted to the entries of µ̃i
related to the conductor boundary nodes Γh. By assuming that the time necessary for solving
the mM ×mM sparse linear system is C1(mM), we conclude that the computational time
of Algorithm 1 is asymptotically

C1(mM) ·N + C2 ·#Γh ·N2 , (6.3)

where #Γh denotes the number of nodes on the conductor boundary.
The naive implementation can be accelerated by exploiting FOCQ from the iteration time

i > n0 on. As already anticipated, the idea is to split the computation of oldconv in step 6 of
Algorithm 1 into logarithmically few terms O

(`)
n as in (5.3). Each of these requires only the

values of (5.4), which are computed through (5.6) and whose inputs are given by the sequence
(bi`)
dlogB ie
`=0 . Since the values of the sequence change in a non-linear way as the iteration time

i increases, it is convenient to pre-compute all the different sequences at the beginning4.

4Though, in (Schädle et al. 2006, Section 4.1) is given a pseudo–code for updating this sequence on the fly.
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Algorithm 2 fast implementation
1: create a spatial mesh and assembleA,B from (3.3)
2: set ∆t ..= T/(N + 1)
3: compute M from (6.1)
4: for i = 0 : N do
5: compute (bi`)

dlogB ie
`=0

6: end for
7: for i = 0 : n0 do
8: compute Wi with (4.6)
9: compute oldconv ..=

∑i−1
j=0 (Wi−j ⊗B) µ̃j

10: solve the linear system M µ̃i = ϕ̃i − oldconv
11: update y{i} with (5.6)
12: end for
13: for i = n0 + 1 : N do
14: for ` = 1 : dlogB ie do
15: compute O

(`)
i

..=
∑b`−1−1
j=b`

(Wi−j ⊗ IM ) µ̃j with (5.5)
16: end for
17: compute oldconv ..= (Im ⊗B)

∑dlogB ie
`=1 O

(`)
i

18: solve the linear system M µ̃i = ϕ̃i − oldconv
19: update y{i} with (5.6)
20: end for

Combining this knowledge with (5.6), we can start computing the values of y(b`−1, b`, λ)
from the beginning for all contours ` and store them in a struct y{i}. From (5.6) is clear that
updating the values of y{i} as the algorithm runs requires only the knowledge of the values
stored in y{i− 1}. Since only logarithmic few contours come into play, this strategy reduces
the active memory requirements to O(logB N).

The fast implementation is summarized in Algorithm 2. Since the approximation (5.5) is
poor for the first few weights, for the first n0 iterations we rely on a naive implementation.
Note that in order to reduce the memory requirements we already start updating y{i}. The
computational complexity of these first steps is negligible because in practice n0 � N . From
lines 13-20 it is then clear that the computational complexity of Algorithm 2 is proportional
to

C1(mM) ·N + C2 ·#Γh ·N logB(N) . (6.4)

7. Numerical Experiments. In our numerical tests we consider the 2D boundary value
problem (2.5). We choose D̃ to be an annulus around the origin with radii 0.5 and 2 and
we fix T = 4. The source function is induced by imposing the Dirichlet boundary condition
g(x, y, t) ..= 32

105
√
π
t7/2 + t3

6 log(4) on ∂Ω̃. The analytical solution is then

u(x, y, t) ..=
32

105
√
π
t7/2 +

t3

6

(
1

2
log(x2 + y2) + log(2)

)
. (7.1)

In the implementation we opt for linear Lagrangian finite elements on triangular meshes
with nodal basis functions5. For the FOCQ range parameter we choose B = 10 while the
hyperbola parameters are chosen according to (López-Fernández et al. 2006, Section 4).

5The experiments are perfomed in MATLAB and are based on the library LehrFEM developed at the ETHZ.
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A first numerical test is performed by choosing the FOCQ based on the implicit Euler
method, which is the 1-step RadauIIA method (FOCQ of order 1). For 6 different spatial grids
and 12 different time steps we measured the error in the time-discrete norm

‖u(t,x)‖2
`2∆t([0,4],H1(D̃))

..= ∆t

N∑
n=1

‖u(tn,x)‖2
H1(D̃)

as well as the L2(D̃)-error in space6 at a fixed time t = 4. The spatial triangular meshes
have been created through uniform refinement, the timesteps by repetitively halving an initial
timestep (the finest grid has 39’360 vertices while the smallest timestep is 2−12).

The expected linear algebraic convergence both in time and space in the
`2∆t([0, 4], H1(D̃))-norm is observed in Figure 7.1 (left). The rates of algebraic convergence
in the timestep become more conspicuous when we examine the L2(D̃)-norm in space, for
which we have quadratic convergence in space; see Figure 7.1 (right).
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FIG. 7.1. Error in the `2∆t([0, 4], H1(D̃))-norm (left) and in the L2(D̃)-norm at a fixed time t = 4 (right)
for the coupling of FEM and FOCQ base on the implicit Euler method. The two bullets denote the spatial mesh and
timestep used in Figure 7.2 (left).

The impact of the FOCQ on the overall accuracy is investigated in Figure 7.2 (left). We
consider the fourth finest spatial grid and the timestep ∆t = 2−8 (see the bullets in Figure 7.1)
and we compute the error in the L2(D̃)-norm in space at a fixed time for different numbers
of quadrature nodes NQ on the contours. We see that few quadrature nodes on the contours
are enough to make negligible the perturbation error due to the FOCQ approximation of the
convolution weights Wi.

In Figure 7.2 (right) we compare the time required for solving (2.5) with Algorithms
1 and 2. We see that the growth of the computation time asymptotically coincides with the
theoretical growth rates (6.3) and (6.4).

We perform a second numerical test and this time the convolution is approximated by
using the FOCQ based on the 2-stage RadauIIA method (FOCQ of order 3). Again we mea-
sure the L2(D̃)-error in space at a fixed time t = 4 for several meshes and timesteps. As we
can see in Figure 7.3 (left), the total error is almost always dominated by the discretization
error in space. The expected algebraic convergence with rate 3 in time becomes discernible
by performing an additional uniform refinement in space; see Figure 7.3 (right).

6Both theH1(D̃)- and theL2(D̃)-norm are computed approximately with 7 point quadrature rules on triangles.
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FIG. 7.2. Left: Impact of FOCQ on the total error in the L2(D̃)-norm at a fixed time t = 4 for the coupling
of FEM and FCQ base on the implicit Euler method. Right: Cpu time in seconds versus the number of time steps for
Algorithms 1 and 2.
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FIG. 7.3. Left: Error in the L2(D̃)-norm at a fixed time t = 4 for the coupling of FEM and FOCQ based on
the 2-stage RadauIIA method. Right: Convergence in time of the coupling of FEM and FOCQ based on the 2-stage
RadauIIA method for a fine mesh (156’544 vertices).

8. Conclusion. We have investigated a numerical scheme for solving the eddy current
problem (2.4). The scheme has computational complexityO(N logN), where N denotes the
number of timesteps, and inherits the stability properties of the convolution quadrature. For
spatial and temporal discretization error we have observed algebraic decay in terms of mesh
width and timestep size, respectively. The error due to the fast and oblivious approximation
decays exponentially in a discretization parameter and is negligible compared to the other
error contributions. For an a priori convergence analysis of a fully discrete oblivious finite
element CQ for transient eddy current problems we refer the reader to (Hiptmair et al. 2013).
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M. López-Fernández, C. Lubich, C. Palencia and A. Schädle (2005), ‘Fast Runge-Kutta approximation of inhomo-

geneous parabolic equations’, Numer. Math. 102(2), 277–291.
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