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Abstract

The Chemical Master Equation (CME) is a cornerstone of stochastic analysis and sim-
ulation of models of biochemical reaction networks. Yet direct solutions of the CME have
remained elusive. Although several approaches overcome the infinite dimensional nature of
the CME through projections or other means, a common feature of proposed approaches is
their susceptibility to the curse of dimensionality, i.e. the exponential growth in memory and
computational requirements in the number of problem dimensions. We present a novel ap-
proach that has the potential to “lift” this curse of dimensionality. The approach is based on
the use of the recently proposed Quantized Tensor Train (QTT) formatted numerical linear
algebra for the low parametric, numerical representation of tensors. The QTT decomposition
admits both, algorithms for basic tensor arithmetics with complexity scaling linearly in the
dimension (number of species) and sub-linearly in the mode size (maximum copy number),
and a numerical tensor rounding procedure which is stable and quasi-optimal. We show
how the CME can be represented in QTT format, then use the exponentially-converging hp-
discontinuous Galerkin discretization in time to reduce the CME evolution problem to a set
of QTT-structured linear equations to be solved at each time step using an algorithm based
on Density Matrix Renormalization Group (DMRG) methods from quantum chemistry. Our
method automatically adapts the “basis” of the solution at every time step guaranteeing that
it is large enough to capture the dynamics of interest but no larger than necessary, as this
would increase the computational complexity. Our approach is demonstrated by applying
it to three different examples from systems biology: independent birth-death process, an
example of enzymatic futile cycle, and a stochastic switch model. The numerical results on
these examples demonstrate that the proposed QTT method achieves dramatic speedups
and 10 to 30 orders of magnitude storage savings over direct approaches.

Keywords: Chemical Master Equation, stochastic models, low rank, tensor approximation,
Tensor Train, Quantized Tensor Train, multilinear algebra, mass-action kinetics, stationary
distribution.

1 Introduction

In spite of the success of continuous-variable deterministic models in describing many bio-
logical phenomena, discrete stochastic models are often necessary to describe biological phenom-
ena inside living cells where random motion of reacting species introduces randomness in both
the order and timing of biochemical reactions. Such random effects become more pronounced
when one factors in the discrete nature of reactants and the fact that they are often found in low
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copy numbers inside the cell. Manifestations of randomness vary from copy-number fluctuations
among genetically identical cells [1] to dramatically different cell fate decisions [2] leading to
phenotypic differentiation within a clonal population. Characterizing and quantifying the effect
of stochasticity and its role in the function of cells is a central problem in molecular systems
biology.

To account for the random nature of chemical reactions, the evolution of reacting species
within living cells is often modeled as a stochastic process. These mathematical models are
specified by jump Markov processes where each state represents the population count of each
of the constituent species [3]. In this framework, the evolution of the probability density of
the system’s chemical populations is governed by the Forward Kolmogorov Equation, commonly
referred to as the Chemical Master Equation (CME) in the chemical literature. In most cases the
CME cannot be solved explicitly and various Monte Carlo simulation techniques have been used
to find approximations of the probability densities by producing either detailed or approximate
realizations of each process [3, 4, 5]. However, for many systems, biologically important events
may occur rarely, necessitating the generation of a prohibitively large set of realizations to obtain
sufficiently precise statistics.

At the same time, various approximation methods have been developed that trade accu-
rate density information for computational tractability, often replacing the discrete state-space
description with a continuous one. These include Van Kampen’s Linear Noise Approximation
(LNA) [6], Moment Closure methods [7, 8], and Chemical Langevin Equation (CLE) treat-
ments [9, 10]. These methods tend to give an accurate description of the dynamics when the
population counts of all species remain large, but can perform poorly even when a single species
exhibits low molecular counts. This is a significant limitation when one needs to model the
(boolean) activation state of genes that necessarily have low molecular counts.

The classes of methods described above are complementary and recently there has been
much effort attempting to combine the best features of these, leading to the so called hybrid
approaches. Many are based on exploiting a time-scale separation to partition the system into
subsets of fast and slow reactions and then impose a quasi-stationary assumption to reduce
the number of degrees of freedom. These methods are then based on coupling an approximate
method such as τ -leaping [11] or the Chemical Langevin Equation [12, 13] for the fast species
with an efficient variant of the Gillespie algorithm for the slow species to produce a new Monte
Carlo algorithm. Other methods are based on partitioning the chemical species into a subset
with large average molecule count and a subset with low molecule count and making an ODE
approximation for the dynamics of species with large copy numbers [14, 15]. While these methods
result in faster simulations, such speedups come at the cost of accuracy, as modeling errors are
introduced by the partial replacement of the CME with cruder descriptions.

Other approaches have attempted to solve the CME directly to obtain the evolution of
the probability densities [16], though these analytical solutions apply only to special structures.
Alternatively, methods like the finite state projection [17] and the sliding window abstraction [18]
are based on truncating the state space to a finite subset containing the majority of the prob-
ability mass. These methods have the advantage of providing explicit error bounds on their
approximations of the densities. Unfortunately, to guarantee that such an approximation has a
low error, it is often necessary to include a large number of states in the truncation, rendering
many systems computationally intractable as both storage requirements and computation time
become prohibitive.

In order to address this issue, several numerical techniques for compressing the dynamics
and the solution have been explored in the recent literature. Attempts were made to expand the
probability distribution as a linear combination of a small set of so-called “principal”, orthogonal
basis functions [19, 20, 21, 22]. Then, either a Galerkin projection was used to map the dynamics
onto the lower dimensional subspace spanned by the basis functions (Method of Lines) or first a
time discretization was used and then the basis at each time step was adapted by either adding
or subtracting basis elements (Rothe’s Method). These methods differ primarily in their choice
of orthogonal basis. A common feature of these approaches is that they begin with a basis for
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probability distributions of a single variable and then use the corresponding tensor product basis
for multivariate distributions. This means that they are susceptible to the so-called curse of
dimensionality [23], that is, the memory requirements and computational complexity of basic
arithmetics grow exponentially in the number of dimensions. In the context of the CME, this
means that all of these approaches can exhibit an exponential scaling of the complexity with the
number of chemical species in the model.

Recent papers have attempted to address the curse of dimensionality by using a low-
parametric representation of tensors known as canonical polyadic decomposition or CANDE-
COMP/PARAFAC, both notions being subsumed under the acronym CP [24, 25]. CP is a
methodology for generalizing the singular value decomposition (SVD) for matrices to tensors of
dimension greater than two by representing the solution as sums of rank-one tensors (equiva-
lently, linear combinations of distributions in which species counts are independent at each fixed
time point). As long as the tensor rank of the solution to be approximated remains low, these ap-
proaches can be very computationally efficient as basic arithmetics for tensors in the CP format
scales linearly in the number of tensor dimensions.

A key challenge in applying the CP decomposition to construct approximate CME solvers
is to control the tensor rank of the computed solution. Basic algebraic tensor operations such
as addition and matrix-vector multiplication generally increase rank and hence computational
cost. In [26] it is suggested to recompute a lower rank CP decomposition after every arithmetic
operation. This approach turned out to be problematic in practice. One reason is that the
problem of tensor approximation (in the Frobenius norm) with a tensor of fixed rank is, in general,
ill-posed [27]. Thus, the numerical algorithms for computing an approximate representation may
easily fail. Another reason is that the problem is NP-hard [28, 29] and there is no robust algorithm
having any affordable complexity.

Another approach [30], related to the present work, attempts to avoid the problem of
approximation in the CP format entirely by projecting the dynamics onto a manifold composed of
all tensors with a CP decomposition of some predetermined maximal tensor rank. This procedure
results in a set of coupled nonlinear differential equations which are then solved using available
ODE solvers. While this effectively controls the tensor rank of the approximate solution, still, to
the authors’ knowledge, there is no way to estimate either theoretically (a priori) or numerically
(a posteriori) the CP rank of the full CME solution as a function of given data.

In this paper we propose a new, deterministic computational methodology for the direct
numerical solution of the CME, without modelling or asymptotic simplifications. The approach
has complexity that scales favorably in terms of the number of different species considered and
the maximum allowable copy number of each of these species. It is based on the recently pro-
posed Quantized Tensor Train (QTT) formatted, numerical tensor algebra [31, 32, 33, 34] which
operates on low-parametric, numerical representation of tensors, rather than on their CP repre-
sentations. This decomposition admits both algorithms for basic tensor arithmetics that scale
linearly in the dimension (the species number) and a robust adaptive numerical procedure for
the tensor truncation, which is quasi-optimal in the Frobenius norm.

We show in the present paper how the CME can be represented in QTT format, then
use hp-discontinuous Galerkin discretization in time to exploit the time-analyticity of the CME
evolution and to reduce the CME evolution problem to a set of QTT structured linear equations
that are solved at each time step [35]. We then exploit an algorithm available for solving linear
systems in this format that is based on Density Matrix Renormalization Group (DMRG) methods
from quantum chemistry.

The numerical experiments reported below (see, in particular, Table 1) show a 10 to 30
order of magnitude memory savings, which is typically afforded by the new approach presented
here.
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2 Results and Discussion

A “well-stirred” solution of d chemically reacting molecules in thermal equilibrium can be
described by a jump Markov process, where for each fixed time t ≥ 0, X(t) ∈ Zd≥0 is a random
vector of nonnegative integers with each component representing the number of molecules of
one chemical species present in the system. In [6] and the references therein, it is shown that,
given an initial condition X(0) ∈ Zd≥0, the corresponding probability density function (PDF)
Zd≥0 × [0,∞) 3 (x, t) 7→ px(t) of the process solves the Chemical Master Equation (CME):

d

dt
px(t) = −px(t)

R∑
s=1

ωs(x) +

R∑
s=1

px−ηs(t)ω
s
(
x− ηs

)
(1)

where R is the number of reactions in the system, ηs ∈ Zd and ωs are the stoichiometric vector
and propensity function of the sth reaction, respectively. The CME is a system of coupled linear
ordinary differential equations with one equation for each state X(t) = x ∈ Zd≥0.

2.1 Separability and Finite State Projection of the CME operator

Munsky and Khammash [17] rewrote the right-hand side of the CME (1) as the action of
a linear operator A on the probability density at the current time:

d

dt
p(t) = Ap(t) (2)

Throughout this paper, we refer to A as the CME operator.
Hegland and Garcke introduced an explicit representation of the CME operator as sums

and compositions of a few elementary linear operators [26]: let Sη be the spatial shift of a
probability density by a vector η ∈ Zd:(

Sη p
)
x = px−η;

and let Mω be multiplication by a real-valued function ω:

(Mω p) x = ω(x) · px .

Then the CME operator can be written as follows, with I denoting the identity operator:

A =

R∑
s=1

(
Sηs − I

)
◦Mωs . (3)

To simplify the exposition, we assume that all propensity functions are rank-one separable,
i.e. they are of the form

ωs(x) =
d∏

k=1

ωsk(xk) , x ∈ Zd≥0, (4)

for 1 ≤ s ≤ R, where each ωsk(xk) is a nonnegative function in the single variable xk. Considering
rank-one separable propensity functions is sufficient for all elementary reactions which occur as
building blocks in more complicated reaction kinetics. We hasten to add, however, that the
methods developed herein apply also to models with nonseparable propensities ωs(x).

The CME (2) is posed on the (countably) infinite dimensional space Zd≥0 of states. In
this form, the CME (1) is an infinite-dimensional coupled evolution problem which necessitates
truncation prior to numerical discretization. In the case of a particular class of monomolecular
reactions, Jahnke and Huisinga were able to construct an explicit solution in terms of convolutions
of products of Poisson and multinomial distributions [16]. In order to be able to address more
complex systems computationally, Munsky and Khammash proposed the Finite State Projection
Algorithm (FSP) [17] which seeks to truncate the countably infinite dimensional space Zd≥0 of
states of the process to a finite subset over which the dynamics are close to those of the original
system.
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Theorem 2.1 (Finite State Projection, Theorem 2.2 in [17]). Consider a Markov process with
state space Zd≥0 whose probability density evolves according to the initial value ODE: given an

initial state p0 ∈ [0, 1]Z
d
≥0, find p(t) ∈ [0, 1]Z

d
≥0 such that

d

dt
p(t) = Ap(t) 0 ≤ t <∞ , p(0) = p0

where the CME operator A : [0, 1]Z
d
≥0 7→ [0, 1]Z

d
≥0 can be represented as bi-infinite matrix with

nonnegative off-diagonal entries Axx′ indexed by pairs of states x, x′ ∈ Zd≥0.
With a multi-index n = (n1, n2, ..., nd) ∈ Nd associate the finite set Ωn of states

Ωn =
{
x ∈ Zd≥0 : 0 ≤ xk ≤ nk − 1 for 1 ≤ k ≤ d

}
⊂ Zd≥0 .

Let An denote the restriction of A to Ωn and assume that p0 is supported in Ωn, i.e. that p0 = 0
in Zd≥0\Ωn. Denote by p̂·(·) ∈ [0, 1]Ω

n the solution of the truncated system with dynamics given
by the linear ODE:

d

dt
p̂(t) = Anp̂(t) , 0 ≤ t <∞ (5)

with initial condition p̂x(0) = px(0) = p0(x). If for some ε > 0 and τ ≥ 0∑
x∈Ωn

p̂x(τ) ≥ 1− ε (6)

then
p̂x(τ) ≤ px(τ) ≤ p̂x(τ) + ε (7)

for every x ∈ Ωn.

Assume that a truncation satisfying (6) can be found, then (7) gives an explicit certificate
of the accuracy of the approximate solution. In practice, the truncation required to satisfy a
given error tolerance may still require a very large number of states: the dimension of the FSP
vector p̂ equals card(Ωn) =

∏d
k=1 nk rendering a direct numerical solution of even the projected

equation (5) infeasible in many cases. The remainder of the paper presents a novel approach for
the numerical solution of such FSP truncated systems that retain large numbers of states. For
notational convenience, we drop the superscripts n and the hat from p̂ indicating the FSP since
we will only consider systems which have already been truncated. Similarly, we now use the
shift and multiplication operators in (3) restricted to the truncated state space without change
of notation.

Assuming that a FSP has been performed, we henceforth treat px(t) as a d-dimensional n1×
. . .×nd-vector, i.e. as an array indexed by Ωn which we identify with ordered d-tuples of indices
ik ∈ {0, 1, 2, . . . , nk − 1}, where k ranges from 1 to d. Each dimension k (alternatively referred
to as a mode or level) has a corresponding mode size nk, that is, the number of values which
the index for that dimension can take. For our chemically reacting system, nk − 1 corresponds
to the maximum number of copies of the kth species that is considered. For a more detailed
introduction to basic tensor operations and terminology see, for example, [36, 37].

For the same ordering of x, consider the corresponding d-dimensional n1× . . .×nd-vectors
ωs , 1 ≤ s ≤ R, containing the values of the propensities on Ωn to which we shall refer as
propensity vectors:

ωs x = ωs(x) for all x ∈ Ωn . (8)

Within the projected CME (5), the operators corresponding to weighting by the propensity
functions, involved in (3), are finite matrices: Mωs = diagωs . Then, under the rank one
separability assumption (4), with (ωsk ) xk = ωsk(xk) for 0 ≤ xk ≤ nk, 1 ≤ k ≤ d there holds

ωs = ωs1 ⊗ . . .⊗ωsd , 1 ≤ s ≤ R . (9)
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2.2 The CME in the TT and QTT formats

2.2.1 Tensor Train representation of vectors and matrices

Our approach to the direct numerical solution of the CME (2) is based on the structured,
low-parametric representation of all vectors and matrices involved in the solution in the Ten-
sor Train (TT) format [31, 38] developed by Oseledets and Tyrtyshnikov. To present it, let
us consider a d-dimensional n1 × . . .× nd-vector p and assume that two- and three-dimensional
arrays U1, U2, . . . , Ud satisfy

pj1,...,jd =

r1∑
α1=1

. . .

rd−1∑
αd−1=1

U1(j1, α1)

· U2(α1, j2, α2) · . . . · Ud−1(αd−2, jd−1, αd−1) · Ud(αd−1, jd) (10)

for 0 ≤ jk ≤ nk− 1, where 1 ≤ k ≤ d. Then p is said to be represented in the TT decomposition
in terms of the core tensors U1, U2, . . . , Ud. The summation indices α1, . . . , αd−1 and limits
r1, . . . , rd−1 on the right-hand side of (10) are called, respectively, rank indices and ranks of the
decomposition. Unlike CP, the TT format allows the construction of a decomposition, exact or
approximate, through the low-rank representation of a sequence of single matrices; for example,
by SVD. In particular, note that for every k = 1, . . . , d − 1 the decomposition (10) implies a
rank-rk representation of an unfolding matrix U (k) which consists of the entries

U (k)
j1,...,jk; jk+1,...,jd

= pj1,...,jk,jk+1,...,jd .

Conversely, if the vector p is such that the unfolding matrices U (1) , . . . ,U (d−1) are of ranks
r1, . . . , rd−1 respectively, then the cores U1, U2, . . . , Ud, such that (10) holds, do exist; see The-
orem 2.1 in [38]. The ranks of the unfolding matrices are the lowest possible ranks of a TT
decomposition of the vector and, therefore, are called TT ranks of the vector.

Example 2.2 (Unfolding of a tensor). Consider a tensor p of size 3×2×2. It has two unfolding
matrices U (1) and U (2) given by

U (1) =



p111 p112

p211 p212

p311 p312

p121 p122

p221 p222

p321 p322

 and U (2) =

p111 p121 p112 p122

p211 p221 p212 p222

p311 p321 p312 p322

 .

While p, U (1) , and U (2) are structured differently, all have the same entries and represent the
same data. The two TT ranks of p are exactly the (matrix) ranks of U (1) and U (2) .

Another, fundamental, property of the TT representation is that if the unfolding matrices
can be approximated with ranks r1, . . . , rd−1 and accuracies ε1, . . . , εd−1 in the Frobenius norm,
then the vector itself can be approximated in the TT format with ranks r1, . . . , rd−1 and accuracy√∑d−1

k=1 ε
2
k in the same norm, which yields a robust and efficient algorithm for the numerical low-

rank TT approximation of vectors given in full format or in the TT format with higher ranks.
For details refer to Theorem 2.2, corollaries and to Algorithms 1 and 2 in [38]. Note also that,
unlike CP, the TT representation relies on a certain ordering of the dimensions so that reordering
dimensions may affect the numerical values of TT ranks significantly. We discuss this issue in
Section 2.2.4. Here we note only that the CP decomposition can be considered as a particular case
of TT. As for the general TT decomposition (with non-diagonal cores), reordering dimensions
may affect TT ranks significantly.

The TT representation may be applied to multidimensional matrices in a similar way
as to vectors. Consider a d-dimensional (m1 × . . .×md) × (n1 × . . .× nd)-matrix A. Let us
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U1 U2 U3 U4 U5

Figure 1: Schematic drawing of a TT decomposition of a five-dimensional array. Each TT core
can be visualized as a stack of matrices with the size of the stack equal to the corresponding
mode size. The number of TT cores is equal to the number of dimensions of the array. Element
u(j1, . . . , j5) of the full array is given by the (matrix) product of matrix j1 selected from core
U1, matrix j2 from core U2, etc. Note that the size of each matrix within a core must be the
same, but may differ between distinct cores. Note also that the number of matrices in each core
depends on the corresponding mode size of the full tensor and generally differs between cores.
Such an interpretation in the sense of a product of parametric matrices is widely used for the
Matrix Product States, see [39, 40, 41]

vectorize it and merge the corresponding row and column indices to obtain a d-dimensional
m1 · n1 × . . . × md · nd-vector a. Then the TT representation of the vector a, given by the
elementwise equality

Ai1,...,id
j1,...,jd

= ai1,j1,...,id,jd =

r1∑
α1=1

. . .

rd−1∑
αd−1=1

V1(i1, j1, α1)

· V2(α1, i2, j2, α2) · . . . · Vd−1(αd−2, id−1, jd−1, αd−1) · Vd(αd−1, id, jd) , (11)

is called a TT representation of the matrix A, the cores V1, . . . , Vd are now three- and four-
dimensional arrays. Our discussion of the efficiency and robustness of the TT decomposition of
vectors also applies to the matrix case.

Note that the Hierarchical Tensor Representation [42, 43] itself and coupled with the ten-
sorization [44], an extensive overview of which is available in [37], are closely related counterparts
of the TT and QTT formats respectively. Also, the structure called now TT decomposition has
been known in theoretical chemistry as Matrix Product States (MPS). It has been exploited
by physicists to describe quantum spin systems theoretically and numerically for at least two
decades now, see [39, 40], cf. [41].

Basic operations of the numerical calculus with vectors and matrices in the TT format,
such as addition, Hadamard and dot products, multi-dimensional contraction, matrix-vector
multiplication, etc. are considered in detail in [38]. Since the main aim of using tensor-structured
approximations is to reduce the complexity of computations and avoid the curse of dimensionality,
we emphasize that the storage cost and complexity of basic operations of the TT arithmetics,
applied to the representation (10), can be bounded by dnrα with α ∈ {2, 3}, where n ≥ n1, . . . , nd
and r ≥ r1, . . . , rd−1. This estimate is formally linear in d; however, the TT ranks r1, . . . , rd−1

in (10) may depend on d and n. Showing that the TT ranks are moderate, e. g. constant or
growing linearly with respect to d and constant or growing logarithmically with respect to n, is
a crucial issue in the context of TT-structured methods and has been addressed so far mostly
experimentally, see, e. g. [45, 46, 47, 48, 49].

Since a TT decomposition of a d-dimensional tensor has d−1 ranks that may take different
values, it is convenient to introduce an aggregate characteristic such as the effective rank of the
TT decomposition. For an n1× . . .×nd-tensor given in a TT decomposition of ranks r1, . . . , rd−1,
we definite it as the positive root reff = r of the quadratic equation

n1r1 +
d−1∑
k=2

rk−1nkrk + rd−1nd = n1r +
d−1∑
k=2

r nkr + r nd (12)

7



which, for an integer r, equates the memory needed to store the given decomposition (left-hand
side) and a decomposition in the same format, i.e. of an n1× . . .×nd-tensor, but with equal d−1
ranks r, . . . , r (right-hand side). In this sense, “effective” is understood with respect to memory.
However, the notion of effective rank allows the exact evaluation of the complexity of some TT-
structured operations, such as the matrix-vector multiplication and Hadamard product, and in
a similar way estimates the complexity of other operations, e. g. the TT rank truncation.

2.2.2 Quantized Tensor Train representation

With the aim of further reduction of the complexity, the TT format can be applied to a
“quantized” vector (matrix), which leads to the Quantized Tensor Train (QTT) format [32, 34,
33]. The idea of quantization consists in “folding” the vector (matrix) by introducing lk “virtual”
dimensions (levels) corresponding to the k-th original “physical” dimension [50], provided that
the corresponding mode size nk can be factorized as nk = nk,1 ·nk,2 · . . . ·nk,lk in terms of integral
factors nk,1, . . . , nk,lk ≥ 2, for 1 ≤ k ≤ d. This corresponds to reshaping the k-th mode of size
nk into lk modes of sizes nk1, . . . , nk,lk .

Under such a quantization applied to all dimensions, a d-dimensional n1 × . . .× nd-vector
indexed by j1 = j1,1, . . . , j1,l1 , . . . , jd = jd,1, . . . , jd,ld is transformed into an l1+. . .+ld-dimensional
n1,1× . . .×n1,l1 × . . . . . . ×nd,1× . . .×nd,ld-vector indexed by j1,1, . . . , j1,l1 , . . . . . ., jd,1, . . . , jd,ld .
A TT decomposition of the quantized vector is referred to as QTT decomposition of the original
vector, the ranks of this TT decomposition are called ranks of the QTT decomposition of the
original vector.

Example 2.3 (Proposition 1.1 in [34]). To demonstrate how the quantization reduces complex-
ity of structured data, let us consider the one-dimensional vector u whose entries are given by
evaluation of the exponential with base q > 0 on the nonnegative integers {0, 1, . . . , 2l − 1}:

u =
(

1, q, . . . , q2l−1
)>

. Originally, there is only one dimension in this vector, and the elemen-

twise representation requires storage of 2l parameters since it does not exploit any structure in
the data. However, if we use the quantization approach described above to split the single dimen-
sion into l virtual levels, the one-dimensional vector is transformed into l-dimensional one which
exhibits a low-parametric structure. Indeed, in terms of the “virtual” indices it is a rank-one
Kronecker product of l vectors with 2 components each:

u =

(
1

q2l−1

)
⊗
(

1

q2l−2

)
⊗ . . .⊗

(
1
q

)
,

which implies both rank-1 CP and QTT decompositions of u. Other explicit low-rank examples
can be found in [51, 52, 53, 54].

If the natural ordering

j1,1, . . . , j1,l1︸ ︷︷ ︸
1st dimension

, j2,1, . . . , j2,l2︸ ︷︷ ︸
2nd dimension

, . . . . . . , jd,1, . . . , jd,ld︸ ︷︷ ︸
dth dimension

(13)

of the “virtual” indices is used for representing the quantized vector in the TT format, then the
ranks of the QTT decomposition can be enumerated as follows:

r1,1, . . . , r1,l1−1︸ ︷︷ ︸
1st dimension

, r̂1, r2,1, . . . , r2,l2−1︸ ︷︷ ︸
2nd dimension

, r̂2, . . . . . . , r̂d−1, rd,1, . . . , rd,ld−1︸ ︷︷ ︸
dth dimension

,

where we emphasize r̂1, . . . , r̂d−1 are the TT ranks of the original tensor, i.e. the ranks of the
separation of “physical” dimensions. That is, the TT ranks of the tensor before quantization are
conserved through the quantization process, until the reapproximation of the quantized tensor
is concerned.

In this sense (10) and (11), with d being replaced with l, also present QTT representations
of ranks r1, . . . , rl−1 of a one-dimensional vector p̃ and of a one-dimensional matrix Ã with entries
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p̃j1,...,jl = pj1,...,jl and Ãi1,...,il
j1,...,jl

= Ai1,...,il
j1,...,jl

respectively. As a QTT decomposition is a TT decom-

position of an appropriately quantized (and possibly, as we discuss in Section 2.2.5, transposed)
tensor, the TT arithmetics referred to in Section 2.2.1, when applied to QTT decompositions,
naturally provides the same basic operations in the QTT format.

Compared to the TT representation, the QTT format is able to resolve more structure in
the data by splitting also the “virtual” dimensions introduced by the quantization.

Quantization is crucial for reducing the computational complexity further, as it allows the
TT decomposition to seek and represent more structure in the data. In practice it appears the
most efficient to use as fine quantization (i.e. with small nk,mk) as possible and in order to
generate as many virtual modes as possible. As an example, when nk = 2lk for 1 ≤ k ≤ d,
one may consider the ultimate quantization with nk,mk = 2 for all mk and k, so that jk =

jk,1, . . . , jk,lk =
∑lk

mk=1 2lk−mkjk,mk , where the indices j1, . . . , jl take the values 0 and 1.
The storage cost and complexity of basic QTT-structured operations are estimated from

above through d l rα with α ∈ {2, 3}, where l ≥ l1, . . . , ld and r is an upper bound on all the
QTT ranks of the decomposition in question. Note that this estimate may be, depending on
r, logarithmic in n (also in nd = 2dl, which is an upper bound on the number of entries). The
notion of an effective rank defined by (12) for TT decompositions applies verbatim to vectors
and matrices represented in the QTT format.

2.2.3 The structure of the CME operator in the QTT format

In the following we consider the Finite State Projection of the CME, as described in
Section 2.1, with nk = 2lk for 1 ≤ k ≤ d and assume that the PDF p of the truncated model and
of the CME operator A from (3) are represented in the QTT format outlined in Section 2.2.2.
We use the ultimate quantization, so that nkm = 2 for 1 ≤ m ≤ lk and 1 ≤ k ≤ d. In
this section we mathematically establish rigorous upper bounds on the QTT ranks of A under
certain assumptions on the propensity vectors ωs , 1 ≤ s ≤ R, defined by (8).

Theorem 2.4. Consider the projected CME operator A defined by (3). Assume that for every
s = 1, . . . , R and k = 1, . . . , d the one-dimensional vector ωsk from (8)–(9) is given in a QTT
decomposition of ranks bounded by rsk; and that ηsk = 0 implies rsk = 1. Then for A there exists
a QTT decomposition of ranks

q1, . . . , q1, q̂1, q2, . . . , q2, q̂2, . . . , . . . , q̂d−1, qd, . . . , qd

with q̂k = R for 1 ≤ k ≤ d− 1 and

qk =
∑

s=1,...,R:
ηsk=0

2 +
∑

s=1,...,R:
ηsk 6=0

3rsk

for 1 ≤ mk ≤ lk − 1 and 1 ≤ k ≤ d.

The proof is given in the supplement.

A crude upper bound on the QTT ranks of the CME operator, following from Theorem 2.4
in terms of r = maxs,k r

s
k, equals 3 · R · r and is still favorable, since it ensures the estimate

O
(
d lR2r2

)
for the number of parameters, i.e. the storage cost, where l1, . . . , ld ≤ l. Note that if

the kth factor ωsk of the s-th propensity function is a polynomial of degree psk, then ω
s
k (9) can

be represented in the QTT format with ranks bounded by rsk = psk + 1 uniformly in lk, see [44,
Corollary 13] and [51, Theorem 6]. In particular, this is the case when the reaction network
is composed entirely of elementary reactions. Our numerical experiments show that the QTT
ranks of propensity vectors corresponding to rational propensity functions are low as well, which
results in low QTT ranks of the CME operator (see Section 2.3.3).
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2.2.4 Transposed QTT representation

So far we have shown that the CME operator (3) under the FSP projection admits the
low-parametric representation in the standard QTT format introduced in Sections 2.2.1–2.2.2.
However, such a compressibility of the operator does not imply that the format is suitable for the
efficient numerical solution of the CME. The following example demonstrates a simple example
of non-axis-parallel features in the data, which cannot be represented in the format with low
ranks. Our numerical experiments show that such features in the data may arise in systems with
a conservation relationship between two or more chemical species resulting in a strong correlation
in their copy numbers.

To illustrate this, let us consider the identity matrix and its vectorization:

Ai
j

= ui,j = δ(i, j) for 1 ≤ i, j ≤ n, (14)

where n = 2l. The matrix A, which is the only TT unfolding and the lth QTT unfolding of the
vector u, is of full rank. This implies that an exact representation of u in the formats described
for vectors in Sections 2.2.1–2.2.2 will have at least one rank equal to 2l and cannot represent u
efficiently. However, the matricization A is perfectly separable:

A =


1

1
. . .

1

 =

(
1 0
0 1

)⊗ l
,

with a QTT matrix decomposition consisting of l cores Vk of size 1× 2× 2× 1, given by

Vk(1, ·, ·, 1) =

(
1 0
0 1

)
and with QTT ranks equal to 1, . . . , 1. In other words, the indices i = i1, . . . , il and j = j1, . . . , jl
may not be separable at all, while the mixed and re-ordered indices i1, j1, . . . , il, jl are perfectly
separable. The ordering of the multi-index should reflect the structure in the data to achieve an
optimal compression.

The example above hints at a natural modification of the QTT decomposition. We rep-
resent in the TT format the quantized vector with virtual dimensions permuted so that the
“virtual” indices corresponding to the same levels of quantization of different physical dimensions
are adjacent; for example, for l1 = . . . = ld = l instead of (13) we use the ordering

j1,1, . . . , jd,1︸ ︷︷ ︸
1st level

, j1,2, . . . , jd,2︸ ︷︷ ︸
2nd level

, . . . . . . , j1,l, . . . , jd,l︸ ︷︷ ︸
dth level

. (15)

When l1, . . . , ld are not equal, in order to obtain a similar to (15) transposed ordering of indices,
we introduce void indices jk,mk with nk,mk = 1 for lk + 1 ≤ mk ≤ max1≤k′≤d lk′ , reorder all the
“virtual” indices according to (15) and then drop the void ones. This modification of the QTT
format, which we refer here to as quantized-and-transposed Tensor Train; shortly, transposed
QTT or QT3. It was first applied to vectors in [55]; namely, to vectors of the form

uj1,...,jd =

{
1,

∑d
k=1 jk ≤ 2l,

0, otherwise,

where j = (j1, . . . , jd) ∈
{

1, . . . , 2l
}d. Such a vector may be considered as a discretization of the

indicator function of the simplex
{
x ∈ Rd≥0 : ‖x‖1 ≤ 1

}
. In [55], u was shown to have a QT3

decomposition of ranks bounded linearly in d uniformly in l. In the particular case of d = 2
such a bound follows from the result of [53] on the structure of Toeplitz matrices generated by
tensor-structured vectors.
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The index ordering (15) aims at the low-rank representation of such tensors, in which the
physical dimensions are coupled on the corresponding virtual levels, i.e. scales, much more than
different scales are within each single dimension. This is the case for the extreme example (14),
where we end up with a rank-one decomposition if we choose to separate the scales first, and
the physical dimensions, then. Despite such a difference in approximation properties, from the
algorithmic point of view, QT3 is a minor modification of the standard, widely used form of the
QTT format. We do not imply any particular ordering of indices by simply referring to QTT.

2.2.5 The structure of the CME operator in the transposed QTT format

Similarly to Theorem 2.4, we can bound the ranks of the CME operator in the transposed
QTT format relying on the ordering (15) of “virtual” indices.

Theorem 2.5. Consider the projected CME operator A defined by (3). Assume that for every
s = 1, . . . , R and k = 1, . . . , d the one-dimensional vector ωsk from (8)–(9) is given in a QTT
decomposition of ranks bounded by rsk; and that ηsk = 0 implies rsk = 1. Then for A there exists
a QT3 decomposition of ranks bounded by

R∑
s=1

(
1 +

∏
k∈Ks

2

)( ∏
k∈Ks

rsk

)
,

where Ks = {k ∈ N : 1 ≤ k ≤ d and ηsk 6= 0}.

The proof is given in the supplement.

As Section 2.3.4 shows, the QT3 ranks of the CME operator may be significantly lower.

2.3 Numerical experiments

2.3.1 Common details

In the presentation of our numerical experiments, we use the following notation for the
parameters of the DMRG solver: the required relative residual RES of the linear system, the
maximum number SWP of its iterations (“sweeps”), the maximum number RST of GMRES restarts
for the “local problem” of the DMRG optimization procedure, the maximum number ITR of such
iterations before a restart, the maximum feasible rank RMX, the rank KCK of random components
added to the solution to avoid stagnation. The DMRG iterations continue until either their
number reaches SWP or the relative residual is less than or equal to RES. In every particular run
all those parameters are the same for all time steps.

The fact that the DMRG solver, as any other tensor-structured solver available, converges
only locally, requires the time steps to be rather small to allow for the corresponding linear
systems being solved. For this reason, we have to use an equidistant mesh of mesh width h
on [h, T1], where the transient processes are strong, but on [T1, T ] can increase the mesh width
geometrically with the grading factor σ2 = tm−1

tm
= 1 − h

T1
, which is only slightly less than 1.

On [0, h] we initialize our algorithm by M0 = 10 steps graded geometrically with the factor
σ0 = tm−1

tm
= 0.5. On all time intervals we use polynomial spaces of degree ρ = 3 to discretize (2)

as described in Section 6.1, since the aforementioned limitation of the DMRG solver prevents
us from using high polynomial degrees and enjoying the exponential convergence of the time
discretization. For the bases in polynomial spaces corresponding to the time steps we take the
orthonormal system of normalized Legendre polynomials.

At the mth time step, after having obtained Pm as an approximate solution of the cor-
responding linear system (20), we evaluate p−m and reapproximate it in the TT format with
relative `2-accuracy EPS in order to drop excessive QTT components.

We compare the evaluated solution or its marginal to a reference data. By ∆`p we denote
the `p-norm of the discrepancy. Generally we start with the `2-norm, which can be easily com-
puted even when the comparison is made only in the (Q)TT format and cannot be made in the
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Direct Approach Proposed Approach
run solution operator solution truncated solution operator

Mem Mem Mem ratio Mem ratio Mem ratio
d independent birth-death processes

d = 1 4.103 1.687 736 1.80−1 264 6.45−2 992 5.91−5
d = 2 1.687 2.8214 3858 2.30−4 528 3.15−5 2852 1.01−11
d = 3 6.8710 4.7221 7742 1.13−7 898 1.31−8 4800 1.02−18
d = 4 2.8114 7.9028 12176 4.33−11 1432 5.09−12 6748 8.52−26
d = 5 1.1518 1.3236 16262 1.41−14 1946 1.69−15 11032 8.30−33

genetic toggle switch
only 3.367 1.1215 65264 1.95−3 – – 10988 9.76−12

enzymatic futile cycle
(A)

4.196 1.7613
18396 4.39−3 8472 2.02−3 25848 1.47−9

(D) 360332 8.59−2 290144 6.92−2 5584 3.17−10

Table 1: Overview of the QTT compression of the storage needed for solutions (maximum
throughout the time stepping) and CME operators. For details on “truncated solution” see
Section 2.3.1. Solution Mem in the Direct Approach is the number of states taken into account
in the FSP, which is equal to the number of entries, N , in the solution vector. For the CME
operator, Mem is N2, the number of entries in the matrix. In the Proposed QTT Approach,
ratio indicates the memory storage compression ratio, i.e. the ratio of Mem in the Proposed QTT
Approach to that in the Direct Approach. The exponents are given in boldface for the base 10.

full format (which is the case in Section 2.3.2 for d ≥ 3). In some cases we compute also the dis-
crepancy for p = 1 and the probability deficiency ERRΣ [p−m ] = |1−

∑
p−m |. The reference data

is also obtained with a certain accuracy which cannot be reduced arbitrarily. Moreover, in some
cases our solution appears to be more accurate, which accounts for using the term “discrepancy”
instead of “error”.

In the first and third examples we reapproximate the solution once more, but this time
with with relative `2-accuracy α ·

∆`2

‖p−m ‖ , where α is 0.05 and 0.01 respectively. Below we refer to

this procedure as truncation, and the approximated vector, as truncated solution. The procedure
ensures that the relative discrepancy in the `2-norm grows by the factor of 1 + α at most and
shows what QTT ranks allow for our numerical solution, obtained without using any reference
data, to ensure almost the same discrepancy from the reference data (which is related to the
accuracy of both the solution and reference data) as before truncation.

2.3.2 d Independent Birth-Death Processes

As a first example we consider a system composed of d chemical species with {X1, . . . , Xd}
a vector of random variables representing the species count of each. The dynamics of the random
vector are governed by independent birth-death processes. For the k-th species, the corresponding
reactions are given by

∅
bk−−⇀↽−−
dk

Xk

where bk is the spontaneous creation rate and dk is the destruction rate for species Xk. The
dynamics of any one chemical species of this system is independent of the dynamics of all others.
Given the initial condition Xk(0) = ξk for each k, the marginal distribution for any one species
Xk at time t is given by:

pk(xk; t) = P(xk, λk(t)) ?xkM(xk, ξk, p
(k)(t)), xk ∈ Z≥0

where P(·, λk(t)) is the Poisson distribution with parameter λk(t), ?xk indicates the discrete
convolution in variable xk,M

(
xk, ξk, p

(k)(t)
)
the multinomial distribution with parameter p(k)(t),
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d N ‖Ap0 ‖2
‖p0 ‖2

‖Ap−M ‖2
‖p−M ‖2

reff ∆`2 TIME

1 212 1.4 +3 1.0−3 3.53 1.9−5 87
2 224 2.4 +3 1.4−3 3.42 2.3−5 704
3 236 3.5 +3 1.8−3 3.38 3.5−5 1548
4 248 4.5 +3 2.0−3 3.37 3.6−5 2516
5 260 5.5 +3 2.3−3 3.36 3.5−5 3544

Table 2: d independent birth-death processes: reff = reff
[
p−M

]
, ∆`2 = ∆`2

[
p−M

]
, computational

TIME in seconds; rmax
[
p−M

]
= 6 for all d. N is the number of states taken into account in the

FSP. The exponents are given in boldface for the base 10.

and the parameters p(k) and λk evolve according to the reaction rate equations

d
dt p

(k)(t) = −dkp(k)(t) , d
dt λk(t) = bk − dkλk(t),

p(k)(0) = 1, λk(t) = 0.

See [16, Theorem 1] for details. Since X1, . . . , Xk are mutually independent, the full joint PDF
at time t, p(t), is the product of the marginals:

p(t) =
d∏

k=1

pk(t)

that is, this system has an explicit formula for the solution regardless of the number of chemical
species involved. We can, therefore, evaluate the accuracy and observe the complexity scaling of
the hp-DG-QTT solver as the number of chemical species increases.

For numerical simulations we assume bk = 1000 and dk = 1 for 1 ≤ k ≤ d and consider
the FSP with lk = 12. We solve the corresponding projected CME for d = 1, 2, 3, 4, 5 to check
that in all these cases the hp-DG-QTT method using the ordering (13) without transposition is
capable of revealing the same low-rank QTT structure of the solution. For the CME operator
we have rmax [A] ≤ 8 up to accuracy 5 · 10−15.

For a zero initial value we run the time stepping till T = 10 with T1 = 10−1 and h = 10−3,
which takes M = 569 steps overall. The settings of the DMRG solver are: RES = 2 · 10−6,
SWP = 2, RMX = 20, ITR = 100, RST = 1, KCK = 1. The evaluation accuracy is EPS = 10−8.
The results, which are presented in Figure 2 and Table 2, show that the same low-rank structure
of the solution is adaptively reconstructed by the algorithm for all d considered. The transient
phase causes the growth of QTT ranks, because at certain steps of every sweep the DMRG
solver merges virtual dimensions corresponding to different species and attempts to adapt the
rank separating them. As a consequence, the transient phase is passed with overestimated ranks,
but at larger times the QTT structure of the numerical solution is the same.

2.3.3 Toggle Switch

The next example models a synthetic gene-regulatory circuit designed to produce bistability
over a wide range of parameter values [56]. The network is composed of two repressors and two
constitutive promoters arranged in a feedback loop so that each promoter is inhibited by the
repressor transcribed by the opposing promoter 3. This mutually inhibitory arrangement gives
rise to the robust bistable behavior of the network. If the concentration of one repressor is high,
this lowers the production rate of the other repressor, keeping its concentration low. This allows
a high rate of production of the original repressor, thereby stabilizing its high concentration.

A stochastic model of the toggle switch was considered in [57] and consists of the following
four reactions:

∅
α1

1+V β−−−−→ U, ∅
α2

1+Uγ−−−→ V
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Figure 3: Toggle Switch consisting of double negative feedback loop.

U δ1−→ ∅, V δ2−→ ∅

where U and V represent the two repressors. Denote the species counts of each by U and V ,
respectively. The stochastic model admits a bimodal stationary distribution over a wide range
of values of the rate constants. We consider the set of parameters from [57] which were selected
to test the efficiency of using available numerical algorithms to calculate matrix exponentials to
solve low dimensional FSP approximations of the CME. We then scaled the parameters so that
a larger set of states would be required to guarantee an FSP truncation with low approximation
error. While a different set of parameters were considered in [58, 20], which required a larger
FSP truncation, this choice of values renders the system symmetric under interchange of the
roles of U and V. This situation is less biologically relevant than what we consider here.

For this numerical example we assume α1 = 5000, α2 = 1600, β = 2.5, γ = 1.5, δ1 = δ2 = 1.
We consider the FSP with lU = 13, lV = 12, which allows to take into account 225 states. The
initial value is zero. We use the ordering (13) without transposition. For the CME operator we
have rmax [A] = 14 and reff [A] = 10.89 up to accuracy 10−14. The settings of the DMRG solver
are: RES = 10−6, SWP = 3, RMX = 200, ITR = 100, RST = 2, KCK = 2. The evaluation accuracy
is EPS = 10−8. We model the dynamics of the CME till T = 100 with T1 = 10 and h = 0.03,
which takes M = 1111 steps overall.

The results are presented in Figure 4. At the terminal time T we have ERRΣ

[
p−M

]
= 3.17 ·

10−5. The validation with the PDF based on 816 million Monte Carlo simulations (every 1000
draws taking on average over 360 seconds, adding up to an overall CPU time over 3 ·108 seconds)
yields ∆`1

[
p−M

]
= 8.34·10−4, and for the 2- and Chebyshev norms we have ∆`2

[
p−M

]
/
∥∥p−M ∥∥2

=

6.62 · 10−4 and ∆`∞

[
p−M

]
= 5.50 · 10−6. As for the ranks, reff

[
p−M

]
= 8.74 and rmax

[
p−M

]
= 13.

Figure 4c shows that after t ≈ 20 the norm of the time derivative stagnates at approximately 10−5

determined by the accuracy parameters chosen, and the following time steps require negligible
computational effort. At the same time, as we see in Figure 4b, all QTT ranks stabilize under
15, but the transient phase preceding that moment involves far higher ranks. Figure 5a presents
a snapshot of the distribution.

2.3.4 Enzymatic Futile Cycle

Futile cycles are composed of two metabolic or signaling pathways that work in opposite
directions meaning that the products of one pathway are the precursors for the other and vice
versa 6. This biochemical network structure results in no net production of molecules and often
results only in the dissipation of energy as heat [59]. Nevertheless, there is an abundance of known
pathways that use this motif and it is thought to provide a highly tunable control mechanism
with potentially high sensitivity [59, 60].

[60] introduced a stochastic version of the model with just the essential network components
required to model the dynamics. The stochastic model consists of six chemical species and six
reactions:

X + E f
+

k+1−−⇀↽−−
k+2

E b
+, X ∗ + E f

−
k−1−−⇀↽−−
k−2

E b
−,
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Figure 5: Snapshots of solutions.

E b
+

k+3−−→ E f
+ + X ∗, E b

−
k−3−−→ E f

− + X,

{X,X∗} represent the forward substrate and product, {E+,E−} denote the forward and reverse
enzymes, respectively. Note that this system is closed meaning that particles are neither created
nor destroyed. We denote the random variables representing the molecule count of each species
with italics.

For the particular set of initial conditions considered in [60] the number of states that are
reachable is large enough to render a direct numerical solution of the CME impractical. The
authors instead used the Gillespie Direct SSA to generate a large number of sample paths to esti-
mate the distribution. The authors also applied a diffusion approximation to their model which
resulted in a SDE which produced qualitatively similar dynamics. To the authors’ knowledge, no
attempt has been made so far towards the direct numerical solution of the CME for this system.

At time t, let XT(t) denote the total amount of both free and bound substrate, and
ET

+(t) and ET
−(t) the total forward and reverse enzymes, respectively. We observe the following

conservation relations:
Ef

+(t) + Eb
+(t) = ET

+(t) = ET
+(0)

Ef
−(t) + Eb

−(t) = ET
−(t) = ET

−(0)

X(t) +X∗(t) + Eb
+(t) + Eb

−(t) = XT(t) = XT(0)

Using the above, one can establish an upper and lower bound relating the species count of X(t)
to X∗(t) that depends only on the total initial amount of substrate and the total initial amount
of enzymes in the system

XT(0)−X∗(t) ≥ X(t) ≥ XT(0)−X∗(t)−
(
ET

+(0) + ET
−(0)

)
.

Assuming that the initial quantity of enzymes ET
+(0)+ET

−(0) is small, for a given copy number of
X∗(t),X(t) may take at most ET

+(0)+ET
−(0) different values. SinceXT(t) is a conserved quantity,

this means that X(t) and X∗(t) will be strongly anti-correlated. Under these circumstances, we
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Figure 6: Enzymatic Futile Cycle.

find in our numerical experiments that the transposed QTT format is better suited than the
standard QTT to efficiently represent the corresponding PDF.

Following [60], we consider k+1 = 40, k+2 = 104, k+3 = 104, k−1 = 200, k−2 = 100,
k−3 = 5000. For initial value we take Ef± = 2, Eb± = 0, X = 30, X∗ = 90. We consider the FSP
projection with l

Eb,f±
= 2 and lX = lX∗ = 7, i.e. with 222 states. We present 4 runs: (A), (B) and

(C) use the transposed QTT format, and (D), the standard QTT. Theorems 2.5 and 2.4 bound the
exact QTT ranks of the CME operator by 216 and 21 respectively, and numerically for accuracy
10−14 we have rmax [A] = 38, reff [A] = 17.93 in (A)–(C) and rmax [A] = 11, reff [A] = 8.30 in
(D). We model the dynamics of the CME till T = 1 with T1 = 0.3 and h = 5 · 10−4, which takes
M = 1332 steps overall. For (A) and (D), which differ in the format, we keep the same accuracy
parameters: RES = 10−6 and EPS = 10−8. On the other hand, (B) and (C) use the same format
as (A), but different accuracy parameters. In (B) they are RES = 10−8 and EPS = 10−10; in (C),
RES = 10−4 and EPS = 10−6. As a result, (B) and (C) provide, respectively, a more accurate and
a cruder solution as compared to (A).

This experiment shows, in particular, that lower ranks of the operator do not necessarily
lead to lower ranks of the solution, and that the transposed QTT format actually ensures smaller
ranks of the solution in this example. We set RMX = 200 in (A)–(C) and RMX = 400 in (D) and
observe that max0≤tm≤0.1 rmax [Pm ] reaches 51 for (A) and 359 for (D). Other parameters of the
DMRG solver are the same for all 4 runs: SWP = 5, ITR = 50, RST = 2, KCK = 2.

For everym, we validate our solution p−m by comparing its marginal distribution
∑

Eb,f
±
p−m

to that based on 18.6·109 Monte Carlo simulations (every 10000 draws taking at least 110 seconds,
amounting to an overall CPU time over 2 ·108 seconds). The discrepancy ∆`p = ∆`p

[∑
Eb,f
±
p−m

]
in the marginal distribution with respect to X and X∗ is reported for p = 1 in Figure 7a and
Table 3. With p = 2 we use it for the discrepancy-based truncation, which, as Figure 7b shows,
does not affect the probability deficiency significantly.

Figure 7a shows that the refined run (B) yields the smallest discrepancy, which suggests
that the reference distribution is sufficiently accurate to allow for the discrepancy to represent
the actual error in the results of (A), (B) and (C). As we can see from Figure 7d, in all 4 runs
the time derivative stagnates after t ≈ 0.1, at lower levels for more accurate runs. Let us note
that at that stage in (A)–(C) it exhibits relatively strong oscillations compared to (D), which
happens due to different effect of the addition of random components in the DMRG solver in
the presence and absence of the transposition. On the other hand, compared to (A), the run (D)
yields a less accurate solution and reaches t = 0.1 almost 9 times later, the accuracy settings
being the same in these two runs. In all, the transposition appears to make the QTT format far
more efficient in this experiment, and we expect it to be even more so in larger systems of such
type.

The results are given in Figures 7 and 8 and in Table 3. Figure 5b presents a snapshot of
the marginal distribution.

18



10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−5

10
−4

10
−3

 

 
(A)
(B)
(C)
(D)

(a) Discrepancy ∆`1 (before truncation) from
the marginal PDF based on Monte Carlo sim-
ulations

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

 

 

(A)
(A), truncated
(B)
(B), truncated
(C)
(C), truncated
(D)
(D), truncated

(b) Probability deficiency ERRΣ

[
p−m

]

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
0

10
1

10
2

10
3

10
4

 

 
(A)
(B)
(C)
(D)

(c) Cumulative computation time (sec.)

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

 

 

(A)
(B)
(C)
(D)

(d) Relative norm ‖
Ap−

m ‖2
‖p−

m ‖2
of the derivative

Figure 7: Enzymatic futile cycle. The values are given vs. tm. Markers are omitted for tm ≥
2 · 10−3 in 7b–7c

19



10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

5

10

15

20

25

30

 

 
  P

m

  p
m

−

  p
m

− , truncated

(a) Effective QTT ranks reff for (A)

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

10

20

30

40

50

60

 

 
  P

m

  p
m

−

  p
m

− , truncated

(b) Maximum QTT ranks rmax for (A)

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

50

100

150

 

 
  P

m

  p
m

−

  p
m

− , truncated

(c) Effective QTT ranks reff for (D)

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

50

100

150

200

250

300

350

400

 

 
  P

m

  p
m

−

  p
m

− , truncated

(d) Maximum QTT ranks rmax for (D)

Figure 8: Enzymatic futile cycle. QTT ranks of the solution. The values are given vs. tm.
Markers are omitted for tm ≥ 2 · 10−3
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run ‖Ap−m ‖2
‖p−m ‖2

reff rmax ∆`1 ERRΣ TIME

m = 210, tm = 0.1

(A) 3.5−4 13.17 27 5.7−5 2.3−5 1.073

(B) 6.5−5 12.14 25 4.6−5 6.1−7 1.603

(C) 1.3−1 12.16 24 2.3−3 2.1−3 9.872

(D) 4.1−4 60.06 109 1.1−4 1.0−4 9.233

m = M = 1332, tm = T = 1

(A) 1.8−4 13.66 27 7.2−5 2.5−5 3.703

(B) 1.1−5 12.06 25 5.7−5 6.2−7 4.213

(C) 2.5−2 12.85 24 3.3−3 1.3−3 4.033

(D) 3.7−4 58.97 107 1.7−4 1.7−4 1.524

Table 3: Enzymatic futile cycle: reff = reff [p−m ], rmax = rmax [p−m ], ∆`1 = ∆`1

[∑
Eb,f
±
p−m

]
,

ERRΣ = ERRΣ [p−m ] are given for the truncated solution p−m ; computational TIME is given in
seconds; ‖Ap0 ‖2

‖p0 ‖2
= 5.2 · 104. The exponents are given in boldface for the base 10.

3 Methods

To solve the initial value problem for (2), we exploit the hp-DG-QTT algorithm proposed
in [35], implemented in MATLAB. It uses an implicit, exponentially convergent spectral time
discretization of discontinuous Galerkin type (see Sections 6.1 and 6.2). Discretization of the
resulting, time-discrete CME in “species space” is done in the QTT format. Our realization of
this implementation relies on the public domain TT Toolbox which provides basic TT-structured
operations and solvers for linear systems in the QTT format. The TT toolbox is publicly available
at http://spring.inm.ras.ru/osel and http://github.com/oseledets/TT-Toolbox; to be
consistent, we use the GitHub version of July 12, 2012 in all examples below. We run the hp-
DG-QTT solver in MATLAB 7.12.0.635 (R2011a) on a laptop with a 2.7 GHz dual-core processor
and 4 GB RAM, and report the computational time in seconds.

For the solution of the large, linear systems in the QTT and QT3 formats in each time
step, we use the DMRG optimization solver, proposed for the TT format in [61] and available
as the function dmrg_solve3 of the TT Toolbox. The DMRG solver still lacks a rigorous the-
oretical foundation. In [62] a closely related Alternating Least Squares (ALS) approach was
mathematically analyzed and shown to converge at least locally. However, in the high order
implicit time discretizations of the CME considered in this paper, the DMRG solver proved to
be highly efficient. More on the mathematical ideas behind the ALS and DMRG optimization
in the TT format can be found in [63]. We remark that while there is currently no estimate
of the convergence rate for the DMRG algorithm, in our numerical experiments reported below
we found the solver to be highly efficient. The DMRG solver, under certain restrictions on the
time step, manages to find a parsimonious QTT formatted solution of the linear system (up to a
specified tolerance). Moreover, the solver in effect automatically adapts the both the QTT rank
as well as the QTT “basis” of the solution at every time step guaranteeing that it is sufficiently
rich in order to capture the principal dynamics of interest.

In the first numerical example the solution is symmetric and exactly rank-one separable,
which allows us to use the standard MATLAB solver ode15s in the sparse format to obtain the
univariate factor of a reference solution. In other examples we used SPSens beta 3.4 massively
parallel package for the stochastic simulation of chemical networks (http://sourceforge.net/
projects/spsens/) [64], to construct reference PDFs. Those computations were carried out
on up to 1500 cores of Brutus, the central high-performance cluster of ETH Zürich (http:
//www.clusterwiki.ethz.ch/brutus/Brutus_wiki).
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4 Conclusion

We presented a novel, “ab-initio” computational methodology for the direct numerical
solution of the CME. The methodology exploits the time-analytic nature of solutions to the
CME and the low-rank, tensor structure of the CME operator by combining an hp-timestepping
method that is order and step size adaptive, unconditionally stable and exponentially convergent
with respect to the number of time discretization parameters, with novel, tensor-formatted linear
algebra techniques for the numerical realization of the method. In particular, after an initial
projection on a (sufficiently rich) finite state, the so-called Quantized, Tensor-Train (QTT for
short) formatted numerical linear algebra affords dynamic adaptation of the state-space size, as
well as of the principal components, or basis elements of the numerical representation of solution
vectors in the numerical simulation of the time evolution of the CME solution. The approach
is, therefore, superior to fixed basis approaches, even when used with adaptivity, such as those
reported in [14, 20, 65, 19].

As we mention above, the performance of the approach proposed essentially relies on the
efficiency of the solver of TT-structured linear system. In particular, a globally (or “less strictly
locally”) convergent iterative solver would allow us to take larger time steps and to exploit the
exponential convergence of the hp-DG time discretization. We believe that while the presently
reported numerical results which were obtained with the DMRG solver are quite encouraging,
ongoing research on TT-structured linear system solvers holds the promise for a substantial
efficiency increase of the present methodology. We only mention a family of alternating minimal
energy methods which was announced very recently in [66].

We also mention that, of course, the choice of tensor format and, possibly, index ordering,
has an essential impact on the performance of the approach. The computational experiments
reported in Section 2.3.4 of the present paper show that even a straightforward permutation
of “virtual” indices produced by quantization may allow to exploit additional structure in the
data and the QTT formatted CME solution and, therefore, may improve the performance of the
QTT-structured approach dramatically. We point out that the TT format can be considered as
a special case of Tensor Network States: TT formatted tensor are tensor networks in which the
tensor network has the form of a simple, rooted tree. A general discussion of tensor networks
and their use in numerical simulations for quantum spin systems can be found in [67, 68]. As
for the numerical solution of the CME, particular real-life problems might require more sophis-
ticated tensor networks to be used to efficiently approximate reachable states of the systems in
question. The mathematical investigation of the relative merits and drawbacks of tensor formats
for particular applications is currently undergoing rather active development; we mention only
the recent monograph [37] and the references there.

We finally mention that recently, and independently, TT formatted linear algebra methods
for the CME were proposed in [69]; a low order time stepping, and no transposition of tensor
trains was used in this reference. The CME examples presented in [69] also included a toggle
switch. Unfortunately, the paper does not contain mathematical convergence results, and no
attempt is made to quantify, even for the numerical examples considered, the numerical errors
for the numerical solutions obtained, for example by comparison with benchmark numerical
results obtained with other simulation methods. The comparisons in the present paper with
state-of-the-art, massively parallel stochastic simulation packages, however, allow on the one
hand, validation of accuracy of the QTT-based solutions obtained here and, on the other hand,
also evidence the dramatic increase in efficiency afforded by the new deterministic approach:
Monte Carlo simulations on 1500 cores of a high-performance cluster were matched in accuracy
and outperformed in the wall-clock time by a MATLAB implementation running on a notebook.
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6 Supplementary material

First, we outline the hp-DG time stepping in Section 6.1 and discuss the tensor structure of
resulting linear systems in Section 6.2. In Section 6.3 we revisit the notions of core matrices and
strong Kronecker product according to the papers [52, 53, 54]. We use the notation introduced
there to present in Section 6.4 some basic operations in the TT format. Finally, in Section 6.5 we
provide proofs of Theorems 2.4, 2.5 and 6.4 and, therefore, for all assertions on QTT ranks made
in the present paper. We note that the Theorems 2.4 and 2.5 are new mathematical results,
and Lemma 6.11, on which the latter is based, may have applications well beyond the numerical
solution of the CME.

6.1 hp-DG discretization of the CME

Let X = Rn1 × . . .×Rnd ∼ RN , where N = n1 · . . . · nd, and consider the Cauchy problem
for an autonomous ODE on a time interval J = (0, T ) with an operator A : X → X and an
initial value p0 ∈ X: find a continuously differentiable function p : J → X such that{

ṗ(t) = A · p(t) for t ∈ J,
p(0) = p0 .

(16)

The corresponding Cauchy problem for (5) is a particular example of (16). The solution to (16)
is given theoretically by

p(t) = exp (tA) · p0 , t ∈ J, (17)

but the straightforward numerical evaluation of the matrix exponential involved is a very chal-
lenging task due to the “curse of dimensionality”. Instead, we use the QTT-structured Discontin-
uous Galerkin (DG) time-stepping scheme, proposed in [35], to solve (16). For abstract, linear
and autonomous initial value problems such as (16), which admits a unique solution which is an
analytic function of time t and which takes values in the high-dimensional state space RN , the
discontinuous-Galerkin (DG for short) time discretization was suggested and analyzed in detail
earlier in [70]. In the presentation of the hp-DG-QTT algorithm for (16) below we rely on the
latter paper in the presentation of the DG part, and on the former one, in the presentation of
aspects related to the QTT structure of CME operator and of the tensors arising after the DG
time semidiscretization.

To present the DG semidiscretization, we denote by Pρ (I,X) the space of polynomials
defined on a finite interval I, of degree at most ρ at most and with coefficients from the abstract
space X.

Definition 6.1. Let M = {Jm}Mm=1 be a partition of the time interval J into subintervals
Jm = (tm−1, tm), 1 ≤ m ≤M , and ρ ∈ (N ∪ {0})M . Consider the space

Pρ (M, X) = {p : J → X : p|Jm ∈ Pρm (Jm, X) for 1 ≤ m ≤M}

of functions, which are polynomials of degree ρm at most on Jm for all m. Let p+
m = limt↓tm p(t)

and p−m = limt↑tm p(t) and for all feasible m and for all p ∈ Pρ (M, X).
Then the Discontinuous Galerkin FEM formulation of (16), corresponding to the partition

M and the vector of polynomial degrees ρ, reads: find p ∈ Pρ (M, X) such that

M∑
m=1

∫
Jm

〈ṗ−Ap, q〉 dt+
M∑
m=1

〈
p+
m−1 − p

−
m−1 , q

+
m−1

〉
= 0 (18)

for all q ∈ Pρ (M, X), where p−0 stands for the initial value p0 .

Equation (18) can be understood as a time-stepping method: if p|Jm ∈ Pρm (Jm, X) are
known for 1 ≤ m ≤ m̂− 1, then p|Jm̂ ∈ Pρm̂ (Jm̂, X) can be found as the solution to∫

Jm̂

〈ṗ−Ap, q〉 dt+
〈
p+
m̂−1 − p

−
m̂−1 , q

+
m̂−1

〉
= 0. (19)
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For 1 ≤ m ≤M let {φj}ρmj=0 be a basis in P
ρm ((−1, 1), X), then the corresponding temporal

shape functions on Jm are φj ◦ F−1
m , 0 ≤ j ≤ ρm, where the affine map Fm : (−1, 1) → Jm is

defined by t = Fm(τ) = 1
2(tm+tm−1)+ 1

2(tm−tm−1)τ for τ ∈ (−1, 1). If p|Jm =
∑ρm

j=0

(
φj ◦ F−1

m

)
·

Pmj , where Pm ∈ Xρm+1, then (19) yields the following linear system on the coefficients:

(Cm ⊗ I−Gm ⊗A) · Pm = φm−1 ⊗p−m−1 , (20)

where (Cm ) i
j

=
∫ 1
−1 φ

′
j(τ)φi(τ) dτ + φj(−1)φi(−1) and (Gm ) i

j
=
∫ 1
−1 φj(τ)φi(τ)dτ for 0 ≤

i, j ≤ ρm, while
(
φm−1

)
i = φi(−1) for 0 ≤ i ≤ ρm.

Let us denote |M| = max1≤m≤M (tm − tm−1). A fixed point argument (valid even for
nonlinear evolution equations with Lipschitz nonlinearity) was used in [70] to prove the following
result.

Proposition 6.2 (Theorem 2.6 in [70]). Assume that ‖A‖2 · |M| < 1. Then there exists a unique
solution to the linear tensor equations (18) which result from the DG time-semidiscretization of
the CME.

This existence result was complemented in [70] by a convergence rate estimate for the DG
solutions.

Proposition 6.3. Let p̂ and p be solutions of (16) and (18) respectively. Then

sup
t∈J
‖p(t)− p̂(t) ‖2 ≤ C(‖A‖2, T ) · C̃(ρ) · max

1≤m≤M

[
(c|M|)ρm+1 · ρ−ρm−

1
4

m · exp ρm

]

holds with a positive constant c > 0, where |ρ| = max1≤m≤M ρm and C̃(ρ) = log
1
2 max

{
2, |ρ|

}
.

The proof follows from Theorem 3.12 in [70] in the analytic case, and from Stirling’s formula.

The hp-DG time discretization allows, on the one hand, to resolve fast transients in the
evolution by the (usual) time-step adaptation and, on the other hand, affords order adaptation
for time-analytic solutions such as matrix exponentials of the CME operator. In particular, due
to the time-analyticity of the solution, exponential rates of convergence in ρ are achieved, as can
be seen from Proposition 6.3: for ρ = (ρ, . . . , ρ) the error bound of Proposition 6.3 can be recast
as

sup
t∈J
‖p(t)− p̂(t) ‖2 ≤ C exp(−bρ)

with constants C, b > 0 asymptotically independent of ρ, see [70, Theorem 3.18]. This implies
that a prescribed level of accuracy ε can be reached with ρM = O

(
log ε−1

)
temporal degrees of

freedom.

6.2 QTT structure of time-step linear systems

Let us assume that the matrix A is represented in the QTT or QT3 format in terms of
d̃ cores. In particular, if nk = 2lk for 1 ≤ k ≤ d, then d̃ = l1 + . . . + ld for the ultimate
quantization. The system (20) is of order ρm×n1× . . .×nd, where the first dimension accounts
for the coefficients Pm of the solution p on Jm. In the tensor representation of the system and
its solution we keep the temporal index as a single dimension (without quantization) connected
to the first “virtual” spatial index, so that Pm is indexed by the tuples

j,︸︷︷︸
time dim.

j1,1, . . . , j1,l1︸ ︷︷ ︸
1st dimension

, j2,1, . . . , j2,l2︸ ︷︷ ︸
2nd dimension

, . . . . . . , jd,1, . . . , jd,ld︸ ︷︷ ︸
dth dimension

(21)

and
j,︸︷︷︸

time dim.

j1,1, . . . , jd,1︸ ︷︷ ︸
1st level

, j1,2, . . . , jd,2︸ ︷︷ ︸
2nd level

, . . . . . . , j1,l, . . . , jd,l︸ ︷︷ ︸
dth level

(22)
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in the QTT and QT3 formats respectively, cf. (13) and (15). The right-hand side of (20) is
formed by attaching φm to a QTT or QT3 decomposition of pm−1

− , therefore the first rank of
the resulting decomposition is equal to 1 and the rest d̃ are the same as for pm−1

− . As for the
matrix of (20), it can be trivially represented with the first rank equal to 2 and each remaining
rank equal to 1 plus the corresponding rank of A.

Theorem 6.4. Assume that A is represented in the QTT or QT3 format in terms of d̃ cores
with ranks r1, . . . , rd̃−1. Then the matrix of system (20) can be represented in the corresponding
format in terms of d̃+ 1 cores with ranks 2, r1 + 1, . . . , rd̃−1 + 1.

The proof is given at the end of this supplement.

6.3 Core matrices and the strong Kronecker product

By a TT core of rank rk−1×rk and mode size mk×nk we denote an array of real numbers,
which has size rk−1×mk×nk×rk. The first and the last indices of a core are called (respectively,
left and right) rank indices, while the others are referred to as mode indices. Subarrays of a core,
corresponding to particular values of rank indices, have size mk × nk and are called TT blocks.
We may consider the core Vk as an rk−1 × rk-matrix with TT blocks as elements:

Vk =

 G11 · · · G1rk
...

...
...

Grk−11 · · · Grk−1rk

 =
[
Gαk−1αk

]
αk−1=1,...,rk−1
αk=1,...,rk

, (23)

where Gαk−1αk , αk−1 = 1, . . . , rk−1, αk = 1, . . . , rk are TT blocks of Vk, i.e. Vk(αk−1, ik, jk, αk) =(
Gαk−1αk

)
ikjk

for all values of rank indices αk−1, αk and mode indices ik, jk. We refer to this
matrix as core matrix of Vk.

In order to avoid confusion, we use parentheses for ordinary matrices, whose entries are
numbers and which are multiplied as usual, and square brackets for cores (core matrices), whose
entries are blocks and which are multiplied by means of the strong Kronecker product “on” defined
below. Addition of cores is meant elementwise. Also, we may think of Gαβ or of any submatrix of
the core matrix in (23) as subcores of Vk. For example, given matrices or cores U11, U12, U21, U22

of equal mode size and compatible ranks, we may use them as subcores to compose the cores[
U11 U12

U21 U22

]
and

[
U11

U12

]
= diag [U11, U22] .

We leave zero blocks blank, as in the last equation.
To ease notation, we omit in TT decompositions like (10), (11) the mode indices with the

help of the strong Kronecker product [71]. To avoid the confusion with the Hadamard and tensor
products, we denote this operation by “on”, as in [52, Definition 2.1], where it was introduced as
follows, specifically for connecting cores into “tensor trains”.

Definition 6.5 (Strong Kronecker product on of TT cores). Consider cores V1 and V2 of ranks
r0×r1 and r1×r2 and of mode sizes m1×n1 and m2×n2 respectively, composed of blocks G(1)

α0α1

and G(2)
α1α2, 1 ≤ αk ≤ rk for 0 ≤ k ≤ 2. Then the strong Kronecker product V1 onV2 of V1 and

V2 is defined as core of rank r0 × r2 and mode size m1m2 × n1n2, consisting of blocks

Gα0α2 =

r1∑
α1=1

G(1)
α0α1
⊗G(2)

α1α2
, 1 ≤ α0 ≤ r0, 1 ≤ α2 ≤ r2.

In other words, we define V1 onV2 as a usual matrix product of the corresponding core
matrices, their entries (blocks) being multiplied by means of the Kronecker (tensor) product.
For example,[

G11 G12

G21 G22

]
on
[
H11 H12

H21 H22

]
=

[
G11⊗H11 +G12⊗H21 G11⊗B12 +G12⊗H22

G21⊗H11 +G22⊗H21 G21⊗B12 +G22⊗H22

]
.
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Equation (11) can be written then as

A = V1 onV2 on . . .onVd−1 onVd. (24)

In the particular case when the second mode length is 1 in each core, the strong Kronecker product
of them is a vector and the second mode indices can be omitted. For example, equation (11)
reads

p = U1 onU2 on . . .onUd−1 onUd. (25)

6.4 Some operations in the TT format

In this section we present a few basic operations in the TT format. The results given
for matrices are valid for vectors. Vice versa, the statements formulated for vectors hold for
matrices too. Indeed, the latter can be vectorized by merging their mode indices, subjected to
the operations in question, and the result can be turned back into a matrix.

Proposition 6.6 (Section 3.1 in[38]). If a vector p is given in a CP decomposition

p =

r∑
α=1

G1,α⊗ . . .⊗Gd,α,

it can be represented in the TT format as p = U1 on . . .onUd with Uk = diag [Gk,1, . . . , Gk,r] for
2 ≤ k ≤ d− 1,

U1 =
[
G1,1 . . . G1,r

]
and Ud =

Gd,1...
Gd,r

 .
In particular, the TT ranks are bounded by the CP rank.

Proposition 6.7 (Section 4.1 in[38]). Assume that p = U1 on . . .onUd and q = V1 on . . .onVd are
vectors of equal mode size, then a linear combination of them can be written as follows

αp+ βq =
[
U1 V1

]
on diag [U2, V2]on . . .on diag [Ud−1, Vd−1]on

[
αUd
βVd

]
for all α, β ∈ R.

Thus, the ranks of such a decomposition of αA+ βB are sums of the corresponding ranks
of the given decompositions of A and B.

Proposition 6.8. If a vector ω is given in the TT format through ω = U1 on . . .onUd, then its
diagonalization diagω can be represented in the TT format as diagω = V1 on . . .onVd, where
the cores of the matrix are obtained by diagonalizing all the blocks in every core of the vector:
Vk(α, i, j, β) = Uk(α, j, β) · δ(i, j) for all α, i, j, β and for 1 ≤ k ≤ d.

Therefore, TT ranks are preserved under diagonalization.

Proposition 6.9 (Section 4.3 in[38]). Consider matrices A and B given in TT represen-
tations A = U1 on . . .onUd and B = V1 on . . .onVd of ranks p1, . . . , pd−1 and q1, . . . , qd−1 re-
spectively. Let p0 = pd = q0 = qd = 1 and assume that for 1 ≤ k ≤ d the cores Uk =[
Aαk−1αk

]
αk−1=1,...,pk−1
αk=1,...,pk

and Vk =
[
Bβk−1βk

]
βk−1=1,...,qk−1
βk=1,...,qk

are of such mode size that all matrix-

matrix products Cαk−1βk−1 αkβk
= Aαk−1αk ·Bβk−1βk are correctly defined. Then the matrix-matrix

product A ·B has a TT decomposition A ·B = W1 on . . .onWd with

Wk =
[
Cαk−1βk−1 αkβk

]
αk−1=1,...,pk−1,βk−1=1,...,qk−1

αk=1,...,pk,βk=1,...,qk

and ranks p1q1, . . . , pd−1qd−1.
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The proof. The claim is obtained by writing the matrix-matrix product elementwise in terms of
TT cores and in changing the summation order.

For our considerations it is important that the corresponding TT ranks are multiplied
under matrix-matrix multiplication.

Proposition 6.10. Consider vectors p and q given in TT decompositions p = U1 on . . .onUd and
q = V1 on . . .onVd. The tensor product p⊗ q can be written as p⊗ q = U1 on . . .onUdonV1 on . . .onVd.

In particular, the ranks of the first factor are followed by the ranks of the second factor
with 1 in between. In what follows, we denote the operation of tensor transposition which was
described in Section 2.2.4, by T .

Lemma 6.11. Consider vectors p and q given in TT decompositions p = U1 on . . .onUd and q =
V1 on . . .onVd of ranks p1, . . . , pd−1 and q1, . . . , qd−1 respectively. The transposed tensor product
T (p⊗ q) has a TT decomposition T (p⊗ q) = U1 onV 1 onU2 onV 2 on . . .onUd−1 onV d−1 onUdonV d

of ranks
p1, p1q1, p2q1, p2q2, . . . , pd−2qd−2, pd−1qd−2, pd−1qd−1, qd−1

with U1 = U1, V d = Vd and the other cores defined as follows:

V 1

(
ζ1, j1, η1β1

)
= V1(j1, β1) · δ(ζ1, η1) ,

Ud(αd−1µd−1, id, νd−1) = Ud(αd−1, id) · δ(µd−1, νd−1)

and, for 2 ≤ k ≤ d− 1,

Uk(αk−1µk−1, ik, αkνk−1) = Uk(αk−1, ik, αk) · δ(µk−1, νk−1) ,

V k

(
ζkβk−1, jk, ηkβk

)
= Vk(αk−1, jk, αk) · δ(ζk, ηk)

for all mode indices ik, jk, where 1 ≤ k ≤ d, and for 1 ≤ αk, ζk, ηk ≤ pk and 1 ≤ βk, µk, νk ≤ qk,
where 1 ≤ k ≤ d− 1.

Proof. By changing the order of summation and multiplication, for all values of mode indices
i1, . . . , id, j1, . . . , jd we obtain

(p⊗ q) i1,...,id,j1,...,jd

=

p1∑
α1=1

. . .

pd−1∑
αd−1=1

U1(i1, α1) · U2(α1, i2, α2) · . . .

· Ud−1(αd−2, id−1, αd−1) · Ud(αd−1, id)

·
q1∑

β1=1

. . .

qd−1∑
βd−1=1

V1(j1, β1) · V2(β1, j2, β2) · . . .

· Vd−1(βd−2, jd−1, βd−1) · Vd(βd−1, jd)

=

p1∑
α1=1

q1∑
β1=1

. . .

pd−1∑
αd−1=1

qd−1∑
βd−1=1

U1(i1, α1) · V1(j1, β1)

· U2(α1, i2, α2) · V2(β1, j2, β2) · . . .
· Ud−1(αd−2, id−1, αd−1) · Vd−1(βd−2, jd−1, βd−1) ·

· Ud(αd−1, id) · Vd(βd−1, jd)

= (T (p⊗ q)) i1,j1,...,id,jd .
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Lemma 6.12. Let U be a core of rank p0 × pd with a d-dimensional mode index. For r ∈ N
consider the core U defined by setting

U
(
α0γ0, i1, . . . , id, αdγd

)
= U

(
α0, i1, . . . , id, αd

)
· δ(γ0, γd)

for all values of mode indices i1, . . . , id, for 1 ≤ α0 ≤ p0, 1 ≤ αd ≤ pd and for 1 ≤ γ0, γd ≤ r.
Assume that U is given in a decomposition U = U1 onU2 on . . .onUd−1 onUd, where Uk is

of rank pk−1 × pk. Then U can be represented as U = U1 onU2 on . . .onUd−1 onUd, where for
1 ≤ k ≤ d the core Uk of rank pk−1r × pkr is defined as follows:

Uk(αk−1γk−1, ik, αkγk) = Uk(αk−1, ik, αk) · δ(γk−1, γk)

for all values of mode index ik, for 1 ≤ αk−1 ≤ pk−1, 1 ≤ αk ≤ pk and for 1 ≤ γk−1, γk ≤ r.

Proof. For all rank and mode indices we have

U
(
α0γ0, i1, . . . , id, αdγd

)
=

p1∑
α1=1

. . .

pd−1∑
αd−1=1

δ(γ0, γd)
d∏

k=1

Uk(αk−1, ik, αk)

=

r∑
γ1=1

p1∑
α1=1

. . .

r∑
γd−1=1

pd−1∑
αd−1=1

d∏
k=1

δ(γk−1, γk)Uk(αk−1, ik, αk) , (26)

i.e. U = U1 onU2 on . . .onUd−1 onUd.

Corollary 6.13. Assume that vectors pk , 1 ≤ k ≤ d, are given in QTT decompositions with l
quantization levels and of ranks r(k)

1 , . . . , r
(k)
l−1, 1 ≤ k ≤ d, respectively. Then the tensor product

p1 ⊗ . . .⊗pd can be represented in the transposed QTT format with ranks

r
(1)
1 , r

(1)
1 r

(2)
1 , . . . , r

(1)
1 · r

(2)
1 · . . . · r

(d−1)
1 · r(d)

1 ,

r
(1)
1 r

(2)
1 · . . . · r

(d−1)
1 · r(d)

1 ,

r
(1)
2 · r

(2)
1 · . . . · r

(d)
1 · r

(d)
1 , . . . , r

(1)
2 · r

(2)
2 · . . . · r

(d)
2 · r

(d)
1 ,

r
(1)
2 r

(2)
2 · . . . · r

(d−1)
2 · r(d)

2 ,

. . . . . .

r
(1)
l−2r

(2)
l−2 · . . . · r

(d−1)
l−2 · r(d)

l−2,

r
(1)
l−1 · r

(2)
l−2 · . . . · r

(d)
l−2 · r

(d)
l−2, . . . , r

(1)
l−1 · r

(2)
l−1 · . . . · r

(d−1)
l−1 · r(d)

l−2,

r
(1)
l−1r

(2)
l−1 · . . . · r

(d−1)
l−1 · r(d)

l−1,

r
(2)
l−1 · . . . · r

(d)
l−1, . . . , r

(d−1)
l−1 · r(d)

l−1, r
(d)
l−1,

where we highlight in blue the QT3 ranks separating adjacent levels. As a result, all QT3 ranks
of the tensor product are bounded from above by

d∏
k=1

max
1≤m≤l−1

r(k)
m .

The proof follows from Lemmas 6.11 and 6.12.

When the numbers of levels of quantization vary, i.e. l1 = . . . = ld = l does not hold for
any l, Corollary 6.13 still remains true. Indeed, one can increase the number of cores in each
decomposition up to max1≤k≤d lk by introducing void cores with void mode indices and of rank
1×1 (so that these cores are just constant factors), apply the results presented above and remove
the void cores by contracting them with the others.
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6.5 Proofs of the theorems

Proof of Theorem 2.4. Assume 1 ≤ s ≤ R. The corresponding shift matrix is a Kronecker
product:

Sηs = S
(l1)
ηs1
⊗ . . .⊗S(ld)

ηsd
,

where S(lk)
ηk is the 2lk × 2lk -matrix of the zero-filling ηsk-position shift, 1 ≤ k ≤ d. By [53,

Lemma 4.2], each of these one-dimensional factors can be represented explicitly in the QTT
format with ranks bounded by 2 for any ηsk. However, if ηsk = 0, then S(lk)

ηk = I is of QTT
ranks 1, . . . , 1. Therefore, according to Proposition 6.10, the QTT ranks of Sηs are bounded by
ρs1, . . . , ρ

s
1, 1,ρs2, . . . , ρs2, 1, . . . , . . . , 1,ρsd, . . . , ρ

s
d, where

ρsk =

{
2, ηsk 6= 0,

1, ηsk = 0

for 1 ≤ k ≤ d. As the identity matrix is of QTT ranks 1, . . . , 1, by Proposition 6.7, the QTT
ranks of Sηs −I are bounded by ρs1+1, . . . , ρs1+1, 2,ρs2+1, . . . , ρs2+1, 2, . . . , . . . , 2,ρsd+1, . . . , ρsd+1.

Analogously we obtain that the QTT ranks of ωs are bounded by rs1, . . . , rs1, 1,rs2, . . . , rs2,
1, . . . , . . . , 1, rsd, . . . , r

s
d, where for 1 ≤ k ≤ d we have rsk = 1 if ηsk = 0. Due to Proposition 6.8,

the same bounds hold true for the QTT ranks of the matrix diagωs .
Finally, we use Proposition 6.9 to conclude that the sth term

(
Sηs − I

)
◦Mωs of the

CME operator is represented in the QTT format with ranks bounded by q̃s1, . . . , q̃s1, 1,q̃s2, . . . , q̃s2,
1, . . . , . . . , 1,q̃sd, . . . , q̃

s
d, where

q̃sk =

{
3 · rsk, ηsk 6= 0,

2 · 1, ηsk = 0

for 1 ≤ k ≤ d. By summing these rank bounds, we obtain the rank bounds claimed for A with
qk =

∑R
s=1 q̃

s
k.

Proof of Theorem 2.5. Analogous to that of Theorem 2.4. For the QT3 format, we use Corol-
lary 6.13 instead of Proposition 6.10 to construct tensor products and to establish the corre-
sponding rank bounds.

Proof of Theorem 6.4. Let us set U0 = [Cm ], Um = [Iρm+1] for 1 ≤ m ≤
∑

k=1 lk, V0 = [−Gm ]
and assume A = U1 on . . .onU∑

k=1 lk
. Then the proof follows from Proposition 6.7.
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